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Abstract

The Maslov index is a topological property of periodic orbits of finite-dimensional
Hamiltonian systems that is widely used in semiclassical quantization, quantum
chaology, stability of waves and classical mechanics. The Maslov index is determined
from analysis of a linear Hamiltonian system with periodic coefficients. In this
paper a numerical scheme is devised to compute the Maslov index for hyperbolic
linear systems when the phase space has low dimension. The idea is to compute
on the exterior algebra of the ambient vector space, where the Lagrangian subspace
representing the unstable subspace is reduced to a line. When the exterior algebra
is projectified the Lagrangian subspace always forms a closed loop. The idea is
illustrated by application to Hamiltonian systems on a phase space of dimension
four. The theory is used to compute the Maslov index for the spectral problem
associated with periodic solutions of the fifth-order KdV equation.

1 Introduction

The Maslov index is a property of periodic orbits of Hamiltonian systems that is required
in a wide range of physical applications: semiclassical quantization [2, 9, 16, 15], quantum
chaology [10], and classical mechanics [4]. The linearization about a periodic orbit leads
to a Hamiltonian system with periodic coefficients. In this paper, with the assumption
that the linear system is hyperbolic, the Maslov index can be interpreted as a winding
number of a family of Lagrangian planes of the linear Hamiltonian system.

A linear Hamiltonian system with T'—periodic coefficients can be written in the standard
form
Jz, =B(t)z, zcR*, B(t+T)=B(), teR, (1.1)

where B(t) is a symmetric matrix and

J= ((I’ _(D : (1.2)



Hyperbolic linear systems have the property that the unstable subspace is Lagrangian
[16, 17]. A T-periodic linear system is said to be hyperbolic if the monodromy operator
M := ®(ty + T, tp) has no eigenvalue with a modulus equal to one, where ®(¢, ) is the
fundamental solution matrix of (1.1) defined by

J®, =BO)®, ®(to,to) =1, t>t.

A subspace, span{uy,...,u,} C R?" is a Lagrangian subspace if it has dimension n

and (Ju;,u;) = 0 for each u;,u;. The set of all Lagrangian subspaces is a manifold of

dimension %n(n + 1) and is denoted by A,,. Every closed path of Lagrangian subspaces

has a Maslov index which is integer valued [2]. A point U € A,, can be represented by a
. [A . e
2n x n matrix (Al)’ where A} and A, are n x n matrices satisfying ATA, = ATA,.
2

Lagrangian subspaces are invariant under the flow of (1.1). Hence, U(t) satisfying
JUt - B(t)U, U(to) € An, t Z to, (13)

defines a path of Lagrangian subspaces, since

d
EU(t)TJU(t) =-U®)"BH)U®) +U®H)'B#)U{t) =0,

and so U(t)TJU(t) = U(te)"IJU(ty) = 0 when U(ty) € A,. Given a path of Lagrangian
subspaces, define the Maslov angle k(t) by

V= det(AL(t) +iAy(t))’ ut) = (AQ(t)> ' (14)

When the path of Lagrangian subspaces is closed, say U(to + T) = U(ty), the Maslov
index is clearly an integer defined by

ik

~(T) = £(0)
m = o . (1.5)
However, for systems of the type (1.1) the loop does not close but U(to+71") = U(ty)P(to)
for some n x n matrix P(¢y). But the determinant of P(¢y) cancels out in the formula for
the Maslov angle. In other words, the path of the unstable Lagrangian subspace induced on
projectified \"(R*") does form a closed loop (see §3). Hence the formula (1.5) still leads
to an integer. The hypotheses of hyperbolicity and projectification are both essential.
Although the angle x(t) in (1.4) is easy to define, its computation can be cumbersome.
In principle, the Maslov index can be evaluated by computing the Floquet multipliers
and their eigenvectors, and then taking the n eigenvectors associated with the unstable
subspace of (1.1) as initial conditions. The ODE (1.1) can then in principle be integrated
from ¢t = 0 to t = T and the angle x(¢) computed as a function of ¢ [14, 15].

There are two problems with this approach to computing the Maslov index: the individ-
ual Floquet multipliers need to be computed along with a basis for the unstable subspace;
secondly, the integration of individual vectors over an interval [to, to + T] will not be sta-
ble as numerically the solutions will always be attracted to the most unstable direction.
To solve the latter problem some stabilization is required such as orthogonalization, but
discrete orthogonalization increases computation time and continuous orthogonalization
transforms the ODE to a nonlinear problem [7].



When the dimension of the phase space is not too large, these problems can be overcome
by integrating the system (1.1) restricted to the exterior algebra space A"(R?*"). On the
exterior algebra space, the n—dimensional unstable subspace is transformed to a line.
This line represents the entire unstable subspace and so is globally attracting. Therefore
the system on A"(R?") can be integrated with a random initial condition. No explicit
computation of Floquet multipliers is required.

Exterior algebra has been widely used for integrating non-Hamiltonian systems on
k—dimensional subspaces (e.g. [1] and references therein), and the exterior algebra rep-
resentation of the Maslov index has been used in the stability analysis of periodic and
solitary waves [12, 5]. However, numerical computation of the Maslov index on exterior
algebra spaces appears to be new.

The motivation of the authors is the application of the Maslov index to the stability of
waves [12, 5, 8]. In this case, there is an external parameter (the spectral parameter; see
§4), and for most values of this parameter the linear system is hyperbolic.

A related problem of interest is the Maslov index of a T'—periodic orbit, z(t), of an
autonomous Hamiltonian system,

J%ﬂw:VH@L 7 e R™, (1.6)

In this case the linearization about z(t) takes the form (1.1) with B(¢) = D*H (z(t)) and
there are always two Floquet multipliers at plus one, so the system can not be hyperbolic.
When the other 2n — 2 Floquet multipliers are hyperbolic the treatment of the Maslov
index is similar to the hyperbolic case but the two unit modulus eigenvalues need to be
accounted for. Some comments on this case are given in §5.

In this paper the details of the numerical method on exterior algebra spaces is developed
for the case n = 2. The induced systems are linear, and any standard integrator can
be used, leading to an elementary algorithm. For the case n = 2 we also find a new
formulation of the induced system on A*(R*) which closely matches the fibre-bundle
structure of the Lagrangian Grassmannian. The algorithm is applied to the eigenvalue
problem which arises in the linearization of the fifth-order KdV equation about periodic
travelling waves.

2 The Maslov index on exterior algebra spaces

In this section the theory for the Maslov angle on exterior algebra spaces is developed for
the case when the phase space has dimension 4. The restriction of system (1.1) to A*(R*),
which has dimension six, is obtained by taking a basis for /\2(R4) and then representing
the matrix J~!'B(t) with respect to this basis [1]. Let {ej, s, €3, €4} be the standard basis
for R?. Then the standard induced basis is

/\2(R4) = Span {e1 VAN €y, €1 VAN €3, €1 VAN €4, € N €3, € A €4, €3 VAN 84} .

Let A@(t) :== A* (J7'B(t)) be the matrix representation of the induced matrix on A\*(R*)
with respect to the standard basis (a formula for A® is given in [1]), then the induced
system is

U =APMNU, Ue A\ (R*)=RS. (2.7)
The Lagrangian Grassmannian Ao is the manifold of two-dimensional Lagrangian sub-
spaces of RY. On A*(R?) it has the representation [12, 5]

A =P Ue N(RY : DhUs—UsUs+UsUy=0 and Us+U;=0}),

3



where P(-) means the induced subset of projective space. The Lagrangian Grassmannian
Ay is a three-dimensional submanifold of the five-dimensional projective space P(A*(R%)),
and it is also a fibre bundle. The base manifold is S*, the fibre is S? and the total space
is A2 [3]

Introduce new coordinates which follow closely the fibre bundle structure. Consider
the following new basis for A*(R%):

e = \/Li(el/\eg—e3/\e4) e, = \/Lg( e;1Nes+eyAes)
e = \%(61 Nes+esNey) € = \%(—61 ANez+eyNey) . (2.8)
63 = \/Li(el/\e4—e2/\e3) 66 = \/Lﬁ( el/\92+e3/\e4)

Take coordinates u = (u1, ug), ug and v = (vy, vg, v3) relative to this basis. Then @3 = 0
(since ug = 0 defines the Lagrangian plane in these coordinates), and the five coordinates
(u,v) satisfy
w = Si(t)u+ N(t)v
vi = So(t)v+N(t)Tu.

The matrices S;(t) and Sy(t) are skew-symmetric and are computed to be

i) =180 () )

(2.9)

and
0 2by3 — 2b14 D11 — bag + b3z — byy
So(t) = —2boz + 2b14 0 2b34 + 2b19 ,
—by1 + bag — bag + byg  —2b3q — 2019 0
where b;; represent the entries of B(t) in (1.1) and
N(t) = bi1 — bag — b3z + by —2bsy + 2019 2b13 + 2024
2b13 — 2bgy 2b93 +2b14  —byyg — bay + b33 4+ bas )

In these coordinates, the Lagrangian Grassmannian is defined by
Ao =P({(u,v) : u-u—v-v=0}).

In these coordinates the flow on the base manifold S of Ay is given by u(t)/||u(t)||, and
the flow on the fibre S? is given by v(t)/||v(¢)|. Since A, is a fibre bundle the flow on
these two manifolds is globally connected via the differential equation (2.9).

The nice feature of the representation (2.9) is that the Maslov index is obtained from
twice the winding number of the vector u. Let

9@):tm11(_““”>;

U1l (t)

then the winding number of the vector u(t) is just w

twice this winding number: (t) = 26(t) and so

i) _ u1(t) —iup(t)
up (t) + iug(t)

. The Maslov angle «(t) is

(2.10)

with the Maslov index given by (1.5). A verification of this formula follows by starting with
(1.4), transforming using Pliicker coordinates [5, 12] and then applying the transformation
(2.8). A detailed derivation of this result and its generalization to higher dimension is
given in [§].



3 Floquet theory on \"(R?")

There is an induced Floquet theory on the exterior algebra space. For a hyperbolic linear
system (1.1) there are n Floquet multipliers with modulus greater than one, and n with
modulus less than one.

Choose ty € R and define the monodromy matrix M = ®(¢y, + T, ¢y). The monodromy
matrix is dependent on t, but choosing any other starting value for #y, say ¢, leads to a
monodromy operator M = ®(t; + 7', t1) which has the same eigenvalues. The eigenvalues
of any M in this equivalence class are the Floquet multipliers.

Denote by M the operator induced on A" (R*") defined by
M (YA AY,) =MYiA---AMY,, V Yi,...,Y, e R™,

If uq, ..., u, are any n Floquet multipliers with eigenvectors (1, ..., ,, then clearly
MO (G A ANC) =0 (G A AG), with o=]]w.
j=1

Since the system is hyperbolic, there is a unique simple Floquet multiplier of largest
modulus of M obtained by taking {Ci,...,(,} to be a basis for the unstable subspace.
Denote this Floquet multiplier by o,. It is always simple and real, even if some of the
Floquet multipliers are complex.

Consider the induced system
Uy=A"U, Ulte) =G A A,
with {(1,...,(,} a basis for the unstable subspace. Then
Ulto+T) =04 (G A AG);

that is, U(ty + T) and U(to) are collinear. Hence, U(t +T) = U(t) on P(A"(R*")).
In practice, the numerical integration is performed on A"(R?") and the formula for the
Maslov angle automatically factors out the length.

In practice the unstable subspace, span{(i,...,(,}, need not be computed explicitly.
When the induced system on A"(R?") is integrated in time, any randomly-chosen initial
condition will be attracted to the most unstable direction. Hence, the Floquet multipliers
or their eigenvectors do not need to be computed explicitly. It is sufficient to know that
the linear system is hyperbolic. This strategy is equivalent to the power method for
computing the eigenvalue of largest modulus of a matrix [11].

The rate of convergence of this version of the power method depends on the distance
between the largest (in modulus) Floquet multiplier of M and the next largest Floquet
multiplier. Explicitly, let pq, po, ..., i, be the unstable Floquet multipliers with multi-
plicities sorted so that 1 < |uy| < |u2| < ... <|pn|. Then the stable Floquet multipliers
are i, cee /%n With these conditions, the two eigenvalues of largest modulus of M™ are
pipl - -+ ftn and gy po - - - 1. The ratio of the second largest to the largest (in modulus)
is

,U1_1N2"‘,Un _ i

CYCRR N
and by construction this ratio has modulus strictly less than one. However the size of the
ratio depends on the distance between p; and the unit circle.

b}



The Floquet multiplier of largest modulus pps ... 1, is a simple and therefore real
eigenvalue. Denote the right eigenvector by & € A"(R?") and let i represent the left
eigenvector, normalized so that (n, &) = 1.

The solution of the initial-value problem for the induced system
U =A"MnU, UeN\N'(R™),
with a random initial condition U(ty) = Uy is of the form
U(t) = @M (t, 1)U, .
But ®(ty+ T,ty) = M™ and so

Ut + kT) = (M™) Uy, k=0,1,....

The effect of (M(”))k on the randomly chosen initial condition can be computed by the
power method.

Let Uy := ¢o be any randomly chosen vector such that (n,{o) # 0. Generically,
almost every starting vector will satisfy this condition. Define the sequence {(x} by
Crp1 = M¢,. Then, from results on the power method, it follows that there exists a
constant C' > 0, for any € > 0, such that

H(nC C’“_’EH CllmP =)™, k=0,12....

This result shows that the power method produces log,(|u1]? — €) correct digits at each
iteration. When || is close to one, log,(|p]? — &) ~ logik(ml\ —1). The parameter ¢
can be set to 0 if the eigenvalue 'y - - - 1, is semi-simple. This result ensures that a
random initial condition will be globally attracted to the unstable subspace, when the
linear system is hyperbolic. It also demonstrates the failure of convergence in the case

where the periodic orbit is not hyperbolic, e.g. when |u;| = 1.

4 Periodic solutions of the fifth-order KdV equation

An example from the stability of waves, that illustrates the computation of the Maslov
index, is periodic solutions of the steady fifth-order Korteweg de Vries (KdV) equation.
The fifth-order KdV equation can be written in the form

ou Ou O
- _ - p+1
ot Oz o ox (u ) +F

oo

where p is a natural number and P is a real parameter [6, 8]. In this paper the parameter
values will be fixed at p=1 and P =

Steady solutions of this equation satisfy the fourth-order ordinary differential equation

In Figure 1 examples of periodic solutions of (4.12) are shown for the case of p = 1 and
P = %3. These solutions have been computed numerically.
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Figure 1: Periodic solutions of the steady fifth-order KdV equation for p =1, P = % and
periods 4w, 8, 127, 167, 207.

The system (4.12) is Hamiltonian and the linearization about a periodic orbit leads to
the self-adjoint operator in the space L?(RR):

LW = Waggy — PWew — (p+ NP w +w. (4.13)

This operator is of interest because the linearization of (4.11) about a periodic state takes
the form
ow 0

ot Ox (Lw) -
Properties of the spectrum of the operator . can be related to the spectrum of the full
system (4.11) and hence can be related to stability [13]. Although it has yet to be proven,
we conjecture that the Maslov index plays an important role in the stability of waves of
(4.11).

Elements A in the spectrum of % satisfy Zw = Aw with w bounded for x € R and,
since . is self-adjoint as a mapping from 2(.%) — L?*(R), the spectrum is real. For
operators with periodic coefficients, the discrete spectrum is empty, and the spectrum
consists of a sequence of bands [20].

The eigenvalue problem can be written in the form (1.1) for any A € R,

w
wxm
Jz, =B(z,\)z, z:= w, — Pw, |
Wy
with J in the standard form (1.2) and
a(zy=Xx 0 0 0
B 0 -100 L )
B(z,\) = 0 0 o0 1 |0 @=1-@+1e)".
0 0O 1 P



The parameter A\ plays an important role. It is a spectral parameter and it can be
interpreted as a control parameter which affects whether the linear system is hyperbolic.
The system is indeed hyperbolic when A is not in the spectrum of .Z.

When A = 0 and ¢(z) is periodic, this system is not hyperbolic because it is the
linearization about an autonomous ODE. But when A is perturbed away from zero the
two Floquet multipliers at +1 move, becoming either elliptic or hyperbolic. At other values
of A\, there can be bifurcations of Floquet multipliers as well; indeed, such bifurcations
can be expected due to the band structure of the spectrum of .. These issues will show
up in the numerics.

The induced system on the Lagrangian Grassmannian is of the form (2.9) with

Sl(x,)\):(a(x)—A—1+P)((1] _[1)> ,

0 0 a(x)—A+1-—P
So(z,\) = 0 0 2 ,
—a(x) +A—1+P -2 0
and (1) - A
lalz) - A+1+P =2 0
N(z,A) = 0 0 —a(g;)+A+1+P]'

Denote the period of a solution of (4.12) by L. The parameters P and p are fixed, and
the parameters L and X are varied. For each (L, ), the Maslov index associated with
the linear system is computed by integrating (2.9) over a period and computing the angle
k(x, \) using the formula (2.10) and the Maslov index is obtained using the formula (1.5).

5 Maslov index of a hyperbolic periodic orbit

When 7z(t) is a T—periodic solution of an autonomous Hamiltonian system (e.g. equation
(1.6)), the linearization of the Hamiltonian system about this periodic orbit can be cast
into the standard form (1.1) where B(t) is the Hessian of H evaluated at z(t). The
linearization will have at least two Floquet multipliers at +1 (for definiteness, assume
exactly two). Suppose that all the other Floquet multipliers are hyperbolic. The Maslov
index of this orbit can be defined as follows [14, 16, 18].

The unstable manifold' of z is n-dimensional; let V(¢) be its tangent space at z(t).
V(t) is spanned by Z;(t) and the unstable subspace; e.g. determined by the sum of the
(n — 1)—dimensional generalized eigenspace associated to the Floquet multipliers with
modulus greater than one.

The Maslov index of Z is then defined as the homotopy class of the path ¢t — V(¢) in
the Lagrangian Grassmannian A,. If we have a matrix or n-form representation of this
space, the angle x and the homotopy class can be computed as before.

Let E4 the generalized eigenspace of the monodromy operator associated to the Floquet
multiplier 1. Fj is two-dimensional and contains the tangent vector of the orbit z;.

If we ignore the fact that the linearized system is not hyperbolic and apply the same
algorithm as in the previous section, there are two cases:

IThe unstable manifold of a periodic orbit Z is defined as the union of orbits whose a—limit set is Z.
This should not be confused with the unstable manifold of Z(0) with respect to the diffeomorphism ¢r
which maps u(0) to u(T") for any solution u of the autonomous system. Of course the first includes the
second but also z.



o O(ty+1T,tp) ‘ B is the identity and then taking a random starting point will not lead

to convergence to V (t) in general.

is not the identity and then it will generally converge to V' (¢) with
1
1+k"

o Oty + T, to)]E1
the difference between the V(¢) and the k' approximation behaving like

Hence, if there is convergence, it is very slow. Instead of using an n-dimensional random
Lagrangian space for initial data, we can take advantage that we generally know what z;
is and:

e choose a n-dimensional Lagrangian space which already contains the z; vector,
e choose an (n — 1)-dimensional subspace.

These two ideas have the same rate of convergence, namely C' 2+€)r at the r—th it-
eration. For the first one, the setup is nearly identical to what has been done in the
previous sections: we just pick z; and n — 1 other random vectors &1, ..., &,_1 and com-
pute z(to) A& A -+ A E,_1 for initial data.

For the second approach, we integrate until we get the unstable space of ®(t + T, t).
Knowing z(t), it is then possible to compute the angle of V'(t). Moreover, the dimension

of the space to integrate is smaller.

Another approach is to add an external parameter that perturbs the +1 Floquet multi-
pliers off the unit circle. In the application to stability of waves in §4 and §6 the spectral
parameter A plays precisely this role (see Figures 2 and 6).

6 Numerical results — fifth-order KdV

In the following figures, the results of our calculations of the Maslov index are shown, for
periodic solutions of (4.12) with periods L = 47, 8, 167, 207. For each of the four cases,
two figures are shown. The first figure shows the number of iterations for the Maslov
index to converge (an iteration is an integration from = zo + (r — 1)L to © = x¢g + rL
for some integer r). When the system is hyperbolic, the Maslov index converges fast, and
in the spectral bands the algorithm generally fails to converge. However, as shown in the
second plot for each case, the Maslov index at bifurcation points is easily determined by
computing in a left or right neighborhood of the bifurcation points. The Maslov index
shows expected behavior for values of \ less than ~ 1.

The static in the region A greater than ~ 1 is due to the appearance of spectral bands.
When entering a band, as A is varied, at least two Floquet multipliers (one inside circle
and the other outside) collide on the unit circle. Then they move along the unit circle.
When leaving the band, Floquet multipliers collide again and leave the circle. When A is
in a band, there are Floquet multipliers on the unit circle and hyperbolicity is lost. Hence
when A is in a band the algorithm should not (and does not) in general converge.

The bands can be observed in the numerical results: the non-convergence can be used
as an indication of the presence of spectrum. If the number of iterations necessary for
convergence exceeded 100, it was considered an indication that the value A was in a
spectrum band or close to it. Another indication of a band edge, where two Floquet
multipliers coalesce at +1, is the change in the value of the Maslov index.

A lower bound for all the bands can be computed valid for all finite wavelengths. A
band edge corresponds to L—periodic solution of Zw = Aw. Multiply Zw — Aw by w(x)

9
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Figure 6: Position of the Floquet multipliers when going from A < 0 to A > 0.

and integrate over a period:

L L L L L
/ |wm|2dx+P/ |wx|2dx—2/ |¢(x)|2|w|2dx—|—/ |w|2dw:)\ / |w|2dx.
0 0 0 0 0

Now use the fact that P > 0 and |¢(z)| < ¢™* for all z € R to obtain
Y 2 1— 2‘¢max’2 )

With |¢™*| ~ 1.4 (from Figure (1)), we obtain a lower bound of approximately —3. This
is consistent with the numerics which indicate that the lowest band is at approximately
—1.25.

When the period of the periodic state ¢(x) tends to oo, the width of the bands contract,
and in the limit the continuous spectrum is limited to the one band A € [1, 00), of infinite
length, and the band near zero contracts to the point A = 0.

Consider now the case when A is near zero. In this case the system is hyperbolic on
only one side of A = 0. When A = 0 there are two Floquet multipliers at +1 and two
hyperbolic Floquet multipliers as shown schematically in the middle figure in Figure 6.
It is clear from Figure 2 that there is a band for A = 0~ and for A = 0% the system is
hyperbolic, as shown schematically in Figure 6. Our theory applies for A = 0" which gives
a Maslov index of 2. Therefore we define the Maslov index at A = 0 to be the Maslov
index in the limit A — 0.

When the system is non-hyperbolic, there are alternative definitions of the Maslov
index which include corrections for the cases of elliptic and inverse hyperbolic Floquet
multipliers [18, 15].

7 Concluding remarks

The computation of the Maslov index for a linear Hamiltonian system by working on the

exterior algebra can be generalized to any dimension. Given a linear Hamiltonian system

on R?" of the form (1.1), let A := J'B(¢). Then the induced system on A"(R*") is of
the form U, = AM™U and with respect to the standard basis,

(€, A=+ A€, )1<iy<is<-<iy<n, With lexicographical ordering,

0 if Card({iy,...,int U{j1,---,Jn}) >n+1
_ 7«+s . . . . . — . . . .
(A")1ci < <ipen, = (n A S S E AR
1§]1<"'<J7’L§n Z airvir 1f {/L.17 A ’Zn} - {j17 A 7j7’l}
r=1

with VAW = (VUW) — (VA W).

12



Suppose the basic state is hyperbolic, and let & represent the unstable subspace. Then
the Maslov angle « is defined by

—-i& _ n—r S ij—]
€ 2= E 1 <_1) =t €i1,~-fin'
{#1--in},m)
11 <...<lp
{i1yeeesiryirg1—nyein—n}={1,...,n}

Then %}"‘(O) will give the Maslov Index. Details of this derivation and applications are
given in [8].

However, the dimension of A"(R?*") is C& and it grows rapidly (for example C%; =
12870) and therefore the practical application of working on exterior algebra spaces is
limited to low dimension. For higher dimension, orthosymplectic integration becomes
appealing. In orthosymplectic integration, continuous orthogonalization is used and the
symplectic structure is retained. For example, the algorithm proposed in [19] could be
adapted to the computation of the Maslov index. In principle, if the periodic orbit is
hyperbolic, then random orthosymplectic initial conditions can be used. However, special
integrators, such as implicit Gauss-Legendre Runge-Kutta methods are required in order
to preserve symplecticity and orthonormality to high accuracy, and the ODE is highly
nonlinear. On the other hand, orthosymplectic integrators will be essential for systems of
high dimension since the dimension grows only like 2n? for linear systems on dimension
2n.

A sketch of how orthosymplectic integration can be used is as follows. Let ®(¢) be
a path of symplectic matrices such that the n first columns of ®(¢y) span the unstable
subspace and J®'(t) = B(t)®(t). Decompose ®(t) following [19],

d(1) = QX (), with X(t):(Xlé(t> ézg’;;) (7.14)

The path of matrices Q(¢) is symplectic and orthogonal and Xj;(t) is an n X n upper
triangular matrix and Xy is an n X n lower triangular matrix.
Since Q is both orthogonal and symplectic, it can be expressed in the form

Q:(gi _QC?2>, with Q; +i1Q. unitary.

If £ < n, the k first columns of Q span the space spanned by the the k first columns
Q.
Q:

ik(t) —

of ® and therefore the columns of span the unstable space. Define k by e

W, then the Maslov index is again w. One still needs to prove that

5—— is an integer — even though ®(t) is not necessarily periodic. Again the hypothesis
of hyperbolicity is essential.

The only remaining problem is to compute ®(¢y) and, if the system is hyperbolic, one
can take random orthosymplectic initial conditions at ¢t = to — rT" for some r € N and
perform orthosymplectic integration over [to—rT, to], then integrate the unstable subspace
for t =ty tot =ty + T. The rate of convergence should be the same as the one for the
exterior algebra method.
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