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Abstract. The OWEL wave energy converter is a floating rectan-
gular device open at one end to capture the incoming wave field.
The trapped waves in the duct hit the upper rigid lid and create a
seal resulting in a moving trapped pocket of air ahead of the wave
front which drives the power take off. Understanding the dynamics
of the two phase flow created by the wave input is key to the energy
optimisation of the power take off. A photo of a model OWEL ves-
sel is shown below at the point where the wave has been trapped
and begins to drive the pocket of air along the vessel with air takeoff
at the upper right edge. The interior two-phase flow field in OWEL
is very similar to a gravity-current configuration. The purpose of
this document is to review gravity current theory and propose a
theoretical and experimental strategy for adapting and modifying
existing gravity current theory to the OWEL setting.
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Introduction

The classical gravity current involves the flow of one fluid within another caused
by density difference between the fluids. They have been a major area of study in
fluid mechanics motivated by turbidity currents, saline intrusions, and atmospheric
fronts. A review of work up to 1982 is given in the review article of SIMPSON [32].
The gravity current model of greatest interest here is where the upper fluid is air
and a bubble of air is driven into quiescent or moving fluid (e.g. GARDNER &
CrOw [17], ZUKOWSKI [34], WILKINSON [33]|, KELLER & CHYOU[24], ATRABI,
Hosopa & Tapa [10]). The moving bubble as gravity current is almost exactly
the reverse problem in the OWEL wave energy convertor where the bubble is driven
by the fluid.

Background on the OWEL WEC

Research and Development on the OWEL WEC has been underway for over ten years
by teams at Offshore Wave Energy Ltd and I'T Power Ltd in Bristol, with funding
from DTI, EPSRC, SWRDA, and industrial funding [3]. Extensive experiments
(Southampton, Plymouth, HMRC in Ireland) have been performed and analyzed,
and the commercial CFD program ANSYS CFX has been used to simulate both
2D and 3D wave dynamics in a model duct. Agreement between computation and
experiment has been reasonable, but only the simplest configurations have been
tested (e.g. LEYBOURNE ET AL. [26]).

The Surrey group has been working on modelling the OWEL WEC beginning
with the Surrey Sloshing Initiative [2]. Most recently, the group has been working
on an EPSRC-funded three year project whose aim is to provide the underpinning
mathematics for the modelling of the OWEL WEC [1]. That project, which runs
to 2016, has the principal aims of (a) developing fast and robust algorithms for
a shallow water model for the interior fluid motion in the vessel, (b) include the
dynamic coupling between fluid motion and vessel motion, (c) identify the resonance
structure of the components (vessel, interior fluid, exterior fluid, mooring, etc) and
their interaction.

The next generation research direction is effective modelling of the power take
off (PTO). Capturing the PTO requires accurate modelling of the two-phase flow
induced by the incoming wave and trapped moving bubble of air. The strategy is
to model this two-phase flow using the theory of gravity currents.
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Figure 1: Schematic of the OWEL wave energy converter [3].



Gravity currents with air pocket

The first experimental studies on non-Boussinesq gravity currents were on air-cavity
motion in horizontal ducts by ZUKOSKI [34] (Z), GARDNER AND CROW [17] (GC)
and WILKINSON [33] (W) to determine the front speeds and shapes of the air cav-
ities. In all these experiments, air-cavity fronts were produced by opening, fully or
partially, one end of a closed duct filled with water. BENJAMIN [12] (B) derived
a theory for the steady propagation of such air-cavities in a rectangular channel,
neglecting the effects of surface tension and viscosity at the solid boundaries and as-
suming that the flow upstream and downstream of the front was hydrostatic and that
within the current there was no relative flow. By writing down the bulk conserva-
tion of mass, momentum and energy in a control volume moving with the air-cavity
front, Benjamin determined the front speed as a function of the downstream water
depth h and the duct depth D and showed that the shape of the air-cavity profile
for the energy-conserving flow is similar to the cavity profile shown in Figure 2(b)
with the cavity depth asymptotically approaching %D downstream of the front [11].

Figure 2 shows schematics of the flow field superimposed on a potential OWEL
configuration. In the OWEL configuration the wave will come in from the right with
the bubble moving to the left, and here that pattern is reversed to correspond to
the gravity current experiments. When the flow is inviscid it is time reversible and
so the correspondence is exact, and for dissipative flows the energy balance needs
to be adjusted for the reverse flow.

Benjamin [12] also showed that physically possible flows exist only with A > D
and that energy is dissipated when h > %D [11]. Benjamin suggested that when the
water from the open end of the rectangular duct (with d = D) is throttled, as in the
three experimental studies mentioned above, steady flows would probably exist only
for h/D > .65 and air-cavities in such flows would be similar to the profile depicted
in Figure 2(d) [11]. However, Wilkinson found experimentally that when the water
depth at the duct outlet is .5 < h/D < .78 the flow would become unsteady but the
cavity front has the shape of Benjamin’s energy conserving cavity (h = %D) followed
by a hydraulic jump as sketched in Figure 2(c¢) which travels at a speed slower than
that of the cavity front [11]. Wilkinson also observed that the flow becomes steady
when h/D > .78 at the water outlet with the air-cavity shape as shown in Figure
2(d).

BAINES, ROTTMAN AND SIMPSON (1985) (BRS) conducted similar experiments
for the instantaneous release of a constant volume of air into water in a long hor-
izontal rectangular tube but with both ends closed. The volume of air is confined
at one of the ends before it is released. They observed that the motion of the air-
cavity after release may be divided into three phases. Over the first phase the cavity
front is established within a few percent of a second after release, and very quickly
accelerates up to a constant speed and travels at this speed before transition into
the second phase. During the second phase, the front speed decreases monotoni-
cally. Finally, in the third phase, the cavity front executes a series of erratic stops
and starts before coming entirely to rest [11]. The independent parameters in the
experiments, are the initial cavity length X, and the initial depth hq of the water
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Figure 2: The three possible types of air-cavity profiles inside an OWEL-type vessel,
with the flow direction reversed to correspond to the gravity current experiments.
(a) OWEL cross-section. (b) Smooth steady air-cavity profile. (c¢) A smooth cavity
front with a downstream hydraulic jump. (d) A steady cavity with a gravity-current
type front.

under the cavity. The air-cavity properties are a function of the independent pa-
rameters. BRS observed that for 0 < hy/D < .3 over the first phase, the cavity front
evolves into Benjamin’s energy-conserving shape (Figure 2(b)) and simultaneously,
the water displaced by the advancing cavity rushes in the opposite direction in the
form of a surge. When the surge reaches the tube end it is reflected as a hydraulic
jump [11] and the cavity has the shape shown in Figure 2(c) similar to what was
observed by Wilkinson. But in the experiments and theory developed by BRS the
jump has a slightly greater speed than that of the cavity front which is different from
Wilkinson’s observations for the propagation of the hydraulic jump for a tube with
one end open. The hydraulic jump eventually overtakes the cavity front which has
maintained constant shape and speed and abruptly reducing its speed and depth
(Figure 2 (d)). BRS also discussed the shape and speed of the cavity front for other
ratios of hg/D. By applying Benjamin’s theory and including the corrected surface
tension effects first suggested by Wilkinson, and the classical theory of hydraulic
jumps, BRS developed a theory for the front speed and shape of the cavity as a
function of time after release. Following the work of B, GC, W and BRS the strategy
going forward in modelling the motion of air-cavity fronts inside an OWEL-type
vessel is as follows:

e Build a physical model of the OWEL wave energy converter with both ends
closed, based on the specifications provided by the engineering team at Off-
shore Wave Energy Ltd and IT Power.

e Conduct a series of model tests to experimentally record the motion of constant-
volume air cavities inside the OWEL model. To contain a constant volume of
air a vertical gate would be installed inside the model at a distance X, from
one end. To start the experiments the gate would be withdrawn in a fraction
of a second releasing the air into the duct. The experiments can be done for
different values of ho/D or hy/d and can be repeated for different values of X
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from each end of the model. The purpose of these experiments is to determine
the front speed and shape of the cavity as a function of time after release. The
experimental results can be compared to previous results on the motion of air-
cavities in tubes with constant rectangular cross-section. The three possible
shapes of air-cavities inside the OWEL model are sketched in Figure 2. The
model tests can be conducted in EnFlo at the University of Surrey [4].

e Develop a theory for the flow of constant volume air cavities in an OWEL-type
vessel (with both ends closed) by extending Benjamin’s theory on gravity cur-
rents and using the classical theory of hydraulic jumps for ducts with variable
cross-section.

e Extension of the f-wave high-resolution finite volume methods of [5] for the
two-layer non-Boussinesq shallow-water equations with OWEL-type geometry
to model wetting-drying of the rigid-lid. The strategy is to use the speed and
height of the cavity front from the background theory as the speed and height
of the wet-dry front in the numerical model. And use the shock and rarefaction
wave theory of [5] to model the interfacial wave numerically.

e After validating the OWEL air-cavity theory and the f-wave finite volume
solvers we would be in a position to propose an optimal geometry for the
OWEL WEC which results in the “best speed” for the cavity front as a function
of the input wave (and other parameters). The speed of the front plays an
important role in the performance of the PTO.

Improved influx-eflux boundary conditions

The above proposed experiments and theory are for a closed system, whereas the
OWEL WEC has influx and efflux boundary conditions. The above experiments
and theory can be modified to take into account these boundary conditions.

Experimentally, one can close the water inlets/outlets and the air outlet, and
release a pocket of air into the duct by withdrawing the gates as sketched in Figure
3(a) and (c). Then when the air-cavities are established the water inlets and outlets
and the air outlet would be opened so that we will have full control of the water flow
rates and the air flow rate by measuring its pressure at the outlet using a pressure
gauge. By adjusting the mass flow rates we would be able to push the cavity front
to the end of the model where the pressure gauge or the PTO system is placed. The
experiments can be repeated for different values of ho/D and X, and with different
amounts of the mass flowrates. The purpose of these experiments is to determine
the front speed, shape of the cavity and pressure of the moving air pocket at the
PTO system as a function of time after the air-cavity is established with different
influx-eflux boundary conditions.

A theory for the flow of air cavities inside the model of the OWEL with influx-
eflux boundary conditions and PTO system can be developed by extending the
theory of B, GC, W, BRS and KC on air-cavity gravity currents and using the clas-
sical theory of hydraulic jumps for ducts with variable cross-section. Theory and
experiments can be compared for validation.
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Figure 3: Two possible scenarios for producing air-cavities inside a model of the
OWEL WEC with influx-eflux boundary conditions with pushing the cavity front
to the PTO system.

Gravity currents and lock-exchange theories

Gravity currents produced by lock-exchange experiments also provide fundamental
information about the speed of gravity currents. The gravity current and non-
Boussinesq lock-exchange theories and experiments for two layer fluid flows inside
rectangular channels with a rigid-lid are studied in [12, 30, 24, 31, 28, 27] and
references therein, where usually a fluid of density p; is separated by a vertical
barrier at the mid-point of the channel from fluid of density po, with py < p;. By
rapidly removing the lock gate the flow is started in such a way that the heavy fluid
intrudes into the expanse of lighter fluid.

SHIN, DALZIEL AND LINDEN [31] (SDL) presented new theory and experiments,
on gravity currents produced by a lock exchange, which suggest that dissipation is
unimportant when the Reynolds number is sufficiently high. Their theory resulted
in a new front Froude number in a deep ambient. LOWE, ROTTMAN AND LIN-
DEN [27] (LRL) described the results of an experimental study on the non-Boussinesq
lock-exchange problem. They developed a two-layer hydraulic theory to model the
experiments. Their theory assumes that a light gravity current propagates along
the top of the channel and a heavy gravity current propagates along the bottom of
the channel in the opposite direction. The two wet-dry fronts are assumed to be
connected by either a combination of an internal bore and an expansion wave when
v* < v < 1, or just an expansion wave when 0 < v < «* where 7 is the density
ratio and ~* is a critical density ratio. They also discovered that the connection of
the light and heavy gravity currents by a rarefaction wave can be applied to the full
range of .

Adapting and modifying the work of SDL and LRL to the OWEL configuration, a
potential study is as follows. Conduct experimental tests for the Boussinesq and non-
Boussinesq lock-exchange problem (with two different liquids) for the OWEL model
(with both ends closed) to record the motion of light and heavy gravity currents over
variable cross-section and measure the speed and height of the currents as a function
of time after release. Extending the two-layer hydraulic theory of RLR to develop a



new theory for the gravity currents over variable cross-section. The extended theory
would be validated against the experiments. The both light and heavy gravity
current front speeds and heights would be used in the f-wave finite volume solvers to
numerically simulate the Boussinesq and non-Boussinesq lock-exchange problems.

Review of the Keller-Chyou experiments

KELLER AND CHYOU [24] (KC) studied the hydraulic lock-exchange theory exper-
imentally and analytically for the problem of emptying a horizontal water-filled
rectangular channel by means of pressurized air. Depending on the volume flow of
pressurized air they suggested different possible flow regimes for the propagation of
the wet-dry fronts along the top and bottom of the channel. The flow regimes that
are relevant for the OWEL project are sketched in Figure 4. The inlet for the air to
enter the duct is a small tube connected to the upper part of the channel to prevent
a counter running gravity current of water to the air reservoir. On the other hand,
the outlet for the water to leave the channel is smaller than the channel height in
order to provide a throttling effect to establish a front travelling at constant speed.
The speed of the air-cavity front can be adjusted by either the over pressure in the
reservoir or the opening of the outlet. With different combinations of air pressure
and outlet dimension, different flow regimes are observed in a rectangular channel
as shown in Figure 4.

Using Benjamin’s theory and a two-layer hydraulic theory, KC developed a new
theory for the motion of air-cavities resulting from blowing of air into a water-filled
channel. The theory of ArRMI (1986) for the rarefaction waves is corrected in KC’s
theory. As discussed in [24] small volume flow rates of pressurized air 0 < @ < .2806
result in dissipative gravity currents moving at subcritical speed with respect to the
flows behind them. The cavity profile for this flow regime is sketched in Figure 4(c).
Increasing the volume flow beyond a certain limit .1404 < @ < .5 leads to a non-
dissipative gravity current which moves at the Froude number v/2 and is followed
by a hydraulic jump as sketched in Figure 4(b). Details of the bifurcation of the
solutions where the domains of validity of these two flow regimes overlap is discussed
in [23]. Increasing the volume flow rate further .5 < @ < V2 + .5 leads to a non-
dissipative air-cavity which moves at the Froude number /2 and is followed by a
rarefaction wave as sketched in Figure 4(d).

Adapting and modifying the approach of KC to the OWEL configuration, we
propose the following studies. Modify the KC experiments to the OWEL configura-
tion, and conduct model tests at EnFlo for the problem of emptying the water-filled
OWEL by means of pressurized air, a schematic of which is shown in Figure 4.
The purpose of these experiments is to determine the front speed and shape of the
air-cavity as a function of time for different combinations of air pressure and outlet
dimension. Three possible flow regimes are sketched in Figure 4. A series of Froude
numbers at different sections of the model can be expressed as functions of the di-
mensionless height and dimensionless volume flow rate similar to that proposed by
KC. An analogous theory can be developed and the experimental results can be com-
pared to see how the variable cross-section of the OWEL could change the Froude
numbers, shape of the air-cavity, and the volume flow rate.
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Figure 4: Emptying OWEL by means of pressurized air and the possible flow
regimes. (a) OWEL cross-section. (b) Loss-free air cavity followed by a hydraulic
jump. (c) Dissipative air-cavity. (d) Loss-free air-cavity followed by a rarefaction
wave.

It is proposed to develop a new theory for the problem of emptying the water-
filled OWEL by means of pressurized air by extending the theory of KC which is for
ducts with constant rectangular cross-section. Theoretical results can be compared
with the experimental results. After validating the theory we will be able to optimise
the geometry of the OWEL WEC to determine maximum flow rates with constant
inlet and outlet flow.

Direct numerical simulation of gravity currents

HARTEL, KLEISER, MICHAUD AND STEIN [21] (HKMS) used a direct numerical
simulation (DNS) approach to study the gravity currents numerically in a plane
channel. The numerical method, that is employed for the problem of lock-exchange
flow between two gases in the Boussinesq limit, is based on a mixed spectral and
spectral-element discretization in space together with finite differences in time [21].
The schematic of the configuration of interest is shown in Figure 5 where two gases
are initially separated by a vertical membrane. After the removal of the membrane,
a heavy-gas front and a light-gas front develop and propagate along the lower and
the upper channel wall, respectively [21]. HKMS used the Boussinesq equations in
which density differences are assumed to be small. The dimensionless governing
equations are [18, 21]

(’9uk )
T
Ou; 0 (uguy;) dp 1 Q%
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where u; denotes the velocity components, p the pressure and 7' the temperature.
The variations in density are assumed to be caused by variations in temperature
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Figure 5: Schematic of lock-exchange flow between two gases in a channel of length
L, and height 2h. This is Figure 1 in [21].

such that [21]

PR _3(T-T) . (2)
Po

where py and TO are the reference values of density and temperature, respectively,
and (3 is the heat expansion coefficient of the fluid. The flow variables in (2) with
tildes are dimensional. The governing equations in (1) are nondimensionalized by
the channel half-width, h, the temperature difference, AT = Tmax — Tmin, and the
buoyancy velocity, u, [21]

u, =+/g'h,

where ¢’ is the reduced gravity ¢’ = gﬂATV. The pressure is normalized by pu? and
the dimensionless temperature is

which is the ratio of kinematic viscosity v and molecular diffusivity of temperature
k, and Gr is the Grashof number [18]

Gr = <@)2 .
v

HKMS used an extension of the numerical method of [19], which was developed
for the simulation of transition and turbulence in plane channel flow, to solve the
governing equations (1) numerically. Time-dependent terms are discretized by a
semi-implicit finite-difference scheme, and the diffusive and the buoyancy terms are
discretized using the second-order Crank-Nicolson scheme while a third-order low-
storage Runge-Kutta method is used for the nonlinear terms [21]. The boundary
conditions for the lock-exchange problem are the frictionless end walls where the
flow is assumed to possess a mirror symmetry with respect to z; = +L;/2 and
x9 = £L5/2. The top and bottom boundaries at x3 = +h are either rigid no-slip
walls or no-stress (free-slip) boundaries, and they can be either isothermal or adi-
abatic [21]. To validate their code, simulations of Rayleigh-Bénard convection are
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performed with periodic boundary conditions at x5 = +1L; 5/2 and compared with
theoretical predictions and reference data from literature. The assumption of sym-
metry or periodicity in the longitudinal (x;) and lateral (x2) directions allows for the
application of a Fourier spectral discretization in the x; and x5 directions where the
dependent variables in the finite-differences can be expanded in a complex Fourier
series. These expansions simplify to expansions of the flow variables in real sine and
cosine series with symmetric boundary conditions at the rigid-walls which reduce
the computational costs significantly. The discretization of the resulting equations
in the wall-normal direction z3 is accomplished by a spectral element method. See
[21] for the details of the discretizations. Using this method, the simulations of
two-dimensional lock-exchange flows revealed the typical characteristics of intrusion
fronts which were observed in experimental studies [21]. Numerical experiments are
performed for different Grashof numbers. Among them are the formation of a pro-
nounced head of the front, with a foremost point being raised above the wall, and
strong Kelvin-Helmholtz billows which develop at the interface between the light and
heavy fluid [21]. The instability of the interface, however, is not observed for small
Grashof numbers in the numerical experiments of HKMS. By a systematic variation
of the Grashof number the influence of viscous diffusion on the characteristics of the
propagating fronts is assessed as is shown in Figure 7 in [21].

Direct numerical simulations are performed of gravity-current fronts in the lock-
exchange configuration by HARTEL, MEIBURG AND NECKER [22] (HMN). The gov-
erning equations are the Boussinesq equations which neglect variations in density p
except for the buoyancy term of the momentum equation (a tilde denotes a dimen-
sional variable) and in nondimensional form using the notation of [22] are

8uk )

T

Ou; 0 (upu;)  Op 1 Py g

ot * oy Ox;  /Gr OxpOxy, tpei )
dp N d(puy) 1 9?p

ot (9xk N vV GrSc? axka«rk ’ y

where e/ = (0,0, —1) is the unit vector in the direction of gravity acceleration. The
equations are nondimensionalized by the channel half-height %, the average density

~ - [~ o~ A - .
Pa, and the buoyancy velocity u, = 4/ ¢’h with ¢’ = ng where Ap = prax — Pmin 1S

the difference between the reservoir densities of light and heavy fluid, respectively
[22]. The nondimensional pressure p and density p are

b g g PP
Pt Aj

~\ 2
uph
and the two dimensionless numbers in (3) are the Grashof number Gr = (%)
v

and the Schmidt number S¢ = = where K is the molecular diffusivity in the

density field. If the differences in density are caused by differences in temperature,
the Schmidt number is identical to the Prandtl number and the convection-diffusion
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equation for the density variation in (3) becomes the thermal energy equation in (1)
[22]. The Boussinesq equations (3) can be converted to a vorticity-streamfunction
formulation for strictly two-dimensional flows. Denoting the streamfunction by v
and the vorticity by w the governing equations become [22]

8_w+u ow 1 Pw  Op )
ot k&xk N vV Gr axkﬁxk 81’1 ’
0% _ 4
893k8:rk N ' ( )
p O(pw) 1 *p
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(%1 8ZE3 ’ (91‘3 7 81'1

For the simulations, high-order numerical methods are used, based on spectral and
spectral-element discretizations and compact finite differences of [21] which uses the
velocity-pressure formulation (3). A spectral-element collocation technique is used
for the spatial discretizations in the wall-normal direction x5, and Fourier expansions
are used in the longitudinal and lateral directions. For time discretization, a semi-
implicit method is employed which along with the spectral-element discretization,
provides good flexibility of the numerical mesh in the normal direction [22]. For
simulations at very high Grashof numbers, another existing highly optimized code for
the simulation of two-dimensional particle-driven flows is adopted [22] which is based
on the vorticity-streamfunction formulation (4). This code employs equidistant grids
in both directions with an explicit third-order accurate low-storage Runge-Kutta
method for integration in time, along with a spectral method in the longitudinal
direction [22]. The boundary conditions at x3 = 41 are either rigid no-slip walls
or slip boundaries. See [22] for a detailed discussion of the numerical method. The
main objective of the numerical study of two and three- dimensional lock-exchange
flows by HMN was a detailed analysis of the flow structure at the foremost part
of the gravity-current front. The three-dismensional simulation of HMN for a front
spreading along a no-slip boundary at a Reynolds number of about 750 reveals all the
features that obseved in the experimental results near the front, including the lobe-
and-cleft structure of the front leading edge [22]. Results show that the foremost
point is not a stagnation point in a translating system in contrast with the previous
theoretical assumptions about the nose of the front. The stagnation point is located
below and slightly behind the foremost point in the vicinity of the wall [22]. For high
Reynolds number simulations the two-dimensional particle-driven code is used for
both no-slip and slip boundaries. It is observed that no qualitative changes in the
flow structure at the head occur at high Reynolds numbers [22]. A linear-stability
analysis of the flow at the head of two-dimensional gravity-current fronts is presented
in [20] to clarify the instability mechanism that leads to the formation of the complex
lobe-and-cleft pattern which is commonly observed at the leading edge of gravity
currents propagating along solid boundaries [20]. NECKER, HARTEL, KLEISER
AND MEIBURG [29] (NHKM) presented high-resolution simulations of particle-driven
gravity currents in the lock-exchange configuration. Their study concentrated on
dilute flows with small density differences between particle-laden and clear fluid.
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For the mathematical description of the particulate phase an Eulerian approach is
used with a transport equation for the local particle-number density. The governing
equations are integrated with the numerical scheme of HKMS and HMN.

BIRMAN, MARTIN AND MEIBURG [13] (BMM) and BIRMAN AND MEIBURG [14]
(BM) employed a high-resolution numerical method to simulate Boussinesq and non-
Boussinesq gravity currents in the lock-exchange configuration over horizontal and
sloping bottom geometries. BMM and BM used the following nondimensional equa-
tions for their direct numerical simulation of the non-Boussinesq gravity currents

V-u=0,

Du 1 1

S0 e, - — V(28

T Vp+ 5oV (208) (5)
Dp 1V2

Dt~ Pe P

with p = ps+ ¢ (p1 — p2) where the density of the heavy and light fluids are denoted

by p1 and ps, respectively. The third equation in (5) is a convection-diffusion equa-

upH
tion for the concentration c of the heavier fluid. e, is the unit vector, Re = L

v
is the Reynolds number with the channel height H, kinematic viscosity v, and
the buoyancy velocity w, = y/¢’H where the reduced gravity ¢ = ¢ (1 —~) and

H
v =p2/p1 <1, and Pe = ub7 is the Péclet number with the molecular diffusivity

K. Reynolds and Péclet numbers are related by the Schmidt number S¢ = % which

is the ratio of kinematic viscosity to molecular diffusivity, so that Pe = ReSc. In
(5) S is the rate of strain tensor, p the pressure, u = (u, v)T indicates the velocity
vector, and D /Dt denotes the material derivative of a quantity. For the purpose of
direct numerical simulations, the governing equations are recast into the vorticity-
streamfunction formulation [13, 14]

V2¢ = —Ww,

Dw 1 _, Pz p.Du  p, Dv

Dt~ Re' “ (1—=~)p p Dt p Dt
+ﬁ (2PIV2U - QPZVQU + 4p:pzvz + (uz + Uw) (p:m - pzz)) )

(6)
where v is the streamfunction, w = v, — u, the vorticity in the spanwise direction,
u = 0Y/dy, and v = —0y/0z. BMM and BM considered rectangular domains of
length 32 for their simulations. Initially, slip conditions are enforced along all of the
walls. Consequently, ¥y = 0 and w = 0 is assigned along all boundaries [13]. The
concentration satisfies Neumann boundary conditions along all walls, in order to
enforce zero diffusive mass flux [13]|. The effect of no-slip boundary conditions along
the top and bottom boundaries is evaluated by taking 1 = 0 and w = —9%*)/9z>
[13]. For the numerical simulations, equidistant grids are employed in the rectan-
gular computational domain. Spectral Galerkin methods are used in representing
the streamwise dependence of the streamfunction and the vorticity fields [13, 14].
Vertical derivatives are approximated on the basis of the compact finite-difference
stencils of [25]. As in the Boussinesq investigation of HMN, derivatives of the den-
sity field are computed from compact finite differences in both directions [13, 14].
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At interior points, sixth-order spatially accurate stencils are used, with third- and
fourth-order accurate stencils employed at the boundaries [13, 14]. The flow field
is advanced in time by means of the third-order Runge-Kutta scheme described by
HMN [13, 14]. The material derivatives of the velocity components appearing in the
vorticity equation in (6) are rewritten in terms of the local time derivative plus the
convective terms and the spatial derivatives of the convective terms are evaluated in
the usual high-order way [13, 14]. The local time derivative is computed by a back-
ward extrapolation which is consistently used during the successive Runge-Kutta
substeps [13, 14]. The Poisson equation for the streamfunction in (6) is solved once
per time step in Fourier space. See the papers by BMM and BM for more details.
The non-Boussinesq simulations of gravity currents for density ratios of v = .92,
v = .7 and v = .2 are presented by BMM and BM and discussed.
Our strategy going forward for the OWEL project could be:

e Adaptation of the DNS approach of HKMS and HMN to simulate the Boussi-
nesq gravity current inside a vessel with the OWEL geometry and validate the
Boussinesq DNS code against the theory and experiments.

e Adaptation of the DNS approach of BMM and BM to simulate the non-
Boussinesq air-cavity gravity current inside a vessel with the OWEL geometry
and validate the non-Boussinesq DNS code against the theory and experi-
ments.

Finite volume method for air-cavity gravity current with com-
pressibility effects

A possible scenario for the numerical simulations of fluid flows inside the OWEL wave
energy converter in order to study the effects of compressibility on the PTO system
is to employ a relatively simple two-fluid model to simulate the non-Boussinesq air-
cavity gravity current. For this purpose air-water mixture can be assumed to behave
as a homogeneous inviscid compressible fluid. Air and water share, locally, the same
pressure, temperature and velocity. Conservation of mass (1 per fluid), balance of
linear momentum and total energy are [15]

d(aup) | O(upu)  0(cupw) 0 (upw) )
T P B P
0 (agpg) 4 0 (agpgu) + 0 (agpgv> 4 d (agpgw) - 0
ot Ox Ay 0z o
ou ou ou ou dp 0
p(aﬁ“a Uy Y az>+8x -
ov ov ov ov dp 0 ( (a)
( +U%+Ua—y+lU£)+a_y = 5
ow ow ow ow dp
”(at or " Vay TV 8z)+82 = P9
) pHU) 3(gHU) 0 (pHw) g,
y 0z )

where subscripts (l, g) denote liquid and gas, respectively. Hence oy and o, denote
the volume fraction of liquid and gas, respectively, and satisfy oy + ay = 1. The
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total density, specific total energy and specific total enthalpy are, respectively

p = alpl"'agpg»
E = e+iW+0v*+uw?),
H = E+2

P

where e is the specific internal energy. In order to close the system of partial dif-
ferential equations (a), it is assumed that the pressure p is given as a function of
parameters, a := oy — o, p and e

p=2(a,p.e) = (y(a) — 1) pe — (). (b)

This is the extended equation of state which obeys the stiffened gas law. Once
the two independent equations of state p = 2 ;(pi 4, €1,4) are known, the extended
equation of state (b) can be determined [15, 16]. The boundary conditions are the
no-slip boundary conditions at the rigid boundaries. The two-fluid equations (a) are
used for a scaling analysis for the interactions between aerated waves and the oyster
wave energy converter in [8]. D1As, DUTYKH AND GHIDAGLIA [15] (ddg) used a
second-order finite volume method to solve the two-fluid equations (a).
Our strategy going forward for the OWEL project could be:

e Adaptation of the finite volume approach of ddg for the two-fluid model (a) to
simulate the inviscid compressible air-cavity gravity current inside the OWEL
wave energy converter.

e Investigate the effects of compressibility on the PTO system with influx-eflux
boundary conditions.
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