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Abstract

This paper extends the theory of the Maslov index of solitary waves in Part I to the
case where the phase space is of dimension greater than four. The starting point
is Hamiltonian PDEs, in one space dimension and time, whose steady part is a
Hamiltonian ODE with a phase space of dimension six or greater. It is this steady
Hamiltonian ODE that is the main focus of the paper. Homoclinic orbits of the
steady ODE represent solitary waves of the PDE, and one of the properties of the
homoclinic orbits is the Maslov index. We develop formulae for the Maslov index,
the Maslov angle and its subangles, in an exterior algebra framework, and develop
numerical algorithms to compute them. In addition a new numerical approach based
on a discrete QR algorithm is proposed. The Maslov index is of interest for classify-
ing solitary waves and as an indicator of stability or instability of the solitary wave
in the time dependent problem. The theory is applied to a class of reaction diffusion
equations, the longwave-shortwave resonance equations and the seventh-order KdV
equation.

1 Introduction

Hamiltonian evolution equations in one space dimension, such as the nonlinear Schrödinger
(NLS) equation, the family of n−th order Korteweg-de Vries (KdV) equations, and
longwave-shortwave resonance (LW-SW) equations, have the property that their steady
part is a finite-dimensional Hamiltonian system. For such systems, solitary wave solu-
tions can be characterized as homoclinic orbits of a Hamiltonian ordinary differential
equation (ODE). The spectral problem associated with the linearization about a given
homoclinic orbit, in the time-dependent equations, then leads to a parameter-dependent
family of linear Hamiltonian systems. The advantage of these Hamiltonian structures is
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that the linear and nonlinear Hamiltonian systems have global geometric properties that
aid in proving existence of the basic solitary wave and in understanding its stability as
a solution of the time-dependent equation. Our interest in this paper is in a particular
geometric invariant – the Maslov index of homoclinic orbits. This paper is a continua-
tion of Chardard, Dias & Bridges [11] (hereafter Part I). It extends the theory of
Jones [17], Bose & Jones [5] and Part I to cases where the phase space of the steady
Hamiltonian ODE has dimension six or greater.

Once the solitary wave solution is known, analytically or numerically, it is the lineariza-
tion about that solitary wave which encodes the Maslov index. Therefore, the starting
point for developing the theory is the following class of parameter-dependent Hamilto-
nian systems

Jwx = B(x, λ)w , w ∈ R
2n , x ∈ R , λ ∈ R , (1.1)

where J is the standard symplectic operator on R
2n

J =




0 −I

I 0


 , (1.2)

and B(x, λ) is a symmetric matrix depending smoothly on x and λ. Let

A(x, λ) = J−1B(x, λ) . (1.3)

The fact that A(x, λ) is obtained from the linearization about a solitary wave suggests
the following asymptotic property. It is assumed throughout the paper that

A∞(λ) = lim
x→±∞

A(x, λ) , (1.4)

and that A∞(λ) is strictly hyperbolic for an open set of λ values that includes 0.

The Maslov index is a winding number associated with paths of Lagrangian planes of
solutions of (1.1), in particular the unstable space, i.e. the space of solutions which decays
at −∞ when A∞(λ) is hyperbolic. We present formulas for different representations of
the Maslov index for Lagrangian planes on

∧n(R2n) for any n, and use the numerical
algorithm of Part I to compute it. It works in principle in any dimension. However, since
we use an exterior algebra representation, the dimension of

∧n(R2n) increases rapidly
with n and so the algorithm is most effective for low dimensional systems. In this paper
formulae are presented for any dimension and numerical results for a phase space of
dimension six.

In addition, a new algorithm based on a discrete QR splitting is proposed. When n = 2
the exterior algebra frame is clearly faster than the QR method; its computation time
is about the same when n = 3 but for n > 3 the QR method appears to be faster.

The computational framework for the Maslov index is illustrated by application to three
examples. The first example is the fully coupled longwave-shortwave resonance equation
from the theory of water waves, which consists of a NLS equation coupled to a KdV
equation, generalizing results from [10,11]. The second example is a sixth-order system
that arises in the linearization about the coupled reaction-diffusion equations. The third
example is the seventh-order KdV equation, which has the property that the steady part
is a Hamiltonian system on a phase space of dimension six, and extends the results on
the fifth-order KdV in [11].
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2 Linear Hamiltonian systems and Lagrangian subspaces

Let
W = [w1 | · · · |wn ] ∈ R

2n×n , (2.1)

where the linearly-independent columns {w1, . . . ,wn} span an n−dimensional subspace.
This subspace is Lagrangian if

WTJW = 0 , (2.2)

or columnwise

〈Jwi,wj〉 = 0 , ∀ i, j = 1, . . . , n ,

where 〈·, ·〉 is a standard inner product on R
2n.

Now suppose the subspace (2.1) depends on (x, λ) and satisfies the differential equation
(1.1),

JWx = B(x, λ)W . (2.3)

The differential equation preserves Lagrangian subspaces since

d

dx

(
WTJW

)
= −WTBW + WTBW = 0 .

Hence if initial data W(x, λ)
∣∣∣
x=x0

is Lagrangian, the path W(x, λ) is Lagrangian for all
x > x0.

A Lagrangian subspace can also be represented by a Lagrangian frame [25]: a 2n × n
matrix of rank n

W =



U

V


 , (2.4)

where the condition (2.2) requires the n× n matrices U and V to satisfy

VTU = UTV . (2.5)

This identity implies that

(U− iV)T (U + iV) = UT U + VTV .

Hence if R =
√

UTU + VTV, which is well defined and symmetric since the argument
is positive definite, then

Q = Q1 + iQ2 := (U + iV)R−1 ,

is unitary. The determinant of a unitary matrix lies on the unit circle. It is this ob-
servation that leads to a definition of the Maslov angle of a fixed Lagrangian subspace
W,

eiκ =
det[U− iV]

det[U + iV]
. (2.6)

For a (x, λ)−path of Lagrangian subspaces the angle is

eiκ(x,λ) =
det[U(x, λ)− iV(x, λ)]

det[U(x, λ) + iV(x, λ)]
. (2.7)
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Suppose that W(x, λ), for fixed λ and a ≤ x ≤ b, is a smooth path of Lagrangian
subspaces. If the path is a loop: W(b, λ) = W(a, λ), then there is an integer associated
with the path: the number of times the induced path on S1, eiκ(x,λ), encircles the origin.
This integer is the Maslov index of the path

Maslov(κ) :=
κ(b, λ)− κ(a, λ)

2π
. (2.8)

When (1.1) is obtained from the linearization about a homoclinic orbit, the Lagrangian
subspace represents the stable or unstable subspace of the linearization. Hence direct
numerical integration of (2.3) is unstable. The remedy for this is to integrate using exte-
rior algebra, or integrating using discrete or continuous orthogonalization. The exterior
algebra approach was developed in [10,11] for the case of n = 2. Here the necessary
details for generalizing to n > 2 are sketched. The use of discrete orthogonalization for
computing the Maslov index is new, and the details are given in §9.

3 Integrating (1.1) on exterior algebra spaces

Let e1, . . . e2n be the standard basis for R
2n. Then

{
ek1 ∧ · · · ∧ ekn | k1, . . . , kn ∈ {1, . . . , 2n}

}
,

is a basis for
∧n(R2n). Any element Z ∈ ∧n(R2n) can be expressed in terms of this basis.

There is then a standard way to construct the differential equation induced on
∧n(R2n)

by (1.1) leading to

Zx = A(n)(x, λ)Z , Z ∈ ∧n(R2n) . (3.9)

The principal issue is the construction of the matrix A(n) [1,11]. In this section a new
construction of this matrix is given using the multi-alternate product following [7]. The
bi -alternate product is now widely used in bifurcation theory (e.g. Govaerts [15]).
There isn’t much in the literature on the multi -alternate product, but the basics of
theory were worked out over 100 years ago by Stéphanos [26,27].

The multi-alternate product of matrices is defined as follows. Let E and F be two vector
spaces. Let M1,M2, . . . ,Mk be linear maps from E to F . Then, the kth-alternate product
is a mapping

(M1,M2, . . . ,Mk) 7→M1 ⊙M2 ⊙ . . .⊙Mk :
∧kF → ∧kE ,

defined by

M1 ⊙M2 ⊙ . . .⊙Mk(a1 ∧ a2 ∧ . . . ∧ ak) =
1

k!

∑

σ∈Σk

Mσ(1)a1 ∧Mσ(2)a2 ∧ . . . ∧Mσ(k)ak

where Σk is the set of permutations of {1, . . . , k}. Let (e1, . . . , en) and (f1, . . . , fn) be
bases of E and F . Then

{ei1 ∧ . . . ∧ eik , 1 ≤ i1 < . . . < ik ≤ n} and {fi1 ∧ . . . ∧ fik , 1 ≤ i1 < . . . < ik ≤ m} ,
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are bases for
∧k E and

∧k F . The entries of the matrix of the multi-alternate product in
these bases is:

(M1 ⊙ . . .⊙Mk)1≤i1<...<ik≤n,
1≤j1<...<jk≤n

=
1

k!

∑

σ∈Σn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Mσ(1))i1,j1 (Mσ(1))i1,j2 . . . (Mσ(1))i1,jk

(Mσ(2))i2,j1 (Mσ(2))i2,j2 . . . (Mσ(2))i2,jk

...
...

...
...

(Mσ(k))ik,j1 (Mσ(k))ik,j2 . . . (Mσ(k))ik,jk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The induced matrix A(n) in terms of the multi-linear product is then

A(n) = n(A⊙ I⊙ . . .⊙ I) . (3.10)

A formula for the induced matrix, in terms of the standard basis for
∧k(R2n), for any k

is

(A(k))1≤i1<...<ik≤2n,
1≤j1<...<jk≤2n

=






0 if Card({i1, . . . , ik} ∪ {j1, . . . , jk}) > k + 1

(−1)r+sair,js if {ir, js} = {i1, . . . , ik}∆{j1, . . . , jk}
k∑

r=1
air,ir if {i1, . . . , ik} = {j1, . . . , jk}

(3.11)
with V ∆W = (V ∪W ) − (V ∩W ). For numerical computations, it is natural to use
a mono-index implementation rather than a multi-index one. Normally, the Ck

2n multi-
indexes are numbered following the lexical ordering: let 1 ≤ i1 < . . . < ik ≤ 2n and
1 ≤ j1 < . . . < jk ≤ 2n. It is said that

{i1, . . . , ik} < {j1, . . . , jk} if and only if ∃α | i1 = j1, . . . , iα−1 = jα−1 and iα < jα.

An explicit expression for A(n) in the standard basis when n = 3 is given in the Appendix
of [2].

3.1 Reversibility and the multi-alternate product

Another advantage of the multi-alternate product is that it provides the natural setting
for constructing the induced reversors on

∧n(R2n) when A(x, λ) is reversible.

Suppose that the linear system (1.1) is reversible: there exists a linear transformation
R : R

2n → R
2n such that

RJ = −JR and RB(−x, λ) = B(x, λ)R , R−1 = R , (3.12)

or in terms of A(x, λ) in (1.3)

RA(−x, λ) = −A(x, λ)R . (3.13)

For a linear operator on R
2n define the operation of inducing a mapping on

∧n(R2n) by

∧n(A) := A(n) . (3.14)
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It is immediate from the definition that

∧n(A(−x, λ)) := A(n)(−x, λ) . (3.15)

Since reversibility will not play a role in this paper, restrict attention to the case n = 2
to illustrate the construction of induced reversor. An application of the Maslov index
where reversibility is important is presented in [9].

The bialternate has the following interesting property (cf. Proposition 14 on page 40 of
[7]) ∧2(Q−1AQ) = (Q⊙Q)−1∧2(A) (Q⊙Q) . (3.16)

From this identity and (3.15)

−A(2)(−x, λ) = −∧2(A(−x, λ))

=
∧2(R−1A(x, λ)R) (using (3.13) and R−1 = R)

= (R⊙R)−1∧2(A(x, λ))(R⊙R) (using (3.16))

= (R⊙R)−1 A(2)(x, λ)(R⊙R) ,

from which it follows that

A(2)(x, λ)(R⊙R) = −(R⊙R)A(2)(−x, λ) . (3.17)

Hence if A(x, λ) is reversible with reversor R, the induced matrix A(2)(x, λ) is reversible
with reversor R⊙R. The generalization to n > 2 follows a similar argument.

4 Maslov angle – a formula on
∧n(R2n)

The Maslov angle for a path of Lagrangian subspaces is defined in (2.7) in terms of
a Lagrangian plane. For the computation, a formula in terms of the exterior algebra
representation is needed. It is derived as follows.

A Lagrangian frame can be partitioned into two n × n blocks as in (2.4) and it can be
represented in terms of its columns

W = [w1 | · · · |wn ] , with 〈Jwi,wj〉 = 0 , for i, j = 1, . . . , n .

The exterior algebra representation of the Lagrangian plane is then just obtained by the
mapping

(w1, . . . ,wn) 7→ w1 ∧ · · · ∧wn ∈
∧n(R2n) .

Denote the exterior algebra representation by

Z = w1 ∧ · · · ∧wn ,

and orient R
2n with the standard orientation: vol = e1 ∧ · · · ∧ e2n.

Proposition 1 There exists a constant n−form C,

C = C1 + iC2 , with C1,C2 ∈
∧n(R2n) ,
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such that

det[U− iV]vol = C ∧ Z .

It follows from this proposition that there exists a scalar complex-valued function K
such that C ∧ Z = Kvol. A formula for the Maslov angle is then immediate.

Proposition 2
eiκ = K/K .

It remains to prove Proposition 1. The proof is by explicit construction. Let

cj = ej − iJej , j = 1, . . . , n .

Then

U− iV =




I

−iI




T 

U

V


 = [c1 | · · · | cn]

T [w1 | · · · |wn ] =




〈c1,w1〉 · · · 〈c1,wn〉
...

. . .
...

〈cn,w1〉 · · · 〈cn,wn〉




,

(4.1)
and so, using the induced inner product 1 on

∧n(R2n) (see Appendix of [10])

det[U− iV]vol = det




〈c1,w1〉 · · · 〈c1,wn〉
...

. . .
...

〈cn,w1〉 · · · 〈cn,wn〉




vol = [[c1 ∧ · · · ∧ cn,Z]]nvol .

This gives a formula for K,

K = [[c1 ∧ · · · ∧ cn,Z]]n .

It is not necessary to give an expression for C since in the computations it is K that is
needed. However, for completeness it is given. Let C be an n−form satisfying

c1 ∧ · · · ∧ cn ∧C = [[c1 ∧ · · · ∧ cn, c1 ∧ · · · ∧ cn]]n vol . (4.2)

Then
det[U− iV]vol = C ∧ Z .

The n−form C is in fact the Hodge star of c1 ∧ · · · ∧ cn although the details of that
characterization are not needed.

This formula generalizes the formula for the Maslov angle on
∧2(R4), which is given in

[11].

4.1 The Maslov angle on
∧3(R6)

A special case of great interest is paths of Lagrangian subspaces on R
6. The above

formula can be given an explicit form. On R
6, with the standard basis, the above vectors

1 A real inner product is used throughout the paper, with complex conjugation inserted as
appropriate.
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c1, . . . , c3 take the form

c1 ∧ c2 ∧ c3 = (e1 − iJe1) ∧ (e2 − iJe2) ∧ (e3 − iJe3)

= (e1 − ie4) ∧ (e2 − ie5) ∧ (e3 − ie6) ,

or

c1 ∧ c2 ∧ c3 = e1 ∧ e2 ∧ e3 − e1 ∧ e5 ∧ e6 + e2 ∧ e4 ∧ e6 − e3 ∧ e4 ∧ e5

−ie1 ∧ e2 ∧ e6 + ie1 ∧ e3 ∧ e5 − ie2 ∧ e3 ∧ e4 + ie4 ∧ e5 ∧ e6 .

Now take a standard lexical ordering for the 20−dimensional basis

∧3(R6) = span{e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, . . . , e3 ∧ e5 ∧ e6, e4 ∧ e5 ∧ e6} , (4.3)

and express an arbitrary element Z ∈ ∧3(R6) in the form Z =
∑

i,j,k Pijkei ∧ ej ∧ ek.
Then

K = [[c1 ∧ c2 ∧ c3,Z]]3

= P123 − P156 + P246 − P345 − iP126 + iP135 − iP234 + iP456 ,
(4.4)

and so the expression for the Maslov angle is

eiκ =
P123 − P156 + P246 − P345 − iP126 + iP135 − iP234 + iP456

P123 − P156 + P246 − P345 + iP126 − iP135 + iP234 − iP456
. (4.5)

This formula is the basic tool for computing the Maslov index in the examples in §6-§8.

In this case the definition (4.2) gives

C = e4 ∧ e5 ∧ e6 − e2 ∧ e3 ∧ e4 + e1 ∧ e3 ∧ e5 − e1 ∧ e2 ∧ e6

+i(e3 ∧ e4 ∧ e5 − e2 ∧ e4 ∧ e6 + e1 ∧ e5 ∧ e6 − e1 ∧ e2 ∧ e3) .

4.2 Maslov angle on
∧n(R2n)

In higher dimension, the general formula is [7]

K = det(U− iV) =
∑

({i1...in},r)
i1<...<in

{i1,...,ir,ir+1−n,...,in−n}={1,...,n}

in−r(−1)
∑r

j=1
ij−jPi1,...,in ,

for an element Z ∈ ∧n(R2n) represented in terms of the standard basis:

Z =
∑

j1···jn

Pj1···jnej1 ∧ · · · ∧ ejn .

5 Integrating on the Lagrangian Grassmannian

The strategy for numerical computation of paths of Lagrangian subspaces in the exterior
algebra representation for n > 2 is similar to the case of n = 2. The major change is the
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jump in dimension. For example, the dimension of the each of the basic manifolds for
the case n = 3 is shown in the table below.

Manifold
∧3(R6) RP

19 G3(R
6) Λ(3) Λ1(3)

Dimension 20 19 9 6 5

In this table Λ(3) is the Lagrangian Grassmannian and Λ1(3) is the Maslov cycle [24].
The vector space

∧3(R6) has dimension 20, and we can take the standard lexical basis
(4.3) and an element of

∧3(R6) can be expressed in the form

Z =
∑

i,j,k

Pijk ei ∧ ej ∧ ek , i < j < k .

The formula for the Maslov angle is given in equation (4.5). For computing the Maslov
index in the case where the solitary wave is approximated by a periodic orbit, the
algorithm is the same as in the case of n = 2. Simply integrate the unstable subspace
in the induced system on

∧3(R6) in the interval −L < x < +L with initial condition
ζ+(λ), where ζ+(λ) is the representation on

∧3(R6) of the unstable subspace at infinity.
κ(x, λ) is computed using (4.5) and then the Maslov index is returned at x = L using
(2.8). The numerical methods have been presented in previous papers: approximation
of the solitary wave by a limiting periodic wave [8,6], and using an intersection theory
definition of the Maslov index [11,9,12,10].

There is still much to understand about Λ(3). For example, we do not have useful rep-
resentations of G3(R

6) or Λ(3) on
∧3(R6). Such representations would be advantageous

for proving that Λ(3) is an invariant manifold for (3.9), and for understanding the nu-
merical properties of the induced ODE on Λ(3). Some results about

∧3(R6) and Λ(3)
can be found in Chapter 8 of the book [19]. Nevertheless, the Maslov index is still easily
computable when n = 3 and the calculations show evidence of robustness.

6 A model PDE for longwave-shortwave resonance

In this section the Maslov index is computed for a class of solitary waves which arise in
a model PDE for longwave-shortwave resonance (cf. Kawahara et al. [18], Ma [23],
Benilov & Burtsev [4], Latifi & Leon [20]). The equations are a coupled system
with one equation of nonlinear Schrödinger type and the other of KdV type. A typical
form is

Et = i(Exx + ρE − νE)

ρt = ∂x(ρxx − cρ + 3ρ2 + |E|2) ,
(6.1)

where ρ(x, t) is real valued, E(x, t) is complex valued, and c, ν are considered to be
positive real parameters. In real coordinates, E = u+iv and ρ = w, the above equations
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can be written:

ut = −vxx − vw + νv

vt = uxx + uw − νu

wt = wxxx − cwx + 6wwx + 2uux + 2vvx .

(6.2)

A simplified n = 2 version of this example was considered in [11]. Here the full n = 3
example is studied.

Solitary waves satisfy the steady equations

−2uxx − 2uw + 2νu = 0

−2vxx − 2vw + 2νv = 0

−wxx + cw − 3w2 − u2 − v2 = constant ,

(6.3)

and [23] has shown that there exist exact solutions

u(x) = A sech(
√

ν x) , v(x) = 0 and w(x) = 2ν sech2(
√

ν x) , (6.4)

with constant = 0 and A2 = 2ν (c− 4ν), and the existence condition c− 4ν > 0.

To study the Maslov index of these solutions, linearize the steady equations about the
basic solitary wave and introduce a spectral parameter,

−2uxx − 2ŵu− 2ûw + 2νu = λu

−2vxx − 2ŵv − 2v̂w + 2νv = λv

−wxx + cw − 6ŵw − 2ûu− 2v̂v = λw .

(6.5)

When v̂ = 0 this system decouples into a second order equation for v (see appendix of
[11] for analysis of the reduced v equation), and a fourth order coupled system for u, w,
which can be written as a standard Hamiltonian ODE in the form (1.1) with n = 2 by
taking

w(x, λ) =




u

w

2ux

wx




, B(x, λ) =




λ− 2ν + 2ŵ(x) 2û(x) 0 0

2û λ− c + 6ŵ(x) 0 0

0 0 1
2

0

0 0 0 1




The Maslov index is computed for the case c = 1 and ν = 0.2 in [11] and the results
are shown, along with the Evans function, in Figure 1 and tabulated in the table below,
where λ1 < λ2 = 0 < λ3 are the three roots of the Evans function.

λ λ < λ1 λ1 < λ < λ2 λ2 < λ < λ3 λ > λ3

Maslov(U+, Es
∞) 0 −1 −2 −3
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−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
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−3
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−1

0

1

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−15

−10

−5

0

5
x 10

−4

Fig. 1. Computation for the longwave-shortwave equations for the parameter values c = 1 and
ν = 0.2. Top, the Maslov index. Bottom: the Evans function.

Now, consider the case of the full 6-dimensional system (6.5). It can be reformulated in
the form (1.1) by taking w = (u, v, w, 2ux, 2vx, wx), and

B(x, λ) =




−2ν + λ + 2ŵ 0 2û 0 0 0

0 −2ν + λ + 2ŵ 2v̂ 0 0 0

2û 2v̂ λ− c + 6ŵ 0 0 0

0 0 0 1
2

0 0

0 0 0 0 1
2

0

0 0 0 0 0 1




When v̂ = 0 the system decouples into two subsystems as noted above. In this section, the
full system will be integrated on

∧3(R6) for the decoupled case. This way the calculation
can be checked against the previous calculation on R

4.

When a system decouples into two subsystems, the Evans function of the full system is
the product of two subsystems and the Maslov index of the full system is the sum of
the Maslov indexes of the two subsystems Maslov

2D ⊕Maslov
4D = Maslov

6D. Hence this
formula provides a check on the calculations which are summarized below.

λ λ < −1 −1 < λ < 0 0 < λ <≈ 0.19 λ >≈ 0.19

Maslov
2D 0 0 −1 −1

Maslov
4D 0 −1 −2 −3

Maslov
6D 0 −1 −3 −4

In the calculations reported here, the Maslov angle in (4.5) and the algorithm in [11] are

11
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Fig. 2. Maslov index and Evans function as functions of λ associated to the 6× 6 system (6.5)
when ν = 0.2 and c = 1.

used.

Numerical results are presented in Figure 2. The results are in complete agreement with
the product of the Evans function of the subsystems and the sum of the Maslov indices
of the subsystems.

As noted in Appendix D of [11] the Maslov index for the reduced system is 0 if λ < 0
and −1 if λ > 0. Adding these values to the Maslov indices in Figure 1 agrees with the
Maslov indices in Figure 2. Note also that the Evans function has a double zero at λ = 0
as expected.

7 A triply-coupled reaction-diffusion equation

Consider the coupled system of reaction-diffusion equations

∂u

∂t
=

∂2u

∂x2
− 4u + 6u2 − c1(u− v) + c3(w − u)

∂v

∂t
=

∂2v

∂x2
− 4v + 6v2 + c1(u− v)− c2(v − w)

∂w

∂t
=

∂2w

∂x2
− 4w + 6w2 + c2(v − w)− c3(w − u) ,

(7.1)

where c = (c1, c2, c3), the coupling constant, is a non-zero vector-valued real parameter.
Suppose that c is chosen so that the trivial solution of (7.1) is stable. This example
generalizes the study of steady reaction-diffusion equations with n = 2 in [5,11].

This system has the exact steady solitary-wave solution

u = v = w := û(x) = sech2(x) .

Linearizing (7.1) about the basic state û and taking perturbations of the form

eλt(u(x, λ), v(x, λ), w(x, λ)) ,

12



leads to the coupled ODE eigenvalue problem

uxx = (λ + 4 + c1 + c2 + c3 − 12û(x)) u− c2 u− c1 v − c3 w

vxx = (λ + 4 + c1 + c2 + c3 − 12û(x)) v − c1 u− c3 v − c2 w

wxx = (λ + 4 + c1 + c2 + c3 − 12û(x)) w − c3 u− c2 v − c1 w ,

(7.2)

or
pxx = a(x, λ)p−Cp , (7.3)

where
a(x, λ) = λ + 4 + Trace(C)− 12sech2(x) ,

and

p =




u

v

w




and C =




c2 c1 c3

c1 c3 c2

c3 c2 c1




.

This eigenvalue problem can be solved explicitly. The matrix C is symmetric and so it
has three real eigenvalues. Denote them by σ1, σ2, σ3. Let T be the 3× 3 matrix whose
columns are the eigenvectors of C. Hence

T−1CT =




σ1 0 0

0 σ2 0

0 0 σ3




.

The eigenvalue problem (7.3) can be diagonalized. Let p = Tp̃, then p̃ satisfies




ũ

ṽ

w̃




xx

=




a(x, λ)− σ1 0 0

0 a(x, λ)− σ2 0

0 0 a(x, λ)− σ3







ũ

ṽ

w̃




.

Using the result in Appendix B of [11] we can write down a formula for λ in the point
spectrum. There are exactly nine eigenvalues in the point spectrum,

λj = −c1 − c2 − c3 + σj − 3

λj+3 = −c1 − c2 − c3 + σj

λj+6 = −c1 − c2 − c3 + σj + 5






j = 1, 2, 3 .

The three eigenvalues of C satisfy det[σI−C] = 0 or

σ3 − (c1 + c2 + c3)σ
2 + (c1c2 + c2c3 + c1c3 − c2

1− c2
2 − c2

3)σ + (c3
1 + c3

2 + c3
3 − 3c1c2c3) = 0 .

This polynomial can be factorized. Let τ = Trace(C) = c1 + c2 + c3. Then the above
polynomial factorizes to

(σ − τ)(σ2 − γ2) = 0 ,

13



with

γ =
1√
2

[
(c1 − c2)

2 + (c2 − c3)
3 + (c3 − c1)

2
]1/2

.

Hence the three σ roots are

σ1 = τ , σ1 = γ , σ3 = −γ .

This eigenvalue problem can be written in the standard form (1.1) by taking with w =
(u, v, w, ux, vx, wx) and

A(x, λ) =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1 0 1

f(x, λ) + c1 + c3 −c1 −c3 0 0 0

−c1 f(x, λ) + c1 + c2 −c2 0 0 0

−c3 −c2 f(x, λ) + c2 + c3 0 0 0




, (7.4)

with f(x, λ) = λ+4−12 sech2(x). The matrix in (7.4) is Hamiltonian: JA is symmetric.

7.1 Calculations for the case c = c(1, 1, 1)

When c1 = c2 = c3 := c then γ = 0 and σ1 = 3c, and σ2 = σ3 = 0. Hence there are nine
eigenvalues {

λ : λ = (−3− 3c,−3c,−3c + 5,−3, 0, 5)
}

,

with the first three having multiplicity two. Hence the number of positive eigenvalues
is 4, 3, 2, or 1 depending on whether c < −1, −1 < c < 0, 0 < c < 5/3 or c > 5/3
respectively. Hence the Maslov index can be explicitly written down.

7.2 Generalization to N−coupled reaction-diffusion equations

.

This model can be generalized to N−coupled reaction diffusion equations. Define

V (u) = −1
2

N−1∑

j=1

cj(uj − uj+1)
2 − 1

2
cN (uN − u1)

2 .

Then the following system is a gradient reaction-diffusion system

∂uj

∂t
=

∂2uj

∂x2
− 4uj + 6u2

j +
∂V

∂uj
, j = 1, . . . , N , (7.5)

which generalizes (7.1) to N−coupled equations. The steady part of this equation is a
Hamiltonian system on a phase space of dimension 2N . Taking uj(x) = sech2x as the
basic state and linearizing about it, the spectral problem can be explicitly solved in

14



terms of the eigenvalues of the matrix C. In addition, one can show in general that there
is always at least one unstable eigenvalue, for any N . This follows because Trace(C)
is always an eigenvalue of the matrix C with eigenvector (1, . . . , 1). The model (7.5)
provides a useful example for testing computational strategies for the Maslov index of
Hamiltonian systems with very large dimension.

8 A seventh-order Korteweg-de Vries equation

The KdV equation
ut + uux + γ uxxx = 0 ,

can be generalized by including higher order dispersion, particularly if |γ| ≪ 1, leading
to the fifth-order KdV equation

ut + uux + γ1 uxxx + γ2 uxxxxx = 0 .

By using a systematic procedure, KdV equations of any order can be generated. When
these KdV equations are derived from the water-wave problem, and a Hamiltonian ap-
proximation theory is used, the resulting model equations are also Hamiltonian [13]. For
many of these KdV models, solitary wave solutions have been found, both analytically
(explicit solutions) and numerically.

In this section the Maslov index theory is applied to the linearization about solitary
waves of the seventh-order KdV equation. There are several versions of the seventh-
order KdV equation in the literature (e.g. [13,14,28]). The version in [14] is used here
since it is Hamiltonian and has two exact solutions. The general form of the equation,
called KdV7, is

ut + νux + αuux + γ1 uxxx + γ2 uxxxxx + γ3 uxxxxxxx = 0, γ1γ2 < 0 .

By scaling u, x and t, and using the condition γ1γ2 < 0, the KdV7 equation can be
reduced to a PDE with two parameters

ut − cux + uux + uxxx − uxxxxx + σuxxxxxxx = 0 . (8.6)

This KdV7-equation is a simplified version of the KdV7-equation derived from the water-
wave problem in [13] (see page 384 in [13]). Another version of the seventh-order KdV,
reported in [28], is

ut + aumux − bumuxxx + umuxxxxx + uxxxxxxx = 0 ,

with m ≥ 1 and b > 0. It has exact solutions but does not appear to be Hamiltonian.

The KdV7-equation (8.6) can be represented in Hamiltonian form

ut =
∂

∂x

(
δH
δu

)
, (8.7)

with Hamiltonian functional

H(u) =
∫

R

(
c

2
u2 − 1

6
u3 +

1

2
u2

x +
1

2
u2

xx +
1

2
σu2

xxx

)
dx . (8.8)
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Fig. 3. The discriminant for the dispersion relation (8.10), and the qualitative position of the
roots in the complex µ−plane.

Steady solutions of KdV7, denoted by φ(x), satisfy the sixth-order ODE

σφxxxxxx − φxxxx + φxx + 1
2
φ2 − cφ = 0 . (8.9)

8.1 Solitary wave solutions of KdV7

Solitary waves which are asymptotic to zero as x → ±∞, correspond to homoclinic
orbits of (8.9) that are homoclinic to the origin. A necessary condition for existence of
homoclinic orbits is hyperbolic eigenvalues in the system at infinity. Linearizing (8.9)
about the trivial solution and looking at exponential solutions of the form eµx gives the
dispersion relation

∆(µ) = 0 with ∆(µ) := σµ6 − µ4 + µ2 − c . (8.10)

The roots of this polynomial are functions of c and σ, and they can be classified by
plotting the discriminant in the (σ, c) plane. It is shown in Figure 3. The discriminant
is determined by the condition

∆(µ) = ∆′(µ) = 0 ,

which results in

σ2c (243c2σ2 + (−162σ + 36)c + 9(4σ − 1)) = 0 . (8.11)
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The solution set has two branches that meet at a cusp, and are given by

c =
9σ − 2± 2(1− 3σ)3/2

27σ2
or σ =

9c− 2∓ 2(1− 3c)3/2

27c2
.

The two representations of the branches are inverse functions of each other.

Let D+ be the branch of the discriminant with c > 0 and D− the branch with σ > 0, as
shown in Figure 3. Then

D± =

{
(σ, c) : c =

9σ − 2± 2(1− 3σ)3/2

27σ2
or σ =

9c− 2∓ 2(1− 3c)3/2

27c2

}
.

The cusp occurs at the point (σ, c) = (1
3
, 1

3
) and the crossing of the σ and c axes occurs

at (σ, c) = (1
4
, 0) and (σ, c) = (0, 1

4
). At the cusp point, the polynomial (8.10) has a pair

of triple roots at µ = ±1 since

∆(µ) =
1

3
(µ2 − 1)3 when (σ, c) =

(
1

3
,
1

3

)
.

Along the line c = 0 the polynomial (8.10) has two zero roots, and four non-zero roots.
The line σ = 0 is singular, since two of the roots disappear to infinity. The lines c = 0,
σ = 0 and the discriminant together divide the (σ, c) plane into seven regions, and in
each of these regions the position of the µ roots is qualitatively the same. The main
region of interest here is the bounded region inside the discriminant and with σ > 0 and
c > 0. It is denoted by Σ in Figure 3. In Σ, the roots of (8.10) are all real and hyperbolic,
as shown schematically in Figure 3.

When (c, σ) is in Σ, there are two explicit solitary-wave solutions of (8.9), discovered by
[14]. The first one exists when

c =
710000

21592
≈ 0.1523 and σ =

2159

10000
≈ 0.2159 ,

and the explicit solution is

φ(x) = a6(sech
6(kx) + sech4(kx)), a6 =

1039500

21592
, k =

√
25

2159
. (8.12)

The other solution exists when

σ =
769

2500
≈ 0.3076 and c =

180000

7692
≈ 0.3044 ,

and the explicit solution is

φ(x) = a6 sech6(kx) , a6 =
519750

7692
, k =

√
25

1538
. (8.13)
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8.2 Maslov index of solitary waves of KdV7

The Hessian of the Hamiltonian evaluated at a steady solution, φ(x), can be expressed
as

∇2Hφu = cu− uφ− uxx + uxxxx − σuxxxxxx .

Consider the following spectral problem:

∇2Hφu = λφ . (8.14)

This spectral problem is self-adjoint (in an appropriate Hilbert space) with purely real
spectrum, consisting of a finite number of discrete eigenvalues and a branch of continuous
spectrum. The Maslov index, which is equivalent to the Morse index in this case, can be
used to count the discrete eigenvalues of this problem.

By using Legendre transform (see appendix B of [7] for Legendre transform in this
context), the system (8.14) can be represented as a linear Hamiltonian ODE.

Define

W =




u

uxx − σu4x

uxx

ux − uxxx + σu5x

−ux

σuxxx




.

Then W satisfies

Wx = A(x, λ)W , with A(x, λ) =




0 0 0 0 −1 0

0 0 0 −1 −1 0

0 0 0 0 0 1
σ

−λ + c− φ 0 0 0 0 0

0 0 −1 0 0 0

0 −1 1 0 0 0




which is Hamiltonian, with respect to the standard symplectic form, and reversible when
φ(x) is an even function.

The theory for the Maslov index can now be applied to compute the index of the two
solitary waves (8.12) and (8.13). The results of the computations are summarized in
Figures 4 and 5.

Qualitatively, the results are the same for the two solitary waves. They are summarized
in the following table:
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Fig. 4. Maslov index and Evans function of the solution (8.12) of the seventh order Korteweg-de
Vries equation.

λ λ < λ1 λ1 < λ < λ2 λ2 < λ < λ3 λ > λ3

Maslov(U+, Es
∞) 0 −1 −2 −3

The value of λ2 = 0 for both of the solitary waves. Hence, the Maslov index of the two
solitary waves is limλ→0+ Maslov(U+, Es

∞) = −2.

Although the phase space dimension is larger, these Maslov index results are very similar
to the results for the single-pulse solutions of the fifth-order KdV in [11].

9 Ortho-symplectic integration

Integration of the linear ODE (1.1) restricted to an exterior algebra space is very ef-
fective and robust. However, the dimension of

∧n(R2n) equals the binomial coefficient
which increases rapidly with dimension. For higher dimensional systems an alternative
to exterior algebra is continuous or discrete orthogonalization. Continuous orthogonal-
ization has been shown to be very effective for computing the Evans function for the
linearization about solitary waves [16,3], and continuous orthogonalization has been used
in the Hamiltonian context for computing Lyapunov exponents [22]. The purpose of this
section is to report on some experiments on the use of discrete orthogonalization for
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Fig. 5. Maslov index and Evans function of the solution (8.13) of the seventh order Korteweg-de
Vries equation.

computing the Maslov index. The numerical results on the computation of the Maslov
index for the solitary waves of KdV7 in §8 are repeated using orthogonalization.

Here the simplest form of orthogonalization is used, based on the “economy QR” al-
gorithm in Matlab: at each step of numerical integration, a QR factorization of the
matrix W is computed. Given W(x, λ), with (x, λ) fixed, there exists an upper triangu-
lar n × n-matrix R and a 2n × n matrix Q such that QT Q = I and W = QR. When
W ∈ Λ(n) then Q1 + iQ2 is a unitary matrix, where

Q :=



Q1

Q2


 .

To compute the Maslov index and the associated Evans function, the following algorithm
is applied:

(1) Fix λ and choose a large enough L > 0 for the integration interval −L < x < +L.
(2) Compute the eigenvalues of B∞(λ) with positive real part and their associated

eigenvectors and use them to initialize the matrix W(−L, λ) to a matrix whose
columns span the unstable space of B∞(λ) and let σ+(λ) be the sum of these
eigenvalues.
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(3) Initialize κ(−L, λ) such that

eiκ(−L,λ) = det((UL + iVL)−1(UL − iVL)) , with W(−L, λ) =



UL

VL


 .

(4) Assign Evans← 1/ det[W(−L, λ)TW(−L, λ)].
(5) In each space step, x 7→ x + ∆x in [−L, L]:

(a) Integrate equation

Wx = A(x, λ)W , over [x, x + ∆x] . (9.15)

(b) Compute the economy QR-decomposition: W(x + ∆x) = QR.
(c) Assign Evans← Evans× det(R)× e−σ+(λ)∆x.
(d) Assign W(x + ∆x)← Q.
(e) Take κ(x + ∆x, λ) to be the closest real number to κ(x, λ) such that:

eiκ(x+∆x,λ) = det(U− iV)2 , with Q = W(x + ∆x, λ) =



U

V


 .

(6) Return Evans× det(W(L, λ)TW(−L, λ)) for the Evans function.

(7) Return κ(L,λ)−κ(−L,λ)
2π

for the Maslov index.

This algorithm was tested on the seventh-order Korteweg-de Vries equation in §8 and it
worked very well. The Grassmannian is preserved since orthogonalization is enforced at
every step. However, the distance from the Lagrangian manifold must be checked. Let

D =



D1

D2


 ∈ R

2n×n ,

be a matrix with orthonormal columns: DTD = I. Then, define α(D) = ρ(DTJD),
where ρ denotes the spectral radius, i.e. the modulus of the biggest eigenvalue. This
gives an estimation of how far D is from the Lagrangian manifold. This distance does
not change by a right multiplication of D by an orthogonal n× n-matrix.

For the numerical integration two “off the shelf” integrators were used: the standard
fourth order Runge-Kutta method in Matlab and the implicit midpoint method. The
latter one is a symplectic integrator and it preserves quadratic invariants to machine
accuracy [21]. As a consequence, α(W) should be close to the machine precision when
the implicit midpoint rule is used, and this is observed in the numerics. The error is also
quite small for the Runge-Kutta method, as shown on Figure 6, as long as the space
step used is small.

The following table compares the number of operations for the exterior algebra method
and the QR method:
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integrator: α(W(x)) as function of x for various space steps. The equation integrated is (2.3)
with B as in §8. For ∆x = 1

100 , we see that the Lagrangian manifold is quite well preserved.

Algorithm Integration
space

Dimension Cost of an
explicit Euler
integration
step

Cost of the
orthogonal-
ization step
(MGS)

QR M2n,n(R) 2n2 (2n)2n 10n3

3

2n = 4 M4,2(R) 8 32 27

2n = 6 M6,3(R) 18 108 90

2n = 8 M8,4(R) 32 128 214

Exterior
algebra

∧n(R2n)
(

2n
n

)
(n2 + 1)

(
2n
n

)
-

2n = 4
∧2(R4) 6 30 -

2n = 6
∧3(R6) 20 200 -

2n = 8
∧4(R8) 70 1190 -

So, the cost of the exterior algebra algorithm is lower for 2n = 4, while the two algorithm
are similar for 2n = 6, with probably a slight advantage for QR. For greater 2n > 6, QR
is much better (one may further improve speed by not performing orthogonalization at
every step).
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Concerning the numerical accuracy, one has to use exterior algebra. If we consider
Y(x) = Evans(x)Z(x) ⊙ . . . ⊙ Z(x), then Y is consistent to the same order as the
numerical scheme for the equation Y′(x) = (A(x, λ) − σ+(λ))Y(x). As a consequence,
the error analysis is the same as for the exterior algebra analysis made in part 1.

10 Decomposing the Maslov angle into subangles

The Maslov angle is based on the fact that the determinant of the unitary matrix

Q = (U− iV)(U + iV)−1 ,

associated with a Lagrangian plane W, lies on the unit circle. However this definition
can be refined further since each of the eigenvalues of Q also lies on the unit circle,
and hence the Maslov angle can be decomposed into n subangles. Monitoring the angles
separately can be useful when using the intersection theory definition of the Maslov
index [11] and when studying bifurcations [9].

Denote the n eigenvalues of Q by eiκj for j = 1, . . . , n with each κj real. Then

eiκ = eiκ1 eiκ2 . . . eiκn .

These eigenvalues are independent of the choice of basis for the Lagrangian subspace
represented by W ∈ R

2n×n. Choosing any other representative leads to similar matrix.

The subangles can be used to determine intersections with a reference space. For defi-
niteness choose the reference space to be

Ref =




I

0


 ∈ R

2n×n .

Suppose W(x) is a path of Lagrangian planes and suppose that all intersections between
W(x) and Ref are regular and one-dimensional.

At an intersection one of the eigenvalues of Q is unity. For definiteness suppose it is κ1,
and so eiκ1(x0) = 1. Then there is an eigenvector v ∈ R

n such that

Q(x0)v = eiκ1(x0)v = v .

If v is chosen to be unitary and JWx = BW, then

d

dx
κ(x)

∣∣∣
x=x0

= 2(Wv)TB(Wv) .

As a consequence, the sign of the intersection at x0 with the reference space is simply
given by the sign of κ′(x0).
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10.1 Computing the subangles in the exterior algebra setting

These subangles can be computed in the exterior algebra framework: eiκr are the roots
of the following polynomial:

P (λ) = det((U− iV)− λ(U + iV))

The coefficients of P are antisymmetric multi-linear functions of W. As a consequence,
they can be expressed as a linear combination of the minors of W.

Consider the case n = 3 where there are three subangles. By replacing U and V by
(1 + λ)U and (1 + λ)V in formula (4.4), one obtains:

P (λ) = (1− λ)3P123 − (1− λ)(1 + λ)2P156

+ (1− λ)(1 + λ)2P246 − (1− λ)(1 + λ)2P345

− i(1− λ)2(1 + λ)P126 + i(1− λ)2(1 + λ)P135

− i(1− λ)2(1 + λ)P234 + i(1 + λ)3P456 . (10.16)

This expression can be simplified to:

P (λ) = −Kλ3 −Hλ2 + Hλ + K,

where H(Z) = (−3P123 − P156 + P246 − P345 − iP126 + iP135 − iP234 − 3iP456).

Third-order equations are known to be solvable through Cardano’s formulas. Using
Maple, the solutions of this cubic are

eiκ1 = λ1 = 1
6

∆1
(1/3)

G
+ 2

3
∆2 − 1

3
H

G
,

eiκ2 = λ2 = − 1
12

∆1
(1/3)

G
− 1

3
∆2 − 1

3
H

G
+ 1

2
i
√

3 (1
6

∆1
(1/3)

G
− 2

3
∆2),

eiκ3 = λ3 − 1
12

∆1
(1/3)

G
− 1

3
∆2 − 1

3
H

G
− 1

2
i
√

3 (1
6

∆1
(1/3)

G
− 2

3
∆2),

∆1 = −36HHG + 108GG
2 − 8H3

+ 12
√

3G
√

27|G|4 − |H|4 − 18 |GH|2 − 8 Re(GH3) ,

∆2 = 3HG+H
2

G∆1
(1/3) .

10.2 Higher dimensions and higher-dimensional intersections

Intersections between the path of Lagrangian subspaces W(x) and the reference space
of dimension greater than one can also be considered. This case is discussed in [7]. Here
a sketch of the theory is given.

There is a k-dimensional intersection at x0 with Ref if and only if there exists S =
{r1, r2, . . . , rk} ⊂ {1, . . . , n} such that eiκr(x0) = 1 if and only if r ∈ S.

Furthermore, if this intersection is regular, its sign is given by:

lim
x→x+

0

#{r ∈ S|κi(x0) ∈]0, π[+2πZ} −#{r ∈ S|κi(x0) ∈]− π, 0[+2πZ} .
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Thus, it is possible to determine the Maslov index, defined with intersections, by simply
tracking the crossings of the angles κi with 2πZ.

In higher dimensions, the general expression of the polynomial P (λ) in terms of the
exterior algebra representation is

P (λ) =
∑

({i1...in},r)
i1<...<in

{i1,...,ir ,ir+1−n,...,in−n}={1,...,n}

in−r(1− λ)n−r(1 + λ)r(−1)
∑r

j=1
ij−j

Zi1,...,in .

In general the polynomial P (λ) also satisfies the identity

P (λ) = λnP
(
−λ−1

)
.
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