Internal Report

The intrinsic second derivative

by Thomas J. Bridges
Department of Mathematics, University of Surrey, Guildford GU2 7XH UK
— September 9, 2011—

1 Introduction

For a smooth mapping F : M — N between two smooth finite-dimensional man-
ifolds M and N, the second derivative is not intrinsic. In the overlap between
charts an affine contribution appears which differs in different charts. However, in
the case where the first derivative has a non-trivial kernel there is an intrinsic sec-
ond derivative (and higher derivatives) when restricted to the kernel. PORTEOUS [5]
discovered this intrinsic second derivative and proved the general case. It has been
widely used in singularity theory (e.g. [4, 1]). It has recently been used in the study
of degenerate relative equilibria [2] and in the study of degenerate conservation laws
with dissipation [3]. In this report a self-contained proof of the intrinsic second
derivative, for the case of mappings between vector spaces of the same dimension,
is given as this is the special case needed in [2, 3].

2 Transformation of mappings

Let X and Y be n—dimensional vector spaces, and let X* and Y* be their respective
dual spaces. Denote the respective pairings by (-, -}x and (-, -)y. Identify the tangent
space of X with X, and the tangent space of Y with Y.

Introduce the smooth mapping

F:X-Y, (1)

The first derivative of F at a point U € X in the direction £ € X is

DF(U)E = LR(U + c¢)
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Similarly, for tangent vectors &; and &, the second derivative at U € X is
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D’F(U)[&, &) = F(U + £1&; + £2£2) (3)

e1=€e2=0

The problem of interest is how these derivatives tranform when F is transformed.
Introduce additional n— dimensional vector spaces X and Y with their duals and
appropriate pairings. Introduce the diffeomorphisms

d XA —¥X and ¥ : Y —-YVY.



Then the transformation of F

results in a mapping

3 Transformed first derivative

Write the transformation (4) as
G(V) = \P(F(@(V))) , for VeX.
Then for any n € %,

G(V+en) =0 (F(@(V - en))> :

Differentiate with respect to ¢ and set ¢ =0,
DG(V)y = DU <F(<I>(V))) [DF((I)(V)) [D@(V)n]] | (6)

3.1 Kernel of the first derivative

Suppose that DG has a non-trivial kernel. For simplicity assume that the kernel of
DG and the kernel of DG* are one-dimensional.

Denote the kernel of DG(V) for some fixed V by span{n}. Then, since ¥
is a diffeomorphism, D®(V)n is in the kernel of DF(U) for U = ®(V). Let
& =D®(V)n. Then, £ € X and

n € Ker(DG(V)) <« £ e Ker(DF(U)). (7)

A similar relation holds for the adjoint eigenvector. To establish this, let i now
be an arbitrary vector in X — not necessarily in the kernel of DG(V). But suppose
¢ is in the kernel of DG(V)* for some V. Then acting on the first derivative in

(6),

Y

(¢, DG(V)n)g = <C,D\I/ (F(CI)(V))) [DF(@(V)) [D@(V)n]]> :
where (-,-)y is a pairing on Y. The left-hand side vanishes. Now, define
v =D¥(F)¢.

Then, since V¥ is a diffeomorphism, ~ is in the kernel of DF(U)* for U = ®(V).
In summary, for ¢ € Y* and v € Y*, we have

¢ € Ker(DG(V)*) <« +€Ker(DF(U)"). (8)



4 Second derivative

For the second derivative, take
V=V +emn +emn,

in (4) and form the second derivative,
D’G(V) {n,n,} = D*V¥ (F(@(V))) {DF(CI)(V)) [D®(V)m|, DF(®(V)) [DO(V)ns] } :
+DW¥ (F(CD(V))) [DQF(CD(V)){D(I)(V)"h,D(I)(V)nQ}]

+DW (F(@(V))) [DF(@(V)) [D2<I>(V){n1,n2}}] .

Now, define
£1 = D@(V)Th and €2 = D@(V)'ﬂg,

and substitute into the right-hand side

D2G(V) {n, .} = DZ\I/<F(<I>(V))>{DF(CD(V))&,DF(Q)(V))&}.
+DV¥ (F(CI)(V))) {DQF(@(V)){&,&}}
DY <F(<I>(V))> [DF(@(V)) DB(V){n,, m}]} |

The form of the second derivative on the right-hand side is dramatically different
from the left-hand side. However, suppose that one of the tangent vectors 1y, 7, is
in the kernel of DG(V). For definiteness suppose 1, is in the kernel and 7, is not.
Then the second derivative expression simplifies to

D?’G(V){n,m} = D\D(F((I)(V))) [DQF(CD(V)){&,&Q}} 9
+DV¥ <F(<I>(V))) lDF(cb(V)) [DZCD(V){m,nQ}]] : .

4.1 The intrinsic second derivative

The second term on the right-hand side (9) is the problem term, since it involves the
first derivative of F evaluated on a vector that does not vanish in general. However
by using the adjoint eigenvector the second term can be eliminated.

Use the pairing on Y and pair an adjoint eigenvector ¢ with the left hand side,
noting that an adjoint eigenvector is generated for DF via (8). The above expression
(9) simplifies to

(¢ D*G(V) {n,m} )y = <C>D‘I’(F(‘D(V)))[DzF(é(V)){§1>§2}}>

Y

+<7,DF(<1>(V))[DQ@(V){m,ng}}> ,

Y
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noting that the second pairing is on Y. Now, since « is an adjoint eigenvector of
DF(®), the second term on the right-hand side vanishes and we are left with

(¢ D*°G(V) {m,m2} )5 = <CaD‘I’ (F(‘I’(V))) {DQF((I)(V)){&"S?}] >

Y

(¢, D*G(V) {m,m} )3 = (v, D’F(U){&, &}),

In summary, the second derivative has the same form in both coordinate systems
when it is evaluated on the kernel and co-kernel of first derivative.
A similar argument carries over if the kernel has higher dimension (see [5]).

5 The case of mappings between manifolds

Suppose F : M — N is a smooth mapping between smooth manifolds M and
N, each of finite dimension, but not necessarily equal dimension. By restricting to
charts on M and N, one encounters a composition of the form (4) in the overlap
between charts. In general the second derivative is not intrinsic. On the other hand,
if there is a nontrivial kernel of the first derivative, then there is a well-defined
intrinsic second derivative of the mapping F. A proof for the case of the second
derivative is given in §4 of [4] and the general case is treated in [5].
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