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Abstract

When solitary waves are characterized as homoclinic orbits of a finite-dimensional
Hamiltonian system, they have an integer-valued topological invariant, the Maslov
index. We are interested in developing a robust numerical algorithm to compute
the Maslov index, to understand its properties, and to study the implications for
the stability of solitary waves. The algorithms reported here are developed in the
exterior algebra representation, which leads to a robust and fast algorithm with
some novel properties. We use two different representations for the Maslov index,
one based on an intersection index and one based on approximating the homoclinic
orbit by a sequence of periodic orbits. New results on the Maslov index for solitary
wave solutions of reaction-diffusion equations, the fifth-order Korteweg-De Vries
equation, and the longwave-shortwave resonance equations are presented. Part 1
considers the case of four-dimensional phase space, and Part 2 considers the case of
2n−dimensional phase space with n > 2.

1 Introduction

Hamiltonian evolution equations in one space dimension, such as the nonlinear Schrödinger
(NLS) equation, fifth-order Korteweg-De Vries (KdV) equation, longwave-shortwave reso-
nance (LW-SW) equations, have the property that their steady part is a finite-dimensional
Hamiltonian system. For such systems, solitary wave solutions can be characterized as
homoclinic orbits of the Hamiltonian ordinary differential equation (ODE). The spectral
problem associated with the linearization about a given homoclinic orbit, in the time-
dependent equations, then leads to a parameter-dependent family of linear Hamiltonian
systems. The advantage of these Hamiltonian structures is that the linear and nonlinear
Hamiltonian systems have global geometric properties that aid in proving existence of the
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basic solitary wave and in understanding its stability as a solution of the time-dependent
equation. Our interest in this paper is in a particular geometric invariant – the Maslov
index of homoclinic orbits.

The study of the stability of solitary waves using the Maslov index was pioneered in
the papers by Jones [27] and Bose & Jones [6]. The linear stability of standing wave
solutions of a spatially-dependent NLS equation is studied in [27]. The linearization about
a steady solution results in a linear λ−dependent Hamiltonian system with two degrees
of freedom of the form (1.2) and λ a spectral parameter. Geometric methods are then
used to determine the Maslov index, and it is used to prove an instability result. Gradient
parabolic PDEs of the form

ut = d1uxx + fu(u, v)

vt = d2vxx + fv(u, v)

(1.1)

are considered in [6], where d1 and d2 are positive parameters, f(u, v) is a given smooth
function with gradient (fu, fv). Linearizing about a steady solution (û(x), v̂(x)), and in-
troducing a spectral parameter leads to a coupled pair of linear second-order ODEs which
can be put into the standard form (1.2), with the asymptotic property (1.5) and λ the
spectral parameter. Since the PDE is a gradient system it is sufficient to restrict the
spectral parameter to be real. Singular perturbation methods are then used to determine
the Maslov index, which in turn is related to stability. A key feature of this work is the
analysis of the induced system on the exterior algebra space

∧2(R4).

Many of the most interesting solitary waves are only known numerically and therefore a
numerical approach to the Maslov index is of interest. It is the aim of this paper to develop
a numerical framework for computing the Maslov index of homoclinic orbits. Once the
solitary wave solution is known, analytically or numerically, it is the linearization about
that solitary wave which encodes the Maslov index. Therefore, the starting point for
developing the theory is the following class of parameter-dependent Hamiltonian systems

Jux = B(x, λ)u , u ∈ R
4 , x ∈ R , λ ∈ R , (1.2)

where J is the standard symplectic operator on R4

J =




0 −I

I 0


 , (1.3)

and B(x, λ) is a symmetric matrix depending smoothly on x and λ. Let

A(x, λ) = J−1B(x, λ) . (1.4)

The fact that A(x, λ) is obtained from the linearization about a solitary wave suggests
the following asymptotic property. It is assumed throughout the paper that

A∞(λ) = lim
x→±∞

A(x, λ) , (1.5)
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and that A∞(λ) is strictly hyperbolic for an open set of λ values that includes 0.

The theory applies to linear Hamiltonian systems on a phase space of dimension 2n with
n any finite natural number. In Part 1 attention is restricted to the case of 4−dimensional
phase space which simplifies formulae, and general aspects of the case n > 2 are given in
Part 2 [18].

The Maslov index is a winding number associated with paths of solutions of (1.2), in
particular paths of Lagrangian planes. A Lagrangian plane in R4 is a 2−dimensional
subspace of R

4, say span{z1, z2}, satisfying 〈Jz1, z2〉 = 0, where 〈·, ·〉 is a standard inner
product on R4.

Suppose λ is fixed and on the interval a ≤ x ≤ b consider a path of Lagrangian planes

[a, b] 7→ Z(x, λ) = [z1(x, λ) | z2(x, λ)] ∈ R
4×2 ,

satisfying Zx = A(x, λ)Z for a ≤ x ≤ b. The Maslov index of this path is a count of the
number of times this path of Lagrangian planes has a non-trivial intersection with a fixed
reference Lagrangian plane. A precise definition is given in §2.

A byproduct of the present theory is some new observations about the properties of the
Maslov index, which in turn are useful in computation. In the numerics, the exterior
algebra formulation is also advantageous. We give formulas for different representations
of the Maslov index for Lagrangian planes on

∧2(R4) (and for any n in Part 2 [18]), and
present a general algorithm that works – in principle – for any dimension n. However, the
dimension of

∧n(R2n) increases rapidly with n and so the algorithm is most effective for
low dimensional systems. The algorithm is constructed so that the manifold of Lagrangian
planes is attracting. Numerical results are presented in this paper for the cases of R2 and
R4.

In order to develop a numerical framework for the Maslov index, one of our first difficulties
is defining the Maslov index! Although it is easy to give a rough definition, making it
precise depends greatly on the context and a surprising number of special difficulties and
cases arise.

We will appeal to two constructions of the Maslov index. The first is based on an in-
tersection index between the Lagrangian path and a reference plane. This definition was
used in Maslov’s original work, and was developed further by Arnold [3] and Duister-

maat [25]. It is this definition that is used by Jones [27] and Bose & Jones [6], taking
the Lagrangian path to be a path of unstable subspaces and taking the reference plane to
be the stable subspace at infinity.

Independently, Chen & Hu [19] give two constructions of the Maslov index of a homo-
clinic orbit. Their first definition is based on an intersection index and is equivalent to the
definition in [27,6]. Their second definition is based on a Fredholm index of (1.2) viewed as
an operator in a function space on the real line. However, this latter definition, although
equivalent to the definition based on an intersection index, is not useful for numerics.

In this paper, the definition of the Maslov index based on an intersection index is extended
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by introducing an explicit and computable formula for the crossing form. This theory is
developed in §6.

Our second method for computing the Maslov index is to approximate the homoclinic orbit
by a sequence of periodic orbits, apply the Maslov index for periodic orbits, and then take
limits. There does not appear to be any loss of generality in using periodic approximates.
Vanderbauwhede & Fiedler [44] prove that homoclinic orbits in Hamiltonian systems
(as well as reversible systems) can be approximated as the limit of a sequence of periodic
orbits.

The Maslov index for periodic orbits has been widely developed because of its interest
in semi-classical quantization (e.g. [26,21,34,42,39,38] and references therein). In [16] a
new numerical scheme is developed to compute the Maslov index of hyperbolic periodic
orbits, and Chardard [14] proves under suitable hypotheses that if the periodic orbit is
asymptotic to a homoclinic orbit, the Maslov index converges to the Maslov index of the
limiting homoclinic orbit. This approach ties in with existing schemes for computing the
basic solitary wave, where the solitary wave is approximated by a periodic orbit and then
a spectral method is used for computation.

The computational framework for the Maslov index is illustrated by application to four
examples. The first is a tutorial example on R

2, where the details can be given explicitly.
It is a scalar-reaction diffusion equation with an explicit localized solution. The second
example is a coupled reaction-diffusion equation which also has an explicit solution. The
third example is solitary wave solutions of KdV5. The fourth example is the LW-SW
resonance equation which arises in fluid mechanics and consists of a NLS equation coupled
to a KdV equation. This latter example has two new interesting features: the spectral
problem is on a six-dimensional phase space, and for appropriate parameter values it has
a Maslov index which is a non-monotone function of λ.

2 Linear Hamiltonian systems and Lagrangian subspaces

A Lagrangian subspace can be represented by a Lagrangian frame: a 4× 2 matrix of rank
2

Z =



X

Y


 , (2.1)

where X and Y are 2 × 2 matrices satisfying

YTX = XTY . (2.2)

There is a correspondence between elements of the unitary group U(2) and Lagrangian
subspaces. When XTX + YTY = I then X ± iY are unitary matrices. The determinant
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of a unitary matrix lies on the unit circle. This property suggests defining the angle

eiκ =
det[X − iY]

det[X + iY]
. (2.3)

Along a path of Lagrangian subspaces, this angle will change, and the winding of this
angle is the basis of the Maslov index.

Let Z(x), a ≤ x ≤ b be any smooth path of Lagrangian subspaces. If the path is a loop:
Z(b) = Z(a), then there is an integer associated with the path: the number of times the
induced path on the unit circle, represented by eiκ(x), encircles the origin. Define the angle
associated with the path by

eiκ(x) =
det[X(x) − iY(x)]

det[X(x) + iY(x)]
. (2.4)

Then the Maslov index of the path is the integer

Maslov(Z, κ) :=
κ(b) − κ(a)

2π
, (2.5)

where κ here is viewed as the lift from S1 to the covering space.

The Maslov index can also be defined for an arbitrary path of Lagrangian subspaces by
introducing the idea of an intersection form. This approach to the Maslov index goes back
to Maslov and Arnold [3]. The key to the definition in this case is the use of an inter-
section form or crossing form. Here we will follow the construction in Robbins [42,43] and
Robbin & Salamon [40]. Modulo a choice of orientation these definitions are equivalent
and lead to the following mapping.

Let V be a fixed reference plane, represented by a Lagrangian frame. For example a typical
choice for the reference plane is

V =




I

0


 .

In the case of homoclinic orbits a natural choice for the reference plane is the stable or
unstable manifold at some value of x.

Suppose, for some value of x, denoted x0, there is a simple intersection between the
reference plane V and the path: that is, Z(x0) ∩ V is one dimensional. The intersection
index at x0 is determined by the sign of Γ, the crossing form, defined by

Γ(Z, V, x0) = 〈JZ′(x0)β,Z(x0)β〉 vol . (2.6)

Here and throughout the paper vol is taken to be the standard volume form on R4,

vol = e1 ∧ e2 ∧ e3 ∧ e4 .
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In the formula (2.6),

Z′(x0) :=
d

dx

∣∣∣∣∣
x=x0

Z(x),

and β ∈ RP1. Real projective space RP1 is the space of all unoriented lines through the
origin of R2,

RP
1 = { β ∈ R

2 : β 6= 0 , β ∼ c β , c ∈ R \ {0} } .

β determines the linear combination of the columns of Z(x0) which span the intersection
subspace

Z(x0) ∩ V = span{ξ} , ξ := β1z1 + β2z2 ,

where z1, z2 are the columns of Z(x0). At each simple intersection between V and the
path Z(x) the sign of the intersection form is ±1. Adding the intersection indices over the
path gives the Maslov index

Maslov(Z, V ) =
∑

a<x0<b

sign Γ(Z, V, x0) . (2.7)

This formula assumes that Z(a)∩V = {0} and Z(b)∩V = {0} and that there is only a finite
number of x0 where Z(x0) ∩ V 6= {0}. When the endpoints have non-trivial intersection
the formula can be modified to contribute a half-integer for each end intersection (see
page 831 of [40]). Non-regular intersections are not generic in the one-parameter family,
and so can be eliminated by perturbing λ.

3 The Evans function for (1.2)

In order to compare the number of eigenvalues of (1.2) with the Maslov index, we will
use the Evans function to determine eigenvalues based on the setup in Alexander,

Gardner & Jones [1], adapted to the symplectic setting in Bridges & Derks [8],
restricted to the case of R4.

Consider the linear system of ODEs,

ux = A(x, λ)u , u ∈ R
4 , (3.1)

where A(x, λ) = J−1B(x, λ) and B(x, λ) is symmetric and depends smoothly on x and
λ. In general λ can be complex but in this paper it will be restricted to be real. Assume
that A(x, λ) tends exponentially fast to a matrix A∞(λ) when x → ±∞.

Define the stable and unstable subspaces of A∞(λ) by

Es
∞(λ) := {u ∈ R

4 : lim
x→+∞

eA∞(λ)xu = 0}

and

Eu
∞(λ) := {u ∈ R

4 : lim
x→−∞

eA∞(λ)xu = 0}
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Es(λ) (Eu
∞(λ)) is the direct sum of the generalized eigenspaces associated with the eigen-

values of A∞(λ) with negative (positive) real part. The matrix A∞(λ) is said to be hyper-
bolic if R4 = Eu

∞(λ)⊕Es
∞(λ); equivalently if A∞(λ) has no purely imaginary eigenvalues.

Purely imaginary eigenvalues of A∞(λ) are associated with the essential spectrum. The
essential spectrum is

σess = {λ ∈ C | A∞(λ) is not hyperbolic}

= { λ ∈ C : det[A∞(λ) − iκI] = 0 for some κ ∈ R } .

(3.2)

We will assume throughout that λ /∈ σess. Then the Hamiltonian symmetry of A∞(λ)
gives that dim Eu

∞(λ) = dim Es
∞(λ) = 2.

Let
∧2(R4) be the vector space of 2−vectors in R4. There is an induced system from (3.1)

Ux = A(2)(x, λ)U , U ∈ ∧2(R4) . (3.3)

Let σ+(λ) be the sum of the eigenvalues of A∞(λ) with positive real part, and let σ−(λ) be
the sum of the eigenvalues with negative real part. Then there are solutions U+(x, λ) and
U−(x, λ) of (3.3) with maximal decay as x goes to −∞ and +∞ respectively satisfying

limx→−∞e−σ+(λ)xU+(x, λ) = ζ+(λ) ∈ ∧2(R4) , (3.4)

and

limx→+∞e−σ−(λ)xU−(x, λ) = ζ−(λ) ∈ ∧2(R4) , (3.5)

where ζ±(λ) are eigenvectors

A(2)
∞ (λ)ζ±(λ) = σ±(λ)ζ±(λ) . (3.6)

The eigenvalues σ±(λ) are analytic functions of λ and so the eigenvectors ζ±(λ) can be
chosen to be analytic as well.

A value λ ∈ R \ σess is called an eigenvalue if the stable solutions U−(x, λ) and unstable
solutions U+(x, λ) have nontrivial intersection. Eigenvalues are detected by the Evans
function [1] which is defined by

D(λ) vol = U−(x, λ) ∧U+(x, λ) ∈ ∧4(R4) . (3.7)

The Evans function is independent of x and is an analytic function of λ [1]. Analyticity
assures that the zeros of D(λ) are isolated. In the definition (3.7), the property of (1.2),

Trace(A(x, λ)) = 0 , (3.8)

has been used. This property follows since A = J−1B with J skew-symmetric and B
symmetric.
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Because of the Hamiltonian structure, the Evans function is invariant under exponential
scaling of the following form. Let

Û±(x, λ) = e−σ±(λ)xU±(x, λ) ,

Then the scaled functions satisfy

Û±
x = [A(2)(x, λ) − σ±(λ)I]Û± ,

but the Evans function becomes

D(λ) vol = e(σ−(λ)+σ+(λ))xÛ−(x, λ) ∧ Û+(x, λ) = Û−(x, λ) ∧ Û+(x, λ) ,

since σ−(λ) + σ+(λ) = Trace(A∞(λ)) = 0.

An explicit expression for the entries of A(2) as a function of the entries of A, when
n = 2, is given in Appendix A. It is natural to ask whether there is an induced symplectic
structure on

∧2(R4). For example, can the induced system be written in the form

J(2)Ux = B(2)(x, λ)U ,

where J(2) is the induced matrix from J on
∧2(R4). However, this is not the case. The

most significant obstacle is the fact that J(2) is not invertible. The precise relation between
J(2), B(2) and A(2) is given in Appendix B.

4 U±(x, λ) represent paths of Lagrangian planes

The paths of stable and unstable subspaces U±(x, λ) (or their scaled versions Û±(x, λ))
are paths of Lagrangian subspaces.

Let Φ(x, s, λ) be a fundamental solution matrix for (1.2), that is,

JΦx = B(x, λ)Φ , Φ(s, s, λ) = I ,

and Φ(x, s, λ)Φ(s, t, λ) = Φ(x, t, λ). Define the stable and unstable subspaces for each
x0 ∈ R [41],

Es(x0, λ) = {u ∈ R
4 : lim

x→+∞
Φ(x, x0)u = 0} = span

{
col(U−(x0, λ))

}
,

and

Eu(x0, λ) = {u ∈ R
4 : lim

x→−∞
Φ(x, x0)u = 0} = span

{
col(U+(x0, λ))

}
.

Both subspaces define invariant vector bundles over R. This means that

Es(x, λ) = Φ(x, s, λ)Es(s, λ) and Eu(x, λ) = Φ(x, s, λ)Eu(s, λ) . (4.1)
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Moreover

lim
x→+∞

Es(x, λ) = Es
∞(λ) and lim

x→−∞
Eu(x, λ) = Eu

∞(λ) .

If Eu(x, λ) is Lagrangian for some x then it is Lagrangian for all x. This observation is
implicit in (4.1) but a direct proof can be given as follows. When u,v ∈ Eu(x, λ) are
solutions of (1.2),

d

dx
〈Ju,v〉 = 〈Jux,v〉 + 〈Ju,vx〉 = 〈B(x, λ)u,v〉 − 〈u,B(x, λ)v〉 = 0 ,

using symmetry of B(x, λ). Hence the value of 〈Ju,v〉 is an invariant of (1.2) for any pair
of vectors u,v ∈ R4:

〈Ju(x, λ),v(x, λ)〉 = 〈Ju(x0, λ),v(x0, λ)〉 , ∀x .

But u,v ∈ Eu(x, λ) and so limx→−∞ u(x, λ) = limx→−∞ v(x, λ) = 0, therefore:

lim
x→−∞

〈Ju(x, λ),v(x, λ)〉 = 0 ⇒ 〈Ju(x0, λ),v(x0, λ)〉 = 0 .

Therefore, Eu(x, λ) is a Lagrangian subspace for any x. A similar proof confirms the result
for Es(x, λ). Another proof is to use Montaldi’s Theorem [37] on Lagrangian planes in R4

and a sketch is given in Appendix C.

5 An example in R
2

Before proceeding to the full definition and properties of the Maslov index for paths of
Lagrangian subspaces which are also solutions of (1.2) it will be useful to consider the
simplest possible context for the Maslov index, linear systems on R2. To illustrate the role
of λ, a stability problem for a reaction-diffusion equation is used. It is a simplified version
of the class of nonlinear parabolic PDEs studied in [6].

Consider the nonlinear parabolic PDE

∂φ

∂t
=

∂2φ

∂x2
− φ + φ2 , x ∈ R , (5.1)

for the scalar-valued function φ(x, t). There is a basic steady solitary wave solution

φ̂(x) = 3
2
sech2

(
1
2
x
)

, (5.2)

which satisfies φ̂xx − φ̂ + φ̂2 = 0. Linearizing (5.1) about the basic state φ̂ and looking for
solutions proportional to eλt leads to the spectral problem

L φ = λφ , with L φ :=
d2φ

dx2
− φ + 2φ̂(x)φ . (5.3)
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Fig. 1. Plot of the spectrum of L .

The basic state (5.2) is said to be (spectrally) unstable if any part of the spectrum of L

is positive. The spectrum of L can be explicitly constructed. It consists of a branch of
essential spectra and a point spectrum

σ(L ) = σess(L ) ∪ σp(L ) ,

with σess(L ) = {λ ∈ R : λ ≤ −1} and σp(L ) =
{
−3

4
, 0 , 5

4

}
. The spectrum is illustrated

in Figure 1.

The point spectrum can be verified by constructing the Evans function. First reformulate
(5.3) as a first-order system. Let

u(x, λ) =




φ(x, λ)

φx(x, λ)


 ,

then

Jux = B(x, λ)u , u ∈ R
2 , λ ∈ R , (5.4)

with

B(x, λ) =




λ + 1 − 3sech2(1
2
x) 0

0 1


 .

The eigenvalues of A∞(λ) are real and hyperbolic when λ + 1 > 0. In this formulation
the stable (u−) and unstable (u+) subspaces are represented by

u±(x, λ) = e±γs




h±

1
2
(h±

s ± γh±)


 ,

where s = 1
2
x, γ = 2

√
λ + 1,

h±(s, λ) = ±a0 + a1tanh(s) ± a2tanh2(s) + a3 tanh3(s) ,

and

a0 =
γ

15
(4 − γ2) a3 , a1 =

1

5
(2γ2 − 3) a3 , a2 = −γ a3 , (5.5)

and a3 is an arbitrary nonzero real number. The Evans function is then

D(λ) = u−(x, λ) ∧ u+(x, λ) .
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Evaluating at x = 0, a straightforward calculation leads to

D(λ) = −2
√

λ + 1
(

2a3

15

)2

λ (4λ + 3)(4λ − 5) .

The zeros of D(λ) are the eigenvalues, confirming the point spectrum
{
−3

4
, 0, +5

4

}
.

For linear Hamiltonian systems on R2 Lagrangian subspaces are just one-dimensional
subspaces. The path of unstable subspaces u+(x, λ) is used to define the Maslov index.
The natural one-dimensional subspace to choose for the reference space is Es

∞(λ),

Es
∞(λ) = span








2

−γ








.

Then, assume simple intersections between Es
∞(λ) and u+(x, λ) – which can be confirmed

a posteriori for the example (5.4) – and assume that

lim
x→±∞

u+(x, λ)
⋂

Es
∞(λ) = {0} .

This latter assumption is equivalent to assuming that λ is not an eigenvalue. The Maslov
index for this case is

Maslov(u+, Es
∞) =

∑

x0

sign 〈Ju+
x ,u+〉 vol ,

with x0 the points at which u+(x, λ) ∩ Es
∞ is non-trivial, and the volume form can be

taken to be vol = e1 ∧ e2. This expression for the Maslov index is the one-dimensional
version of (2.7).

The path of unstable subspaces is

u+(x, λ) = 1
2
eγs




2h+

h+
s + γh+


 . (5.6)

The intersection form in this case is

Γ(u+, Es
∞, x0) = 〈Ju+

x ,u+〉
∣∣∣∣∣
x=x0

vol ,

= (−u+
1 u̇+

2 + u+
2 u̇+

1 )

∣∣∣∣∣
x=x0

vol

=
[
((u+

2 )2 − λ − 1 + 12 sech2s)(u+
1 )2

] ∣∣∣∣∣
x=x0

vol .

However, at a point x0 where u+ intersects Es
λ, u+

2 = −1
2
γu+

1 and so

Γ(u+, Es
∞, x0) = 12 sech2 1

2
x0 (u+

1 )2 vol .

11



0

-0.5

-1

x

-2.5

-2

1050-5-10

1

0.5

-1.5

Fig. 2. Plot of ξs ∧ u+(x, λ) for the case λ = −0.8.

Hence Γ(u+, E∞
s) > 0 at each intersection, and the Maslov index is just the sum of the

intersections. An intersection occurs when

ξs ∧ u+ = 0 , where ξs =




2

−γ


 .

Now

ξs ∧ u+ = 2u+
2 + γu+

1 .

The factor eγs is not important and so can be divided out, giving

ξs ∧ u+ ∼ dh+

ds
+ 2γh+ .

This function has 0, 1, 2 or 3 zeros depending on the value of λ. Each zero corresponds
to an intersection between the unstable subspace with Es

∞(λ). The function ξs ∧ u+ is
illustrated in Figure 2 for the case λ = −0.8 where ξs ∧ u+ has three zeros indicating
three intersections. A summary of the Maslov index in each region is tabulated below.

λ −1 < λ < −3
4

−3
4

< λ < 0 0 < λ < 5
4

λ > 5
4

Maslov(u+, Es
∞) 3 2 1 0

Note that the Maslov index jumps by one at each eigenvalue. Let λ0 be any fixed real
value of λ such that λ0 > −1 and λ0 is not an eigenvalue, then the value of the Maslov
index equals the number of eigenvalues of L in the set λ > λ0.
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5.1 The Maslov angle in
∧1(R2)

Another way to count intersections between the path u+ and some reference plane is to
use the Maslov angle (2.4). In this case the angle κ(x, λ) is just the angle determined by
a polar representation of u+

eiκ(x,λ) :=
u+

1 (x, λ) − iu+
2 (x, λ)

u+
1 (x, λ) + iu+

2 (x, λ)
.

As x → ±∞
lim

x→±∞
eiκ(x,λ) =

2 − iγ

2 + iγ
.

The Maslov index is then the count of the number of times that κ crosses some reference
angle, such as the angle associated with the stable subspace. This version of the Maslov
index is equivalent to the definition based on intersection index.

6 The Maslov index for paths

In this section we look at some of the properties of paths of Lagrangian subspaces that
are also solutions of (1.2), and bring in the exterior algebra representation.

Here and throughout, let e1, . . . , e4 be the canonical basis for R
4. The symplectic form in

standard form is then
ω = e1 ∧ e3 + e2 ∧ e4 . (6.1)

The symplectic form is related to the symplectic operator J in (1.3) by

u ω = Ju , ∀ u ∈ R
4 ,

where the interior product is defined by

〈u ω,v〉 = [[ω,u ∧ v]]2 , ∀ u,v ∈ R
2n .

Here and throughout 〈·, ·〉 is the standard inner product on R4 and [[·, ·]]k is the induced
inner product on

∧k(R4). We will sometimes write 〈·, ·〉d on R
d when the associated

dimension is not clear. The equivalence between the induced inner product [[·, ·]]k and

〈·, ·〉d when d = dim
(∧k(R2n

)
is established in Appendix D. The basic properties of

symplectic exterior algebra can be found in [31].

The set of all Lagrangian subspaces of R4 associated with the standard symplectic operator
ω will be denoted by Λ(2). Λ(2) is a manifold of dimension 3. It is a submanifold of G2(R

4),
the Grassmannian of all 2−dimensional subspaces of R4 [31].

A path of unstable subspaces will be represented by U+(x, λ) ∈ ∧2(R4), which satisfies
the equation (3.3) and (3.4). When λ is not an eigenvalue then U+(x, λ) → Eu

∞(λ) as
x → ±∞ and so in P(Eu(x, λ)), projective space based on Eu(x, λ), a loop of Lagrangian
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subspaces is obtained. The Maslov index is then taken to be the sum of the weighted
intersections of U+(x, λ) with Es

∞(λ).

Es
∞(λ) is represented by the 2−form ζ−(λ) defined in (3.6). An analytic basis can always

be constructed for Es
∞(λ) [8]. Denote this basis by

Es
∞(λ) = span{ξs

1(λ), ξs
2(λ)} .

Consider the 3−form

U+(x, λ) ∧ (α1ξ
s
1(λ) + α2ξ

s
2(λ)) .

If for any fixed x and λ,

U+(x, λ) ∧ (α1ξ
s
1(λ) + α2ξ

s
2(λ)) = 0 ⇒ α = 0 ,

then we say that Es
∞(λ) is transverse to Eu(x, λ) := image(U+(x, λ)) at that value of

(x, λ).

We say that Es
∞(λ) and Eu(x, λ) have a simple intersection (or regular intersection) if the

intersection is one dimensional; there exists α ∈ RP1 such that

U(x, λ) ∧ ξ = 0 with ξ = α1ξ
s
1(λ) + α2ξ

s
2(λ) . (6.2)

We will assume that non-trivial intersections are regular. It is proved in [3] that non-
regular intersections can be eliminated by perturbation. This property can also be proved
using the homotopy equivalence property of the Maslov index, and a nice proof of this is
given in §3.4 of [38].

Now, let u+
1 (x, λ),u+

2 (x, λ) be a basis for Eu(x, λ) such that

U+(x, λ) = u+
1 (x, λ) ∧ u+

2 (x, λ) .

Then (6.2) implies that there exists (β1, β2) ∈ R
2 \ {0} such that

ξ = β1u
+
1 (x, λ) + β2u

+
2 (x, λ) := Z+(x, λ)β . (6.3)

The Maslov index is a count of how many times the path U+(x, λ) crosses the refer-
ence space Es

∞(λ), weighted by the intersection form. Starting with (2.6), and using the
equation (1.2) and the equivalence (6.3) it is

Γ(Λ, V, x0) = 〈B(x0, λ)ξ, ξ〉 vol . (6.4)

Note that the x−dependent path U+(x, λ) drops out. For fixed λ, once we have found a
point x0 corresponding to a regular intersection, the intersection form can be evaluated
using eigenvectors spanning Es

∞(λ) and the known symmetric matrix B(x0, λ). However
there is the hidden calculation of determining α ∈ RP1 and an algorithm for this is
developed in §13.
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Suppose λ is not an eigenvalue. Then the Maslov index of the path U+ relative to Es
∞ is

Maslov(U+, Es
∞) =

∑

x0

sign 〈ξ,B(x0, λ)ξ〉 vol , (6.5)

where the sum is over all points x0 of intersection in the interval −∞ < x0 < +∞.

This expression will serve as a definition for the Maslov index of a solitary wave at λ:

Maslov(λ) = Maslov(U+(·, λ), Es
∞(λ)). (6.6)

Proposition 1 Suppose λ is not an eigenvalue. Then under the given hypotheses on (1.2)
the Maslov index of a solitary wave is finite.

Proof. Introduce a metric dist(·, ·) on the manifold of 2−dimensional subspaces of R4.
For example this can be the standard metric on the Grassmannian G2(R

4) [46].

Let λ ∈ R \ σess which is not an eigenvalue. Since Es
∞(λ) and Eu

∞(λ) are transverse, by a
suitable scaling of the stable subspace Es

∞(λ) we can take

dist((Es
∞(λ)), Eu

∞(λ)) > 1 ,

where (Es
∞(λ)) is the closed set of planes which are not transverse to (Es

∞(λ)). To simplify
notation, the argument in dist(·, ·) should be interpreted as the representation of Es,u on
the Lagrangian Grassmanian.

When λ is not an eigenvalue we have that Eu(x, λ) → Eu
∞(λ) as x → ±∞. Therefore,

given any ǫ > 0, there exists δ > 0 such that

dist(Eu(x, λ), Eu
∞(λ)) < ε for |x| >

1

δ
.

Now use the triangle inequality

1 < dist((Es
∞(λ)), Eu

∞(λ)) ≤ dist((Es
∞(λ)), Eu(x, λ)) + dist(Eu(x, λ), Eu

∞(λ)) ,

or

dist(Eu(x, λ), (Es
∞(λ))) > 1 − ε for |x| >

1

δ
.

Hence there exists x∗ > 0 such that for |x| > x∗ Eu(x, λ) and Es
∞(λ) are transverse.

Intersections are therefore limited to the finite interval −x∗ < x < x∗. Since intersections
are generically isolated their number is finite. �
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7 The Maslov index on
∧2(R4)

The vector space
∧2(R4) is six-dimensional, and the orthonormal basis induced from the

basis of R4 is

E1 = e1 ∧ e2 , E2 = e1 ∧ e3 , E3 = e1 ∧ e4 ,

E4 = e2 ∧ e3 , E5 = e2 ∧ e4 , E6 = e3 ∧ e4 .

(7.1)

Any U ∈ ∧2(R4) can be represented in the form

U =
6∑

j=1

Uj Ej . (7.2)

The Grassmannian G2(R
4) is a subset of

∧2(R4) defined by

0 = U ∧U = I1 vol , I1 := U1U6 − U2U5 + U3U4 . (7.3)

The Lagrangian-Grassmannian is the subset defined by

0 = ω ∧ U = I2 vol , I2 := U2 + U5 . (7.4)

The Lagrangian-Grassmannian Λ(2) is the three dimensional submanifold of P

(∧2(R4)
)

defined by I1 = I2 = 0.

Let V ∈ ∧2(R4) be a fixed Lagrangian plane. Then

Λ1(2) = { U ∈ ∧2(R4) ∩ Λ(2) : U ∧ V = 0 } ,

is a codimension one submanifold of Λ(2) [3]. We have a sequence of manifolds

Manifold
∧2(R4) RP5 G2(R

4) Λ(2) Λ1(2)

Dimension 6 5 4 3 2

In this table RP5 represents P

(∧2(R4)
)
.

Consider the class of linear Hamiltonian systems (1.2) with B(x, λ) satisfying the asymp-
totic properties (1.4)-(1.5).

Proposition 2 Λ(2) is an invariant manifold of (3.3).
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Proof.
d
dx

U ∧U = Ux ∧ U + U ∧ Ux

= A(2)U ∧ U + U ∧ A(2)U

= Trace(A)U ∧ U

= 0

since Trace(A) = 0, also using the property [2]

A(2)U ∧ U + U ∧A(2)U = Trace(A)U ∧ U .

This proves that U ∧ U is a constant along solutions. Similarly,

d
dx

ω ∧ U = ω ∧ Ux

= ω ∧ A(2)U

= ω ∧ A(2)U + A(2)
ω ∧ U − A(2)

ω ∧ U

= Trace(A)ω ∧U − A(2)
ω ∧ U

= −A(2)
ω ∧U

= 0 ,

since ω is in the kernel of A(2), a property which is proved in Appendix A. This proves that
U∧U and ω∧U are constant along solutions. Hence the special case U∧U = ω∧U = 0
completes the proof. �

Let V = span{ξ1, ξ2} be a fixed Lagrangian plane; that is ξ1 and ξ2 are linearly independent
and 〈Jξ1, ξ2〉 = 0. The reference subspace V is represented by the form

V = ξ1 ∧ ξ2 .

The intersection between a path of Lagrangian subspaces U(x, λ) and V can be described
as follows. For each fixed λ define

A (x) =
{
α ∈ R

2 : U(x, λ) ∧ (α1ξ1 + α2ξ2) = 0
}

.

Then there are three cases

• If A (x0) = {0} then U and V are transverse at x = x0.
• If A (x0) is one dimensional then U and V intersect in a one-dimensional subspace at

x = x0 (the case of regular crossing).
• If A (x0) = R2 then U and V intersect in a two-dimensional subspace at x = x0 (this

case is sometimes referred to as an intersection between U and the vertex of V ).

The Maslov index for a path of Lagrangian subspaces is given by (6.5). However, in the
case of

∧2(R4) a new representation of the intersection form can be obtained. Suppose
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that a regular crossing occurs
U ∩ V = span{ξ} ,

at x = x0, then the crossing form is

Γ(U, V, x0) = ω ∧ ξ ∧ Aξ , (7.5)

To verify this formula, note that

ω ∧ a ∧ J−1c = 〈a, c〉 vol , for any a, c ∈ R
4 .

Hence
ω ∧ ξ ∧Aξ = ω ∧ ξ ∧ J−1Bξ = 〈ξ,Bξ〉 vol ,

recovering the expression in (6.4). There is an interesting geometric interpretation of (7.5).
At a regular intersection the two-plane ξ ∧Aξ is not a Lagrangian plane. It is an element
of G2(R

4) but not an element of Λ(2). Since Λ(2) is a codimension one submanifold of
G2(R

4), the sign of ω∧ξ∧Aξ determines which side of Λ(2) in G2(R
4) it lies. See Appendix

E for further discussion of this case.

Hence the Maslov index of a path U(x, λ) relative to V is

Maslov(U, V ) =
∑

x0

sign(ω ∧ ξ ∧Aξ) ,

where the sum is over all interior intersections.

8 The Maslov angle on
∧2(R4)

In R2, the Maslov angle is just the angle associated with the polar representation of a
vector in R2 as shown in §5.1. For a Lagrangian frame of the form (2.1) the Maslov angle
is defined as in (2.3) and (2.4). In this section a new formula for the Maslov angle is
given for the exterior algebra representation of a Lagrangian plane. Here, the result for
4D phase space is given and in Part 2 [18], the general result for 2n−dimensional phase
space is given.

A Lagrangian frame can be partitioned into two 2 × 2 blocks as in (2.1) and it can be
represented in terms of its columns

Z = [ z1 | z2 ] , with 〈Jz1, z2〉 = 0 .

Denote the exterior algebra representation of the Lagrangian plane by

U = z1 ∧ z2 .

Proposition 3 There exists a 2−form C,

C = C1 + iC2 , with C1,C2 ∈
∧2(R4) ,
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such that
det[X − iY]vol = C ∧U . (8.1)

It follows from this proposition that there exists a scalar complex-valued function K such
that C ∧ U = Kvol. A formula for the Maslov angle is then immediate:

Proposition 4
eiκ = K/K .

It remains to prove Proposition 3. The proof is by explicit construction. Let

cj = ej − iJej , j = 1, 2 .

Then

X − iY =




I

−iI




T 

X

Y


 = [c1 | c2]

T [ z1 | z2 ] =



〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉


 , (8.2)

and so, using the induced inner product 1 on
∧2(R4) (see Appendix D)

det[X − iY]vol = det



〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉


 vol = [[c1 ∧ c2,U]]2vol .

This gives a formula for K,
K = [[c1 ∧ c2,U]]2 .

It is not necessary to give an expression for C since in computation it is K that is needed.
However, for completeness it is given. Let C be an 2−form satisfying

c1 ∧ c2 ∧C = [[c1 ∧ c2, c1 ∧ c2]]2 vol . (8.3)

Then
det[X − iY]vol = C ∧U .

The 2−form C is in fact the Hodge star of c1 ∧ c2 although the details of that character-
ization are not needed.

Now compute the formula in coordinates on
∧2(R4). On R4 with the standard basis,

c1 ∧ c2 = (e1 − iJe1) ∧ (e2 − iJe2)

= (e1 − ie3) ∧ (e2 − ie4)

= e1 ∧ e2 − ie1 ∧ e4 + ie2 ∧ e3 − e3 ∧ e4 ,

and so, if U =
∑6

j=1 UjEj, with E1, . . . ,E6 the standard basis on
∧2(R4),

K = [[c1 ∧ c2,U]]2 = U1 − iU3 + iU4 − U6 ,

1 A real inner product is used throughout the paper. Complexification is used so rarely, a her-
mitian inner product is not necessary. One just needs to keep track of the complex conjugations.
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and so the expression for the Maslov angle is

eiκ =
U1 − U6 − iU3 + iU4

U1 − U6 + iU3 − iU4

. (8.4)

This expression is equivalent to the formula derived in equation (22) of [6].

The two-form C in (8.1) is computed to be

C = −e1 ∧ e2 + e3 ∧ e4 + i(e1 ∧ e4 − e2 ∧ e3) .

9 Further decomposition of the Maslov angle using the eigenvalues of Q

Let Z ∈ R4×2 be a Lagrangian frame on R4 of the form (2.1) satisfying (2.2). Then the
matrix

Q = (X − iY)(X + iY)−1 ,

is a unitary and symmetric (but not hermitian) matrix.

The Maslov angle for closed path is defined using the determinant of Q (2.3). However,
Q has 2 eigenvalues of unit modulus. Denote these eigenvalues by eiκj , j = 1, 2 with κj

real. Then
eiκ = eiκ1 eiκ2 ⇒ κ = κ1 + κ2 (mod 2π) .

These eigenvalues are independent of the choice of Z ∈ R4×2 as a representative of a
Lagrangian space: choosing another representation leads to similar matrix.

These eigenvalues can also be used to give another formula for the sign of each intersection.
Fix the reference angle to be 0 (mod 2π). There is a 1-dimensional intersection at x0 with
a reference plane if and only if there exists eiκr(x0) = 1 with r = 1 or r = 2. There is
a 2-dimensional intersection at x0 with the reference plane if and only if eiκr(x0) = 1 for
r = 1 and r = 2. If eiκr(x0) 6= 1 for r = 1 and r = 2 then the intersection is transverse.

When the intersection is regular, the sign of the intersection is given by:

lim
x→x+

0

#{r ∈ S|κr(x0) ∈ (0, π) + 2πZ} − #{r ∈ S|κr(x0) ∈ (−π, 0) + 2πZ} .

Thus, it is possible to determine the Maslov index, defined with intersections by simply
tracking the crossings of the angles κi with 2πZ.

9.1 The angles κj in the exterior algebra representation

The eigenvalues eiκj are the roots of the following polynomial:

P (λ) = det((X − iY) − µ(X + iY)) , µ ∈ S1 .

The coefficients of P are antisymmetric multi-linear functions of Z. As a consequence,
they can always be expressed as a linear combination of the minors of Z.

20



In the case of two angles, they satisfy

det(µI − Q) = µ2 − Trace(Q)µ + det(Q) = 0 , (9.1)

with µ of unit modulus and µr = eiκr , r = 1, 2. Both the trace and determinant can be
expressed in terms of the exterior algebra representation.

For the determinant, as shown in §8,

det[X − iY] = K := [[c1 ∧ c2,U]]2 = U1 − iU3 + iU4 − U6 ,

for
∧2(R4) ∋ U =

∑6
j=1 UjEj. Hence

det(Q) = K/K . (9.2)

It remains to express the Trace of Q in terms on the exterior algebra representation

Proposition 5

Trace(Q) =
2

K
(U1 + U6) . (9.3)

To prove this proposition, use (8.2) to relate the columns of Z to the X−Y decomposition

X + iY =



〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉


 .

Hence

Q =
1

K



〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉






〈c2, z2〉 −〈c1, z2〉
−〈c2, z1〉 〈c1, z1〉


 ,

and so

Trace(Q) = 1
K

(〈c1, z1〉 〈c2, z2〉 − 〈c1, z2〉 〈c2, z1〉 − 〈c2, z1〉 〈c1, z2〉 + 〈c2, z2〉 〈c1, z1〉) ,

= 1
K


det



〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉


 + det



〈c1, z1〉 〈c1, z2〉
〈c2, z1〉 〈c2, z2〉





 ,

= 1
K

([[c1 ∧ c2, z1 ∧ z2]]2 + [[c1 ∧ c2, z1 ∧ z2]]2)

= 1
K

([[c1 ∧ c2 + c1 ∧ c2, z1 ∧ z2]]2)

. = 2
K

([[e1 ∧ e2 + e3 ∧ e4, z1 ∧ z2]]2)

= 2
K

(U1 + U6) ,

using
Re (c1 ∧ c2) = Re ((e1 − ie3) ∧ (e2 + ie4)) = e1 ∧ e2 + e3 ∧ e4 ,
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proving (9.3).

Given a path U ∈ ∧2(R4) the eigenvalues of Q can be computed by substituting (9.2)
and (9.3) in (9.1) leading to

µ1,2 := eiκ1,2 =
U1 + U6 ±

√
4U1U6 + 2U3U4 − U2

3 − U2
4

U1 + iU3 − iU4 − U6
.

Using the properties of a Lagrangian plane, U2 + U5 = 0 and U1U6 − U2U5 + U3U4 = 0,
this formula reduces to

µ1,2 := eiκ1,2 =
U1 + U6 ± i

√
4U2

5 + (U3 + U4)2

U1 + iU3 − iU4 − U6

.

The general formula for the decomposition of the Maslov angles in any dimension is given
in Part 2 [18].

10 λ dependence of the Maslov index

Let B(x, λ) be as defined in (1.2) with the asymptotic property (1.5). When the λ−dependence
of B(x, λ) takes a simple form one can say more about the λ−dependence of the Maslov
index. For example, in §5 the matrix B(x, λ) in (5.4) satisfies

∂

∂λ
B(x, λ) =



1 0

0 0


 ,

that is, it is positive semi-definite. In the example in §11 the matrix B(x, λ) = JA(x, λ)
with A(x, λ) defined in (11.3) has the property

∂

∂λ
B(x, λ) =




−1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0




,

which is negative semi-definite.

When ∂λB(x, λ) is semi-definite, the Maslov index is a monotone function of λ. For the
case of gradient systems (as in §5 and §11) this property is proved in Lemmas 3.3 and 3.7
of Bose & Jones [6]. Related results are proved by Arnold [4] and generalizations of
these results are proved by Chardard [15]. These results are summarized in

Lemma 6 Assume that:

• B(x, λ) is a smooth function with respect to x and analytic with respect to λ.
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• There exists B∞(λ), γ > 0 and F > 0 such that ∀x, λ ‖B(x, λ) − B∞(λ)‖ ≤ Fe−γ|x|.
• The open set X = R − σess of real numbers is not empty.
• ∂λB(x, λ) is semi-definite symmetric matrix.

If [λ1, λ2] ∩ σess = ∅ and λ1, λ2 /∈ σ, then Maslov(λ2) − Maslov(λ1) is equal to the number
of eigenvalues with multiplicity in [λ1, λ2].

The first three assumptions are the usual hypotheses made to prove the analyticity of the
Evans function and the theorems linking eigenvalues and the zeros of the Evans function.
Thanks to this lemma, it is possible to define the following invariant for the homoclinic
orbit:

Definition 7 Maslov
homoclinic is defined as limλ→0+ Maslov(λ).

If we make the hypotheses of Lemma 6, Maslovhomoclinic is only dependent on A(x, 0),
and hence on the linearization of the ODE satisfied by the homoclinic orbit. In fact, it is
possible to define Maslovhomoclinic without any reference to a parameter λ (see [6,19,15]).
However, these constructions are not convenient for numerical computations.

10.1 The Maslov index for large values of |λ|

When λ → +∞ (or λ → −∞ if the essential spectrum extends to minus infinity) we
expect the Maslov index to converge to some finite value. This property is similar to the
property of the Evans function for large λ. The hypotheses are based on the analogous
result of [45], adapted to the setting of the Maslov index.

Hypothesis 8 Suppose

• that there exists λ0 ∈ R such that σess is empty for all λ > λ0;
• For large enough λ, A∞(λ) has no purely imaginary eigenvalues;
• Let V(λ) be a symplectic 4×4 matrix depending analytically on λ whose first 2 columns

are a basis for Eu
∞(λ) and whose last 2 columns are a basis for Es

∞(λ) Define

F(x, λ) = V−1(λ)(A(x, λ) −A∞(λ))V(λ) .

• Suppose that, for large enough λ:

∫
R
|F(x, λ)|dx is bounded, uniformly in λ

∫
|x|>x0

|F(x, λ)|dx tends to 0 when x0 → ∞, uniformly in λ
∫
R
|F(2)(x, λ)e1|dx tends to 0 .

Remark. If there exists λ0 such that σess is empty for all λ < λ0 the above hypotheses
can be modified accordingly.

Proposition 9 Assume that hypothesis 8 is met by A(x, λ), then

lim
λ→+∞

D(λ) = 1 , and lim
λ→+∞

Maslov(·; λ) = 0 .
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The proof is obtained by following the argument in Proposition 1.17 in Pego & Wein-

stein [45] and the Appendix of Bridges & Derks [8]. One proves that (V [2](λ))−1Y (., λ)
converges, uniformly in x, to the constant vector e1 when λ → −∞. Then, for large enough
λ, (V [2](λ))−1Y (., λ) has a null Maslov index and so does Y (., λ). See [15] for a detailed
proof.

10.2 Defining a Maslov index at λ = 0 when the basic state is approximated by hyperbolic
periodic solutions

When λ = 0, system (1.2) often satisfies the following hypothesis: B(x, 0) = D2H(φ̂(x))
where H : R

4 → R is the Hamiltonian function and φ̂ is the basic homoclinic solution of
the autonomous system

Jux = ∇H(u) . (10.1)

Suppose that ∂λB is semi-definite near λ = 0 and that the dimension of the space of square
integrable solutions of Jux = B(x, 0)u is one. Furthermore, suppose φ̂ is approximated
by hyperbolic 2π

k
-periodic solutions φ̂k, for which the Maslov index is well-defined [16,14].

If the Maslov index at λ = 0 is defined as the limit of the Maslov index of the periodic
solutions φ̂k, when k → 0, then, as shown in [14] under natural hypotheses, the Maslov
index at 0 is the value of limit of the Maslov indices of the periodic orbits when λ is close
to 0 and it has the sign of f ′(k) near k = 0, where f(k) := H(φ̂k).

11 A coupled reaction-diffusion equation with explicit Maslov index

Consider the system of reaction-diffusion equations

∂u

∂t
=

∂2u

∂x2
− 4u + 6u2 − c(u − v)

∂v

∂t
=

∂2v

∂x2
− 4v + 6v2 + c(u − v) ,

(11.1)

where c, the coupling constant, is a non-zero real parameter, restricted to the values
c > −2. When c > −2, it is straightforward to show that the trivial solution is stable in
the time dependent problem, and the trivial solution of the steady equation is hyperbolic.

This system has the exact steady solitary-wave solution

u = v := û(x) = sech2(x) .

Linearizing (11.1) about the basic state û and taking perturbations of the form

eλt(u(x, λ), v(x, λ)) ,
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leads to the coupled ODE eigenvalue problem

uxx = (λ + 4 + c − 12û(x)) u − c v

vxx = −c u + (λ + 4 + c − 12û(x)) v .

(11.2)

This eigenvalue problem can be written in the standard form

ux = A(x, λ)u , u ∈ R
4 , (11.3)

with u = (u, v, ux, vx) and

A(x, λ) =




0 0 1 0

0 0 0 1

f(x, λ) −c 0 0

−c f(x, λ) 0 0




, with f(x, λ) = λ + 4 + c − 12 sech2(x) .

The system (11.3) is Hamiltonian: JA is symmetric.

The spectral problem (11.3) can be solved explicitly. Write the second-order problem in
the form, 


u

v




xx

= f(x, λ)




u

v


 − c



0 1

1 0







u

v


 . (11.4)

Let

u = ũ − ṽ

v = ũ + ṽ .

Then substitution into (11.4) leads to the decoupled system

ũxx + 12 sech2(x) ũ = (λ + 4)ũ

ṽxx + 12 sech2(x) ṽ = (λ + 4 + 2c)ṽ .

(11.5)

These two systems have explicit solutions (cf. Appendix F), and using these results one
finds that there are exactly six eigenvalues for the spectral problem (11.2):

λ1 = −3 − 2c , λ2 = −3 , λ3 = −2c ,

λ4 = 0 , λ5 = 5 − 2c , λ6 = 5 .

The essential spectrum is

σess = {λ ∈ R : λ ≤ −4} ∪ {λ ∈ R : λ ≤ −4 − 2c} .
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Fig. 3. Plot of the spectrum for c = −2 (starting at the top), c = −1, c = 0, c = 1 and c = 3.

When c = 0 then there are three double eigenvalues:

λ1 = λ2 = −3 , λ3 = λ4 = 0 , λ5 = λ6 = 5 .

For c nonzero and small the eigenvalues λ1, λ3 and λ5 are perturbed to the left (when
c > 0) and to the right (when c < 0). Hence positive coupling is stabilizing and negative
coupling is destabilizing.

When c = −2 (the lower bound on c for stability of the zero state and hyperbolicity)
there are four positive eigenvalues, which is the maximum number of positive eigenvalues.

At c = −3
2

one of the positive eigenvalues passes through zero, leaving 3 positive eigenval-
ues. Then when c = 0 another eigenvalue arrives at zero leaving two positive eigenvalues.
Then when c = 5

2
a third eigenvalue passes through zero. For all c > 5

2
there is one positive

eigenvalue, one zero eigenvalue and four negative eigenvalues. The configuration of the
eigenvalues as a function of c is shown in Figure 3.

When the system decomposes into two subsystems, the Maslov index is the sum of the
Maslov indices of the subsystems

Maslov2D ⊕ Maslov2D = Maslov4D . (11.6)

This property is obvious in the present example, since the system decouples. The Maslov
index for the first 2D system in (11.5) is tabulated below.

λ −4 < λ < −3 −3 < λ < 0 0 < λ < 5 λ > 5

Maslov2D
1 3 2 1 0

The Maslov index for the second 2D system in (11.5) is tabulated here.
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λ −4 − 2c < λ < −3 − 2c −3 − 2c < λ < −2c −2c < λ < 5 − 2c λ > 5 − 2c

Maslov2D
2 3 2 1 0

The Maslov index for the full 4D system for any λ is then obtained by fixing c and then
applying the sum formula (11.6). For example, fix c = −1 and compute Maslovhomoclinic,

Maslovhomoclinic

∣∣∣∣∣
c=−1

= lim
λ→0+

[
Maslov2D

1 ⊕ Maslov2D
2

] ∣∣∣∣∣
c=−1

= 3 .

A summary of the Maslov index of the homoclinic orbit as a function of c is given in the
following table.

λ −2 < c < −3
2

−3
2

< c < 0 0 < c < 5
2

c > 5
2

Maslovhomoclinic 4 3 2 1

12 Numerical implementation – approximation by periodic orbits

When the solitary wave is approximated by a hyperbolic periodic orbit, the Maslov index
of the periodic orbit is computed using the Maslov angle (2.4)-(2.5) in the exterior algebra
representation (e.g. equation (8.4)). An algorithm for this case has been proposed in [16],
and a proof of convergence of the Maslov index in the limit as the periodic solution
converges to the solitary wave is given in [14].

Fix λ and a basic periodic solution which approximates a solitary wave. The steps in the
algorithm are as follows.

(1) Choose a large enough interval [−L, L].
(2) Compute the eigenvalue with largest real part of A(2)

∞ (λ), denoted by σ+(λ), and its
associated eigenvector ζ+(λ).

(3) Integrate equation
U+

x = [A(2)(x, λ) − σ+(λ)I]U+ , (12.1)

on [−L, L], taking ζ+(λ) as initial condition at x = −L, using any standard numeri-
cal integration scheme. The justification for the arbitrariness in choice of numerical
scheme is given in Appendix G.

(4) U+(L, λ) and U+(−L, λ) are nearly collinear, and an approximation to the Evans
function is determined from their constant of proportionality

U+(L, λ) = D(λ)U+(−L, λ) + Error ,

where the error is generally of the order of machine precision.
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(5) Compute eiκ(x) using equation (8.4) or analogous representation.
(6) Compute a lift of κ(x) and choose the stepsize ∆x so that |κ(x + ∆x) − κ(x)| < π.
(7) Compute the Maslov index using (2.5).

There are a number of sources of error in the algorithm. There is an approximation error
due to the fact that the solitary wave is approximated by a periodic orbit. Two parameters
have to be chosen: L and the step size ∆x. The choice of step size is a familiar source
of error. The consistency error of the numerical integration scheme will be of the form
C ∆xp, for some natural number p, at each step, where C is a constant depending on the
derivatives of A. The choice of numerical scheme will also impose some stability condition.

Since the Maslov index is an integer, the proposed scheme will give the Maslov index if
the relative error on U+(·, λ) is small enough. However, if sup

R
‖U+(·, λ)‖ is very small

(for example when the Evans function is small), the relative error may be too big and
lead to a miscomputed Maslov index. This is the case when λ is an eigenvalue or near an
eigenvalue, since there is an integer-valued jump in the Maslov index at eigenvalues.

13 Numerical implementation – intersection index algorithm

The numerical algorithm based on the intersection index is similar to the algorithm in
§12 except that the computation of the angle κ(x) is replaced by the computation of the
angles κ1 and κ2. The previous algorithm can be modified as follows:

(1) Choose a large interval −L ≤ x ≤ L. Initialize Maslov to 0.
(2) Construct a symplectic matrix K(λ) such that

K(λ)




I

0


 and K(λ)




0

I


 ,

represent the stable and unstable spaces of A∞(λ). K(λ) defines a symplectic change
of coordinates in which the coordinates of stable and unstable spaces in the exterior
algebra are respectively

U0 =




1

0
...

0




and V0 =




0
...

0

1




.

Let K(λ) be the matrix whose entries are the 2 × 2 minors of K(λ). In terms of
bialternate product, K(λ) = K(λ) ⊙K(λ).

(3) Compute the eigenvalue with largest real part, σ+(λ), of A(2)
∞ (λ).
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(4) Define Ũ+(x, λ) = K(λ)−1U+(x, λ) and integrate the equation for Ũ+,

d

dx
Ũ+ = [K(λ)−1A(2)(x, λ)K(λ) − σ+(λ)I])Ũ+ , (13.1)

on [−L, L], taking U0 as initial condition for Ũ+ at x = −L, using any standard
numerical integration scheme.

(5) Compute the angles (κ1 and κ2 corresponding to Ũ+ over [−L, L]. If an angle κi

crosses 2πZ between x and x + ∆x, update the value of the Maslov index to:

Maslov 7→ Maslov + sign (κi(x + ∆x) − κi(x)) .

(6) Return Ũ+(L, λ) ∧U0 as an approximation to the Evans function.
(7) At x = +L, return the value of the Maslov index.

14 The Maslov index of solitary wave solutions of KdV5

In this section we study the Maslov index as a function of λ for the ODE eigenvalue
problem

φxxxx − Pφxx + a(x)φ = λφ , (14.1)

where φ(x, λ) is scalar valued, P is a real parameter and a(x) is a localized function
which satisfies a(x) → a∞ as x → ±∞, with exponential decay of a(x) at infinity. For
definiteness it is assumed that a∞ > 0. The ODE (14.1) can be put in the form (1.2) with

u =




φ

φxx

φxxx − Pφx

φx




and B(x, λ) =




a(x) − λ 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 P




. (14.2)

The spectrum of the system at infinity A∞(λ) = J−1B∞(λ) has the characteristic poly-
nomial

det[A∞(λ) − µI] = µ4 − Pµ2 + a∞ − λ , (14.3)

With a∞ > 0 and λ = 0 the four roots are hyperbolic for all P such that

P + 2
√

a∞ > 0 ,

which is assumed to be satisfied henceforth. When λ 6= 0 the essential spectrum will form
the boundary of the hyperbolic region. The essential spectrum is

σess = {λ ∈ R : λ = a∞ + Ps2 + s4 , s ∈ R} .

When

λ < λedge = a∞ − 1

8
P (P − |P |) ,
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the spectrum of A∞(λ) is hyperbolic. Hence, all the hypotheses for the existence of the
Evans function and the Maslov index are satisfied. We will apply this theory to determine
the Maslov index of a class of homoclinic orbits.

The eigenvalue problem (1.2) appears in the linearization about a solitary wave solution
of the fifth-order Korteweg-de Vries equation (KdV5). KdV5 appears for example as a
model equation in plasma physics, and in the study of capillary–gravity water waves
[28,30,22,13,7,23,9].

To see the role of (1.2) in the linearization of KdV5, consider the following form of the
fifth-order KdV equation relative to a moving frame, moving at speed c,

∂φ

∂t
− c

∂φ

∂x
+

∂

∂x

(
φq+1

)
+ P

∂3φ

∂x3
− ∂5φ

∂x5
= 0 , q ≥ 1 . (14.4)

A further scaling can be introduced so that c = 1, but including c is useful for comparing
with results in the literature on KdV5. Effectively, q is a third parameter, but its value is
restricted to natural numbers.

Steady solutions of (14.4), that decay to zero as x → ±∞ satisfy the 4th−order ordinary
differential equation

φxxxx − Pφxx + cφ − φq+1 = 0. (14.5)

The system (14.4) linearized about a solitary wave φ̂(x) solution of (14.5) takes the form

∂φ

∂t
=

∂

∂x
(L φ) ,

with
L φ := φxxxx − P φxx + cφ − (q + 1)φ̂(x)q φ . (14.6)

In this case, a∞ = c. There are two spectral problems:

L φ = λφ and Lφ = λ̂φ , Lφ :=
d

dx
L . (14.7)

The operator L is self-adjoint (in a suitably-chosen Hilbert space) and so λ ∈ R whereas
L is not self-adjoint and λ̂ – which is the stability exponent – can in general be complex.
The relationship between these two eigenvalue problems is discussed in §15. First the
Maslov index of the spectral problem L φ = λφ, which can be put in the form (1.2), is
studied.

The ODE (14.5) has been extensively studied and many solitary wave solutions have
been found; a classification is given in [11]. There are some special cases where explicit
solitary wave solutions can be constructed. An example is the explicit solution φ̂(x) =
35
24

sech4
(

x

2
√

6

)
which exists when q = 1, c = 1 and P = 13

6
. However, the interesting

solutions of (14.5) need to be computed numerically. They can be computed using a
spectral method (approximate the solitary wave by a periodic function of large wavelength
and then use Fourier series to represent it), or in the case of symmetric solitary waves a
shooting algorithm can be used. We used both methods to compute solitary waves. An
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Fig. 4. Numerically computed solitary waves for the KdV 5 equation for the case q = 1, c = 1
(a∞ = 1) and −2 < P < 2.

example of the family of one-mode solitary waves as a function of P , computed using
a spectral method, is shown in Figure 14. Although these solitary waves are solutions
of the model ODE, they are representative of solutions of the full water-wave problem.
Dias, Menasce & Vanden-Broeck [24] have found large-amplitude branches of these
solutions in the full water-wave equations.

Symmetric solutions are computed numerically using a shooting method: the starting
point is an element of the tangent space of the unstable manifold and the ending point
is a symmetric point. The time step typically used is 1

1000
and the integrator chosen was

the fourth-order Runge-Kutta method.

The ODE (14.5) can be characterized as a Hamiltonian system on R4 and the Hamiltonian
in the original coordinates is

E(φ) = 1
2
φ2

xx + 1
2
Pφ2

x − 1
2
cφ2 +

1

q + 2
φq+2 − φxφxxx . (14.8)

The function E(φ) is constant along solutions of (14.5) (i.e. dE
dx

= 0). Physically, for
equations like KdV5, this quantity is associated with momentum flux. For simplicity,
we will just refer to it as energy. The energy of the periodic approximants gives some
information about the nature of the limiting homoclinic orbit.

The energy can be plotted as a function of wavenumber k along a branch of periodic
solutions as the wavelength tends to infinity (k → 0) as a function of q and P . First
the case P = 13

6
, c = 1 and q = 1 is considered and it is shown in Figure 14. In this
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Fig. 6. Energy of the 2π
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-periodic solutions as a function of k for q = 1, c = 1 and P = −1.

case the energy is a monotone function of wavenumber and the convergence k → 0 is
rapid. Keeping q = 1 and c = 1 but decreasing P to P = −1 begins to show oscillations
indicative of a Shilnikov-type bifurcation as shown in Figure 14. Decreasing P further to
P = −1.9 shows more dramatically the Shilnikov-type oscillations, as shown in Figure
14. In Figure 14 a sequence of bifurcations occurs along the branch. Each point on the
energy-wavenumber diagram where E ′(k) = 0 corresponds to a saddle-centre bifurcation
of Floquet multipliers. There are always two Floquet multipliers at +1 due to the fact that
(14.5) is autonomous. When E ′(k) = 0 an additional pair of Floquet multipliers coalesces
at +1. Each one of these saddle-centre bifurcations of the branch of periodic orbits leads
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Fig. 7. Enlargement of the low wavenumber region of the Energy-wavenumber plot for the
parameter values q = 1, c = 1 and P = −1.9.

to a secondary homoclinic bifurcation [10]. So, in addition to the limiting homoclinic orbit
that we are principally interested in, there is a countable number of other orbits generated
along the branch, which are homoclinic to the branch of periodic orbits. Although there
is an infinite number of bifurcations along the branch our numerical results show that the
Maslov index of the limiting homoclinic orbit is finite.

14.1 Computing the Maslov index as a function of λ

First consider the case P = 13
6
, q = 1 and c = 1 where the unimodal solitary wave is given

explicitly. The lifts κ(x) of the Maslov angle for this system are plotted as a function
of x in Figure 8 for various values of λ. In Figure 9, the corresponding Maslov indices
have been plotted as a function of λ. The Evans function shows that L has exactly three
eigenvalues in this case. Denote these eigenvalues by

λ1 < λ2 = 0 < λ3 .

The qualitative behaviour of the Maslov index in this case is similar to the example on R2

in §5. The values of the Maslov are shown in the table below. The Maslov index in this case
is computed using the Maslov angle, and this Maslov index is denoted by Maslov(κ, λ).

λ λ < λ1 λ1 < λ < λ2 λ2 < λ < λ3 λ > λ3

Maslov(κ, λ) 0 1 2 3
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parameter values are P = 13
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Fig. 9. Evans function and Maslov index as a function of λ for the explicit unimodal solitary
wave solution when P = 13

6 , c = 1 and q = 1

Note that the Maslov index in each region predicts the number of eigenvalues of L in
each λ interval.
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λ region λ < λ1 λ < λ2 λ < λ3 λ < λedge

# Eigs(L ) 0 1 2 3

It is immediate from this table that

Maslovhomoclinic = lim
λ→0+

Maslov(κ, λ) = 2 .

The operator L has exactly one negative eigenvalue in this case. Our calculations indicate
that this is the case for all the unimodal homoclinic orbits. It is easy to show analytically
that the Maslov index of a unimodal homoclinic orbit is greater than or equal to 2. An
elementary proof in given in Appendix H. This result has implications for stability of the
solitary waves as solutions of KdV5 and it is discussed in §15.

To test how accurately the Lagrangian Grassmannian is preserved by the numerical
scheme, the values of

I1 = U ∧ U and I2 = ω ∧ U , (14.9)

are computed as a function of x. In these calculations the standard explicit fourth-order
Runge-Kutta algorithm is used. The value of I1 is shown in Figure 10 and shows that the
error is of order of the machine accuracy, except for a small region around zero, but the
error there is still exceptionally small. Concerning I2, it is in fact exactly preserved, even
numerically: if the value of ω ∧ U is the machine zero, it remains at the machine zero.

Using Proposition 9 and the proof in Appendix I, it follows that the KdV5 system satisfies
hypothesis 8 and therefore D(λ) → 1 and the Maslov index tends to 0 as λ → −∞.
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15 Spectrum of L and the stability of solitary waves for KdV5

One of the intriguing properties of the Maslov index is the connection between the number
of eigenvalues in subsets of the λ space, the Maslov index and the stability of solitary
waves.

For KdV5 this connection is not obvious. For unimodal solitary-wave solutions of KdV5,
Kodama & Pelinovsky [30] have studied this connection and they show the following
result. Suppose the following integral exists

N(c, P ) =
∫

R

φ̂(x, c, P )2dx ,

and is a differentiable function of c, and define

r =





0 if ∂N
∂c

(1, P ) < 0

1 if ∂N
∂c

(1, P ) > 0
.

The functional N(c, P ) is sometimes called the momentum of the solitary wave. If q = 1,
it is proved by Lewandosky [33] that r = 1 for all admissable P .

In [30] it is argued (see proposition 3.8 there) that a unimodal solitary wave is stable if
r = +1 and #L − = 1, where #L − is the number of negative eigenvalues of L . This
result assumes that there are no pure imaginary eigenvalues of L. Hence – under these
assumptions – the stability of the solitary wave is determined by the sign of dN

dc
. This

observation is consistent with the theory of [7] where a instability results for a class of
unimodal solitary waves were obtained.

15.1 Stability of two-pulse solitary waves

More refined results on stability of two-pulse solitary waves were obtained by Pelinovsky

& Chugunova [20]. Suppose that L has only simple eigenvalues except a double eigen-
value at 0 and suppose ∂N

∂c
(1, P ) 6= 0. In [20] it is proved that

Nunst = #L
− − r − N−

imag ,

where Nunst is the number of eigenvalues with strictly positive real part of L and N−
imag is

the number of pure imaginary eigenvalues of L with negative Krein signature. Using the
formula #L

− = Maslovhomoclinic − 1 gives

Nunst = Maslovhomoclinic − 1 − r − N−
imag .

It is immediate from this formula that if N−
imag = 0 and Maslovhomoclinic = 2 then the basic

state is stable if dN
dc

> 0 and unstable if dN
dc

< 0.
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Using the classification of Buffoni, Champneys & Toland [11], a two-pulse solitary
wave has the classification 2(ℓ) where ℓ is a natural number. In [17], it is found numerically
that two-pulse solutions have the following formula for the Maslov index

Maslovhomoclinic =





3 if ℓ is even

4 if ℓ is odd
. (15.1)

We can make several observations using this formula for the Maslov index of two-pulse
homoclinic orbits. Suppose r = +1, then

Nunst = Maslovhomoclinic − 2 − N−
imag =





1 − N−
imag if ℓ is even

2 − N−
imag if ℓ is odd

,

We have the immediate observation that a necessary condition for a 2−pulse homoclinic
orbit to be stable is N−

imag > 0. From the parity of N−
imag , we have Nunst = 1 and N−

imag = 0
when l is even and the solitary wave is unstable. When l is odd, the parity of N−

imag is not
sufficient to determine the stability of the solitary wave.

Buryak & Champneys [12] used a completely different method to study stability and
they found that 2−pulse solitary waves are stable if ℓ is odd and unstable if ℓ is even,
assuming that r = 1. This is consistent with the value we found for the Maslov index.
When l is odd, the stability of the solitary wave is equivalent to N−

imag = 2.

The Maslov index does not give any information about the purely imaginary eigenvalues,
and so to determine their number, a calculation of the spectral problem is necessary.
Some results on this are reported by Chardard [15]. There it is found that when l is
odd, there are eigenvalues with non-zero imaginary part, but they appear to have very
small real parts. Further results are necessary to be certain about the spectral stability
of 2−pulse solitary waves when l is odd.

One way to check whether the real part of a complex eigenvalue is nonzero is to use the
formula (for the case q = 1)

Re(λ) = − 1

‖u‖2

∫ +∞

−∞
φ̂x|u(x)|2 dx . (15.2)

Here λ is the complex eigenvalue associated with the stability exponent and u is the
associated eigenmode:

d

dx

(
uxxxx − Puxx + cu − 2φ̂ u

)
= λu . (15.3)

The formula (15.2) is derived by multiplying (15.3) by the complex conjugate of u(·) and
integrating over R.

In spite of the simplicity of the formula (15.2) there is not much that one can say in
general. If φ̂(x) is an even function then φ̂x is an odd function. Then it is immediate that
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|u(x)|2 even implies that Re(λ) = 0. However, this is a highly special case.

16 A model PDE for long-wave short-wave resonance

In this section the Maslov index is computed for a class of solitary waves which arise in a
model PDE for long-wave short-wave (LW-SW) resonance (cf. Kawahara et al. [29],
Ma [35], Benilov & Burtsev [5], Latifi & Leon [32]). The LW-SW equations are a
coupled system with one equation of nonlinear Schrödinger type and the other of KdV
type. A typical form is

Et = i(Exx + ρE − νE)

ρt = ∂x(ρxx − cρ + 3ρ2 + |E|2) ,
(16.1)

were ρ(x, t) is real valued, E(x, t) is complex valued, and c, ν are considered to be positive
real parameters. In real coordinates, E = u + iv and ρ = w, the above equations can be
written:

ut = −vxx − vw + νv

vt = uxx + uw − νu

wt = wxxx − cwx + 6wwx + 2uux + 2vvx .

(16.2)

This system can be expressed as a Hamiltonian system in the time direction. However, we
will not emphasize this property since it is the spatial Hamiltonian structure that is asso-
ciated with the Maslov index (see Appendix J for the temporal Hamiltonian structure).
Solitary waves satisfy the steady equations

−2uxx − 2uw + 2νu = 0

−2vxx − 2vw + 2νv = 0

−wxx + cw − 3w2 − u2 − v2 = constant ,

(16.3)

where the signs and coefficients are modified to ensure that they are the Euler-Lagrange
equation associated with the Hamiltonian function H(Z) in Appendix J. Exact solutions
of this problem are known [35]; for example,

u(x) = A sech(
√

ν x) , v(x) = 0 and w(x) = 2ν sech2(
√

ν x) , (16.4)

with constant = 0 and A2 = 2ν (c − 4ν), and the existence condition c − 4ν > 0.

To study the Maslov index of these solutions, linearize the steady equations about the
basic solitary wave and introduce a spectral parameter: LZ = λZ with L = D2H(Ẑ).
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Written out, this equation is

−2uxx − 2ŵu − 2ûw + 2νu = λu

−2vxx − 2ŵv − 2v̂w + 2νv = λv

−wxx + cw − 6ŵw − 2ûu − 2v̂v = λw

(16.5)

When v̂ = 0 this system decouples into a second order equation for v, and a fourth order
coupled system for u, w,

−2uxx − 2ŵu − 2ûw + 2νu = λu

−wxx + cw − 6ŵw − 2ûu = λw
(16.6)

The decoupled equation for v is then

−2vxx − 2ŵv + 2νv = λv (16.7)

This latter system can be analyzed completely and the result in given in Appendix K.

The fourth-order system for u, w (16.6) can be written as a standard Hamiltonian ODE
in the form (1.2) with n = 2 by taking

u(x, λ) =




u

w

2ux

wx




, B(x, λ) =




λ − 2ν + 2ŵ(x) 2û(x) 0 0

2û λ − c + 6ŵ(x) 0 0

0 0 1
2

0

0 0 0 1




The essential spectrum for this equation is

σess = { λ ∈ R : λ ≥ 2ν and λ ≥ c} .

Adding the condition that c > 4ν, the system at infinity is hyperbolic for all λ ∈ R such
that λ < 2ν.

The Maslov index is computed for the case c = 1 and ν = 0.2 and the results are shown,
along with the Evans function, in Figure 11 and tabulated in the table below, where
λ1 < λ2 = 0 < λ3 are the three roots of the Evans function.

λ λ < λ1 λ1 < λ < λ2 λ2 < λ < λ3 λ > λ3

Maslov(U+, Es
∞) 0 −1 −2 −3
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Fig. 11. Longwave-Shortwave problem for the following parameters c = 1, ν = 0.2. Top, the
Maslov index. Bottom: the Evans function.

17 A non-monotone Maslov index.

In the LW-SW system and the KdV5 equation, the Maslov index is a monotone function
of λ. (Note however that it is not a monotone function of x.) Here we show an example
where the Maslov index is not a monotone function of λ. It is a slight modification of the
LW-SW resonance equations. In this case the correlation between the number of roots of
the Evans function and the value of the Maslov index is no longer apparent. Look at the
eigenvalue problem

L




u

w


 = λ




u

w


 , with L




u

w


 :=



−2uxx − 2ŵ(x)u + 2û(x)w + 2νu

wxx − cw + 6ŵ(x)w + 2û(x)u


 , (17.1)

with c > 4ν > 0,

û(x) = Asech(
√

ν x) and ŵ(x) = 2ν sech2(
√

ν x)

with A2 = 2ν(c − 4ν), and the requirement c > 4ν > 0.

The spectral problem associated to this operator can be expressed in the form (1.2) with
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n = 2,

u(x) =




u

w

2ux

wx




, and B(x, λ) =




λ − 2ν + 2ŵ(x) 2û(x) 0 0

2û(x) −λ − c + 6ŵ(x) 0 0

0 0 1
2

0

0 0 0 1




.

The essential spectrum of L consists of

{ λ : −∞ < λ < −c ∪ 2ν < λ < +∞} .

The essential spectrum is unbounded from above and below, hence a Morse index can
not be defined for L. However, we will still be able to compute a Maslov index. The key
property that leads to non-monotonicity is that the matrix ∂λB(x, λ) is not semi-definite:
the matrix ∂λB(x, λ) has eigenvalues {0, 0,−1, +1} and so is not semi-definite.

Results for the case c = 1 and ν = 0.21 are tabulated below and shown in Figure 12. In
this case there are 5 eigenvalues, but there is no longer a correlation between the Maslov
index and the number of eigenvalues in a subset of λ.

λ −c 0 2ν

D(λ) +∞ + − + 0 − + − −∞
Maslov(λ) −4 −3 −2 −1 −2 −3

18 Concluding remarks

We have only just scratched the surface of the implications of the Maslov index for ho-
moclinic orbits and solitary waves. Other important questions for Hamiltonian systems
on four-dimensional phase space are (a) the connection between transversality of the ho-
moclinic orbit and the parity of the Maslov index, (b) the jump of the Maslov index at
bifurcations, (c) whether the angles κ1 and κ2 in the decomposition κ = κ1 + κ2 contain
other useful information, (d) the role of purely imaginary eigenvalues in the stability of
solitary waves in KdV5, and (e) the Maslov index of multi-pulse homoclinic orbits. The
latter question is addressed in the paper [17].

The extension of the Maslov index of homoclinic orbits to phase space with dimension
greater than four is straightforward in principle but there are some differences in detail.
The dimension of the basic manfolds jumps considerably when n goes from 2 to 3.
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Fig. 12. Plot of the Maslov index for the non-monotone example (17.1) for the case c = 1 and
ν = 0.21. Upper figure shows the Maslov index and the lower figure the Evans function.

Manifold
∧3(R6) RP19 G3(R

6) Λ(3) Λ1(3)

Dimension 20 19 9 6 5

In this table, RP19 is the projectification of
∧3(R6). The biggest change in the numerics

is the difficulty due to the jump in dimension of the Lagrangian Grassmanian. Whereas
it is 3−dimensional in the case n = 2, it jumps to double that dimension when n = 3.
The details of the theory and numerics for n ≥ 3 are given in Part 2 [18].
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— Appendix —

A Kernel of A(2) on
∧2(R4)

Let A be an arbitrary 4 × 4 matrix with entries aij . Then, with respect to the standard
basis (7.1) on

∧2(R4) the induced matrix is

A(2) =




a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44




, (A-1)

A constructive proof is given in §2 of [2].

Proposition 10 The induced matrix A(2) satisfies A(2)
ω = 0, where ω is defined in

(6.1), if and only if JA is symmetric.

Proof. An explicit calculation gives

A(2)
ω =




a23 − a14

a11 + a33

a43 + a12

a21 + a34

a22 + a44

−a41 + a32




.

On the other hand

JA =




−a31 −a32 −a33 −a34

−a41 −a42 −a43 −a44

a11 a12 a31 a14

a21 a22 a23 a24




.
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In order for JA to be symmetric we require

a41 = a32 , a11 = −a33 , a12 = −a43 , a21 = −a34 , a22 = −a44 , a23 = a14 .

These conditions are satisfied if and only if A(2)
ω = 0. �

B The connection between A(2), J(2) and B(2)

In this appendix the role of the induced symplectic operator J(2) on
∧2(R4) is explored.

Using the standard formula for the induced matrix (A-1), the induced form of the sym-
plectic operator is

J(2) =




0 0 −1 1 0 0

0 0 0 0 0 0

1 0 0 0 0 −1

−1 0 0 0 0 1

0 0 0 0 0 0

0 0 1 −1 0 0




.

Note that J(2)
ω = 0 and ω

TJ(2) = 0 using ω defined in (6.1). In fact, the kernel of J(2) is
four dimensional Kernel(J(2)) = span{E2,E5,E1 + E6,E3 + E4}, where E1, . . . ,E6 is the
standard basis for

∧2(R4).

Now suppose B is a symmetric matrix and

A = J−1B = −JB .

then

A(2) =




b13 + b24 b34 b44 −b33 −b34 0

−b12 0 −b14 b23 0 −b34

−b22 −b23 b13 − b24 0 b23 b33

b11 b14 0 b24 − b13 −b14 −b44

b12 0 b14 −b23 0 b34

0 b12 −b11 b22 −b12 −b13 − b24




.

The induced matrix A(2) does not equal the product of the induced matrices for J and B
but it has the following form

A(2) = −J(2)B(2) + S ,
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Fig. C.1. The three cases of hyperbolic spectra for constant coefficient Hamiltonian systems on
R

4.

where S is the skew-symmetric matrix

S =




0 b12 −b11 b22 −b12 −b24 − b13

−b12 0 −b14 b23 0 −b34

b11 b14 0 b24 − b13 −b14 −b44

−b22 −b23 b13 − b24 0 b23 b33

b12 0 b14 −b23 0 b34

b13 + b24 b34 b44 −b33 −b34 0




.

The skew-symmetric matrix S has the properties Sω = 0, ω
TS = 0, and B(2) has the

properties

B(2)
ω 6= 0 but B(2)

ω is in the kernel of J(2) .

Hence the property A(2)
ω = 0 is recovered. Moreover, since ω

TJ(2) = 0, we also have
ω

TA(2) = 0.

C Hyperbolic subspaces and Lagrangian planes

For a linear constant-coefficient Hamiltonian system on R4, ux = Au, there are three
cases where the spectrum of A is strictly hyperbolic and they are shown in Figure C. The
unstable subspace in each case is a Lagrangian plane. This observation is a special case
of a result of Montaldi [37]. Here we sketch a proof based on eigenvectors.

Take the first case. The unstable eigenvalues are of the form µ = ν ± iτ with ν > 0 and
τ > 0, with eigenvectors ξ1 ± iξ2 where

B∞(ξ1 + iξ2) = (ν + iτ)J(ξ1 + iξ2) ,

or

B∞ξ1 = νJξ1 − τJξ2 , B∞ξ2 = νJξ2 + τJξ1 .
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Taking the inner product of the first equation with ξ2 and the second with ξ1 and sub-
tracting,

0 = ξT
2 B∞ξ1 − ξT

1 B∞ξ2 = νξT
2 Jξ1 − νξT

1 Jξ2 = 2νξT
2 Jξ1 .

Now since ν > 0 it follows that ξT
2 Jξ1 = 0 and so span{ξ1, ξ2} is a Lagrangian subspace.

A similar calculation verifies the other two cases, with the third requiring the introduction
of generalized eigenspaces.

Now, use the fact that Lagrangian subspaces are invariant for the x−dependent system,
as shown in §4, to conclude that hyperbolic sets are Lagrangian manifolds.

D The induced inner product on
∧k(R2n)

In this appendix the equivalence between the induced inner product [[·, ·]]k on
∧k(R2n),

which has dimension d, and the standard inner product on Rd is established. Here the
general case of 2n−dimensional phase space is considered, which will be required in Part
2 [18].

With the standard orthonormal basis for R2n, {e1, . . . , e2n}, the nonzero and distinct
members of the set

{ei1 ∧ · · · ∧ eik : i1, . . . , ik = 1, . . . , 2n } (D-1)

form a basis for the vector space
∧k(R2n), with exactly d = n!

(n−k)!k!
distinct elements.

Choose an ordering such as a standard lexical ordering and label the nonzero distinct ele-
ments in the set (D-1) by E1, . . . ,Ed. Then, any element U ∈ ∧k(R2n) can be represented
as U =

∑d
j=1 Uj Ej. The inner product 〈·, ·〉 on R2n induces an inner product on each

vector space
∧k(R2n) as follows. Let

U = u1 ∧ · · · ∧ uk and V = v1 ∧ · · · ∧ vk , ui,vj ∈ R
2n , ∀ i, j = 1, . . . , k ,

be any decomposable k-forms. A k−form is decomposable if it can be written as a pure
form: a wedge product between k linearly independent vectors in R2n. The inner product
of U and V is defined by

[[U,V]]k := det




〈u1,v1〉 · · · 〈u1,vk〉
...

. . .
...

〈uk,v1〉 · · · 〈uk,vk〉




, U,V ∈ ∧k(R2n) . (D-2)

Since every element in
∧k(R2n) is a sum of decomposable elements, this definition extends

by (bi)-linearity to any k-form. Using the orthonormality of the induced basis

[[Ei,Ej]]k =





1 if i = j

0 if i 6= j
,
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the inner product between two elements U =
∑d

i=1 UiEi and V =
∑d

j=1 VjEj is

[[U,V]]k =
[[∑d

i=1 UiEi,
∑d

k=1 VjEj

]]
k

=
∑d

i=1

∑d
j=1 UiVj [[Ei,Ej]]k

=
∑d

i=1 UiVi := 〈U,V〉d ,

yielding the equivalent representation

[[U,V]]k = 〈U,V〉d , U,V ∈ ∧k(R2n) . (D-3)

E Plus and minus subspaces in
∧2(R4)

Consider R4 with the standard symplectic and volume forms. Let V = span{ξ1, ξ2} be a
two-dimensional oriented subspace of R4.

An oriented subspace is defined as follows. A subspace is an equivalence class of bases;
that is, span{ξ1, ξ2} and span{η1, η2} represent the same subspace if and only if there is
an invertible 2 × 2 matrix m such that [ξ1|ξ2] = [η1|η2]m. A subspace is oriented if m
is restricted to have positive determinant. The oriented subspace span{ξ1, ξ2} has one of
three types

plus subspace if ω ∧ ξ1 ∧ ξ2 > 0

Lagrangian subspace if ω ∧ ξ1 ∧ ξ2 = 0

minus subspace if ω ∧ ξ1 ∧ ξ2 < 0, .

Proposition 11 The sign of ω ∧ U is an invariant of (3.3).

Use Proposition 2 to conclude that

ω ∧ U(x) = constant ,

along solutions of (3.3).

There is an interesting connection between Krein signature and the above classification
of oriented subspaces. Krein signature is a sign which is associated with purely imaginary
eigenvalues (in the linearization about an equilibrium) or Floquet multipliers (in the
linearization about a periodic orbit). Consider the case of a simple purely imaginary
eigenvalue iν, ν > 0. Its complex eigenvector ζ = ξ1 + iξ2 satisfies

Bζ = iνJζ .

The Krein signature is defined as the sign of

i〈Jζ, ζ〉 = 2〈Jξ2, ξ1〉 .
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Now use the identity Jξ2 = ξ2 ω to obtain

i〈Jζ, ζ〉vol = 2〈ξ2 ω, ξ1〉vol = [[ω, ξ2 ∧ ξ1]]2vol = −[[ω, ξ1 ∧ ξ2]]2vol = ω ∧ ξ1 ∧ ξ2 .

This observation also emphasizes the fact that a choice of orientation underlies the defi-
nition of Krein signature.

F A spectral problem with sech2 potential

This appendix establishes the basic properties of the ODE eigenvalue problem

φxx + 12 sech2xφ = κ φ , (F-1)

in the set K := {κ ∈ R | κ > 0}. The solutions of this ODE can be determined explicitly.
The eigenvalues are κ = 1, 4, 9. For all κ ∈ K \ {1, 4, 9}, the two functions

φ±(x, κ) = e±
√

κ x
(
±a0 + a1 tanh(x) ± a2 tanh2(x) + tanh3(x)

)
, (F-2)

are linearly independent, where

a0 =

√
κ

15
(4 − κ) , a1 =

1

5
(2κ − 3) , a2 = −√

κ .

The eigenvalues can be verified by explicit calculation. That κ = 1, 4, 9 are the only
eigenvalues in K , and that φ± are linearly independent is verified by computing the
Wronskian

W (x, κ) = det



φ+ φ−

φ+
x φ−

x


 .

It is easily verified that Wx = 0 and so W (x, κ) is independent of x. Evaluate at x = 0

W (0, κ) = det




a0 −a0

a1 + a0

√
κ a1 + a0

√
κ


 = 2a0(a1 + a0

√
κ) .

Substituting for a0 and a1,

W (0, κ) =
2

225

√
κ(κ − 1)(κ − 4)(κ − 9) .

Hence φ± are linearly independent for all κ ∈ K \ {1, 4, 9}.
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The eigenfunctions are

φ(x, 1) = sech(x)(4 − 5 sech2(x)) , when κ = 1

φ(x, 4) = tanh(x) sech2(x) , when κ = 4

φ(x, 9) = sech3(x) , when κ = 9 .

modulo an arbitrary multiplicative constant.

G Attractivity of the Lagrangian Grassmannian Λ(2)

One of the advantages of subtracting off the growth rate at infinity in the equations
on

∧2(R4), as in (12.1), is that the Lagrangian Grassmannian becomes an attracting
invariant manifold. When Λ(2) is attractive, one has greater freedom in choosing the
numerical integration scheme.

To prove attractivity, consider the integration of the 2−form representing the unstable
subspace U+(x, λ)

d

dx
U+ = A(2)(x, λ)U+ U+ ∈ ∧2(R4) − L < x < +L .

Introduce the transformation

U+(x, λ) = eσ+(λ)x Û+(x, λ)

where σ+(λ) is the sum of the eigenvalues of A∞(λ) with positive real part. Then Û+

satisfies
d

dx
Û+ = [A(2)(x, λ) − σ+(λ)I]Û+ − L < x < +L (G-1)

The Lagrangian Grassmannian is the set

Û+ ∧ Û+ = 0 and ω ∧ Û+ = 0 .

When evaluated on the differential equation (G-1) these invariants satisfy

d
dx

Û+ ∧ Û+ = d
dx

Û+ ∧ Û+ + Û+ ∧ d
dx

Û+

= A(2)Û+ ∧ Û+ + Û+ ∧ A(2)Û+ − 2σ+ Û+ ∧ Û+

= Trace(A) Û+ ∧ Û+ − 2σ+ Û+ ∧ Û+

= −2σ+ Û+ ∧ Û+ ,
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since Trace(A) = 0. A similar calculation with ω ∧ Û+ yields

d

dx
ω ∧ Û+ = ω ∧ (A(2) − σ+I)U+ = −A(2)

ω ∧U+ − σ+ ω ∧ Û+ = −σ+ ω ∧ Û+ ,

using the fact that A(2)
ω = 0, which is proved in Appendix A., This proves that

Û+∧Û+(x) = e−2σ+xÛ+∧Û+

∣∣∣∣∣
x=−L

and ω∧Û+(x) = e−σ+x
ω∧Û+

∣∣∣∣∣
x=−L

, for x > −L .

The eigenvalue σ+ is real and positive. Hence when integrating the unstable subspace U+

along the Lagrangian Grassmannian, both Û+ ∧ Û+ and ω ∧ Û+(x) are exponentially
attracted to the zero set. Therefore a special integrator is not required for maintaining
the constraints; a standard Runge-Kutta algorithm is quite satisfactory.

H The existence of at least one negative eigenvalue

Consider the linear operator

L φ := φxxxx − Pφxx + a(x)φ , (H-1)

introduced in (14.1) with a(x) = c − (q + 1)φ̂(x)q and φ̂(x) satisfying (14.5). Assume

P + 2c ≥ 0 and 0 < c ≤ 1 or P > 0 and c > 0 . (H-2)

The essential spectrum for this problem is non-negative. Here it is proved that L has at
least one negative eigenvalue in the point spectrum.

Multiply (14.5) by the basic state φ̂(x),

φ̂q+2 = cφ̂2 − P φ̂φ̂xx + φ̂φ̂xxxx

= cφ̂2 − (P + 2c) φ̂φ̂xx + 2cφ̂φ̂xx + φ̂φ̂xxxx

= c(φ̂ + φ̂xx)
2 − (P + 2c) φ̂φ̂xx − cφ̂2

xx + φ̂φ̂xxxx .

Hence integrating, using the fact that φ̂ and its derivatives decay exponentially as x →
±∞, and the hypotheses (H-2)

∫ ∞

−∞
φ̂q+2dx =

∫ ∞

−∞
c(φ̂ + φ̂xx)

2dx + (P + 2c)
∫ ∞

−∞
φ̂2

xdx + (1 − c)
∫ +∞

−∞
φ̂2

xx dx > 0 . (H-3)

or if P > 0 and c > 0,

∫ ∞

−∞
φ̂q+2dx =

∫ ∞

−∞
(cφ̂2 + P φ̂2

x + φ̂2
xx) dx > 0 . (H-4)
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To prove that (H-1) has a negative eigenvalue, we will show that the quadratic form
〈u, L u〉 is negative when u = φ̂ where 〈u, L u〉 :=

∫ ∞
−∞ u L u dx. Now

〈u, L u〉
∣∣∣
u=φ̂

=
∫ ∞
−∞(φ̂(φ̂xxxx − P φ̂xx + a(x)φ̂)) dx

=
∫ ∞
−∞(φ̂2

xx + P φ̂2
x + cφ̂2) dx − (q + 1)

∫∞
−∞ φ̂q+2dx

= −q
∫ ∞
−∞ φ̂q+2dx ,

using (H-4) in the last line. It follows from (H-3) or (H-4) that 〈φ̂, L φ̂〉 < 0.

I Check of hypothesis 8 for the KdV5 system

In this appendix, the details are given of the proof that A(x, λ) = J−1B(x, λ) for KdV5,
with B(x, λ) defined in (14.2), satisfies Hypothesis 8.

First set

s =
1

(1 − λ)
1

4

.

When λ is large and negative, s is a small parameter. This parameter will be used to
obtain series expansions of the eigenvalues and eigenvectors.

The characteristic polynomial of A∞(λ) is

0 = det[XI − A∞(λ)] = X4 − PX2 +
1

s4
.

This polynomial is a biquadratic and for s small it has four complex roots, one in each
quadrant. Let θ(s) be the eigenvalue in the right-upper quadrant. Its Taylor expansion is:

θ(s) =
1

s
√

2

(
1 − 1

4
iPs2 − 1

32
P 2s4 − 1

128
iP 3s6 + O

(
s8

))
.

The other eigenvalues are θ(s), −θ(s),−θ(s). The eigenvector associated with θ(s) is :

v(s) =
1

s




− 1
s4θ

θ

1

θ2




.

A Taylor expansion of this eigenvector is:

v(s) = sv1 + isv2 + O
(
s6

)
.
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with

v1(s) =




−
(
1/2

√
2 + 1

8

√
2Ps2 − 1

64

√
2P 2s4 + 1

256

√
2P 3s6

)
s−3

1
256

√
2P 3s5 − 1

64

√
2P 2s3 + 1

8

√
2Ps +

√
2

2s

1

1
2
P




and

v2(s) =




−
(
−1/2

√
2 + 1

8

√
2Ps2 + 1

64

√
2P 2s4 + 1

256

√
2P 3s6

)
s−3

− 1
256

√
2P 3s5 − 1

64

√
2P 2s3 − 1

8

√
2Ps +

√
2

2s

0

s−2 − 1
8
s2P 2




.

(ℜv(s),ℑv(s)) is a basis of the unstable space. Let Vunst the matrix whose columns are
ℜv(s) and ℑv(s)).

The eigenvector associated to −θ(s) is:

w(s) = s




1
s4θ

−θ

1

θ2




(ℜw(s),ℑw(s)) is a basis of the unstable space. Let Ust the matrix whose columns are
ℜw(s) and ℑw(s)).

The matrix
(
Vunst|Ust

)
is not a symplectic matrix but V (s) =

(
Vunst|Vst

)
, with Vst =

−Ust(V
T
unstJUst)

−1, is. Besides, we have:

Vst =




1
2s

− 1

4
s2P− 1

32
P 3s6

s

0
1

2
s2+ 1

16
s6P 2

s
1

4

√
2s3− 1

16

√
2Ps5

s

− 1

4

√
2s3− 1

16

√
2Ps5

s

− 1

4

√
2s+ 1

16

√
2Ps3− 3

128

√
2P 2s5

s

− 1

4

√
2s− 1

16

√
2Ps3− 3

128

√
2P 2s5

s




+ O(s6)

We also have V −1 = −J(T V )J since V is a symplectic matrix.
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Let

B =




0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0




.

We are now able to evaluate: V −1BV : V −1BV = O (s2) but also

V −1BV




1 0

0 1

0 0

0 0




= V BVunst = O
(
s2

)
.

Therefore, (V −1BV )(2)e1 = O (s2). Hence, as R(x, λ) = A(x, λ) − A∞(λ) = (1 − a(x))B
and as |1 − a(x)| ≤ C1e

−C2|x|, this proves that Hypothesis 8 of Proposition 9 is satisfied.

J Hamiltonian evolution equation for LW-SW equations

The LW-SW equations (16.2) can be expressed in Hamiltonian form as follows. Let

K =




0 1
2

0

−1
2

0 0

0 0 −∂x




,

H(Z) =

+∞∫

−∞

(
u2

x + v2
x +

1

2
w2

x − w(w2 + u2 + v2) +
1

2
cw2 + ν(u2 + v2)

)
dx,

with Z = (u, v, w). Then the system becomes

Zt = K∇H(Z) ,

since, with respect to an L2(R) inner product,

∇H(Z) =




Hu

Hv

Hw




=




−2uxx − 2uw + 2νu

−2vxx − 2vw + 2νv

−wxx + cw − 3w2 − u2 − v2




53



K The reduced eigenvalue problem associated with LW-SW equations

The two-dimensional ODE (16.7) that arises in the reduced problem for LW-SW resonance
can be written in the form

vxx + 2ν sech2(
√

νx) v =
(
ν − 1

2
λ

)
v .

ODEs of this type can be solved explicitly as noted in Appendix F. The essential spectrum
is the semi-infinite interval σess(L) = [2ν, +∞). Now suppose that λ < 2ν. Then the
system at infinity is hyperbolic and one can explicitly construct the solutions (v+, v−)
which give the solutions for the stable and unstable subspace

v±(x; λ) = e±µ
√

νx(∓µ + tanh(
√

νx)) , µ =

√

1 − λ

2ν
.

The Evans function can be obtained from

D(λ) = det



v+(x; λ) v−(x; λ)

v+
x (x; λ) v−

x (x; λ)




∣∣∣∣∣∣∣
x=0

= 2µ
√

ν(µ2 − 1) = − λ√
ν

√

1 − λ

2ν
.

The Maslov index is

Maslov(λ) =





1 if λ < 0

0 if 0 < λ < 2ν
.
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