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1 Introduction

Although Dillingham [3] gave the first derivation of the shallow water equations
(SWEs) relative to a moving frame of reference (see [1] for a review of Dilling-
ham’s and other derivations), there was an independent derivation by Huang &
Hsiung [4, 6] (hereafter HH). In this report we review the HH derivation and identify
their key assumptions. The reason for this report is threefold. The HH derivation
has similarities with, but also differences from, the derivation of Dillingham. Sec-
ondly, they extend their derivation to the three-dimensional (3D) case so it gives
some insight into their approach (their 3D derivation is reviewed in [2]). The third
reason is to compare with the new surface SWEs proposed in [1].

2 HH SWEs in two-dimensions

Suppose the flowfield is two-dimensional (one horizontal dimension and one vertical
dimension), with coordinates (x, y) , and the fluid lies in a tank of length L with fluid
depth described by the graph y = h(x, t) . HH chooose a representative horizontal
velocity u which is independent of y , and they propose the following variant of the
SWEs relative to the rotating frame

ut + uux + a (x, t)HH hx = b (x, t)HH

ht + (hu)x = 0 ,
(2.1)

with
a (x, t)HH = g cos θ + q̈2 + Ω̇ (x + d1) + 2Ωu− Ω2 (h + d2) ,

b (x, t)HH = −g sin θ − q̈1 + Ω2 (x + d1) + Ω̇d2 .
(2.2)

We have altered their notation in order to compare with [1]. In [1] the offset is
denoted by d = (d1, d2) , and in the HH equations the offset is fixed at d1 = 0
and d2 = −zg . In HH notation the acceleration q̈ is denoted by q̈1 = u̇2 and
q̈2 = u̇3 ; they are, respectively, the ship sway and heave accelerations relative to the

1



body frame. Also θ = e1 and Ω = u4 are respectively the roll angle and angular
velocity. The angular velocity is relative to the body frame which in the case of
two-dimensions coincides with the spatial angular velocity since

QT Q̇ = Q̇QT = θ̇J , J =

[
0 −1
1 0

]
,

and any proper rotation matrix in R2 is of the form

Q(t) =

[
cos θ − sin θ
sin θ cos θ

]
.

2.1 Derivation of HH rotating SWEs

The continuity equation and Euler’s equations of motion in two dimensions are

ux + vy = 0,

ut + uux + vuy + 1
ρ

∂p
∂x

= −g sin θ + 2Ωv + Ω̇ (y + d2) + Ω2 (x + d1)− q̈1,

vt + uvx + vvy + 1
ρ

∂p
∂y

= −g cos θ − 2Ωu− Ω̇ (x + d1) + Ω2 (y + d2)− q̈2 .

(2.3)
The boundary conditions are

u = 0 at x = 0 and x = L , v = 0 at y = 0 , (2.4)

and
p = 0 and ht + uhx = v , at y = h(x, t) . (2.5)

Based on the shallow water assumption, HH assume that u is a function of horizontal
space coordinate and time and does not depend on the vertical space coordinate

u = u (x, t) . (HH-1)

Then integrating the continuity equation from y = 0 to y = h (x, t) leads to∫ h

0
(ux + vy) dy = hux + v

∣∣h = hux + ht + uhx = ht + (hu)x = 0 , (2.6)

using the bottom and kinematic free surface boundary conditions. Note that u in
equation (2.6) is equivalent to the depth-averaged horizontal velocity,

u = 1
h

∫ h

0
u(x, y, t)dy , (2.7)

since

(hu)x = ∂
∂x

∫ h

0
u(x, y, t)dy = hxu

∣∣h +
∫ h

0
uxdy = hxu

∣∣h − ∫ h

0
vydy

hxu
∣∣h − ht − uhx

∣∣h = −ht ⇒ ht + (hu)x = 0 .
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The second assumption is to neglect the vertical acceleration

Dv
Dt
≈ 0 . (HH-2)

The vertical momentum equation then reduces to

1
ρ

∂p
∂y

= −g cos θ − 2Ωu− Ω̇(x + d1) + Ω2(y + d2)− q̈2 ,

Integrating this equation from any point y to the surface h gives an expression for
the pressure field at any point y

1
ρ
p(x, y, t) =

(
g cos θ + 2Ωu + Ω̇(x + d1) + q̈2

)
(h− y)− 1

2
Ω2

(
(h + d2)

2 − (y + d2)
2) ,

applying the dynamic free surface boundary condition. 1
ρ

∂p
∂x

is needed for the
x−momentum equation

1
ρ

∂p
∂x

=
(
g cos θ + 2Ωu + Ω̇(x + d1)− Ω2 (h + d2) + q̈2

)
hx +

(
2Ωux + Ω̇

)
(h− y) .

(2.8)
Substituting equation (2.8) into the x−momentum equation gives

ut + uux + vuy +
(
g cos θ + 2Ωu + Ω̇(x + d1)− Ω2 (h + d2) + q̈2

)
hx

+
(
2Ωux + Ω̇

)
(h− y) = −g sin θ + 2Ωv + Ω̇ (y + d2) + Ω2 (x + d1)− q̈1 .

(2.9)
Note that vuy = 0 as u = u (x, t) . The third assumption is to neglect the horizontal
Coriolis force

2Ωv ≈ 0 . (HH-3)

Then integrating equation (2.9) over the entire depth leads to

ut + uux +
(
g cos θ + 2Ωu + Ω̇(x + d1)− Ω2 (h + d2) + q̈2

)
hx

+ Ωhux = −g sin θ + Ω̇d2 + Ω2 (x + d1)− q̈1 .
(2.10)

The fourth assumption is to neglect the boxed term

Ωhux ≈ 0 . (HH-4)

Then the x−momentum equation simplifies to

ut + uux + a (x, t)HH hx = b (x, t)HH , (2.11)

with a (x, t)HH and b (x, t)HH given in (2.2).
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3 Comparison with the surface SWEs in [1]

The new surface equations are derived in [1]. The surface momentum equation
neglecting surface tension is

Ut + UUx + a(x, t)hx = b(x, t) , (3.12)

where

a(x, t) = g cos θ + Ω̇(x + d1)− Ω2(h + d2)− q̈1 sin θ + q̈2 cos θ

b(x, t) = 2Ωht − g sin θ + Ω̇(h + d2) + Ω2(x + d1)− q̈1 cos θ − q̈2 sin θ .
(3.13)

In equation (3.12) the translational accelerations q̈1 and q̈2 are relative to the spatial
frame and if we replace them with the body translational accelerations

q̈ = QT q̈ =

[
cos θ sin θ
− sin θ cos θ

] [
q̈1

q̈2

]
, (3.14)

q̈1 = q̈1 cos θ + q̈2 sin θ

q̈2 = −q̈1 sin θ + q̈2 cos θ ,
(3.15)

then a (x, t) and b (x, t) simplies to

a(x, t) = g cos θ + Ω̇(x + d1)− Ω2(h + d2) + q̈2

b(x, t) = 2Ωht − g sin θ + Ω̇(h + d2) + Ω2(x + d1)− q̈1 .
(3.16)

Assume that the horizontal surface velocity U in the surface momentum equation
is equivalent to the horizontal velocity in HH momentum equation, then comparison
of the coefficients shows that

a(x, t)HH = a(x, t) + 2Ωu

b(x, t)HH = b(x, t)− 2Ωht − Ω̇h .

Hence we expect the two formulations of the SWEs to give similar results when

|2ΩU | << 1 and |2Ωht + Ω̇h| << 1 .

Numerical results comparing the 2D surface SWEs with the 2D HH SWEs are
presented in [1]. A review of the HH equations in 3D is given in [2].
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