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1 Introduction

For a smooth mapping F : M → N between two smooth finite-dimensional man-
ifolds M and N , the second derivative is not intrinsic. In the overlap between
charts an affine contribution appears which differs in different charts. However, in
the case where the first derivative has a non-trivial kernel there is an intrinsic sec-
ond derivative (and higher derivatives) when restricted to the kernel. Porteous [5]
discovered this intrinsic second derivative and proved the general case. It has been
widely used in singularity theory (e.g. [4, 1]). It has recently been used in the study
of degenerate relative equilibria [2] and in the study of degenerate conservation laws
with dissipation [3]. In this report a self-contained proof of the intrinsic second
derivative, for the case of mappings between vector spaces of the same dimension,
is given as this is the special case needed in [2, 3].

2 Transformation of mappings

Let X and Y be n−dimensional vector spaces, and let X∗ and Y
∗ be their respective

dual spaces. Denote the respective pairings by 〈·, ·〉X and 〈·, ·〉Y . Identify the tangent
space of X with X , and the tangent space of Y with Y .

Introduce the smooth mapping

F : X→ Y , (1)

The first derivative of F at a point U ∈ X in the direction ξ ∈ X is

DF(U)ξ =
d

dε
F(U + εξ)

∣∣∣∣
ε=0

. (2)

Similarly, for tangent vectors ξ1 and ξ2 the second derivative at U ∈ X is

D2F(U)[ξ1, ξ2] =
∂2

∂ε1∂ε2

F(U + ε1ξ1 + ε2ξ2)

∣∣∣∣
ε1=ε2=0

. (3)

The problem of interest is how these derivatives tranform when F is transformed.
Introduce additional n−dimensional vector spaces X̃ and Ỹ with their duals and
appropriate pairings. Introduce the diffeomorphisms

Φ : X̃→ X and Ψ : Y→ Ỹ .
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Then the transformation of F

G = Ψ ◦ F ◦ Φ , (4)

results in a mapping
G : X̃→ Ỹ . (5)

3 Transformed first derivative

Write the transformation (4) as

G(V) = Ψ

(
F

(
Φ(V)

))
, for V ∈ X̃ .

Then for any η ∈ X̃ ,

G(V + εη) = Ψ

(
F

(
Φ(V + εη)

))
,

Differentiate with respect to ε and set ε = 0,

DG(V)η = DΨ

(
F

(
Φ(V)

))[
DF

(
Φ(V)

)[
DΦ(V)η

]]
. (6)

3.1 Kernel of the first derivative

Suppose that DG has a non-trivial kernel. For simplicity assume that the kernel of
DG and the kernel of DG∗ are one-dimensional.

Denote the kernel of DG(V) for some fixed V by span{η} . Then, since Ψ
is a diffeomorphism, DΦ(V)η is in the kernel of DF(U) for U = Φ(V) . Let
ξ = DΦ(V)η . Then, ξ ∈ X and

η ∈ Ker(DG(V)) ⇔ ξ ∈ Ker(DF(U)) . (7)

A similar relation holds for the adjoint eigenvector. To establish this, let η now
be an arbitrary vector in X̃ – not necessarily in the kernel of DG(V) . But suppose
ζ is in the kernel of DG(V)∗ for some V . Then acting on the first derivative in
(6), 〈

ζ, DG(V)η
〉eY =

〈
ζ, DΨ

(
F

(
Φ(V)

))[
DF

(
Φ(V)

)[
DΦ(V)η

]]〉
eY ,

where 〈·, ·〉eY is a pairing on Ỹ . The left-hand side vanishes. Now, define

γ = DΨ(F)∗ζ .

Then, since Ψ is a diffeomorphism, γ is in the kernel of DF(U)∗ for U = Φ(V) .

In summary, for ζ ∈ Ỹ
∗ and γ ∈ Y

∗ , we have

ζ ∈ Ker
(
DG(V)∗

)
⇔ γ ∈ Ker

(
DF(U)∗

)
. (8)
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4 Second derivative

For the second derivative, take

V 7→ V + ε1η1 + ε2η2 ,

in (4) and form the second derivative,

D2G(V) {η1, η2} = D2Ψ

(
F

(
Φ(V)

)){
DF

(
Φ(V)

)[
DΦ(V)η1

]
, DF

(
Φ(V)

)[
DΦ(V)η2

]}
.

+DΨ

(
F

(
Φ(V)

))[
D2F

(
Φ(V)

){
DΦ(V)η1, DΦ(V)η2

}]
+DΨ

(
F

(
Φ(V)

))[
DF

(
Φ(V)

)[
D2Φ(V){η1, η2}

]]
.

Now, define
ξ1 := DΦ(V)η1 and ξ2 := DΦ(V)η2 ,

and substitute into the right-hand side

D2G(V) {η1, η2} = D2Ψ

(
F

(
Φ(V)

)){
DF

(
Φ(V)

)
ξ1, DF

(
Φ(V)

)
ξ2

}
.

+DΨ

(
F

(
Φ(V)

))[
D2F

(
Φ(V)

){
ξ1, ξ2

}]
+DΨ

(
F

(
Φ(V)

))[
DF

(
Φ(V)

)[
D2Φ(V){η1, η2}

]]
.

The form of the second derivative on the right-hand side is dramatically different
from the left-hand side. However, suppose that one of the tangent vectors η1, η2 is
in the kernel of DG(V) . For definiteness suppose η1 is in the kernel and η2 is not.
Then the second derivative expression simplifies to

D2G(V) {η1, η2} = DΨ

(
F

(
Φ(V)

))[
D2F

(
Φ(V)

){
ξ1, ξ2

}]
+DΨ

(
F

(
Φ(V)

))[
DF

(
Φ(V)

)[
D2Φ(V){η1, η2}

]]
.

(9)

4.1 The intrinsic second derivative

The second term on the right-hand side (9) is the problem term, since it involves the
first derivative of F evaluated on a vector that does not vanish in general. However
by using the adjoint eigenvector the second term can be eliminated.

Use the pairing on Ỹ and pair an adjoint eigenvector ζ with the left hand side,
noting that an adjoint eigenvector is generated for DF via (8). The above expression
(9) simplifies to〈

ζ, D2G(V) {η1, η2}
〉eY =

〈
ζ, DΨ

(
F

(
Φ(V)

))[
D2F

(
Φ(V)

){
ξ1, ξ2

}]〉
eY

+

〈
γ, DF

(
Φ(V)

)[
D2Φ(V){η1, η2}

]〉
Y

,
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noting that the second pairing is on Y . Now, since γ is an adjoint eigenvector of
DF(Φ), the second term on the right-hand side vanishes and we are left with

〈
ζ, D2G(V) {η1, η2}

〉eY =

〈
ζ, DΨ

(
F

(
Φ(V)

))[
D2F

(
Φ(V)

){
ξ1, ξ2

}]〉
eY

or 〈
ζ, D2G(V) {η1, η2}

〉eY =
〈
γ, D2F

(
U

){
ξ1, ξ2

}〉
Y

In summary, the second derivative has the same form in both coordinate systems
when it is evaluated on the kernel and co-kernel of first derivative.

A similar argument carries over if the kernel has higher dimension (see [5]).

5 The case of mappings between manifolds

Suppose F : M → N is a smooth mapping between smooth manifolds M and
N , each of finite dimension, but not necessarily equal dimension. By restricting to
charts on M and N , one encounters a composition of the form (4) in the overlap
between charts. In general the second derivative is not intrinsic. On the other hand,
if there is a nontrivial kernel of the first derivative, then there is a well-defined
intrinsic second derivative of the mapping F . A proof for the case of the second
derivative is given in §4 of [4] and the general case is treated in [5].
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