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Abstract

The aim of this thesis, is to develop estimation and encoding techniques for 3D informa-
tion, which are applicable in a range of vision tasks. Particular emphasis is given to the
task of natural action recognition. This “in the wild” recognition, favours algorithms
with broad generalisation capabilities, as no constraints are placed on either the actor,
or the setting. This leads to huge intra-class variability, including changes in lighting,
actor appearance, viewpoint and action style. Algorithms which perform well under
these circumstances, are generally well suited for real world deployment, in applications
such as surveillance, video indexing, and assisted living. The issues of generalisation,
may be mitigated to a significant extent, by utilising 3D information, which provides
invariance to most appearance based variation. In addition, 3D information can remove
projective distortions and the effect of camera orientation, and provides cues for occlu-
sion. The exploitation of these properties has become feasible in recent years. This is
due to both the emergence of affordable 3D sensors, such as the Microsoft KinectTM,
and the ongoing growth of 3D broadcast footage (including 3D TV channels, and 3D
Blu-Ray).

To evaluate the impact of this 3D information, and provide a benchmark to aid future
development, a large multi-view action dataset is compiled, covering 14 different action
classes and comprising over an hour of high definition video. This data is obtained
from 3D broadcast footage, which provides a broader range of variations, than may
be feasibly produced, during staged capture in the lab. A large number of existing
action recognition techniques are then implemented, and extensions formulated, to
allow the encoding of 3D structural information. This leads to significantly improved
generalisation, over standard spatiotemporal techniques.

As an additional information source, the estimation of 3D motion fields is also devel-
oped. Motion estimation in 3D is also referred to as “scene flow”, to contrast with its
image plane counterpart “Optical Flow”. However, previous work on scene flow esti-
mation, has been unsuitable for real applications, due to the computational complexity
of approaches proposed in the literature. The previous state of the art techniques gen-
erally require several hours, to estimate the motion of a single frame, rendering their
use with datasets of reasonable size, intractable. This in turn, has lead to the field of
scene flow estimation being often viewed as an item of academic interest only. In this
thesis, a new monte-carlo based approach to motion estimation is proposed, which is
not only several orders of magnitude faster (and amenable to a parallelised GPU imple-
mentation), but also provides improved accuracy by avoiding over-smoothing artefacts.

The value of this particle based approach is further augmented, by a re-examination of
the underlying assumptions in motion estimation theory. A deeper understanding of the
behaviour of such systems is developed, for both the optical flow and scene flow estima-
tion scenarios. In particular, existing formulations are demonstrated to either require
accurate initialisation, or to favour small motions (explaining the popularity of multi-
scale estimation schemes). The most enlightening analysis, however, explores the idea
that functions which accurately represent real data, are not by default, suitable for the
detection of estimation errors. This leads to the proposal of a more robust, non-linear
estimation scheme, based on machine learning. This “Intelligent Transfer Function”



is incorporated into existing motion estimation schemes (both single and multi-view),
along with support for probabilistic occlusion handling, and multi-hypothesis motion
smoothing techniques.

Finally, this fast and accurate approach to 3D motion estimation, is exploited within
the original task of natural action recognition. A range of schemes are explored, for
effectively encoding this rich information, based on variations of the hugely popular
Histogram of Oriented Gradients (HOG) and Histogram of Oriented Flow (HOF) de-
scriptors. By utilising the actors undistorted motion field, action recognition rates are
significantly improved over both the standard spatiotemporal approaches, and their 3D
structural extensions. This serves to demonstrate that, due to the new more tractable
formulation, in conjunction with the growth of 3D data, scene flow estimation may be
a valuable tool for computer vision in the future.
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pbg(Ī) Background probability for a given colour Ī
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Chapter 1

Introduction

The work presented in this thesis is motivated by the recent rise in 3D video data, and

the need for efficient algorithms, in order for such data to be fully exploited within clas-

sic computer vision tasks. Particular focus is given to the estimation of 3D structure

and motion fields, and their use in the recognition of human actions. The greatest chal-

lenge in this application area tends to arise due to the level of generalisation necessary

for widespread deployment. The 3D features presented mitigate this to some extent,

by offering invariance to a number of common sources of variation, such as changes in

lighting or viewpoint and differences in actor appearance. The algorithms are capa-

ble of operating with any combination of appearance sensors (RGB or greyscale) and

depth sensors, including appearance only configurations, and setups employing multiple

depth sensors. Additionally, any camera arrangement may be utilised, providing the

calibration is known (i.e. techniques are not restricted to narrow baseline or coplanar

configurations).

This initial chapter highlights the motivations of the work, the research aims and the

associated constraints. In addition, an overview of the thesis structure is provided,

with outlines of the contributions present in the remaining chapters.

Human action recognition is one of the most broadly applicable areas of computer

vision. Human Computer Interaction (HCI) techniques are important for the next

generation of natural user interfaces, which may be employed in office software, as well

1
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as home cinema and gaming. Similarly surveillance applications encompasses many

indoor and outdoor scenarios, in a vast array of possible locations. Video categorisation

tasks are often applied to enormous, unconstrained data repositories such as youtube.

In addition to providing some of the largest application areas, these tasks also involve

some of the greatest levels of variation, the same action may be performed in many

different ways by different people, but still have the same semantic label.

Attempting to take vision techniques out of the lab in order to solve these tasks, provides

unique challenges which are rarely considered during the technique’s development. The

lack of control over the setting favours simple, highly invariant descriptors, as more

complex features often lead to overfitting on restricted datasets. This was highlighted

recently, with the release of the Microsoft KinectTMand the work of Shotton et al. [113],

which brought computer vision into consumers living rooms (figure 1.1a). To operate in

such unconstrained scenarios, structural information was employed (figure 1.1b), with

simple features based on depth comparisons (figure 1.1c). This provided the many

invariances discussed previously while also simplifying the segmentation of objects and

the detection of occlusions. The work presented in this thesis follows a similar vein,

focussing on the use of general descriptors, extracted from invariant data sources, with

application to unconstrained natural datasets.

There has been extensive investment in producing such unconstrained (sometimes re-

ferred to as “in the wild”) datasets for Action Recognition [73, 83, 79]. Some examples

are shown in figures 1.2b,1.2d and 1.2f compared to older “staged” datasets (figures

1.2a,1.2c and 1.2e). However, in previous work, structural information (or the ability

to infer and reconstruct structural information) is neglected. Hence, much of the work

presented in this thesis is evaluated using a newly captured dataset which has been

made available to the community to support future work.

Chapter 2 discusses the current state of the art, in the fields of action recognition and

motion estimation. This mirrors the order these topics are introduced in the remainder

of the thesis. In each case, the position of this thesis in relation to previous work is

highlighted.

Chapter 3 explores the use of structural information for recognising unconstrained hu-
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(a) Kinect in the living room

(b) An output depth map (c) Pointwise depth

comparison features

Figure 1.1: Generally applicability of Kinect. The use of depth based features (1.1c))

allows operation in extremely varied environments such as consumers living rooms

(1.1a). Images taken from xbox.com and [113] respectively.

man actions. Initially the collection of the 3D dataset is discussed, including both

automatic and manual annotation schemes. Next, existing state of the art techniques

are explained in detail, followed by proposed extensions to enable encoding of structural

information. These proposed extensions include five interest point detection schemes,

and two feature descriptors. The analysis then shows that all of the proposed ap-

proaches lead to improved performance over the simple appearance based techniques

examined.

Chapter 4 investigates the improvement of the motion features used in chapter 3 by

incorporating structural information. Specifically, the estimation of 3D motion fields

is explored (also known as scene flow fields, in contrast to 2D Optical Flow fields).

Figure 1.3 shows an example of such an estimated 3D motion field. Existing scene flow

estimation techniques are found to be impractically slow for the quantities of data un-
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(a) KTH Running

example 1

(b) Hollywood2 Run example 1

(c) KTH Running

example 2

(d) Hollywood2 Run example 2

(e) KTH Running

example 3

(f) Hollywood2 Run example 3

Figure 1.2: Staged vs “in the wild” Actions. Examples are from the “run” class of the

staged KTH dataset (1.2a,1.2c and 1.2e)[109] and the “in the wild” Hollywood2

dataset (1.2b,1.2d and 1.2f)[83].

der consideration. In addition, the oversmoothing artefacts present in most techniques

reduce accuracy in regions which tend to be most salient. Thus, a novel probabilistic

approach to scene flow estimation is proposed, inspired by monte-carlo estimation tech-

niques, and specifically particle filtering. This approach is capable of maintaining mul-

tiple motion hypotheses at each point, obviating the need for smoothness assumptions,

as constraints can accumulate over time to resolve ambiguities. As discussed previously,

techniques are formulated to operate with any combination of appearance and depth

sensors in any configuration. When depth sensors are not present the algorithm per-
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Figure 1.3: An estimated 3D motion field (right), from a sequence of a person

performing a kicking action (left). Motion vectors move from the red to purple

vertices.

forms simultaneous motion and structure estimation. The speed and flexibility of the

algorithm, enables a vast array of new applications to exploit 3D motion information,

beyond the intended use as a feature descriptor for action recognition. An example

of such applications is demonstrated, where 3D hand trajectories are extracted for 3

million frames of sign language footage, by clustering the estimated motion field.

Chapter 5 improves upon the scene flow estimation system, by a re-evaluation of the

assumptions underlying motion estimation. Techniques are explored to include smooth-

ness assumptions, while maintaining the useful properties of the algorithm. In addition,

the inclusion of the constant velocity assumption, and probabilistic handling of occlu-

sions, is demonstrated. Finally an analysis of the most fundamental assumption, that

of brightness constancy, is presented. This analysis brings to light a number of issues

previously noted in the motion estimation literature, and explains the popularity of

a number of techniques, including multi-scale iterative motion estimation. Finally, a

more robust formulation is proposed, based on machine learning, and is incorporated

into the motion estimation system, with excellent results.

In chapter 6, a feature descriptor is developed to encode the estimated 3D motion of a

scene, as shown in figure 1.4. The descriptor is inspired by work on HOFs, but based

on the richer 3D motion field. This descriptor is then incorporated into the action
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Figure 1.4: The HOS descriptor on an example sequence of a waving hand. Local

motions are encoded into 4 orientation bins, with the length of the line relating to the

strength of the motion in that direction. The 4 images relate to different levels of out

of plane motion (top left involves motions towards the camera, bottom right is

motions away from the camera, the other images contain intermediate bins). Green

squares are “blocks” of normalised motions.

recognition systems proposed in chapter 3. The inclusion of 3D motion features is

shown to significantly improve recognition rates, over the use of image plane motion

alone.

Finally, chapter 7 brings these contributions together, summarizing the value of 3D

structure and motion information for unconstrained recognition tasks. Plans for future

work are also presented, including improvements to the proposed action recognition

schemes, and the application of scene flow estimation in other areas of computer vision.

To briefly summarise, the contributions of the work presented in this thesis are:

• A publicly available dataset for unconstrained action recognition, including struc-

tural information.

• Publicly available code for the reproduction of all baseline results on the above

dataset.
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• Five interest point detection schemes, employing structure information when de-

termining saliency.

• Two feature descriptors based on the current state of the art in action recognition,

and capable of encoding structural information.

• An extremely fast and accurate approach to 3D motion estimation, without the

presence of over-smoothing artifacts.

• A multi-modal framework for the application of the above motion estimation

system, with any combination of appearance and depth sensors.

• An approach for estimating 3D occlusion maps during motion estimation.

• A more robust brightness constancy formulation based on machine learning.

• An automatic 3D tracking scheme, based on estimated motion fields.

• A general feature descriptor, for encoding 3D motion information.
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Chapter 2

Literature Review

This chapter discusses the current state of the art in a range of topics. Initially, general

techniques for human action recognition are examined, with discussions of interest point

detection, local feature encoding and holistic recognition. In addition existing work on

the simultaneous estimation of 3D structure and motion is discussed, for both sparse

and dense scenarios.

2.1 Action Recognition

Many state of the art approaches to action recognition follow a general process, con-

sisting of 4 stages. First, the sequence is sampled at a number of spatio-temporal

locations. Second local feature descriptors are extracted around each sample point.

Third the collection of local features is encoded into a single holistic descriptor for the

sequence. Finally this sequence descriptor is passed to a discriminative classifier, in

order to select the most likely category. This approach is analogous to the highly suc-

cessful bag-of-words techniques from the object recognition literature, but accounting

for the additional temporal dimension.

The simplest approach to sampling is a dense sampling scheme (for example, sampling

on a regular spatio-temporal grid). In this case many samples will lie in background

regions, rather than on the objects involved in the action. To reduce this contamination,

9
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many authors extend the dense sampling concept beyond a uniform grid [25, 57]. In

these works, features are calculated via integration across the entire spatio-temporal

volume, with the contributions at each point weighted by saliency.

In some situations, features extracted from background regions can sometimes provide

useful information about the context of actions. Wang et al. [129] argue that densely

sampled features, which incorporate both action and context information, may outper-

form sparse features (albeit at far higher cost). Some authors take this idea a step

further, and attempt to model context directly. Han et al. [61] recognise objects and

object parts in the scene, and create an additional feature channel, based on the number

and configuration of detections. Marszalek et al. [83] perform a separate scene clas-

sification step, and combine this with prior knowledge about probable action contexts

(for example the “Get Out Car” action is unlikely to occur indoors) demonstrating

improved recognition rates.

Although dense sampling has its advantages, sparse sampling schemes are often favoured,

due to the large scale of many action recognition datasets. Such sparse sampling re-

lies on the detection of salient regions or “interest points”. This serves to reduce the

“noisiness” of the descriptor, assuming there is correlation between the interest point

detector and the object performing the action.

2.1.1 Interest Point Detection

The literature contains a wide variety of interest point detection schemes, each based

on a different concept of saliency. One of the oldest detectors still in common use is

the corner detector introduced by Harris and Stephens [62], which is extremely fast to

compute. The detector examines local image gradients at every pixel, and identifies

positions with strong intensity changes in 2 distinct directions. These points relate to

corners, where the edge directions are not restricted to lie along the x, y axes. Corners

are often considered salient as the constrains of two edges serve to solve the aper-

ture problem, allowing precise localisation and tracking. Although originally designed

for detection of interest points in images, the approach has been applied to temporal

sequences, by examining the 3 orthogonal planes (xy, xt and yt) in isolation [53].
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The Harris detector has also been extended by Laptev and Lindeberg, to operate di-

rectly within space-time volumes [71]. In this case, detected interest points are those

with strong intensity gradients along 3 different spatio-temporal directions (not re-

stricted to x, y, t axes). Obviously the computational time is significantly increased

over 2D corners, however the detected points are assumed to be more salient.

Dollar et al. proposed a scheme even faster than the original Harris corner, referred to

as “separable linear filters” [45]. In this approach, the spatial and temporal dimensions

are treated separately, using different filtering schemes. The resultant interest points

correspond to spatial regions (rather than points) which, as a whole, exhibit intensity

peaks, troughs and edges over time. Such points correspond to moving regions of high

contrast, such as moving object boundaries.

More recently, Willems et al. extended the Beaudet Saliency measure [22] to the spatio-

temporal domain, for the purpose of action recognition [134]. In this case, salient points

are defined as locations with strong second order intensity derivatives, including both

spatio-temporal blobs and saddles.

It’s difficult to determine which of these definitions of saliency is the most valid for

a particular task, as saliency itself is often poorly defined. Performance comparisons

for 3D Action Recognition are presented in section 3.3.1 of this manuscript. Further

discussion and comparisons can also be found in the review paper by Tuytelaars and

Mikolajczyk [121].

Regardless of the specific interest point detection scheme employed, the scale of the

salient features remains unknown. Considering interest points at various scales can

provide an increased number of detections, and the scale of the salient region can in-

form subsequent stages of the system, such as feature extraction. The simplest and

most commonly employed approach, is to run the interest point detection on a small

set of discrete scales [72]. However, there has also been some work on the automatic

detection of optimal scale parameters, for a previously detected interest point. Lin-

deberg proposed an approach for achieving this, by examining the saliency response

as a function of scale parameters [78]. This idea can be applied to determine both

the spatial and temporal scales of interest points [77]. However, most interest point
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detectors are not scale invariant, thus positions which exhibit maxima in the saliency

measure at one scale, may no longer be maxima when saliency is measured at another

scale. This leads to iterative schemes, where the position and scale optimisations are

repeated until convergence, for each detected interest point [35, 71]. Some approaches

have been proposed to avoid this iterative scheme, which rely on scale-invariant inter-

est point detectors such as the Harris-Laplace operator of Mikolajczyk and Schmid [85]

or the Hessian points of Willems et al [134]. In these cases, a single criteria can be

optimised, which simultaneously determines the position and scale parameters.

2.1.2 Local Feature Descriptors

When the sampling points have been determined, local features descriptors are calcu-

lated. Again, many different descriptors have been exploited in previous work. The

simplest and most easily computed descriptor was proposed by Dollar et al. based

on the histogram of either pixel or gradient values, in the spatio-temporal cuboid sur-

rounding the interest point [45]. Schuldt et al. also use gradient information, however

they suggest calculating gradients only at the centre of the cuboid, to form a jet de-

scriptor [109]. Ke et al. [68] proposed using motion information based on optical flow,

to produce volumetric features similar to Haar-features [127]. Laptev et al. [73] then

incorporated both the appearance and motion information of previous approaches, util-

ising HOG [38] and HOF [39] descriptors, and found that both provided complimentary

information for action recognition.

There are also a large number of spatio-temporal feature descriptors, developed by

extending traditional 2D features from the field of object recognition. The spatial

Scale-Invariant Feature Transform (SIFT) descriptor [80] was extended by Scovanner

et al. to encode temporal information [110]. In a similar vein, Willems et al. [134]

extended the Speeded Up Robust Feature (SURF) descriptor [20], and Klaser et al.

[69] extended the HOG descriptor, into the spatio-temporal domain. This work is

similar to that presented in chapter 6 of this thesis, where the HOF descriptor (an

inherently spatio-temporal descriptor) is extended into 4D, utilising 3 dimensional flow

fields.
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Some authors have explored using the interest point detections themselves as a feature

descriptor. Oshin et al. proposes a descriptor based on the interest point detection

strengths within two spatio-temporal sub-volumes [93]. This is similar to the spatio-

temporal Haar-like features of Ke et al. [68], but based on relative saliency distributions

rather than motion. Similarly Gilbert et al. demonstrate excellent performance, mining

spatio-temporal configurations of interest points [53].

2.1.3 Sequence Encoding

The next stage is to accumulate the local features from every sample position, in order

to form a holistic descriptor of the entire sequence. If the local features used are

discrete, they can be accumulated directly into a histogram, as in the work by Oshin et

al. [94]. For the more common case of continuously valued features, the codebook and

bag-of-words approach (popularised in object recognition) is generally employed. This

approach attempts to cluster the samples in feature-space, extracting a small subset

of exemplar features, called the codebook. Sequences are then encoded, by matching

each sample to the closest exemplar of the codebook, and producing a histogram of

occurrences for each exemplar. Performing this accumulation spatially and temporally

implies that the holistic descriptor is invariant to a range of deformations, such as

spatial and temporal translations, stretching, reflections etc. Although this is valuable

for generalisation, it also discards much of the relational information, such as the spatial

configuration and temporal ordering of features. Laptev et al. attempt to mitigate this

by splitting the spatio-temporal volume into sub-blocks, creating a descriptor for each

sub-block, and concatenating them to create the sequence descriptor [72]. Sapienza

et al. follow a similar vein, encoding individual sub-sequences, however rather than

concatenating to create a single descriptor, they employ Multiple Instance Learning

(MIL) [105]. This accounts for some parts of the sequence being irrelevant, for example

before and after the action.

The purpose of encoding features into a sequence level descriptor, is to allow subse-

quent machine learning techniques to categorise the sequence in its entirety. However,

approaches to action recognition have been proposed, which avoid machine learning
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altogether. In these cases, no holistic sequence descriptor is required, instead a vot-

ing scheme is employed, with each sample providing one vote. An advantage of such

techniques, is that they are able to handle videos containing more than one action,

by detecting multiple peaks in the voting space, which is not possible using a holistic

descriptor of the sequence. A second advantage is that actions may be localised, both

spatially and temporally, by examining the samples which contribute during voting.

Gilbert et al. propose one such technique, employing data-mining to learn frequent

descriptors for each action class [54]. A weighted voting scheme is then used, with the

weight of each patterns vote determined by the distinctiveness of that pattern. Uemura

et al. proposed an alternative tree-based scheme for fast voting, using tracked SIFT

features [58]. They also demonstrated a motion compensation scheme, to remove noise

from the features tracks, caused by camera motion.

A third possibility for recognition, is to examine each frame in isolation, then classify

the video based on the sequence of frames. An example of this approach, is to equate

each frame with a state in a Hidden Markov Model (HMM). By building one HMM per

class, recognition can be performed for a test sequence, by determining which HMM is

most likely to have produced the observed state sequence [26]. This has the advantage

that it accounts for temporal ordering, however it can be very difficult to determine

the correct structure of the HMM for a given task. Additionally, in order to provide

good generalisation, a significant amount of training data is required.

2.2 3D Motion Estimation

Motion features have proved valuable for action recognition, which is unsurprising given

the temporal nature of the task. One of the most obvious deficiencies of such features,

is their definition in terms of image plane motion, while the action to be recognised

is performed within the 3D scene. This limitation is understandable, as a historic

artifact, but given the prevalance of commercial depth sensors, and the emergence of

3D broadcast footage, it should now be possible to use more natural and rich 3D motion

features.

The earliest work estimating the 3D motion of a scene from video, comes from the
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field of Structure from Motion (SfM). This work was primarily concerned with the

use a monocular moving camera, exploiting the parallax effect in order to estimate

the 3D structure of a static, rigid, scene [36]. However, these techniques are equally

applicable to moving rigid scenes, observed by a static camera (indeed these phenomena

are duals of each other) [17]. Later work relaxed the rigidity assumption, using non-rigid

factorization [119] in conjunction with non-linear optimization [42] and Markov Random

Fields (MRFs) [130]. In general, these SfM approaches estimate dense reconstructions,

while the related field of Simultaneous Location and Modelling (SLAM) has focused

on sparse reconstruction by tracking feature points. In SLAM systems, the tracked

features often relate to the same interest points used for action recognition (discussed in

section 2.1.1 above), including Harris corners [21], the Shi-Tomasi detector [112] used by

Davison et al. [40, 41] and FAST corners [102] used by various authors [70, 31]. SLAM

techniques generally perform the 3D estimation, using either Kalman filter variants or

Bundle Adjustment optimisation. These techniques were contrasted by Strasdat et al.

who demonstrated that optimisation techniques are more efficient, for all but very low

accuracy systems [117]. In recent years, the distinction between SfM and SLAM has

become more blurred, as the focus for SLAM moves towards dense reconstructions,

utilising modern hardware [88, 89, 90].

The field of Scene Flow Estimation (SFE) was introduced by Vedula et al. [124] and

also attempts to reconstruct a scene’s 3D structure and motion. However, SFE differs

from SfM and SLAM techniques, by removing the assumption of a rigid (or piecewise

rigid) scene, instead reconstruction is possible even for fully deformable scenes. In order

to make this task tractable, SFE techniques focus on the aggregation of information

from multiple sensors, rather than employing the parallax within a monocular system.

Most SFE algorithms have focused on multi-view appearance data, however Spies et

al. proposed a technique based on depth sensors, termed “Range Flow” [115], which

was later combined with appearance information by Lukins and Fisher [82] and further

developed by Schuchert et al. [107, 108]. The work presented in chapter 4 is applicable

in all these situations, with any number of appearance and/or depth sensors. Similar

to the previous discussion of SfM and SLAM, approaches to SFE exhibit a dichotomy,

between sparse and dense estimation.
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2.2.1 Sparse Scene Flow Estimation

Local scene flow approaches are closely related to the field of surface tracking [29, 116],

particularly when used in conjunction with an underlying structure mesh. One partic-

ular difference between “scene flow” and “surface tracking” stems from their respective

temporal behaviours. In general, scene flow estimates the motion for different points

at every frame, based on which parts of the scene align with the pixel centres. There

is no assumption in scene flow, that the points being tracked now correspond to points

tracked previously. In contrast surface tracking is based on detecting localisable areas

of the scene, and following those areas throughout the sequence, regardless of their sub-

pixel positions. This difference implies that surface tracking techniques are susceptible

to drift, where the surface points being tracked at the end of the sequence may not

correspond to the initially tracked points. This makes surface tracking algorithms less

reliable for estimating motion fields (scene flow), particularly in longer sequences. In

contrast scene flow algorithms do not suffer from drift, however they are also unable to

provide the long term trajectories necessary for mesh deformations.

Some of the earliest work in this field was done by Carceroni and Kutulakos, where

a collection of “surfels” were tracked in a multi-view sequence, comprised of seven

appearance sensors [30]. The surfels relate to small, deformable surface patches, with

associated reflectance parameters. The original formulation required the configuration

of all light sources to be known with respect to the cameras, however Devernay et al.

extended the technique to perform 3D point tracking in unknown scenes [44].

These surfel tracks provide a small number of very reliable 3D trajectories, however

this is not suitable for some motion estimation applications. Specifically, no motion

estimate is available for locations to which no surfels project, and any general statistics

derived from the motion estimate will be inherently biased. To address this Nuemann

and Aloimonos proposed a technique [87] using space carving [111] to initialise an object

mesh, and then tracking the mesh between frames using brightness constancy. This

allows a motion estimate to be produced at any point on the mesh via interpolation,

with the restriction that the motion of points respect the restrictions of the mesh.

Furukawa and Ponce build on this idea, by tracking each mesh vertex individually,
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then deforming the previous mesh to fit the new vertices [52]. This approach was

further developed by Courchay et al. using a variational framework for vertex tracking

[37]. However, these approaches required an initial mesh to be provided at the first

frame.

2.2.2 Dense Scene Flow Estimation

A dense scene flow field can be equated to an optical flow field, with the addition

of out of plane motion at every pixel. Indeed, the initial work on SFE by Vedula

et al. focused on the combination of optical flow from multiple viewpoints, in order

to estimate a mutually consistent 3D flow field [124, 126]. Similar to early work on

SfM, dense SFE attempts to estimate the motion of all points within a scene, without

necessarily finding exact correspondences between one frame and the next.

The aperture problem is a well documented issue in optical flow estimation. In brief,

when an edge point undergoes motion within a video, only the component of the mo-

tion perpendicular to the edge can be retrieved. Any motion parallel to the edge

cannot be determined, assuming the edge covers the aperture (the local patch under

consideration). This is why corner points are often considered salient, as the two edge

constraints at these locations allow motion to be uniquely determined. Unsurprisingly

due to the similarity between the tasks, similar issues occur in SFE algorithms. Spies

et al. demonstrate that for points lying on a planar surface, motion is only determined

in 1 dimension, and in two directions when the point lies on an edge formed by two

planes [115]. The full 3 dimensional scene flow is only uniquely determined for corners,

at the intersection of 3 planes, or for regions with a unique non-planar geometry.

Obviously this means that the estimation of scene flow over an entire scene is highly

ambiguous, with the vast majority of points being under-constrained. As a result,

authors generally resort to the assumption of smoothness. By assuming that the motion

field is smooth, constraints may be combined from neighbouring points, in order to

determine their motion. Similar schemes have already been proposed for optical flow

estimation, and generally fall into two categories. The first is local patch based schemes,

inspired by the work of Lucas and Kanade [81], where the motion at each pixel is
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estimated using constraints from a subset of neighbouring pixels. The second method

uses variational optimisation, inspired by the work of Horn and Schunck [63], where

the motion field is optimised globally for the image, including a regularisation term to

penalise the total variance of the estimate. For SFE tasks, the latter approach is the

most common, as it has the useful property of “filling in” motion in untextured regions

(where local approaches fail), by smoothly interpolating from the boundaries, so as to

minimise total variation. A range of optimisation schemes are then employed to obtain

an estimate of the final motion field, including Gradient Descent [51], Euler-Lagrange

[19] and Dynamic Programming [55]. The energy function is obviously highly non-

convex, due to the dimensionality of the task and the unstable data matching term.

In an attempt to reduce the effect of local minima, coarse to fine strategies are often

employed, although the estimate is still unlikely to be globally optimal.

A wide range of smoothness terms have been proposed. The simplest, used by Huguet

et al. is based on the spatial gradient of the motion field, within the image plane [64].

More recently Basha et al. proposed a 3D point cloud formulation, where smooth-

ness assumptions are more valid [19] (a smooth motion field in 3D can project to an

un-smooth one in the image plane). Unfortunately, object boundaries produce dis-

continuities in the motion field, which do not fit with the underlying assumption of

smoothness. In these regions, the erroneous assumption is counterproductive, and the

combination of constraints from both sides of the discontinuity, leads to “blurred” es-

timates. These are referred to as oversmoothing artefacts, and it was noted by Basha

et al. that they are the primary source of errors for most modern SFE techniques.

A wide range of approaches have been proposed for mitigating these over-smoothing

artefacts. One of the simplest approaches, employed by Wedel et al. is to reduce

the weight of the smoothness term at each point, based on the local intensity gradient

[133, 131]. This follows from the assumption that object boundaries will produce strong

edges in the image, however this may lead to difficulties estimating the motion of highly

textured regions.

Zhang and Kambhamettu [135] instead extend the Lucas & Kanade optical flow ap-

proach to SFE. In this case, there is no explicit smoothness term, instead motion is
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estimated for each local patch, so as to match it to patch’s in other viewpoints and

frames. Smoothness is still implicit in the approach, as there will be a large overlap in

the neighbourhoods of 2 close pixels, however the extent of oversmoothing artifacts is

limited by the size of the neighbourhood. Isard and MacCormick employed a similar

neighbourhood matching scheme, in a probabilistic framework using belief propagation

[67]. In later work Zhang and Kambhamettu combined the idea with a segmenta-

tion scheme, such that consistent motions were determined within segments, without

propagating constraints between segments [136]. The problem with matching local

neighbourhoods (and segments) in this manner, is that for a given region in the scene,

the size and shape of its projection is unlikely to be consistent between viewpoints, or

over time. Thus, matching similarly shaped regions, implies the assumption that the

patch under observation is equi-distant from all viewpoints, with the same orientation

relative to all image planes. An approach to loosening this assumption was introduced

in later work by Zhang and Kambhamettu, by fitting the parameters of an affine motion

model to each segment [137]. A similar approach was followed by Li and Sclaroff, but

using a range of different motion models to deform the patch [75, 74].

The effect of structure on reprojection between viewpoints was exploited, by Pons

et al. at the global level [98]. By reprojecting each image, to every viewpoint, via

the current structural estimate, a matching score was developed. This was employed

in a variational framework, to iteratively update the estimated structure and motion

[97, 99]. The accuracy of the reprojections in this case, depends on accurate knowledge

of the camera setup. Indeed, this is the case with most approaches that relax the

fronto-parallel assumption, however Valgaerts et al. recently proposed the inclusion of

stereo geometry parameters into optimisation, such that extrinsic camera parameters

and scene flow were estimated simultaneously [122].

Recently, a number of techniques for dense SFE have been proposed, which break with

the traditional Lucas-Kanade and Horn-Schunck approaches. Rabe et al. perform a

traditional variational scene flow estimation, but integrate temporal information into

the optimisation, by applying Kalman filtering at each pixel [100]. Cech et al. avoid

optimisation entirely, instead estimating a small number of high accuracy matches, and

using a region growing approach to propagate the motion [32]. Although this eliminates
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the explicit regularisation term, region growing is still constrained, so as to produce

smooth motion fields. In addition, estimated motion fields are semi-dense, depending

on the distribution of seeds.

There has also been a smaller body of work, based on extending space carving and

voxel colourisation, for scene flow estimation tasks. Unlike the previously described

approaches, smoothness assumptions may be avoided, mitigating over-smoothing arti-

facts. The idea was introduced by Vedula et al. who proposed a 6D space, covering

3D structure and motion, which was carved out based on photo-consistency [125]. In

later work, this was simplified to standard 3D shape carving, combined with optical

flow estimation in each viewpoint [126]. This “brute force” exploration of possible so-

lutions was costly, and generally relied on a heavily quantised space, with an associated

loss of fidelity in the estimate. To reduce this, Ruttle et al. included a number of

heuristic constraints, including background subtraction and optical flow thresholding

[103]. More recently Basha et al. developed a voxel based approach, scalable to large

numbers of cameras, in which hard structure selection was deferred until after motion

had been estimated [18].

These voxel based methods bear the greatest similarity to the work presented in chap-

ter 4 of this thesis, which explores the original continuous space (without voxel quan-

tisation) using a collection of discrete samples. These multiple-hypotheses also obviate

the need for smoothness assumptions, allowing the aperture problem to be solved via

accumulation of constraints over time, rather than combining constraints spatially. This

is similar to the “deferred estimation” of Basha et al. , but allows the deferred choices

to also improve the estimation of future frames.

Additional information can be found in the recent book of Wedel and Cremers [132],

which provides a useful introduction to scene flow estimation, with particular focus on

variational schemes and driver assistance applications.



Chapter 3

Action Recognition Using 3D

Structure

Performing action recognition tasks in a natural setting is extremely difficult. The

relevant areas of the scene are unclear, the appearance and orientation of the subject

is unknown, and even the definition of the action is loose (the same high level semantic

label, is often assigned to a wide range of actions). These factors lead to a great

deal of intra-class variation, which must be compensated for, in order to make the task

tractable. This may by achieved in part, by making use of structural information, which

highlights occlusions and has inherent invariance to both actor appearance and lighting

changes. This approach has been previously demonstrated in other vision tasks, which

suffer from such high intra-class variations (for example the general pose estimation

task, discussed briefly in Appendix A).

In this chapter, the need for a natural 3D action dataset is addressed. A large number

of existing action recognition techniques, are then extended to account for the newly

available structural information (including 5 saliency measures and 2 feature descrip-

tors). Finally an in depth analysis is performed, not only comparing all combinations

of new techniques, but also exploring their behaviour as the density (and noisiness) of

the features increases.

21
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3.1 3D Action Data Collection

In recent years, commercially available 3D displays have been introduced into the mar-

ket, leading to a sharp rise in commercially available 3D content, including films avail-

able on 3D BluRayTMand 3D broadcast footage. In addition, the availability of the

Microsoft KinectTMhas greatly simplified the capture of new 3D data. Despite this,

work on action recognition has focussed on spatiotemporal sequences (i.e. two spatial

dimensions and one temporal dimension). The small number of datasets produced thus

far such as the ChaLearn gesture dataset [14] and Human Daily Actions [34] have been

extremely limited (see the following section) and in some cases not publicly available

[76]. Consequently it is currently unknown how best to exploit such information for

action recognition tasks. Thus it was necessary to collate a new dataset for the pur-

poses of this thesis. The dataset was made available to the community at CVPR 2013

[60], along with all source code necessary to reproduce the baseline results from this

chapter.

3.1.1 Unstaged Action Data

In the past, most action recognition datasets such as KTH [109] and Weizmann [25],

utilised staged data. These datasets are generally considered “solved” with many tech-

niques reporting performance of 95% or more. As a result, recent action recognition

datasets have been concerned with action recognition “in the wild”, dealing with un-

constrained variations in location, lighting, camera angle, actor and action style. It is

extremely difficult to incorporate this level of variation in staged data, captured within

the lab, and methods designed and trained for such datasets often do not translate

well to more natural scenarios such as surveillance or video categorization. From an

applications point of view, staged capture is even less desirable due to the limited op-

erating range of sensors such as the Kinect, and the inability to capture accurately,

in direct sunlight or outdoor settings. Due to these difficulties, alternative means for

obtaining data have been explored, including videos obtained from youtube [79] and

clips extracted from commercially available films (“Hollywood” [72] and “Hollywood

2” [83]).
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3.1.2 Automatic Extraction

The large size of the Hollywood 2 dataset was due to the automated extraction process

employed by Marszalek et al. [83]. Such techniques are the cheapest means of data

collection. Their approach relies on the extraction of time stamped subtitles from the

film. These subtitles are then aligned with film scripts, which contain no timestamps,

but describe the behaviour of the actors in addition to dialogue. The alignment of the

two produces a script, with weak timestamp labels throughout. By training an Support

Vector Machine (SVM) to detect action instructions within the script, the timestamps

can be used to automatically extract the clip.

Unfortunately, most 3D films are too recent to have publicly available transcriptions. As

an alternative, the use of the “audio description” track was explored. Audio Description

is a secondary audio track, which is present in some films and is intended for the blind

community. The audio contains a spoken description of the scene contents and the

behaviours of the actors.

By employing speech recognition software, the spoken description was converted into

textual form, suitable for the automatic extraction of actions. Table 3.1 shows the

number of actions extracted from a film, using this technique in conjunction with a

range of speech recognition APIs, compared to manual extraction. The performance is

poor, mainly due to failures in the transcription process. Most of these dictation tools

rely on a training period in order to adapt to the users voice. In addition there are

difficulties with conversations involving multiple users. Due of these issues, a manual

extraction approach was employed, as in the original Hollywood dataset [72]. This has

the additional advantage that actions could be more accurately segmented from their

carrier movies.

3.1.3 Manual Extraction

A significant fraction of the available 3D films, were constructed from the original

2D recordings via post-processing techniques, such as rotoscoping. Any depth data

extracted from these films would be less rich, with no depth variations within objects.
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Speech Recognition True Positive Rate Total False Positives

Naturally Speaking 0% 5

Microsoft API 1.1% 7

Android API 3.2% 5

Apple API 8.2% 8

Table 3.1: Performance of automatic action extraction. The fraction of correct

actions, automatically extracted using a range of speech recognition APIs, compared

to manual annotation. Also shown is the total number of false detections for the film.

This leads to scenes which are fundamentally artificial, created for effect only, and

resembling a collection of cardboard cut-outs. Additionally, films generated entirely

through CGI, such as “Monsters Inc.” are unlikely to provide transferable information

for real human actions. For the dataset, clips were only used from films captured

using commercial camera rigs such as James Camerons Fusion Camera SystemTM, or

products from 3ality Technica. These technologies produce 3D consumer content from

real stereo cameras, and thus the results can be reconstructed into true 3D depth maps.

Imposing this restriction, the amount of acceptable footage was greatly reduced, leav-

ing only 14 films: Resident Evil: Afterlife (RE), Drive Angry (DA), Fright Night (FN),

My Bloody Valentine (MBV), Pirates Of the Caribbean: On Stranger Tides (PotC),

Sanctum (S), Spy Kids: All The Time In The World (SK), Step Up 3D (SU), Tron:

Legacy (T), Avatar (A), The Three Musketeers (TM), Final Destination 5 (FD), A

Very Harold and Kumar Christmas (H&K) and Underworld: Awakening (U). The re-

sultant dataset is referred to as “Hollywood 3D” and contains over 650 video sequences,

covering 14 different action classes. This puts the dataset on a similar level to the orig-

inal Hollywood dataset, with an increased number of action classes. In addition, a set

of sequences containing none of the chosen actions was randomly extracted as negative

data, ensuring no overlap with positive sequences.

Each of the films was split between the train and test sets, on a per action basis. This

means that each action is tested on actors and settings that were not seen for that

action during training (although that actor or scene may have been observed during
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the training of a different action). Table 3.2 shows the training and test split of the

data across films and classes, while table 3.3 lists the resulting number of training and

test clips for each action. In addition example images from the dataset can be seen in

figure 3.1. Due to the manual extraction procedure, all action sequences available in

the films were considered. However, only sequences judged to be of sufficient quality,

were included within the dataset. Included sequences were at least 10 frames (roughly

half a second) in length, and had a field of view sufficient to contain the majority of

the action (i.e. videos of Run actions where only the actors head is visible, were not

included). Shot-cuts were not included within the data, instead the sequences before

and after the shot-cut were used as separate examples, if they were of sufficient length.

The use of manual extraction also allowed these sequences to be temporally localized

down to the frame level, removing irrelevant data before and after the action. On

average the resulting sequences were 2.5 seconds long.

Each sample from the dataset comprises a video from both the left and right viewpoint,

both of which are 1920 by 1080 resolution and 24 frames per second. This amounts to

over an hour of video data. In addition to the left and right videos, a reconstructed

depth video (discussed in section 3.1.4) is provided for each sample, with the same

resolution and frame rate. If necessary, it is possible to simulate a hybrid dataset, such

as would be obtained from a Kinect, by ignoring the right viewpoint videos, and taking

only the left viewpoint and the depth. However, such a dataset would posses a higher

spatial resolution, and a coarser depth quantisation, than for true Kinect data. Any

artefacts introduced into the depth data via post processing of the footage, are assumed

to be negligible, as any significant changes would cause the actions to appear unnatural

to the audience of the films.

Certain actions are more common in some films, and as such, are more prevalent in the

dataset. If the task of action recognition is to be approached from a multi-class point

of view, this imbalance may lead to biasing of the results. Thus, a “balanced” version

of the dataset is also created, by duplicating randomly chosen samples from each class,

until all have equal representation. This balanced dataset is used for the experiments

in this thesis.
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RE 11 1 5 41 4 1 6

DA 4 1 25 47 3 2 2 1

FN 3 2 7 12 1 1 3 1

MBV 13 3 3 9 3 2 1

PotC 6 1 3 1 2 7

S 2 2 5 1 1 4 8 8 14

SK 3 1 2 6 4 1 2

SU 4 2 1 6 4 1 44

T 3 5 2 15 1 1 6 2

A 9 2 7 1 10 2 2

TM 6 1 7 6 4 2

FD 7 1 2 3 12 6 2 5 8 2

H&K 3 4 1 6 2 13 1 1 1 3 1 3

U 7 11 5 7 2 6 4

Table 3.2: Train and Test split for Films. Abbreviated film names are used for reasons

of space. Empty entries indicate that no actions of that type were present within the

film. Blue entries were part of the train set, and red entries part of the test set.

Film R
u

n

P
u

n
ch

K
ic

k

S
h
oo

t

E
a
t

D
ri

ve

U
se

P
h
o
n

e

K
is

s

H
u

g

S
ta

n
d
U

p

S
it

D
o
w

n

S
w

im

D
a
n

ce

N
o
A

ct
io

n

T
o
ta

l

Train Samples 38 10 11 47 11 51 21 20 9 22 14 16 45 44 359

Test Samples 39 9 11 50 11 47 20 20 8 21 13 17 7 34 307

Table 3.3: Number Train and Test clips for each action in the dataset
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Figure 3.1: Example frames from the Hollywood 3D dataset. Both the left view and

depth streams are displayed. From top to bottom, examples are taken from the action

classes Hug, Kick, Kiss and Drive and Eat. Darker regions of the depth images are

closer to the camera.
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3.1.4 Depth Data Generation

In order to examine the value of 3D information in action recognition, stereo recon-

struction must be performed on the left and right viewpoint videos extracted in sec-

tion 3.1.3, in order to obtain a structural estimate for the sequence. Due to the size

of the Hollywood 3D dataset, many state of the art reconstruction algorithms would

prove impractical. However, the GPU accelerated approach of Richardt et al. [101],

allowed depth data to be generated in a tractable time-frame.

This scheme (referred to as Dual Cross Bilateral Grid (DCBG)) is inspired by bilateral

filtering, which is a discontinuity preserving smoothing scheme, discussed in greater

detail in section 5.1. To generate Hollywood 3D, the temporal variant was employed,

which favours consistency of the reconstruction between frames, so as to remove flicker-

ing in the resulting sequences. Unfortunately, this scheme has high memory overheads

and due to memory limitations on the GPU, results were restricted to 96 disparity lev-

els. Using these settings the system was able to operate close to real time, and process

the dataset in a matter of hours.

3.2 Holistic Action Recognition Using Structure

In order to determine the value of 3D information for action recognition, a range of

traditional spatiotemporal action recognition techniques, are extended to account for

structural information. Figure 3.2 shows the program flow traditionally used in such

systems, beginning with the detection of salient spatiotemporal points, followed by the

extraction of local feature descriptors, and finally the encoding of the sequence in a

single holistic descriptor, which is then classified.

These approaches are less flexible than some alternatives (such as an iterative exten-

sion of the pose estimation system of appendix A), as it is difficult to perform online

estimation, or to estimate the location of actions (both temporally and spatially). To

balance this, the holistic accumulation provides improved robustness to translations

and scaling, while the use of interest points leads to less noisy features.
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Figure 3.2: Traditional action recognition pipeline, including depth inputs. A number

of salient points are detected and local feature descriptors are extracted for each

point. These local descriptors are then accumulated into a holistic descriptor of the

entire video which is used for classification.

The remainder of this chapter discusses 5 extensions to traditional saliency detectors,

incorporating 3D information. In addition 2 popular feature descriptors for action

recognition are discussed, along with their extensions to encode structural features.

3.2.1 Interest Point Detection in 4D

Performing dense sampling (as in the pose system of appendix A) generally leads to a

significant number of features unrelated to the action under consideration, and contain-

ing little to no discriminative potential. In a temporal system this may be exacerbated,

by irrelevant frames before and after the action. By estimating salient regions, irrele-

vant features may be removed. The saliency measures discussed below were originally

formulated for static images, and were later extended to operate in the 3D (spatiotem-

poral) domain. Initially, a similar naive approach was followed, to extend the techniques

from 3D to 4D (incorporating depth).

The specific spatiotemporal saliency measures discussed are the Harris Corner extension

by Laptev and Lindeberg [71], the Hessian points approach of Willems et al. [134] and
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the Separable Filters technique of Dollar et al. [45]. An in depth comparison of these

spatiotemporal interest point detectors for traditional spatiotemporal tasks, is available

in the survey paper by Tuytelaars and Mikolajczyk [121].

4D Harris Corners

The Harris Corner [62] is a very popular 2D saliency measure, which was extended into

the spatiotemporal domain (3D) by Laptev et al. [71]. The detector operates on the

spatiotemporal volume I
1...t, by first applying Gaussian smoothing (via convolution

with the Gaussian function g (0, σ)), and then calculating the second-moment-matrix

Hs(x, y, τ) at each spatial location (x, y) and each temporal location τ . Salient points

are defined as locations where Hs contains 3 large eigenvalues, i.e. there is strong

intensity variation along 3 distinct spatiotemporal axes. In order to improve efficiency,

and avoid calculation of eigenvalues at every location, maxima are instead detected in

the volume IHa calculated using equation 3.1 (where k is typically 0.001).

IHa−3D (x, y, τ) = det (Hs (x, y, τ))− k trace (Hs (x, y, τ))3 (3.1)

It is possible to evaluate this equation without explicitly calculating the eigenvalues of

the matrix, and all points with 3 large eigenvalues will also be maxima of IHa (however

some maxima of IHa may not have 3 large eigenvalues).

Extending the operator into an additional dimension is trivial. The second-moment-

matrix Hs is increased to include gradients along the new dimension z, as shown in

equation 3.2 (where IOx is the gradients along the x dimension, and so on), and the

power of the trace in equation 3.1 is increased to 4. For clarity the spatiotemporal index

(x, y, τ) is omitted below, but a separate matrix Hs is calculated at each space-time

location, using the local gradients for that location.

Hs = g (0, σ) ∗


IOxIOx IOxIOy IOxIOτ IOxIOz

IOxIOy IOyIOy IOyIOτ IOyIOz

IOxIOτ IOyIOτ IOτ IOτ IOτ IOz

IOxIOz IOyIOz IOτ IOz IOzIOz

 (3.2)
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Unfortunately, the combination of appearance and depth streams provides 3.5D rather

than 4D data. Unlike volumetric data such as MRI scans, the intensity measurements

are not dense along the z dimension, instead the measurements form a 3D surface,

within the 4D space. As a result of this, the gradient IOz cannot be estimated directly

using convolution with a filter in the z dimension. However, the relationship between

gradients of the depth and appearance streams, can be exploited using the chain rule,

as in equation 3.3, where observation Ia,Ox,Ia,Oy,Ia,Oτ are the appearance gradients

along the spatial and temporal dimensions, while Id,Ox,Id,Oy,Id,Oτ are the gradients of

the depth stream, along the same dimensions.

IOz =
δa

δz
=

δa
δx
δz
δx

+

δa
δy

δz
δy

+
δa
δτ
δz
δτ

=
Ia,Ox
Id,Ox

+
Ia,Oy
Id,Oy

+
Ia,Oτ
Id,Oτ

(3.3)

Using these estimated gradients, the second-moment-matrix can be calculated at every

location, and the set of 4D Harris interest points F4D-Ha is defined as the set of spa-

tiotemporal locations within the sequence, for which the response value IHa is above

a threshold λ4D-Ha, as in equation 3.5. Lower threshold values lead to more infor-

mation being extracted from the sequence, but increase the likelihood of noise being

included. The effect of this threshold on recognition performance, is examined in detail

in section 3.3.3.

F3D-Ha = {x, y, τ | IHa−3D (x, y, τ) > λ3D-Ha} (3.4)

F4D-Ha = {x, y, τ | IHa (x, y, τ) > λ4D-Ha} (3.5)

4D Hessian Points

In [134], Willems et al. extended the Beaudet Saliency Measure [22] into the spatiotem-

poral domain. Rather than the second-moment-matrix of Laptev et al. they calculated

the Hessian He−4D of the spatiotemporal volume after Gaussian smoothing. The def-

inition of saliency differs slightly, as the determinant of the Hessian is used directly,
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implying that interest points must exhibit second order gradients along 3, roughly or-

thogonal, axes. This is in contrast to the Harris corner, where the orientations of the

eigenvectors do not matter, as long as the eigenvalues are large enough. This highlights

the origins of the Hessian points as a blob detector, however in the 3D extension the

sign of the second order derivatives are not assured, leading to the detection of both

spatiotemporal blobs, and saddles.

As in the 4D Harris scheme, gradients along z are estimated using the relationship

between the depth and intensity stream gradients from equation 3.3. This allows the

4D HessianHe−4D to be calculated as in equation 3.6. The set of interest points F4D-He

is then calculated as the set of spatiotemporal locations, for which the determinant of

He−4D is greater than the threshold λ4D-He as in equation 3.8.

He−4D = g (0, σ) ∗


IOxOx IOxOy IOxOτ IOxOz

IOxOy IOyOy IOyOτ IOyOz

IOxOτ IOyOτ IOτOτ IOτOz

IOxOz IOyOz IOτOz IOzOz

 (3.6)

F3D-He = {x, y, τ | det (He−3D (x, y, τ)) > λ3D-He} (3.7)

F4D-He = {x, y, τ | det (He−4D (x, y, τ)) > λ4D-He} (3.8)

3.2.2 Interest Point Detection 3.5D

In part, the original Harris and Hessian interest point operators were motivated by the

idea that object boundary points are highly salient, and that intensity gradients gener-

ally relate to boundaries. However, depth data directly provides boundary information,

rendering the estimation of the intensity gradient along z somewhat redundant. An

alternative approach would be, instead of estimating a full 4D intensity volume, to

employ a “3.5D” representation, using a complimentary pair of 3D spatiotemporal vol-

umes, from the appearance and depth sequences. This makes it possible to detect object
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boundaries against similarly colour backgrounds using depth, while also detecting the

boundary between objects of similar depth, using appearance.

3.5D Harris Corners

Equation 3.9 defines the set of 3.5D Harris points F3.5D-Ha where IHa,a is the volume

created by applying equation 3.1 to the appearance stream, while IHa,d is the converted

depth volume. The relative weighting of the appearance and depth information, is

controlled by α, which is set to 1 for the remainder of the thesis, implying equal

weighting of appearance and depth data.

F3.5D-Ha = {x, y, τ | IHa,a (x, y, τ) + αIHa,d (x, y, τ) > λ3.5D-Ha} (3.9)

The salient points detected by this scheme are those with either strong intensity gradi-

ents in 3 spatiotemporal directions (i.e. the meeting point of 2 moving, high contrast,

edges) or with a strong depth discontinuity along 3 spatiotemporal directions (i.e. a

moving object corner).

3.5D Hessian Points

Equation 3.10 relates to the set of 3.5D Hessian points F3.5D-He, specified in terms of

the determinants of He−4D,a and He−4D,d which are the 3D Hessian matrices of the

appearance and depth volumes respectively.

F3.5D-He = {x, y, τ | det (He−4D,a (x, y, τ)) + α det (He−4D,d (x, y, τ)) > λ3.5D-He}

(3.10)

As mentioned previously, Hessian points relate to image regions with second order

derivatives along 3 near-orthogonal axes. Thus in the 3.5D case, detected points relate

to moving regions with either concave/convex structures, or blob/saddle texturing.
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3.5D Separable Filters

A third highly successful approach to interest point detection, is the Separable Linear

Filters technique of Dollar et al. [45]. Unlike the Harris and Hessian approaches,

each dimension is treated differently in the separable filters approach. This makes the

approach less suitable for a direct 4D extension, however the 3.5D technique can be

easily applied.

The original formulation for Separable Filters is to create a spatiotemporal response

volume ISF , by filtering the input volume, using a 2D Gaussian filter in the spatial

dimensions, and a quadrature pair of Gabor filters geve and godd along the temporal

dimension, as shown in equation 3.11.

ISF = (I ∗ g (0, σ) ∗ geve)2 + (I ∗ g (0, σ) ∗ godd)2 (3.11)

The even and odd Gabor filters which are applied along the temporal dimension, relate

to single cycles of a sin and cosine wave, respectively. Thus the interest point detector

targets regions with low intensity, followed by an intensity peak, or regions with an

intensity peak surrounded by 2 low intensity points. Such points would relate to the

moving edge of two high contrast regions, or a single high contrast line, in motion.

The Gaussian filtering applied in the spatial domain, simply relates to the weighted

accumulation of responses over a region.

Equation 3.13 shows the 3.5D formulation of the separable filters approach. The re-

sponse volume created by equation 3.11 when applied to the appearance and depth

streams, are denoted as ISF,a and ISF,d respectively. The set of detections F3.5D-S re-

lates to moving high contrast boundaries as described above, or to a moving structural

boundary.

F3D-S = {x, y, τ | ISF (x, y, τ) > λ3D-S} (3.12)

F3.5D-S = {x, y, τ | ISF,a(x, y, τ) + αISF,d(x, y, τ) > λ3.5D-S} (3.13)
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3.2.3 Feature Descriptors

These interest point schemes help to reduce the contamination of the features with

irrelevant information. By utilising depth data it may be possible to more robustly

identify salient regions. However the features themselves do not encode any structural

information, which is likely to be discriminatory. Below, two highly successful feature

descriptors are discussed. In their original formulation, these descriptors include only

3D spatiotemporal information, and so extensions are proposed, to allow the descriptors

to incorporate structural information.

Relative Motion Descriptor

The Relative Motion Descriptor (RMD) of Oshin et al. [93] has been shown to perform

well in a large range of natural action recognition situations, while making use of only

the saliency information obtained during interest point detection. To calculate the

descriptor, a spatiotemporal volume Iint is created using the interest point detector

response strengths. In equation 3.14 the saliency content Icont (x, y, τ) is defined, for

a spatiotemporal region with origin (x, y, τ) and dimensions (x̂, ŷ, τ̂). This summation

over a region can be calculated rapidly by creating an integral volume, and using only

a small number of lookups.

The descriptor Irmd of the saliency distribution at location (x, y, τ) can then be formed,

by performing O comparisons, between pairs of randomly offset spatiotemporal sub-

cuboids, with origins at (x, y, τ)+η and (x, y, τ)+η′. Figure 3.3 illustrates the relation-

ship between the location in question, the random offsets and the associated subcuboids.

Also note that the collections of offsets η1..O and η′1..O is randomly selected before

training. The same set is then applied for all subsequent training and test sequences,

so that the same subcuboids are always compared.

Icont (x, y, τ) =

(x̂, ŷ, τ̂ )∑
η̂=(0,0,0)

Iint ([x, y, τ ] + η̂) (3.14)
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Figure 3.3: An RMD saliency content comparison. A single saliency content

comparison, within the spatiotemporal volume Iint. The comparison is being

performed at location (x, y, τ) using offsets η and η′. The subcuboids have

dimensions of x̂, ŷ, τ̂ , and contain 4 and 3 interest points respectively.

Irmd(x, y, τ) =

O∑
o=0

 2o Icont ([x, y, τ ] + ηo) > Icont ([x, y, τ ] + η′o)

0 otherwise
(3.15)

Continuing the example from figure 3.3, the subcuboids at offsets η and η′ contain

4, and 3, interest points, respectively. If all interest points have a weight of 1, then

Icont ([x, y, τ ] + ηo) = 4 and Icont ([x, y, τ ] + η′o) = 3. This means the comparison will

succeed, and the descriptor Irmd(x, y, τ) will be incremented by 2o.

The response Irmd can then be computed at every spatiotemporal location in the

sequence, and accumulated into a histogram, which encodes how often relative saliency

distributions occur within the sequence. The descriptor is applicable to any form of

saliency measure, and does not require appearance or motion data to be available.

The amount of information encoded by the descriptor is controlled by the number of

comparisons O. However increasing this value also leads to sparser histograms. To

cope with this, it is common to concatenate several Irmd histograms, each calculated

using different collections of random offsets. This allows the descriptor to encode more
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information, without becoming sparse, by sacrificing the independence of the bins (i.e.

some of the encoded information may be redundant).

Relative Motion Descriptor - 4D

The RMD descriptor can be extended, to incorporate 3D structural information, by

recording the z measurements of each interest point detection. A 4 dimensional in-

tegral hyper-volume Iint-4d can then be populated, which contains the behaviour of

the saliency distribution, within the 3D scene, rather than on the image plane. The

RMD-4D descriptor Irmd-4d can then be computed, as in equation 3.17, by comparing

the saliency content of randomly offset sub-hypercuboids.

Icont-4D (x, y, z, τ) =

(x̂, ŷ, ẑ, τ̂ )∑
η̂=0

Iint ([x, y, z, τ ] + η̂) (3.16)

Irmd-4d(x, y, z, τ) =
O∑
o=0

 2o Icont-4D ([x, y, z, τ ] + ηo) > Icont-4D ([x, y, z, τ ] + η′o)

0 otherwise

(3.17)

As with the original RMD formulation, this new descriptor can operate in conjunction

with any definition of saliency (i.e. using any interest point detection scheme). Im-

portantly, the RMD-4D descriptor is not restricted to operating with the depth aware

interest point detectors of section 3.2.1. The feature descriptor is equally applicable to

standard spatiotemporal interest points, provided a depth stream is available, to look

up corresponding z values.

Bag of Visual Words

A more popular approach to feature extraction for action recognition, is the Bag of

Visual Words (BoVW) technique, employed by Laptev et al. [72]. This is inspired by

similar, highly successful work in the field of object recognition. In brief, a collection

of distinctive “exemplar” features are selected from the training data. These are the
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“words”, which collectively form the codebook. Sequences are then described by a

frequency histogram (the “bag” of words), with each bin relating to one word from the

codebook. Any feature space may be used to generate the words (in object recognition

SIFT points are commonly used). One highly successful approach, in the field of action

recognition, is to employ a combined HOG and HOF feature vector. Unlike the RMD,

this descriptor directly encodes both appearance and motion information, making it

more descriptive, but somewhat less flexible.

Equation 3.18 defines the descriptor ρ at location (x, y, τ) in the sequence, where

ω
(
IOx, IOy, (x, y, τ)

)
is a function, which creates a joint histogram of the values taken

from IOx, IOy within a local region centred on point (x, y,τ). When the function ω is

applied to gradient images, the output histogram relates to a HOG descriptor, while the

output for flow images (I dx
dτ

and I dy
dτ

) is a HOF descriptor. Some spatial information is

maintained, by splitting the neighbourhood into blocks, and concatenating each blocks

histogram.

ρ(x, y, τ) =

(
ω
(
IOx, IOy, [x, y, τ ]

)
, ω

(
I dx
dτ

, I dy
dτ

, [x, y, τ ]

))
(3.18)

After ρ has been calculated for all interest points in the training sequences, clustering is

performed to find a distinctive subset of descriptors which covers the range of features

observed, in order to form the codebook. In this thesis, K-Means clustering is employed,

with a standard euclidean distance function as in [72]. When the contents of the

codebook have been determined, the training sequences (and any subsequent sequences)

may be encoded, by assigning each extracted ρ to the closest cluster in the codebook.

These assignments are then accumulated into the histogram describing the sequence as

a whole.

For each interest point, a single ρ is extracted, which equates to a single entry in

the histogram. This may prove more robust than the RMD approach, where saliency

comparisons are performed at every point within the sequence, as irrelevant interest

points will affect one histogram entry, rather than many. This idea is explored in

section 3.3.3.
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Bag of Visual Words - 4D

To extend ρ to encode structural information, the simplest approach is to include a

Histogram of Oriented Depth Gradients (HODG) structure descriptor, alongside the

appearance and motion HOG/HOFs. This is shown in equation 3.19. It is natural

to ask “why not do the equivalent for the HOF information in the depth stream”,

however standard optical flow algorithms tend to yield poor results when applied to

depth videos, and performing accurate 3D motion estimation is a non trivial task. The

estimation of such 3D motion information is explored in depth in the following chapters.

ρ4D(x, y, τ) =

(
ω
(
Ia,Ox, Ia,Oy, [x, y, τ ]

)
, ω

(
I dx
dτ

, I dy
dτ

, [x, y, τ ]

)
, ω
(
Id,Ox, Id,Oy, [x, y, τ ]

))
(3.19)

The same bag of words encoding scheme is employed for ρ4D features as for the ρ fea-

tures of the previous section. As with the RMD-4D algorithm, ρ4D is not dependent on

the interest point detector used, and specifically does not require depth aware interest

points, however a depth video is necessary for calculating the HODG.

3.3 Experiments

Classification of sequence descriptors was performed using a Support Vector Machine

(SVM), with a Radial Basis Function (RBF) kernel. To facilitate comparisons with

results on the Hollywood 1 and Hollywood 2 datasets, the Mean Average Precision

(MAP) was calculated as an error metric. The metric is explained in detail in the

PASCAL VOC [47], but essentially relates to the area under the precision recall curve

i.e. the “cleanness” of results, across all detection thresholds. Due to this integration

over recalls, the error measure is extremely robust, even without cross validation. This

allows a specific train and test set to be defined as in the Hollywood 1 and 2 datasets,

which improves reliability of comparisons with future work.

For the computation of RMD features, 4 region comparisons were performed per his-

togram (O=4) and 10 histograms were concatenated to form the descriptor. The bag
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of visual words descriptor was generated using a codebook of 4,000 elements, as used

by Laptev et al. [72].

3.3.1 Interest Point Evaluation

First the incorporation of 3D structural information during interest point detection is

evaluated. The analysis aims to determine whether points chosen as salient by each

scheme, are more or less relevant to the actions being performed. For this analysis, the

Bag of Visual Words feature descriptor of Laptev et al. [72] was employed. Table 3.4

shows the performance breakdown per class for each interest point detection scheme.

The type of saliency measure used has a surprisingly large effect on the eventual per-

formance of the system, with the average precision of the best scheme being roughly

double that of the worst, even using the same feature encoding. For the standard spa-

tiotemporal schemes, Harris points (F3D-Ha) outperform separable filter points (F3D-S)

for all actions. This is also reflected in the depth aware schemes, and is unsurprising,

as separable filters were designed primarily for computational speed. Hessian based

interest points prove less informative than the Harris operators in both the 4D and

3.5D case. For all detectors, the 4D scheme outperforms its standard spatiotemporal

counterpart, however the 3.5D approaches prove the most informative. This confirms

the belief that the calculation of intensity gradients along z is redundant, and that the

combination of intensity and structure gradients, is a stronger measure of saliency.

Interestingly, certain actions consistently perform better, when described by depth

aware interest points. These are actions such as Kiss, Hug, Drive and Run where there

is an informative foreground object, which depth aware interest points are better able

to pick out. In contrast, actions such as Swim, Dance and Shoot are often performed

against a similar depth background, or within a group of people, and the inclusion of

depth in the saliency measure is less valuable. For certain actions such as Punch and

Kick the original spatiotemporal formulation actually offers the best performance. This

suggests that a combination of standard spatiotemporal, and depth aware schemes, may

prove valuable.

The complexity of the depth aware interest point detectors remains of the same order
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Action F3D-S F3D-Ha F4D-He F4D-Ha F3.5D-S F3.5D-He F3.5D-Ha

NoAction 11.4 12.1 12.2 12.9 11.4 12.0 13.7

Run 12.6 19.0 15.9 22.4 12.7 21.8 27.0

Punch 2.9 10.4 2.9 4.8 2.9 5.7 5.7

Kick 3.6 9.3 4.2 4.3 3.8 3.7 4.8

Shoot 16.2 27.9 18.9 17.2 16.2 16.2 16.6

Eat 3.6 5.0 3.6 5.3 3.6 7.7 5.6

Drive 15.3 24.8 25.6 69.3 15.5 76.5 69.6

UsePhone 6.5 6.8 14.7 8.0 6.5 17.7 7.6

Kiss 6.5 8.4 8.5 10.0 6.5 9.4 10.2

Hug 2.6 4.3 3.5 4.4 2.6 3.4 12.1

StandUp 6.8 10.1 7.0 7.6 6.9 9.1 9.0

SitDown 4.2 5.3 4.5 4.2 4.2 4.3 5.6

Swim 5.5 11.3 7.8 5.5 5.5 5.9 7.5

Dance 2.3 10.1 4.2 10.5 2.2 3.8 7.5

Overall 7.1 12.6 9.8 13.3 7.1 13.4 14.1

Table 3.4: Interest Point detector performance. The displayed values are the average

precision, for each class in the Hollywood 3D dataset. A range of interest point

detectors are tested, including simple spatiotemporal interest points, and depth aware

schemes. The Bag of Visual Words feature descriptor was used. Classes are shown in

bold, when depth aware interest points outperform both 3D schemes.
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as their spatio-temporal counterparts (linear with respect to x, y and τ). Naturally the

multiplicative factor is increased however, with 3.5D techniques being roughly twice as

costly, and 4D techniques taking 4 times as long.

3.3.2 Feature Evaluation

In this section, the value of including 3D structure information during feature encoding

is analysed. Due to the quantity of results, only the average performance across classes

is shown, however the correct classification rate is presented in addition to the average

precision. This performance measure is more relevant in tasks where the sequence is

known to belong to one and only one class (such as video clustering and categorisation).

In table 3.5 each combination of interest point and feature descriptor is contrasted, with

the best performing feature for each saliency measure shown in bold.

The previously noted relationship between saliency measures, appears to hold regardless

of the feature descriptor used. In all cases the fast F3D-S and F3.5D-S points, performed

the worst, followed by the Hessian based schemes, while the extended Harris operators

provided the best performance. Also following the previously noted trend, spatiotem-

poral interest points offer the worst performance overall, while the 3.5D scheme prove

to be the most effective way to incorporate depth information.

Both types of descriptor show a consistent improvement when incorporating structural

information, with increases of roughly 30% in both average precision and correct classifi-

cation. Overall, the Bag of Words descriptors slightly outperform the RMD descriptors.

This is unsurprising as the RMD relies only on interest point detections, without the

inclusion of the visual and motion information that is employed for the bag of words.

It would have been reasonable to assume, that including structural features would prove

more valuable with a standard saliency measure, as the depth information had not

previously been exploited. In fact the opposite proves to be true, 4D features provide

more modest gains for 3D-S and 3D-Ha (up to 20%) than they do when combined

with extended saliency measures (up to 45%). This demonstrates that depth aware

saliency measures are capable of focusing computation, within regions where structural

features are especially valuable.
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Interest Points Descriptor CC Rate AP

F3D-S RMD 7.2% 7.2

F3D-S RMD-4D 7.3% 7.4

F3D-S HoG/Hof 7.2% 7.1

F3D-S HoG/Hof/HoDG 7.3% 7.2

F3D-Ha RMD 15.3% 12.2

F3D-Ha RMD-4D 15.9% 15.0

F3D-Ha HoG/Hof 16.2% 12.6

F3D-Ha HoG/Hof/HoDG 19.8% 13.2

F4D-He RMD 10.4% 11.2

F4D-He RMD-4D 16.2% 12.7

F4D-He HoG/Hof 9.4% 9.3

F4D-He HoG/Hof/HoDG 11.4% 9.8

F4D-Ha RMD 10.7% 11.5

F4D-Ha RMD-4D 10.4% 10.3

F4D-Ha HoG/Hof 14.3% 12.5

F4D-Ha HoG/Hof/HoDG 18.5% 13.3

F3.5D-S RMD 7.3% 7.3

F3.5D-S RMD-4D 7.6% 7.8

F3.5D-S HoG/Hof 7.2% 7.1

F3.5D-S HoG/Hof/HoDG 7.3% 7.4

F3.5D-He RMD 13.3% 12.2

F3.5D-He RMD-4D 17.5% 14.3

F3.5D-He HoG/Hof 13.6% 11.7

F3.5D-He HoG/Hof/HoDG 19.2% 13.4

F3.5D-Ha RMD 12.3% 11.9

F3.5D-Ha RMD-4D 17.2% 14.4

F3.5D-Ha HoG/Hof 17.9% 13.0

F3.5D-Ha HoG/Hof/HoDG 21.8% 14.1

Table 3.5: Descriptor and Saliency performance. For each combination of descriptor

and saliency measure, the Correct Classification rate and Average Precision is shown.

The best feature for each saliency measure is shown in bold.
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Figure 3.4: Precision-recall curves. One curve for each feature type, using the

F3.5D-Ha saliency measure.

Figure 3.4 shows the precision-recall curves for each feature descriptor when using the

F3.5D-Ha saliency measure. The bag of words approaches tend to offer the greatest

precision at lower recall levels, while at higher recall levels the features converge to a

similar level of precision. The 4D feature descriptors offer better precisions than their

spatiotemporal counterparts for almost all recalls.

The complexity of the RMD-4D is greater than the standard RMD (being linear in the

range of depth values, as well as in x, y and τ). This is somewhat mitigated by the use of

integral volumes however, meaning that runtimes are still on the order of seconds using

a single CPU. In contrast the extraction of HoDG features relates to a 50% increase in

cost, while still remaining linear. However the increased feature vector length does lead

to and increased cost during codebook generation, as k-means is generally polynomial

in the number of dimensions.
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3.3.3 Interest Point Threshold Evaluation

To generate the Precision-Recall curve of figure 3.4, the detection threshold of the

SVM is varied. However, the interest point detection stage also involves a separate

threshold, which controls the density of features, and the chance of spurious regions

being included in the features. Different interest point operators produce very dif-

ferent response strengths, meaning the optimal threshold for extracting salient points

varies between techniques. In most previous work an arbitrary threshold is selected

(or empirically determined), indeed the experiments in the previous sections employed

saliency thresholds based on those suggested by previous literature. In figure 3.5 the

relationship between the saliency threshold and the action recognition performance, is

contrasted for all interest point detectors.

The separable filter saliency responses appear to lie within a much tighter range than

the other detectors. As a result, changing the threshold by more than an order of

magnitude, leads to so few interest points that performance drops to chance.

Regardless of the saliency measure, both the standard feature descriptor and its depth

aware extension, exhibit the same behaviour. Interestingly, the trend is positive for

RMD based features, i.e. higher saliency thresholds lead to increased accuracy (except

for the 3D Harris interest points). In contrast, bag of words approaches provide the

greatest accuracy at lower saliency thresholds. This suggests that RMD features are

more sensitive to noise, while the Bag of Words features are better at isolating non-

discriminatory information. This makes sense, as a weak interest point relates to only

a single histogram entry under the bag of words scheme. In contrast, poor interest

points will affect the RMD descriptor at all surrounding locations. This is particularly

interesting, as it demonstrates that interest point detection is valuable, not only for

reducing the computation required, but also for improving the signal to noise ratio of

the features. Denser features do not always lead to improved performance.

3.3.4 Detection modes

Figure 3.6 contrasts the Average Precision of the various interest point and feature

combinations, when calculated under various detection schemes. In figure 3.6.a static
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(a) 3D Separable Filter (b) 3.5D Separable Filter

(c) 3.5D Hessian (d) 4D Hessian

(e) 3.5D Harris (f) 4D Harris

(g) 3D Harris

Figure 3.5: Saliency threshold behaviour. The Average Precision of each interest point

detector and descriptor combination, is shown as the saliency threshold is varied.
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(a) Static against Non-Static thresholding (b) Multiclass against 1VsAll

(c) Multiclass against 1Vs1 (hard) (d) Multiclass against 1Vs1 (soft)

Figure 3.6: Analysis modes. Average precision across classes for the Hollywood 3D

dataset, analysed with 4 different classification modes and 2 thresholding schemes.

mode, relates to a threshold on the class’s likelihood, in order for the class to be

detected. In contrast, non-static mode requires the class’s likelihood, to be greater

than the likelihood of the NoAction class, by a certain amount. The best performance,

for all combinations of interest point and feature type, is obtained using the simpler

static thresholding, likely due to the difficulties in learning the NoAction class.

The remaining detection modes are analysed in figures 3.6.b to 3.6.d, with a standard

multiclass formulation, being compared to a bank of “1 versus all” classifiers and to

a pair of “1 versus 1” schemes. The “hard” 1 versus 1 scheme, shown in figure 3.6.c

restricts each classifier, to selecting a single class to vote for. The “soft” 1 versus 1
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scheme shown in figure 3.6.d allows each classifier to cast a weighted vote for all classes,

using their estimated likelihood.

Overall the best performance is provided by the “soft” 1 versus 1 voting scheme, as it

breaks the problem down into simpler sub tasks without unnecessary quantisations on

the probabilities. However, this is also the least scalable approach, with both training

and testing times increasing quadratically with the number of classes (but not the

number of samples).

3.4 Conclusions

The high intra class variation inherent in natural action recognition, can be somewhat

mitigated by making use of 3D information, which removes variations between actors

appearance, lighting and gives useful information about occlusions. To demonstrate

this a new natural action recognition dataset was compiled, and a number of existing

techniques, were shown to provide improved performance when extended to incorpo-

rate depth information. These included 5 different saliency operators, and 2 feature

descriptors.

Gains in performance were most significant when both the saliency measure and the

features included depth (up to a gain of 30% average precision), which demonstrates

that the points detected as salient by the new operators contain especially descriptive

structural features. The most effective measure of saliency for action recognition proved

to be the Harris operator, with complimentary appearance and structural saliency

(3.5D) shown to be the best extension.

The bag of words feature descriptors also proved to be the most valuable. However,

it was also shown that increases to the saliency thresholding leads to improved perfor-

mance for RMD descriptors, and reduced performance for bag of words, implying that

the RMD scheme was more sensitive to noisy detections. This also served to highlight

the fact that dense features are not always better, and that comparisons performed with

different arbitrarily selected saliency thresholds are likely to draw different conclusions.

The dataset has been released to the community, facilitating future development of
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more complex structural encoding for action recognition. In the future, an investigation

into scale selection methods for the high-dimensional interest point detectors, would

allow even greater performance improvements, particularly on high resolution data.

Additionally, the encoding of depth into the descriptors may be developed. Structural

information has been directly incorporated, but the motion features still only make use

of movement within the image plane, despite the fact that estimation of out-of-plane

motions should be possible.
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Chapter 4

Particle Based 3D Motion

Estimation

In addition to direct use of the structural data available from the Hollywood 3D dataset,

it may be possible to enhance the motion information, to account for out of plane mo-

tion. Such motions are often discriminatory for actions, particularly in unconstrained

scenarios. In order to integrate such information with the interest point based approach

of chapter 3, it must be possible to obtain an instantaneous 3D motion estimate, at

any space-time location deemed salient 3.2.1, obviously this is easiest if the estimated

motion field is dense. Unfortunately, due to the size of the dataset, existing techniques

for estimating dense 3D motion (also known as “scene flow”) are infeasible. As an ex-

ample, recent approaches [64, 99] often require several hours to process a single frame,

and would thus take more than 20 years, for the whole dataset.

In addition to (and as a consequence of) these speed issues, existing techniques for cal-

culating scene flow rarely consider estimation over more than a single frame. Thus, the

formulations do not allow for the propagation of information between frames, leading

to no enforcement of temporal consistency, and producing “flickering” of the result-

ing motion field. The instability of these motion fields makes them less reliable for

recognising actions.

A third difficulty with current 3D motion estimation techniques, as discussed in sec-

51
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tion 2.2.2, is that the ambiguity inherent in the task (particularly due to the aperture

problem) has lead previous work to focus on the accumulation of constraints spatially

to increase the aperture by assuming smoothness of the motion field (either within

a local neighbourhood, or using a global variational optimisation). In practice, this

means that, from the set of ambiguous motions, a single result is chosen, which gives

rise to the smoothest motion field. However, at discontinuities in the motion field,

such as object boundaries, the assumption often leads to the selection of sub-optimal

motions, in favour of preserving smoothness. Places where this occurs are referred to

as over-smoothing artefacts, and it was noted by Basha et al. that these artefacts are

the primary source of errors in modern Scene Flow Estimation (SFE) techniques [19].

In the context of the action recognition system from chapter 3, these artefacts are espe-

cially damaging, as they corrupt motion at object boundaries, where the vast majority

of salient points are detected.

A brief introduction to the problem of SFE is presented below. The remainder of this

chapter then explores a novel probabilistic approach to SFE which was published in

ICCV 2011[59], where temporal consistency is respected by propagating information

between frames, and oversmoothing artefacts are avoided through the maintenance of

multiple hypotheses. Additionally, the approach presented is several orders of magni-

tude faster than previous techniques, making it suitable for application to the action

recognition dataset of chapter 3.

4.1 3D Motion Field Estimation

If we consider a scene, observed by 2 cameras I1 and I2, at 2 points in time, the task

of estimating the 3D motion of a point can be considered as a 4 way correspondence

problem. Figure 4.1 illustrates this using 5 different examples of correspondence com-

binations (images involved in the correspondence are indicated in the bottom right of

each subfigure). In figure 4.1b the correspondence of a point between the two cameras,

at a particular frame, specifies the 3D location of the point at that frame (as in stereo

matching tasks). The correspondences between two frames of the same camera (as in

optical flow tasks) is shown in figure 4.1c and defines a plane of possible 3D motions
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(a) No Correspondence (b) Stereo Match (c) Optical Flow

(d) Optical Flow and Stereo Match (e) Full Correspondence

Figure 4.1: 2D simplification of the scene flow estimation task. I1 and I2 are

represented as boxes with the forward edge being the image plane and the cross being

the focal point. Dashed lines indicate rays, along which all points project to the same

pixel. Five scenarios are shown, with the same point detected in multiple sensors and

frames, defined in the bottom right of each scenario. Detections of the point at frame

t+1 are shown in grey.

with uncertain start and end positions. The combination of a single stereo match and

a single optical flow match (figure 4.1d), meaning the point is detected in both frames

of one sensor and a single frame for the other sensor, leads to a triangular section

of the optical flow plane. In this case, either the start or end point is known, while

the other is undetermined. Any combination of three constraints (either two stereo

matches and one optical flow, or two optical flow and one stereo match) are sufficient

to uniquely determine the 3D motion of the point as shown in 4.1e. In fact the com-

bination of three correspondences uniquely defines the fourth correspondence, with a

missing optical flow correspondence being given by the offset between stereo matches

at each frame, while a missing stereo correspondence is determined by the end points

of the flow correspondences in each sensor.
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When examining figure 4.1, it is natural to also consider a scenario with only 2 stereo

correspondences, or with only 2 optical flow correspondences. Such a scenario would

involve all 4 images, using only two connections. This is a useful question, as it provides

some insight into the difference between SFE and stereo reconstruction or optical flow

estimation. Having only two stereo correspondences means we know the 3D position

of a point at two frames, but there is no reason to believe it is the same point. Put

another way, we can create a separate 3D structural reconstruction at every frame, but

we don’t know which parts of the structure are moving. Conversely two optical flow

constraints means we have followed moving points on the image plane of each sensor,

but they are unlikely to correspond to the same point in the scene. The end result in

this case is a pair of 2D motion fields, with no knowledge of the 3D structure which

gave rise to them. In contrast, SFE aims to fully describe the evolution of a 3D scene

over time, by obtaining a single unified solution to both problems.

The situation shown in figure 4.1 can be extended to include additional sensors or

frames, making the problem further over-constrained, without changing the require-

ments. Having three or more stereo matching correspondences at a single frame, is

still insufficient to define motion, while larger numbers of optical flow fields still cannot

define the underlying structure. This tells us that the necessary constraints for deter-

mining scene flow, are for the point to have at least 3 detections, covering at least 2

sensors and at least 2 points in time.

If information from a depth sensor is available, this replaces the stereo correspondences

at every frame, meaning only a single optical flow correspondence is required to uniquely

determine the 3D motion. The optical flow correspondences may be obtained from the

same sensor, providing “monocular” scene flow. Such techniques are referred to as

“Range Flow” [82, 107, 108]. However, it is difficult to determine motion correspon-

dences from depth data alone, and so an appearance sensor is often used to obtain the

optical flow constraint, creating a “hybrid” approach.
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4.2 Probabilistic Scene Flow

Given any scene, there is a continuous 3 dimensional space of possible structure points,

which the scene may contain. A particular point from this space is specified by the

vector r. In addition, at every one of these structure points, there is a continuous

3 dimensional space of possible motions, with points in this space referred to using

the vector v. The goal of SFE is to extract the set of points and motions with the

highest probability, given the input observations I (“observations” in this thesis, refer

to the set of images obtained from a number of synchronised appearance and/or depth

sensors, in a known but unrestricted configuration). To this end, the 6 dimensional

Scene Probability distribution p (r,v | I) is defined, specifying how probable every

combination of structure and motion is, in the observed scene. The peaks of this

distribution can be used to generate an estimate of the scenes structure and motion

field. Note that, there are no restrictions limiting the distribution to have a single peak

per optical ray, which gives rise to the multiple hypothesis properties mentioned earlier

in this chapter.

Bayes theorem may be used to define the posterior distribution p (r,v | I) in terms of

the prior distribution p (r,v) and the likelihood p (I | r,v).

p (r,v | I) ∝ p (I | r,v)p (r,v) (4.1)

Bayes theorem may also be extended to joint estimation over time (i.e. the probability

of a sequence of structure and motion fields, given a sequence of observations), leading

to equation 4.2.

p1..t (r,v | I) = p1..t (I | r,v)p1..t (r,v) (4.2)

A transition function p
(
rt,vt | rt−1,vt−1

)
may also be defined, using a constant ve-

locity motion model, for every point r,v in the distribution, such that rt = rt−1 +vt−1

and vt = vt−1. Obviously more advanced motion models could be used, such as the

incorporation of acceleration, however this would require an increase in the dimension-

ality of the particle filter. This transition function represents the evolution of a scene
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flow field over time, and can be used to generate the prior probabilities for a given

sequence, as in equation 4.3. Note that a uniform distribution is used for the prior

at the first frame p1 (r,v). The resulting system exhibits exponential stability [43],

meaning that the effect of these initial conditions, decays exponentially with each new

observation.

p1..t (r,v) = p1 (r,v)
t∏
τ=2

p (rτ ,vτ | rτ−1,vτ−1) (4.3)

The likelihood p1..t (I | r,v) of a sequence of observations, given a sequence of scene

flow fields is equal to the product of the likelihoods, analysed at each frame. This, in

conjunction with equation 4.3, allows the transition and likelihood terms for the most

recent frame t to be factored out, as shown in equation 4.4.

p1..t (r,v | I) = pt (I | r,v)p
(
rt,vt | rt−1,vt−1

)
p1..t−1 (I | r,v)p1..t−1 (r,v) (4.4)

The last two terms can then be combined with equation 4.1, to obtain a recursive

definition.

p1..t (r,v | I) = pt (I | r,v)p
(
rt,vt | rt−1,vt−1

)
p1..t−1 (r,v | I) (4.5)

This formulation requires only the likelihood term from the current frame, in conjunc-

tion with the posterior from the previous frame, multiplied by the transition function.

Hence, this recursive formulation is suitable for online applications, as complexity does

not increase for additional frames.

The only term of equation 4.5 which remains to be defined, is the likelihood p (I | r,v)

specifying the chance that a set of observations would occur, given that the scene con-

tains a structure point at r moving with velocity v. The following sections define two

terms, based on two information sources, which together provide the likelihood distri-

bution. The first of these, pa(Ia | r,v) is based on observations Ia from a collection

of appearance sensors. The second, pd(Id | r,v) is based on observations Id from a
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collection of depth sensors. The likelihood is taken as the product of these two terms,

which assumes independence between the two information sources. Due to the Bayesian

formulation presented, it is trivial to incorporate further information sources if such

independence can be assumed, as shown in section 4.5.

4.2.1 Appearance Likelihood

If the appearance observations Ia are the output of M appearance sensors (either RGB

or greyscale) with projection functions Π1...M (converting 3 element vectors r into

2D pixel locations), then the likelihood of a structure point at a given r and v can be

estimated, using the brightness constancy assumption. This assumption states that the

brightness of an object, remains constant over time, and when viewed from any direction

(this fundamental assumption is explored and improved upon in section 5.7.1 of the

next chapter). For RGB sensors, the assumption is often extended to colour constancy.

If we assume the true appearance of a point is the average of the appearance observed

in each sensor Ī:

Ī =

M∑
m=1

t∑
τ=t-1

Iτa,m(Πm(rτ ))

2M
(4.6)

then the squared error (divergence from brightness constancy) is equivalent to the

variance of the projected appearance, across all sensors, at both the previous and

current frame (It-1a,m and Ita,m respectively). Using this cost function, a likelihood can

be obtained:

pa(Ia | r,v) =
1

1 + ea

M∑
m=1

t∑
τ=t-1

(
Iτa,m(Πm(rτ ))− Ī

)2
2M

(4.7)

where rt-1 can be found from rt − v. Thus the likelihood depends only on the current

r and v values (i.e. the likelihood formulation is memoryless).

Note that previous works often assume either Gaussian measurement noise [63], or

utilise a function referred to “smooth” or “robust” approximation to the L1 norm [19]
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Figure 4.2: Comparison of brightness constancy functions. In cyan, purple and yellow

the formula of equation 4.7 is shown with different values of ea (1,2 and 3

respectively). In Green the unbounded “smooth L1” is shown, in blue the Gaussian

formulation is shown and in red the exponential decay cost is shown.

when penalising divergences from brightness constancy. Figure 4.2 illustrates the be-

haviour of these functions. The robust estimation function grows unboundedly and is

thus more suitable for energy minimisation tasks than as a probability measure. The

Gaussian assumption on the other hand, was found to poorly reflect true motion esti-

mation noise by Sun et al. [118], who found that motion estimation experiences tighter

peaks and heavier tails, for a given variance. The formulation presented here produces

a well formed likelihood (i.e. between 0 and 1) for all possible constancy divergences,

while also displaying the characteristics identified by Sun et al. (tighter peaks and

heavier tails than both the Gaussian and exponential functions). The parameter ea is

used to control the kurtosis of the distribution, and is set to 1 for the remainder of this

manuscript.

4.2.2 Depth Likelihood

When depth information is present, the task is simplified, as most ambiguity in r is

removed, this is discussed in more detail in section 4.3. Additionally depth sensors can
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contribute to the likelihood calculation, in a similar way to appearance sensors.

Given observations Id from a collection of L depth sensors, with projection functions

Ψ1...L and reverse projection functions Ψ′1...L, the likelihood of a structural point at rt

is determined by how closely it matches the back-projections of the depth observations

at frame t. Similarly rt-1 should fit the back-projection of the previous depth observa-

tions at frame t-1. To quantify this, the average square distance, between the position

r, and each sensors back-projection along that ray, is calculated as in equation 4.8.

pd(Id | r,v) =
1

1 + ed

L∑
l=1

t∑
τ=t-1

(
Ψ′l(I

τ
d,l(Ψl(rτ )))− rτ

)2

2L

(4.8)

Note that the ea and ed parameters may be modified, to control the relative contribu-

tion of the appearance and depth information, based on expected noise in each. Also

note that if either M or L are zero (only one type of sensor is present) the relevant

likelihood term simplifies to 1, and p (I | r,v) depends entirely on the remaining sensor

modality (assuming the sum of an empty set is defined as zero). Thus the approach is

generalizable to any combination of inputs, including appearance only, depth only and

hybrid setups.

Images which rt does not project to, are ignored during the likelihood calculation.

However, if a point does not project to at least 3 sensors, including at least 1 at the

current frame and one at the previous frame, then its motion is undefined, and its

likelihood is set to 0. These constraints match those explained in section 4.1, necessary

to uniquely define a 3D motion, and are irrespective of sensor configuration (although

depth sensors provide the equivalent of a stereo match at each frame). These constraints

prevent the degenerate case, where a point visible to only one sensor would always have

zero colour variance, and be assigned a likelihood of 1.

4.3 Scene Particles

As p (r,v | I) is a continuous distribution, there are an infinite number of possible

structure points, with an infinite number of motions. Even applying a coarse discreti-
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sation, it remains intractable to compute the 6 dimensional distribution. Even a simple

setup using a pair of 640 by 480 cameras leads to millions of possible structure points,

each with an equivalent number of possible velocities. Instead a Monte-Carlo sampling

approach is employed, to analyse only a small subset of points within the distribution,

and provide an approximation of the continuous probabilistic system, while remaining

computationally feasible. Specifically, inspiration is taken from particle filtering tech-

niques, with samples having associated weights and resampling techniques employed

to concentrate sampling density in more promising areas of the distribution. Particle

filtering approaches are valuable, as they offer bounded convergence rates, which do

not depend on the dimensionality of the space [43]. It is important to note however,

that there are a number of fundamental differences (discussed in detail in section 4.3.1)

between the algorithm presented here, and standard particle filtering techniques.

Throughout the remainder of this manuscript the samples of p (r,v | I) are referred

to as “scene particles”. Each of the N scene particles (P 0...N ) specifies a 3D spatial

location and 3D velocity (i.e. an r and v pair, such that Pn ∈ R6 = {ẋ, ẏ, ż, vẋ, vẏ, vż},

where dot notation represents the 3D scene rather than image plane), and when taken

together they form the particle population P . The weight wn of scene particle Pn

is obtained by analysing the likelihood p (I | r,v) at the specified point. As new

observations are obtained, the scene particles from the previous frame are propagated

using a constant velocity motion model. This then provides a sampled approximation of

the prior probability p (r,v) as in equation 4.4. This formulation leads to the principled

propagation of information over time, ensuring temporally consistent results without

the flickering seen in many SFE techniques. At the first frame, the prior distribution is

initialised with a randomly generated, uniformly weighted collection of scene particles.

Figure 4.3 shows the flow diagram for the system.

When the number of depth sensors L is nonzero, the additional “clamp” preprocessing

stage is performed to account for the reduction in spatial ambiguity. The projections

of each scene particle Pn are calculated for all depth images It
d,0...L. The subset of

sensors with a valid depth estimate at the projected location is extracted, and one sensor

is randomly selected to provide a new spatial location r for Pn. Note that there are

multiple samples along each ray. Thus, in the case where some sensors observe structure
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Figure 4.3: Flow diagram for the scene particle algorithm. The two iterative layers

(Diffusion and scales) are discussed in section 4.3.2. Also note the feedback of the

previous estimate as an input for the next frame.

which is occluded to other sensors, the random selection process ensures the resulting

particle population reflects the proportions of sensor visibility in the scene. The velocity

values of the scene particles remain unchanged, such that multiple hypotheses sample

different velocities v at each spatial location r. This can be seen as the collapse (or

clamping) of the 6D distribution onto a complex 3D surface, lying within the original

6D space.

4.3.1 Ray Resampling

Particle filtering techniques involve an additional step known as resampling, in which

samples are re-drawn from the probability distribution, to solve the problem of “particle

depletion”. Resampling serves to focus hypotheses into promising regions, in order

to make the best use of the finite number of particles. If the initial particle cloud

was directly re-used at every frame, via the transition kernel, it is likely that only a

handful of samples would be evaluating high probability areas. This is termed “particle

depletion” as very few of the particles are useful. One common resampling schemes

is Multinomial Resampling [56], in which the sampling density is determined by the
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current estimate of the posterior, such that high probability regions are more densely

sampled. This is achieved by constructing the resampled set Pt, by drawing N particles

from the previous set Pt-1, with the probability of drawing particle n given by its

normalised weight w̄n.

w̄n =
wn
N∑
j=0

wj

(4.9)

In this manuscript the residual resampling scheme [46] is employed, which makes multi-

nomial resampling more deterministic, forcing each particle Pn to spawn w̄n|P | par-

ticles, then randomly drawing any remaining samples (due to rounding) based on the

residual weights. This scheme redistributes the particles, such that the density of sam-

ples at each point in the space is determined by the estimated posterior probability

at that point. Thus, the new particles are assigned uniform weighting, such that the

population as a whole reflects the underlying distribution.

Unfortunately, the scene particles algorithm is fundamentally different to standard

particle filtering systems. In general for a particle filter, each hypothesis relates to

a complete solution to the task. A standard particle filter implementation would be

based on the joint space across all pixels, i.e. a width× height× 6 dimensional space,

rather than simply 6. However, the number of samples required for a particle filter

is proportional to the number of dimensions, and so the scene particles algorithm is

formulated such that the output motion field comprises a large collection of high prob-

ability samples. This shifts the focus of the system towards “preserving” all potentially

valid hypotheses, rather than “killing” hypothesis which may be invalid.

It is well known, and documented in detail by Sidenbladh [114], that a particle popu-

lation undergoing many resampling iterations will converge, until it is performing only

local exploration of the largest discovered peak, losing any secondary modes from the

distribution. In contrast, the scene particle algorithm aims to estimate a large number

of local maxima, in order to estimate the motion of the whole scene. In this context,

the loss of secondary peaks leads to reduced scene coverage of the estimated motion

field, eventually leading to motion only being estimated at a single point in the scene.
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In this manuscript, this is referred to as the “overconvergence problem”. To avoid this

behaviour, a modified resampling scheme is used, termed “Ray Resampling”. Under

this scheme, the particle population Pt is partitioned into subsets, based on the optical

rays the particles lie along, i.e. the subset Θc,x, y for sensor c and ray originating at

pixel x, y is defined as:

Θc,x, y ⊂ Pt (4.10)

Θc,x, y =
{
Pn

∣∣∣Πc(Pn) = (x, y)T
}

(4.11)

It is important to note that subsets for a single sensor are disjoint, i.e. no scene particle

lies along more than one ray of the same sensor. However, subsets from different sensors

are not mutually exclusive, so a scene particle may be part of multiple subsets, up to

the number of sensors (depending on visibility). Put more formally:

Θc,x, y ∩Θc,x′, y′ = ∅ for all x, y 6= x′, y′ (4.12)

∣∣{Θc,x, y
∣∣Pn ∈ Θc,x, y

}∣∣ ≤M + L (4.13)

Once the scene particle population is partitioned, residual resampling is performed sep-

arately within each partition. The particle population Pt is constructed by drawing N
R

scene particles from each of the R partitions. The probability of each scene particle be-

ing drawn from a particular partition is defined as w̄n, given by the weight, normalised

within that partition, as in equation 4.14.

w̄n =
wn∑

P j∈Θc,x, y

wj

(4.14)

This process ensures that a minimum of NR scene particles are used to estimate the

motion at every point in the scene, avoiding the loss of coverage, while still allowing
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convergence of the particles in the motion dimensions, and spatially along rays. As

subsets are extracted from all sensors, the resultant motion has the valuable property

of being dense in all viewpoints. This is in stark contrast to the majority of SFE and

Stereo Reconstruction algorithms, which estimate densely only in a single, arbitrarily

selected, “reference” view.

Occasionally no scene particles will lie along an optical ray, leaving the related subset

empty. In this case, the subset is filled with scene particles randomly selected from the

8 neighbouring rays, in the same sensor. Drawn particles have their position modified,

so they lie long the empty ray, while leaving the motion parameters and distance along

the ray intact. The random selection scheme ensures that the main modes of the

surrounding data will be reflected in the new subset. This filling of empty partitions

can be seen as smoothing of the scene particle cloud (the only instance of such in the

algorithm). In practice however, this is necessary for less than 0.1% of partitions, and

ensures a fully dense motion field.

4.3.2 Multiscale Iterative Estimation

To improve the accuracy of the estimated motion field, two iterative refinement tech-

niques are utilised. Firstly for each new set of observations I, the likelihood p (I | r,v)

is iterated over S scales in a coarse to fine manner, using scaled representations of

the input observations (I1...S). These are obtained via convolution with zero mean

Gaussian kernels g (0, σ), with σ representing the variance of the Gaussian. Scaled

observations are constructed such that each is half the scale of the previous, as shown

in equation 4.15.

Is =


I, s = 0

I ∗ g (0, 2s) , otherwise

(4.15)

This leads us to define the likelihood term from 4.5 as the product of terms for each

scale observation.
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p (I | r,v) =
S∏
s=0

p(Is | r,v) =
S∏
s=0

p(Isa | r,v)p(Isd | r,v) (4.16)

These multi-scale approaches are commonly used in variational algorithms, where the

optimisation always converges to the local minima closest to its initial state. Without

a multi-scale system, it is very difficult for such algorithms to estimate large motions,

as moving further along the cost surface increases the chances of getting stuck in local

minima. When performing a coarsely discretised optimisation, it is hoped that some

of these local minima are smoothed out, allowing the initial estimate at the next finer

scale to begin closer to the global minima.

In the scene particle algorithm, the multi-scale iteration serves a different purpose. Due

to the multi-hypothesis nature of the approach, local minima are less of an issue, and

large motions are no more or less probable than small motions. Instead the multi-scale

estimation allows “contextual” observations (i.e. the same point observed at different

scales) to be employed, to disambiguate between similar motions.

4.3.3 Iterative Diffusion

The second iterative scheme, is inspired by Particle Swarm Optimisation (PSO) tech-

niques, and involves a change in the behaviour of the scene particles during the diffusion

stage. After resampling, the particle population contains significant redundancy, due

to certain particles being copied multiple times. To counteract this, the diffusion stage

is used to inject variance into the population, following the Resample-Move approach

outlined by Berzuini and Gilks [23]. As shown in equation 4.17, random perturbations

γ are drawn from a 6 dimensional Gaussian g (µs,σs).

Pn = Pn + γ where γ ∼ g (µs,σs) (4.17)

The mean vector and covariance matrix of the Gaussian distribution used for diffusion,

is determined by the range of values visible in the scene Φ such that the diagonal matrix

σs rescales each dimension independently, based on its range.



66 Chapter 4. Particle Based 3D Motion Estimation

µs =
maxe(Φ) + mine(Φ)

2
(4.18)

σs = diag (δ (maxe(Φ)−mine(Φ))) (4.19)

Note that mine and maxe represent the vector formed from the elementwise maximum

and minimum respectively. Equation 4.20 defines Φ as the range of (r,v) values which

can project to every sensor at both the current and the previous frame. Note that this

is a property of the scene and camera setup. For stationary cameras Φ does not vary

over time. and is not dependent on the particle population.

Φ =

(r,v)

∣∣∣∣∣∣ Πm(r) ∈ Ita,m and Πm(r − v) ∈ It-1a,m for all m

Ψl(r) ∈ It
d,l and Ψl(r − v) ∈ It-1

d,l for all l

 (4.20)

If depth sensors are present, then only exploration along the velocity space manifold is

necessary. As a result the first 3 elements of µs and along the diagonal of σs are set

to 0, i.e. there is a 100% chance that no diffusion occurs in these dimensions.

Note that the variance of the distribution that perturbation γ is drawn from, is scaled

by the parameter δ in equation 4.19. This parameter controls a trade-off between

exploration and accuracy. Higher levels of δ lead to exploratory behaviour with the

possible discovery of new modes, while low levels lead to the refinement of the current

modes. The second layer of the iterative estimation involves the repeated sampling of

the likelihood p (I | r,v) as in equation 4.16, followed by resampling and diffusion with

gradually reduced values of δ.

4.3.4 Interpretation

The scene particle cloud provides a probabilistic, multi-hypothesis representation of the

scenes structure and motion. However, this representation is unsuitable for some tasks,

most notably for comparative evaluation of the algorithm. In general, the ground truth

for existing scene flow datasets, is provided as an optical flow field in conjunction with

a stereo flow field (change in disparity between frames, for every pixel). This is due to
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traditional approaches often being formulated with only 2 viewpoints, and only being

dense in one reference view.

In order to convert the scene particle cloud to a compatible representation for com-

parison, the multiple hypotheses and associated probabilities need to be simplified. To

do this, an image Io is generated for a “reference sensor” c, where each pixel x, y is

filled, using the weighted average of the scene particles from that rays partition Θc,x, y.

The diffusion system injects variance into the samples, which can lead to jittery results,

however the weighted average proves more stable, as the resampling scheme has already

clustered the scene particles around high probability regions.

The output image Io contains 4 channels, encoding the horizontal and vertical image

plane motions vx, vy (found by projecting the start and end points of the 3D flow

vector), the out of plane motion vd (in terms of disparity change between frames), and

the disparity of the projected point d. The interpretation stage has no effect on the

original scene particle cloud, and is performed on a per frame basis.

The weighted averaging is a simple interpretation process and removes any notion of

multiple modes in the data, such as multiple structures, at different distances from

the sensor. Io can be seen as a simplified view of the scene particle cloud, from the

point of view of reference sensor c. Thus it is reasonable that multiple modes are not

present, even when such modes may be resolvable by other sensors. This implies that

the interpretation of the same scene particle cloud may differ considerably between

sensors. This may prove valuable, for tasks where each sensor is required to make a

locally optimal decision, for example a collection of co-operating robotic systems.

4.4 Scene Flow Evaluation

Next the performance of the scene particle algorithm will be compared to previous

state of the art SFE techniques. Additionally, various properties of the algorithm will

be explored. Qualitative evaluation is performed with a number of datasets, including

long (around 300 frames) “hybrid” sequences, composed of appearance and depth data,

recorded from a Microsoft KinectTM. Figure 4.4 shows an example frame from one
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(a) Motion Field

(b) RGB

(c) Depth

Figure 4.4: Example scene flow estimation. Images taken from frame 66 of the Kinect

“Wave” sequence. Images 4.4b and 4.4c show the appearance and depth input data

respectively. Image 4.4a contains the estimated motion field. Motion direction is from

the red to the black vertices.

of these sequences. Performing quantitative comparisons of SFE techniques is more

challenging, due to the difficulty acquiring ground truth 3D motion, at every point in

a scene. Synthetic data such as the simulated driving sequences of the Enpeda dataset

[123] provide one possibility for obtaining the dense ground truth motion, however

it has been demonstrated by Vaudrey et al. [123] that stereo and motion estimation

techniques exhibit fundamentally different behaviour, when tested on real and synthetic

datasets (the reasons behind this, are explored more deeply in section 5.7). As a

result, quantitative comparisons in this chapter are performed using 3 datasets from

the Middlebury benchmarking system at vision.middlebury.edu [106], which are the

only non-synthetic scene flow datasets available, with existing state of the art SFE

results for comparison.

The Middlebury datasets used were originally designed as benchmarks for stereo re-

construction algorithms, example images are shown in figure 4.5. In order to use them

for the analysis of SFE, the procedure developed originally by Huguet and Devernay

[64] is followed. Each dataset comprises of a complex scene, imaged for a single frame,

vision.middlebury.edu
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Figure 4.5: Middlebury examples. Images from the middlebury Cones and Teddy

datasets (left and right respectively). Note the scenes are highly cluttered, and

include many discontinuities.

by 9 equally spaced and parallel RGB cameras. Ground truth disparity maps are also

provided, accurate up to 1
4 of a disparity (i.e. 0.25 pixels), which were captured us-

ing a structured light system. From this data it is possible to construct a collection

of multi-frame “sequences”, which are equivalent to viewing a moving scene from a

smaller number of sensors. As a specific example, the images {I1...I9} could form 4

sequences, each of 2 frames, with the first frames of each sequence being {I1, I3, I5, I7}

respectively, and the last frames being {I2, I4, I6, I8}. In this case, each of the 4 sensors

appears to undergo a translation equal to the separation between sensors in the original

setup. Equivalently to this, the sequences also represents 4 static sensors, viewing a

rigidly translating complex scene. Obviously other combinations of images can be used

to simulate different sequences, including videos of more than 2 frames, however due

to the high computational cost of existing SFE techniques, no results are available for

comparison in these cases.

To evaluate performance, the Normalised Root Mean Square (NRMS) error metrics

proposed by Basha et al. are used [19], which normalise error scores by the range of

values present in the ground truth, in order to facilitate comparisons between different

scenes. As in most previous work [19, 64, 133, 122], four main types of error are

measured (illustrated in figure 4.6). The first error (relating to the green arrow in
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(a) Directional and Optical

Flow errors

(b) Stereo flow error (c) Structural error

Figure 4.6: Illustration of the types of scene flow error measure. A ground truth

structure point and flow is shown in blue, and an estimated point and flow is shown

in red. The various error measures are shown in green. Note that in reality errof and

errsf disregard error components due to incorrect structural estimation (which is

measured entirely by errst)

figure 4.6a) relates to the image plane motion magnitude. The pixelwise error is given

by equation 4.21, based on the output of the interpretation stage Io and an equivalent

4 channel image Ig, which contains the ground truth vx, vy,vd and d values. Note that

in the following equations, the second subscript for images denotes the channel under

consideration (i.e. Ig,vx is the x velocity channel of the ground truth image).

errof (x, y) =

∣∣∣∣√Ig,vx (x, y)2 + Ig,vy (x, y)2 −
√
Io,vx (x, y)2 + Io,vy (x, y)2

∣∣∣∣ (4.21)

The normalised RMS form of this error errnof , is then calculated by averaging the

squared pixelwise errors across the image, taking the square root of the result, and

rescaling by the ground truth range.
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errnof =

√
1

|x, y∈Io|

∑
x, y∈Io

(errof (x, y))2

max
x, y

(√
Ig,vx (x, y)2 + Ig,vy (x, y)2

)
−min
x, y

(√
Ig,vx (x, y)2 + Ig,vy (x, y)2

)
(4.22)

The second error measure (shown in figure 4.6b) relates to the out of plane motion

magnitude. The pixelwise form (errsf ) is defined as:

errsf (x, y) =
∣∣Ig,vd (x, y)− Io,vd (x, y)

∣∣ (4.23)

While the total NRMS error score (errnsf ), is given by:

errnsf =

√
1

|x, y∈Io|

∑
x, y∈Io

(errsf (x, y))2

max
x, y

(
Ig,vd (x, y)

)
−min
x, y

(
Ig,vd (x, y)

) (4.24)

The third error measurement (illustrated in figure 4.6c) relates to the accuracy of the

structural reconstruction. Obviously this error is negligible when operating in “hybrid”

mode (i.e. when structural information is used as an input to constrain the estimation),

but it is useful when analysing of multi-view techniques. The per pixel error (errst) is

defined in equation 4.25.

errst (x, y) =
∣∣∣Ig,d (x, y)− Io,d (x, y)

∣∣∣ (4.25)

Leading to the overall NRMS error score (errnst):

errnst =

√
1

|x, y∈Io|

∑
x, y∈Io

(errst (x, y))2

max
x, y

(
Ig,d (x, y)

)
−min
x, y

(
Ig,d (x, y)

) (4.26)

Following the convention of previous authors [19, 64, 133, 123, 122], the final error

measure (directional accuracy, represented by the green arc in figure 4.6a) is defined in a

slightly different form. The per pixel directional error (errae) is defined in equation 4.27.
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errae (x, y) =

∣∣∣∣cos

(
Ig,vx (x, y)

Ig,vy (x, y)

)
− cos

(
Io,vx (x, y)

Io,vy (x, y)

)∣∣∣∣ (4.27)

For the overall directional error, the Average Angular Error (AAE) measure is used as

in equation 4.28. The lack of scene specific normalisation, implies the assumption that

every scene contains a similar range of motion orientations.

errnae =
1

|x, y ∈ Io|
∑

x, y∈Io

(errae (x, y)) (4.28)

Unless specified otherwise, experiments in the following sections are performed using

20 scene particles per ray (NR = 20), and with particle filter bounds equal to 50% of

the maximum values Φ possible for the scene. The number of image scales S is set to

6, and the diffusion variance δ is set to 3% of Φ, with 3 iterations reducing δ by a third

each time.

4.4.1 Algorithmic Comparison

For comparison with existing techniques, the scene particles algorithm is run in two

different modes. First, using appearance information only from 4 sensors, and secondly

in hybrid mode using appearance and depth data from a single viewpoint (similar to the

output of a Microsoft Kinect TM). Results are compared to the multi-scale variational

approach of Huguet et al. [64] and the extensible 3D variational formulation of Basha et

al. [19], both of which are appearance only techniques. Very few hybrid techniques exist

for comparison, and none which have been tested on publicly available data. Thus, for

comparison purposes, an alternative hybrid technique is implemented. This technique

operates by running the state of the art optical flow algorithm of Farneback et al. [48]

on the appearance data, and combining these results with the ground truth depth, in

order to infer 3D motion. In results table 4.1 this technique is referred to as OF+D.

Examining the performance of the hybrid mode techniques, it is apparent that the

OF+D algorithm is significantly faster than the other algorithms. However, accuracy

suffers, with the hybrid mode scene particles approach exhibiting greater motion mag-

nitude accuracy across all datasets, and greater directional accuracy for 2 of the 3
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Algorithm Dataset App. Depth errnof errnsf errnst errnae Coverage Runtime

Sensors Sensors per frame

Scene Cones 1 1 0.09 0.00 - 5.02 100% 198 secs

Particles

OF+D Cones 1 1 0.22 0.38 - 4.63 88% 20 secs

Scene Cones 4 0 0.06 0.00 0.29 4.08 100% 213 secs

Particles

Basha Cones 2 0 3.07 0.03 6.52 0.39 100% -

et al. [19]

Basha Cones 4 0 1.32 0.01 6.22 0.12 100% -

et al. [19]

Huguet Cones 2 0 5.79 8.24 5.55 0.69 100% 5 Hours

et al. [64]

Scene Teddy 1 1 0.11 0.00 - 5.04 100% 201 secs

Particles

OF+D Teddy 1 1 0.31 0.29 - 12.33 68% 18 secs

Scene Teddy 4 0 0.04 0.00 0.20 4.23 100% 207 secs

Particles

Basha Teddy 2 0 2.85 0.07 7.04 1.01 100% -

et al. [19]

Basha Teddy 4 0 2.53 0.02 6.13 0.22 100% -

et al. [19]

Huguet Teddy 2 0 6.21 11.58 5.64 0.51 100% 5 Hours

et al. [64]

Scene Venus 1 1 0.09 0.00 - 5.44 100% 191 secs

Particles

OF+D Venus 1 1 0.38 0.23 - 12.21 98% 21 secs

Scene Venus 4 0 0.04 0.00 0.25 4.26 100% 213 secs

Particles

Basha Venus 2 0 1.98 0.00 6.36 1.58 100% -

et al. [19]

Basha Venus 4 0 1.55 0.00 5.39 1.09 100% -

et al. [19]

Huguet Venus 2 0 3.70 3.05 5.79 0.98 100% 5 Hours

et al. [64]

Table 4.1: Scene flow estimation performance for a range of algorithms. Both hybrid

(depth and appearance) mode, and pure appearance only mode are tested. Note that

runtimes were not reported by [19] and structure errors are negligible when using

depth sensors. Bold entries highlight the best performance in each column, for that

dataset.
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datasets. It is interesting to note that the OF+D approach employs a dedicated opti-

cal flow algorithm, and yet the motion accuracy within the image plane, is still worse

than that of the scene particles approach. This implies that the incorporation of depth

data at an earlier stage allows more accurate flow estimates, even in 2D. Additionally

OF+D is the only technique which does not guarantee 100% scene coverage for the es-

timated motion field (although in some cases it may approach this). The final difficulty

with OF+D is that it is not extensible, unlike Basha et al. which can incorporate any

number of appearance sensors, or the scene particles system which can incorporate any

combination of appearance and depth sensors.

In the multiview appearance mode, the performance of the scene particles algorithm

appears to slightly improve over the hybrid mode results. This suggests that the larger

number of input images and disambiguation provided by multiple viewpoints, compen-

sates for the increased difficulty of estimating both structure and motion simultaneously.

The structure estimation of the multiview scene particle algorithm is significantly im-

proved over the dedicated multiview techniques. Additionally, the motion magnitude

accuracy for the scene particle algorithm is consistently higher, both within the image

plane, and perpendicular to it. However, directional estimation accuracy is slightly re-

duced. This can be attributed to the stochastic nature of the scene particles algorithm,

which leads estimated motion fields to contain a low level of noise. In terms of motion

magnitude, this noise is generally insignificant, however in regions of low motion (such

as background regions) a small change in absolute motion, leads to a large change in

direction.

To make runtime comparisons more fair, the speed listed is for sequential computation

on a single thread, without exploiting the possibility for massive parallelisation provided

by the independence of scene particles. Computation time was not provided by Basha et

al. however similarities in the optimization scheme mean it can reasonably be assumed

to be of a similar order to that of Huguet et al. As such, the scene particles approach

operates roughly 100 times faster, across all datasets, than previous state of the art

algorithms.

The results shown in this section were analysed using single frame sequences for each
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Algorithm Dataset App. Depth errnof errnsf errnae Coverage

Sensors Sensors

scene particles Cones 1 1 0.10 0.00 5.10 49%

Non-RR

scene particles Cones 1 1 0.09 0.00 5.02 100%

scene particles Teddy 1 1 0.10 0.00 5.10 50%

Non-RR

scene particles Teddy 1 1 0.11 0.00 5.04 100%

scene particles Venus 1 1 0.08 0.00 5.50 51%

Non-RR

scene particles Venus 1 1 0.09 0.00 5.44 100%

Table 4.2: Ray Resampling performance. Results of scene flow estimation in a hybrid

(depth and appearance) sensor system. scene particles with and without ray

resampling (RR) are compared, in terms of accuracy and coverage.

sensor. As a result, there is no propagation of information between frames for the

scene particles algorithm. Instead improvements in performance can be attributed to

the maintenance of multiple hypotheses, the principled fusion of information across

scales, and the lack of oversmoothing artefacts.

4.4.2 Ray Resampling Analysis

To demonstrate the overconvergence issues discussed in 4.3.1 and quantitatively exam-

ine the value of the Ray Resampling approach, table 4.2 compares the performance of

the scene particles algorithm using a standard resiudal resampling scheme (Non-RR),

and using the proposed Ray Resampling scheme.

It would have been reasonable to assume that the overconvergence issue, would lead to

the accumulation of particles into regions of high accuracy, causing reduced coverage

and correspondingly increased accuracy in the regions which remain covered. However,

this does not appear to be the case, in fact the Ray Resampled approach produces
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more accurate directional estimates on all 3 datasets (and roughly equivalent motion

magnitude performance). This implies that, within the subset of local maxima of

p (r,v | I), higher probabilities do not automatically correspond to reduced ambiguity.

4.4.3 Sampling Density

As with any Monte-Carlo based approach, the sampling density of the scene particles

algorithm determines how accurately the underlying distribution is approximated. This

in turn specifies how effectively the local maxima may be extracted. The trade-off, is

that denser sampling implies greater computation cost. For the scene particles algo-

rithm, it is convenient to define the sampling density in terms of scene particles per

ray, which relates it to the fidelity of the input observations. As an example, two scenes

with the same range of r,v values Φ to explore, are observed by two sets of sensors. The

first set contains high resolution sensors, and the second low resolution. If the same

number of scene particles are used in both cases, the sampling density in terms of the

r,v is the same, however analysis of the systems performance will reveal significantly

increased error rates for the high resolution system. This is because the accuracy of the

resultant motion field, is also examined more densely, and fewer hypotheses are present

in each partition, during ray-resampling. By specifying the number of hypotheses per

ray, the sampling density is defined in a manner which is invariant to the specifics of

the scene, and the sensors under consideration.

The ability to vary the sampling density is a useful feature of the scene particles al-

gorithm. In essence, it is a parameter which enables a trade-off between speed and

accuracy, depending on the requirements of the task. A parallelised implementation

reduces the importance of this trade-off, by allowing additional samples to be analysed

concurrently. However the sampling density also controls a second trade-off, between

accuracy and memory usage, which may become more relevant with the limitations

of GPU memory. Figure 4.7 demonstrates the effects of varying sampling density, for

values from 1 to 40 hypotheses per ray.

All error measures exhibit an exponential relationship to the sampling density. At

around 5 minutes per frame, the directional accuracy plateaus, with an angular error
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(a) Optical flow error against speed (b) Stereo flow error against speed

(c) Structural error against speed (d) Directional error against speed

Figure 4.7: Performance against runtime. Results obtained by varying the number of

scene particles on the Cones dataset.

of 3.5 degrees. This highlights the fundamental limit of stochastic estimation systems

for this error metric. The motion magnitude and structural error rates decay more

slowly, and do not appear to have completely saturated, even at runtimes greater than

10 minutes per frame, indicating that the theoretical limit is far lower for these error

metrics.

4.4.4 Search Space Analysis

The state space dimensions Φ for the scene particles system, specify the range of

structure and velocity values for which observations are possible, with a given the sensor

setup. Scene particles which fall outside this range (either through diffusion, or due to
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Figure 4.8: Search volume against performance. The search volume is listed as a

fraction of Φ. The performance measure used is errnof (other error measures show the

same linear trend), on the Cones dataset. For comparison the approaches of [19] and

[64] are also displayed.

the transition between frames) receive a likelihood of 0, as they cannot be observed, and

are subsequently removed during resampling. Utilising a smaller state space requires

fewer scene particles to achieve the same sampling density. Thus, if application specific

knowledge is available, for example that objects are unlikely to cover more than 1
3 of

the scene in a single frame, the state space and number of scene particles may both be

reduced, to achieve a reduction in runtime with no cost to accuracy. Similarly, reducing

the size of the state space while maintaining a constant number of scene particles (and

hence runtime), leads to improved accuracy. Figure 4.8 demonstrates this effect.

The scene particles algorithm outperforms previous state of the art techniques, when

exploring velocities up to 75% of the maximum state space Φ. Any scene particles

with velocity values above this would cover most of the scene in a single frame, and

are unlikely to be visible in the following frame. Thus in most realistic applications,

these higher portions of the velocity space may be safely ignored. If it is necessary

to search these areas of the state space, additional scene particles would be required

to maintain top performance, increasing computational cost (although the approach

would still be orders of magnitude faster than alternatives). Ray Resampling leads to
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Figure 4.9: Pyramid scales against performance. The relationship between the

number of image scales S and the optical flow error errnof on the Cones dataset.

Other error measures exhibit the same behaviour.

a slight reduction in the growth rate, with increasing search space. This implies that

Ray Resampling is able to more efficiently cover a given state space.

4.4.5 Iteration Analysis

In section 4.3.2 two iterative estimation schemes were introduced. The first is a multi-

scale approach similar to that employed in variational motion estimation. The second

iterative layer is based on modifying the diffusion behaviour, similar to PSO techniques.

The benefit of these schemes is quantitatively analysed in figures 4.9 and 4.10 respec-

tively. Both forms of iterative refinement show similar behaviours. As the number of

iterations increases, the error rate drops. The use of multiple scales proves the most

valuable, which is unsurprising as in addition to the scene particles having more time

to converge, it provides additional “contextual” observations. As the number of itera-

tions increases, performance gains tail off, which implies that most scene particles have

found the maxima of the distribution. Thus remaining errors are likely due to mis-

match between the likelihood function and the true motion field (due to the breaking

of brightness constancy, sensor noise, occlusions, etc). Computational cost increases

linearly with the number of iterations.
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Figure 4.10: Diffusion loops against performance. The relationship between the

number of diffusion loops and the optical flow error errnof on the Cones dataset.

Other error measures exhibit the same behaviour.

4.4.6 Propagation Of Information

As the scene particle algorithm is several orders of magnitude faster than approaches to

SFE, it is useful to analyse the behaviour of the approach on sequences longer than two

frames. This is important for the application of the algorithm to real vision problems. In

particular, such concerns are relevant for the action recognition application of chapter 3.

Figure 4.11 shows the performance of the algorithm on sequences of varying lengths,

with error scores averaged across all frames. It can be seen that adding a single frame

to the sequence causes a considerable reduction in both directional (figure 4.11c), and

out of plane motion error (figure 4.11b). Subsequent frames also provide improved

performance, but to a much less significant degree. Intuitively, this behaviour makes

sense, as motion hypotheses rarely remain ambiguous across more than two sets of

observations. The observed lower limit on the performance is likely due to regions

emerging from occlusion, for which the prior information cannot provide any gains.

The optical flow error measure (figure 4.11a)does not saturate as rapidly as the other

metrics, requiring sequences of around 6 frames before improvements become negligible.

This suggests that image plane motions suffer more significantly from ambiguity, and

require the accumulation of many observations before disambiguation becomes possible.

This behaviour is surprising, and serves to reinforce the value of an estimation scheme
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(a) Optical flow against sequence length

(b) Structural error against sequence length

(c) Directional error against sequence length

Figure 4.11: Sequence length against performance. Analysis of 3 error measurements

on the cone dataset, when simulating sequences of various lengths. Experiments

performed with a single appearance and depth sensor, using the standard scene

particles algorithm.
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which is capable of propagating information through sequences.

4.4.7 Robustness To Noise

For the algorithm to be applicable to real data such as the action recognition dataset

of chapter 3, it must be robust to noise from a range of sources, including sensor

noise, transmission noise and compression artefacts. To quantitatively analyse this

robustness, the input sequences were corrupted with varying levels of noise. Both

Gaussian and “salt and pepper” noise were tested, with results shown in figure 4.12.

For the Gaussian noise tests, every pixels value was modified by a Gaussian distributed

offset. Performance was then analysed while varying the standard deviation of the noise

distribution. For the salt and pepper noise experiments, a varying fraction of pixels

were randomly selected, and set to either 0 or 255. In both cases, viewpoints were

treated independently.

The algorithm performs very well when subjected to salt and pepper noise. All error

metrics increase linearly with the number of corrupted pixels, across the full range of

noise levels (figures 4.12a,4.12c and 4.12e). Due to the independent nature of the scene

particles, it is impossible to estimate the motion of a corrupted pixel, but uncorrupted

pixels remain unaffected. In contrast, a variational or patch based approach may be

expected to have a more gradual linear relationship at low noise levels, as some cor-

rupted pixels may be estimated correctly due to smoothness constraints. However, at

higher levels of noise, such global approaches are likely suffer from catastrophic failure.

The performance of the system under Gaussian noise (figures 4.12b,4.12d and 4.12f)

is less consistent, although still generally displaying a linearly increasing trend. In

absolute terms, Gaussian noise causes less degradation of the estimated motion than

salt and pepper noise, with a standard deviation of 10 intensity values being equivalent

to around 15% salt and pepper noise corruption. This is likely due to the multi-

scale approach employed, as the smoothing applied to create coarser image scales, also

reduces the effect of noise.
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(a) Optical flow error under salt and pepper noise (b) Optical flow error under Gaussian noise

(c) Structure error under salt and pepper noise (d) Structure error under Gaussian noise

(e) Directional error under salt and pepper noise (f) Directional error under Gaussian noise

Figure 4.12: Noise robustness. Three error measurements, as a function of noise level.

The left column shows salt and pepper noise performance, while the right column is

the Gaussian additive noise performance. Tests performed using a single appearance

and depth sensor, on the cones dataset, with the standard scene particles algorithm.
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4.5 Object Tracking Application

The scene particle algorithm allows 3D motion fields to be estimated more rapidly

than existing variational approaches by several orders of magnitude, while also pro-

viding temporally consistent results for long sequences. These two features make SFE

a more feasible prospect for solving practical computer vision problems, rather than

being of academic interest only, as it has in the past. Here an example application is

demonstrated, using SFE to perform 3D object tracking. For such tracking and seg-

mentation tasks, the lack of oversmoothing artefacts in the scene particle algorithm has

the additional benefit of providing clear object boundaries.

There are generally 3 approaches to tracking. Fitting a model of the object in question

to the observations, tracking a collection of distinctive feature points on the object,

and using a data-driven approach to choose a representation where objects of interest

naturally emerge from the data. This work fits into the third category, which gives

it the useful property that objects need not be known or modelled before tracking.

The approach has similarities to tracking by colour distributions [84], which is common

for hand tracking, and more recent work on tracking using optical flow [49, 104]. In

comparison to these techniques, tracking by scene flow is more informative, as the

output describes how the object is moving in the 3D world, rather than how it moves

on the image plane after projective distortions.

4.5.1 Object Extraction

In order to extract objects from the scene flow field, the scene particles are clustered

in 6D, i.e. in both location and motion dimensions. This not only creates clusters

for consistent collections of 3D structure points, but is also able to separate objects

which are close to each other, but moving in distinct directions. For the purposes of

this example application, clustering is performed via expectation maximization, fitting

a collection of 6 dimensional Gaussians to the scene flow field. The advantage of this

approach over simpler alternatives such as K-Means, is that it allows objects which

are of differing sizes, and have different extents along each dimension, as opposed to
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clusters being spherical. However, the number of clusters must still be specified, rather

than emerging naturally the data.

4.5.2 Trajectory Estimation

In order to construct trajectories from the clusters at each frame, a consistent set

of identity labels must be assigned. To achieve this, at each frame predicted cluster

centres are generated from each clusters previous state, using a constant velocity motion

model. Then a greedy assignment is performed to match the labels of the prediction

to the newly estimated clusters. The cluster predictions are also used to initialise the

clustering of the following frame. At the first frame clusters need to be initialised either

randomly, or using some task specific information.

The clusters are 6 dimensional, and as such the cluster centre defines not only the

centre of the object in space, but also its average velocity, which can be used during the

prediction stage. In algorithms where motion estimates are not available, it is common

to estimate the velocity using the difference between the previous two centroids. This

is less reliable however, as objects may change shape over time, making the centroids

unstable.

4.5.3 Hand Tracking During Sign Language

To analyse the performance of the tracking system based on scene flow estimation,

the specific task of tracking hands and head during sign language was chosen. This is

a useful application area, as the 3D trajectories can be expected to provide valuable

information for sign language recognition. Additionally, the number of objects to be

tracked is known, and model based approaches are extremely difficult due to the objects’

high levels of articulation.

Figure 4.13 provides an overview of the approach. The scene flow estimation system

processes the input data from the multi-camera rig, and produces an estimate of 3D

scene structure, along with an estimated 3D motion field. Additional task specific

information is included in the system, in the form of an extra term in the likelihood
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Figure 4.13: Trajectory estimation block diagram. Modifications to the original scene

particle algorithm are shown in darker blue, and the interpretation stage has been

replaced with the trajectory estimation system.

equation 4.7 which focuses accuracy in relevant regions. This term is defined in equa-

tion 4.29 and relates to the likelihood that each combination of r and v belong to an

object of interest, based on an adaptive skin colour model. By concentrating scene flow

estimation into regions of interest, a reduced number of scene particles can be used,

further improving computation times. The initialisation of the clustering at the first

frame is performed using the extremities of the motion field, which is more appropriate

than random selection for sign language tasks.

The skin colour model comprises of 2 probability distributions in RGB colour space, one

for skin colour psk(Ī) and one for background colour pbg(Ī). For a point in the scene

space r,v, with colour vector Ī, the extra likelihood term ps(Ia | r,v) is calculated

using the log-likelihood ratio of the skin and background models. By averaging the

responses across viewpoints, the system obtains resistance to single view occlusions.

ps(Ia | r,v) =
1

M

M∑
m=1

min

(
log10

(
psk(Ī)

pbg(Ī)

)
, 1

)
(4.29)
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Both models psk(Ī) and pbg(Ī) are initialised from a generic colour model, and then

allowed to adapt to the data, based on the results of face detection. The colour distri-

bution within the central region of the face detection is used to update psk(Ī), and the

distribution across the remainder of the image is used to update pbg(Ī).

4.5.4 Hand Tracking Evaluation

Evaluating the performance of a passive 3D tracking system is difficult, as the ground

truth 3D position for moving objects in real scenes is rarely available. This is par-

ticularly true in the sign language scenario, where the objects in question move and

deform rapidly. There is no currently available sign language dataset which provides

this ground truth, thus results were obtained on newly captured multi-view dataset,

where 2D trajectories were available from image plane tracking. Figure 4.14 shows

example frames from parts of this dataset, with the 3D trajectories projected to every

viewpoint. It can be seen that the estimated 3D trajectories of all objects are consistent

with the observations in every viewpoint. In total, 2.8 million frames from the dataset

were tracked, relating to over 31 hours of 3D sign language trajectories. This applica-

tion would have been intractable for traditional SFE techniques, requiring around 1600

years to complete. In contrast the scene particle algorithm would have required 2 years

for a sequential implementation, making it feasible to split the processing across only a

small number of machines, in order to obtain results within a week. In this application,

the scene particles algorithm was able to run faster than shown in table 4.1 (around 30

seconds per frame), as the skin colour prior enabled good tracking results to be obtained

with only 4 particles per ray, 3 scales (S = 3) and 3 diffusion iterations. No calibration

information was provided with this dataset, necessitating the use of manually labelled

correspondence points to estimate the camera parameters. This serves to demonstrates

that the technique provides some degree of robustness to imprecise calibration.

Figure 4.14 parts A-C are taken from a narrow baseline, 2 view, sequence. Figure 4.14.C

illustrates a failure case, where the narrow baseline creates some ambiguity in the Z

dimension. The resulting trajectory matches the data well when projected to the left

viewpoint, however the projection in the right sensor shows an erroneous 1 frame jump
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Object Agreement X RMS error Y RMS error

Head 100% 0.057 0.097

Right Hand 93.535% 0.191 0.100

Left Hand 88.054% 0.277 0.091

Table 4.3: Hand tracking performance. Agreement between projection of estimated

3D trajectories, and 2D trajectories from an alternative system (values in palm

widths).

towards the face. Wider baseline systems such as that shown in figure 4.14.D are able to

resolve such ambiguities. Additionally the third viewpoint in this case allows the system

to operate robustly in the case of occlusions. Despite being completely occluded in the

side view for several frames, the estimated trajectory for the right hand is consistent

with the observations from the other 2 views.

Quantitatively, the system was analysed by comparing the projection of the 3D tra-

jectories to the high accuracy 2D tracking provided for the data [96]. This tests the

consistency of the trackers, and can be seen as providing a lower bound on perfor-

mance, as some inconsistencies will arise from errors in the 2D tracker, due to frontal

occlusions, while the 3D tracking is maintained using the other views. Trajectories

were assumed to be in agreement, if the separation of their predicted location was less

than one third of a palm width. The percentage of frames where trajectories are in

agreement is listed for each object in table 4.3, as is the RMS distance between tra-

jectories, in terms of palm widths. Results were compared over 30,000 tracked frames,

the close agreement between the systems indicates that the 3D tracking is plausible.

If the system was inaccurate, it is unlikely it would coincide with the 2D system so

frequently. The greater accuracy of the head trajectory is to be expected, as it moves

little during the sequences. The accuracy of the left hand is slightly higher than the

right, as one viewpoint is placed on this side, and so the hand is occluded less often.
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(A)

(B)

(C)

(D)

Figure 4.14: Hand tracking example results. (A) to (C) are taken from the narrow

baseline, 2 view, sequence, showing the projection of 3D trajectories which are consistent with

both viewpoints. (C) Illustrates a failure case where the narrow baseline of the 2 views gives

rise to ambiguity in Z. (D) Shows a frame from the wide baseline, 3 view, sequence,

illustrating robustness to object occlusions.
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4.6 Conclusions

This chapter focussed on a particle filter based technique for the estimation of dense 3D

motion fields, with the aim of providing a rich description of dynamic scenes. In contrast

to existing techniques, the work in this chapter focussed on practical applicability. By

maintaining multiple hypotheses, the approach was able to avoid common oversmooth-

ing artefacts which damage the estimated motion in boundary regions. These regions

tend to be the most salient in vision tasks, including action recognition. Addition-

ally, the technique was shown to provide quantitatively improved results on benchmark

scene flow datasets.

The formulation of the scene particles algorithm is flexible, allowing any combination

of appearance and depth sensors, in any setup. This, coupled with runtimes several

orders of magnitude faster than previous state of the art techniques, makes 3D motion

estimation feasible in a wider variety of vision tasks, and also applicable to realistic

sized datasets, such as the Hollywood 3D dataset. Good robustness to various types

of sensor noise was demonstrated, and the propagation of information was evaluated,

leading to temporally consistent results.

To demonstrate the suitability of the approach to real vision tasks, an example appli-

cation was formulated, for the 3D tracking of hands during sign language. Due to the

speed of the motion estimation system, tracking could be trivially performed on a vast

amount of data (2.8 million frames, or 31 hours of HD video), consisting of multiple

camera combinations and setups. The success of this application, demonstrates that

the scene particles algorithm is flexible enough to cope with a wide range of motions,

scenes and sensor configurations, which will be important in the action recognition

task, using the Hollywood 3D dataset.

However, despite the flexibility of the algorithm, and its suitability for real vision tasks,

there is still room for improvement in accuracy. The current formulation is based on

the naive assumption of brightness constancy, which is known to be violated in real

situations. Additionally, smoothness constraints are not utilised, despite being gener-

ally valid. This leads to valuable properties, such as producing clear object boundaries

without oversmoothing. However, it is reasonable to ask, whether these (and other)
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constraints may be incorporated, to improve accuracy while preserving these properties.
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Chapter 5

Revisiting Motion Estimation

Assumptions

Despite the flexibility and speed of the scene particles algorithm from chapter 4, im-

provements in accuracy may be possible, by examining the fundamental assumptions

used in the formulation. For instance, improvements may be made to the likelihood,

which was based on a naive linear relationship with the brightness constancy assump-

tion. Also, additional assumptions may be incorporated, such as the smoothness as-

sumption, and the constant velocity assumption.

5.1 Smoothed Scene Particles

The original impetus for the scene particles algorithm, was to avoid oversmoothing

artefacts at discontinuities, by removing smoothness constraints and instead utilising

multiple hypothesis, and the temporal accumulation of constraints. However, the as-

sumption of motion field smoothness is generally valid, across large areas of the scene.

Following are 3 different approaches for incorporating smoothness information into the

scene particle algorithm.

93
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5.1.1 Patch Based Scene Particles

Lucas and Kanade [81] formulated one of the earliest optical flow algorithms, which

accumulated flow constraints for each pixel within a local neighbourhood or “patch”.

This technique leads to smoothness of the motion field (as neighbouring patches contain

many of the same pixels) while being less stringent than the variational approaches

developed from the work of Horn and Schunk [63]. In both cases, motion estimates at

discontinuities are likely to be degraded. However, for local techniques, the extent of

this degradation is limited by the patch size, while under variational schemes it may

affect the entire motion field. The scene particles algorithm may be adapted to follow

such a local scheme, by modifying the likelihood term of equation 4.7, to sum pixel-wise

likelihoods over a 2D neighbourhood Ω. This neighbourhood is extracted around the

projection of the particle in each sensor, and scores are calculated in conjunction with

the mean patch Īp. This modifies the algorithm to consider some spatial constraints,

in addition to the temporal constraints obtained via the prior distribution. Again, a

similar modification may also be made for the depth likelihood term of equation 4.8.

pp(I | r,v) =
1

1 + ea
∑
o∈Ω

t∑
τ=t-1

M∑
m=1

(
Iτa,m(Πm(rτ ) + o)− Īp(o)

)2
2M |Ω|

(5.1)

This new function can be seen as an extension of the Sum of Squared Differences (SSD)

similarity score. Standard SSD metrics encode the pixel-wise differences between 2

patches. In contrast, equation 5.1 compares the pixel-wise consistency of any number

of patches (including 2), which allows the metric to be employed with any number of

sensors.

An important limitation of this approach however, is that it assumes all sensors are

in an approximately parallel set-up, which drastically limits the flexibility of the algo-

rithm. Additionally, there is an inherent assumption that small regions of the scene

are approximately planar and fronto-parallel, such that patches on the image plane of

one sensor, correspond to similarly shaped patches in all other sensors.
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5.1.2 Image Plane Smoothing

The patch based scheme directly enforces smoothing in the scene particle cloud. As a

result, oversmoothing artefacts are likely to accumulate over time due to the propaga-

tion of smoothness information through the prior. An alternative approach is to employ

smoothness constraints only during the interpretation stage (i.e. when averaging out

the multiple hypothesis) while leaving the underlying scene particle cloud intact.

The simplest way to achieve this, is to follow the suggestions of previous authors

[55, 122], and apply 2D smoothing to the image plane projection of the scene flow.

This can be achieved by smoothing the 4 channel output image Io, produced during

interpretation, as described in section 4.3.4. The values in each channel of Io (relating

to vx, vy,vd and d) are treated independently. In order to minimize the oversmoothing

at discontinuities, the edge preserving bilateral filter is used. Bilateral filtering is a

biologically inspired technique, similar to the operation of the human visual system.

Put simply, the bilateral filter performs smoothing by averaging values across a region,

with weightings of each pixel determined by both a spatial Gaussian and a “value”

Gaussian. The spatial Gaussian weighting, is the equivalent to a standard convolution

with a Gaussian kernel. The “value” Gaussian re-weights this combination, based on

value dissimilarity. The outcome of this is that pixels with significantly different values

to the central pixel, contribute less to the average, while most smoothing is applied to

values that are already nearly consistent. Intuitively this means that when the smooth-

ing kernel overlaps a discontinuity, the values on the same side of the discontinuity as

the central pixel have increased weighting, while the values on the other side have less

impact.

Equation 5.2 formalises this idea, with the filtered value Îo (x, y) at pixel x, y being

the result of a weighted averaging over all pixels Io ((x, y) + o) with 2D offsets o lying

in a neighbourhood Ω. The contribution of each pixel is determined partly by the

magnitude of the offset o, with a zero mean Gaussian weighting function (written

as g (|o|; 0, σi2)), with variance σi2, to provide spatial weighting. The second term

affecting the contribution of each pixel, is based on the difference of that pixels value

to the central pixel, using a second zero mean Gaussian with variance σv2. The total
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weight over the neighbourhood Ωw is then used to normalised the filter response.

Îo(x, y) =
1

Ωw

∑
o∈Ω

Io ((x, y) + o) g (|o|; 0, σi2) g (Io(x, y)− Io ((x, y) + o) ; 0, σv2)

(5.2)

Ωw =
∑
o∈Ω

g (|o|; 0, σi2) g (Io(x, y)− Io ((x, y) + o) ; 0, σv2) (5.3)

Using bilateral filtering greatly reduces smoothing artefacts, compared to a simple

Gaussian filter. The value of σi2 relates to the level of smoothing, i.e. the level of

high frequency information removed, as in standard Gaussian smoothing. The value

of σv2 corresponds to the level of “jump” expected at discontinuities. Edges with a

change of twice σv2 or more will suffer from little oversmoothing, while lower contrast

edges are heavily smoothed. Obviously this is an improvement over standard Gaussian

convolution, however it requires the selection of two parameters, and small details with

low contrast, such as wrinkles in clothing, are still unlikely to be preserved.

5.1.3 3D Smoothing

When applying smoothing as a post processing step, it may be more sensible to smooth

the scene particle cloud P directly, rather than its 2D projection Io. Smoothness as-

sumptions are more likely to be valid in the original scene, before projective distortions.

Additionally, points with significantly different distances to the sensor, would no longer

affect each other simply because they project to neighbouring pixels. To achieve this,

the 2D bilateral filtering may be adapted, so as to perform weighted averaging of scene

particles, within a 3 dimensional neighbourhood.

To achieve this without accumulating oversmoothing errors, the unsmoothed scene

particle cloud P is preserved, and used to generate the prior for the next frames esti-

mation. A second, smoothed, scene particle cloud P̂ is also created, and used as input

to the interpretation stage, then discarded. Every scene particle Pn in the original

cloud consists of (rn, vẋn, vẏn, vżn), and has a smoothed equivalent P̂n consisting of
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(rn, v̂ẋn, v̂ẏn, v̂żn). Equation 5.4 shows how the smoothed v̂ẋ value is calculated for

particle P̂n, via the weighted averaging of all scene particles, with a 3D offset η lying

inside the neighbourhood Λ. Following the bilateral filtering approach, the weighting of

each neighbouring scene particle is determined, in part, by the magnitude of its offset,

Gaussian weighted with a variance of σi3. The 3 velocity dimensions are then integrated

out, so that all motion hypotheses at this position (rn +η) are considered. In addition

to the standard Gaussian “value” weighting (using the variance σv3) the weight of each

hypothesis (i.e its sample from the posterior) is considered, in order to simulate the

weighted averaging of the original approach. As in the 2D case, Λw equates to the total

weighting for the patch, and is used to normalise the filter response.

v̂ẋn =
1

Λw

∑
η∈Λ

g (|η|; 0, σi3)

∫∫∫
vẋ,vẏ ,vż

vẋp(rn+η, vẋ, vẏ, vż | I)g (vẋn − vẋ; 0, σv3) dvẋdvẏdvż

(5.4)

Λw =
∑
η∈Λ

g (|η|; 0, σi3)

∫∫∫
vẋ,vẏ ,vż

p(rn + η, vẋ, vẏ, vż | I)g (vẋn − vẋ; 0, σv3) dvẋdvẏdvż

(5.5)

Similar equations can be created to provide the smoothed values v̂ẏn and v̂żn necessary

to construct each P̂n. As in the 2D case above, the variance σi3 relates to the strength

of the smoothing (the amount of high frequency features removed) while the variance

σv3 affects the size of allowable (unsmoothed) discontinuities.

5.2 Smoothing Evaluation

Table 5.1 compares the different smoothing approaches, while figure 5.1 shows qualita-

tively the effect 3D post smoothing has on the motion field. Unsurprisingly, much of the

low level “jittering” seen in figures 5.1a and 5.1e is removed in the smoothed estimate

of figures 5.1b and 5.1f, leaving the general motion trends in each region. Due to the

3D formulation and use of bilateral filtering, there is also little oversmoothing visible
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at discontinuities. However, the smoothing also removes fine motion details along with

the jitter, for example different areas of clothing no longer move in different directions,

and wrinkles are no longer visible.

The results for patch based matching costs and 2D post filtering, show little improve-

ment in terms of motion magnitude accuracy. However, applying 3D post filtering

shows a significant increases both in magnitude and directional accuracy can be ob-

tained, although this comes at the cost of doubled computation time.

The post filtering techniques are applied only to the motion field, and as such the

structural performance does not change. However, using a patch based matching cost

significantly reduces the accuracy of structural estimation, to such a degree that it

becomes comparable with the previous state of the art approaches from table 4.1. As

discussed in the previous chapter, this is due to the loss of fine structure and the

introduction of over-smoothing artefacts at discontinuities. Additionally, directional

accuracy is improved, bringing it closer to the levels of these previous techniques. This

effect was also discussed in section 4.4.1 and is produced by the removal of the low

level “jitter” which occurs in unsmoothed motion field. This small amount of motion

noise leads to large directional errors, particularly in regions of low motion such as

background regions. These findings are extremely interesting, and implying a funda-

mental similarity between global variational schemes [19, 64], and the local patch based

smoothing employed here. Further, it demonstrates that the current incorporation of

smoothness constraints during optimisation is a limiting factor in current motion esti-

mation schemes. This remains true when incorporated in the scene particle algorithm,

despite the addition of multiple hypothesis and information propagation.

It is useful to examine how the scale of the smoothing affects this behaviour. The

results in table 5.1 were obtained using a local 2D neighbourhood Ω equating to an 5

by 5 patch, with the spatial variance σi2 set to 5
3 such that 99% of the area under the

Gaussian is represented in the kernel. For the 3D filtering approach, the neighbourhood

Λ was set to cover a region equivalent to 0.5% of the scene range Φ, with the spatial

variance σi3 determined in the same manner. Figure 5.2 explores the effects of varying

these parameters, while figure 5.3 displays the related effect of varying the scale of the
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Algorithm Dataset errnof errnsf errnst errnae Runtime

(×10-2) (×10-2)

SP Cones 5.8 0.2 0.294 4.08 213 secs

SP Cones 5.7 0.2 5.38 3.26 931 secs

(Patch Cost)

SP Cones 5.7 0.2 0.294 4.17 211 secs

(2D Post Filter)

SP Cones 5.4 0.1 0.294 3.81 533 secs

(3D Post Filter)

SP Teddy 4.2 0.2 0.198 4.23 207 secs

SP Teddy 4.1 0.2 5.10 3.03 909 secs

(Patch Cost)

SP Teddy 4.1 0.2 0.198 4.28 209 secs

(2D Post Filter)

SP Teddy 3.8 0.1 0.198 3.77 528 secs

(3D Post Filter)

SP Venus 3.6 0.1 0.246 4.26 213 secs

SP Venus 3.6 0.1 5.31 3.41 944 secs

(Patch Cost)

SP Venus 3.7 0.1 0.246 4.25 215 secs

(2D Post Filter)

SP Venus 3.3 0.1 0.246 3.88 532 secs

(3D Post Filter)

Table 5.1: Smoothed scene particle performance. The performance of the scene

particles algorithm when incorporating smoothness constraints in a variety of ways.

Tests are performed with occlusion aware scene particles, using 4 appearance sensors.
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(a) Frame 108

unsmoothed

(b) Frame 108

smoothed

(c) Frame 107

appearance

(d) Frame 108

appearance

(e) Frame 113

unsmoothed

(f) Frame 113

smoothed

(g) Frame 112

appearance

(h) Frame 113

appearance

Figure 5.1: Smoothed flow field examples. Comparison of estimated flow fields, for 2

frames of the “Kicks” Kinect sequence, using the standard scene particles algorithm

(figures 5.1a and 5.1e), and using 3D bilateral post-smoothing (figures 5.1b and 5.1f).

Estimated motions travel from the light red to the black vertices. Also shown are the

frames before (figures 5.1c and 5.1g) and after (figures 5.1d and 5.1h) the motion.
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value Gaussians σv2 and σv3 which were originally both set to 0.5% of the scene range

Φ.

As the spatial smoothing scale increases, the behaviour of the patch based system noted

above, continues. Structural estimation (figure 5.2c) continues to degrade, while direc-

tional accuracy (figure 5.2d) continues to improve, such that performance is much closer

to previous state of the art techniques. The directional error of the 3D post filtering

increases with scale in a similar manner, however the 2D post filtering seems to provide

little directional accuracy regardless of scale. In general, the motion magnitude error

measures (figures 5.2a and 5.2b) exhibit optimal performance with a neighbourhood

size of 5, regardless of the smoothing technique. Subsequent increases in scale lead to

reduced performance, likely as the value of additional spatial constraints are outweighed

by oversmoothing artefacts. Another important point to note, is that increasing the

neighbourhood size leads to an exponential increase in the computational cost. For 2D

post-filtering this is negligible, but for patch based and especially for 3D post-filtering,

this is a concern.

The value smoothing scale, exhibits similar behaviour to that observed for spatial

smoothing scale (figure 5.3). Performance improves as the smoothing scale increases,

up to a point, after which increasing the scale leads to reduced performance. However,

although the behaviour is the same, the causes are reversed. At low scales, a very small

difference between neighbouring motions is sufficient for the additional constraints to be

attenuated, meaning very little smoothing is performed. As the scale increases, more

and more information from neighbouring motions is incorporated, improving perfor-

mance. However when the scale becomes too high, the useful properties of the bilateral

filter are lost, and discontinuities are ignored when considering smoothness, giving rise

to oversmoothing artefacts. In general the peak performance is found at at one or two

times the initially tested value (meaning 0.5%-1% of the scene range Φ). Filtering in

2D appears to gain less benefit from changes in value smoothing scale, reflecting the

results from table 5.1. In general, for both approaches, changes to the value smoothing

have less effect than changes in spatial smoothing. However it is useful to note increas-

ing the value smoothing scale incurs no additional computational cost, unlike spatial

smoothing.
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(a) Optical flow error against spatial smoothing

scale

(b) Stereo flow error against spatial smoothing

scale

(c) Structure error against spatial smoothing

scale (note Post Filtering does not affect

structure)

(d) Directional error against spatial smoothing

scale

Figure 5.2: Spatial smoothing vs performance. The change in scene flow estimation

accuracy, as a function of spatial smoothing scale, for patch based, 2D bilateral and

3D bilateral smoothing approaches. The x axis specifies the kernel or patch size, with

the variance of the spatial Gaussians set as above, to encompass 3 standard

deviations within the kernel. Note that lower error scores (y values) relates to better

performance.
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(a) Optical flow error against value smoothing

scale

(b) Stereo flow error against value smoothing

scale

(c) Directional error against value smoothing

scale

Figure 5.3: Value smoothing vs performance. The change in scene flow estimation

accuracy, as a function of value smoothing scale, for 2D and 3D bilateral smoothing.

The x axis specifies variance of the value Gaussian (σv2 and σv3 respectively) as

multiples of the original value defined above. The spatial smoothing neighbourhood

was fixed at 5. Note that lower error scores (y values) relates to better performance.

Structure reconstruction performance omitted as it is unaffected by post filtering.
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5.3 Forwards and Backwards Scene Particles

In addition to incorporating the smoothness assumption, a simple modification to the

original likelihood formulation 4.7, allows the assumption of Constant Velocity to be

used. This modified likelihood,

pa(Ia | r,v) =
1

1 + ea

M∑
m=1

t+1∑
τ=t-1

(
Iτa,m(Πm(rτ ))− Ī

)2
3M

(5.6)

favours motions which are consistent from the previous to current frame, and also

consistent from the current to future frame. This constant velocity assumption is often

used in tracking systems, and is generally assumed to be satisfied if the framerate

is high enough, such that changes in velocity between timesteps are near zero. The

new formulation provides additional constraints, and reduces the ambiguity between

motions. As such, it serves a similar purpose to the propagation of information via

the prior probability, explored in section 4.4.6. However, this “Forwards-Backwards”

formulation allows immediate gains in accuracy, rather than requiring a number of

frames to pass to build up a reliable prior. Such a system does necessitate a frame buffer

to achieve this however, which introduces a 1 frame lag between an input image and its

motion field estimate. This lag is unlikely to be important in most applications however,

as the assumption of Constant Velocity already implies a high enough framerate for

acceleration to be negligible.

Note that rτ+1 is given by rτ + v. A similar modification may also be made to the

depth likelihood of equation 4.8. Section 5.5 evaluates the effects of this assumption.

Further, the performance under varying degrees of violation for the Constant Velocity

assumption, is explored in section 5.6.

5.4 Occlusion Aware Scene Particles

In addition to introducing new assumptions such as smoothness, improvements may

also be made to the brightness constancy assumption. Few motion estimation algo-
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rithms explicitly account for points entering or exiting occlusion. In most cases this

is understandable, as in two camera systems, the motion of occluded points cannot be

resolved. However in overconstrained scenarios, such as those possible with the scene

particles algorithm, points may be occluded in some views, yet still visible to enough

sensors to allow reconstruction of the motion. In this section, inspiration is taken from

Fleuret et al. [50], to quantify visibility probabilistically, which can then be integrated

into the likelihood estimation, to create an occlusion aware version of the scene parti-

cles algorithm. In order to modify the likelihood calculation, any occlusion maps must

be estimated from the prior distribution.

The probability pv(c, r, t) of a point rt being visible in sensor c at time t is related to

the probability of another point occluding it. Any occluding points must lie along the

optical ray, with unit vector θ̂c, which originates from camera centre uc and intersects

rt. Occluding points must also have a distance to the sensor lower than that of rt.

Thus, the probability an occluding point exists, can be defined as the cumulative prob-

ability along the ray, up to rt, which is related to the probability of visibility by some

function f(x), as in equation 5.7.

The relationship between rt, uc and θ̂c is shown in figure 5.4. Point 0 is the origin

of the world co-ordinates and the other 2 points relate to the structure point under

consideration, and the origin of camera c for which the occlusion probability is being

estimated. The ray from sensor c through point r is given by rt − uc. Given this

direction, the unit vector θ̂c may then be obtained, by dividing by the magnitude. The

integration of equation 5.7 is then performed along the ray (including the offset for

the sensor origin). Note that unlike many previous approaches to motion estimation

[136, 122, 18], the evaluation of a points validity and its occlusion status are evaluated

separately. It is common for occlusions to be determined simply by the lack of obser-

vational consistency (which in the scene particles algorithm is used for the likelihood

function). In contrast, the proposed formulation requires that occlusions be justified

by the previously estimated structure and motion fields. Points are not labelled as

occluded if no other point is present to occlude it.
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Figure 5.4: Occlusion rays example. The relationship between 3 points in the 3

dimensional world. Point “0” is the origin of the world co-ordinates (often the origin

of the reference camera), r is the structure point in the scene under consideration,

and uc is the origin of sensor c. θ̂c is the unit vector along the ray from sensor c

through point r.

pv(c, r, t) = f


|rt−uc|∫

0

pt(uθ̂c + uc) du

 (5.7)

Note that the 3 velocity dimensions are marginalised out of the prior to produce pt (rt)

for this calculation, as the visibility at a point in time is not dependent on the instan-

taneous velocity at that time. The prior at t − 1 is re-estimated using r − v before

this marginalisation. However, the function f(x) still must be defined. The output

probability must be normalised in the range 0 to 1, however the input particle weights

do not sum to one. The most obvious choice for f(x), is to normalise by the total

weight of all particles along the ray, as in section 4.3.1, as shown in equation 5.8.
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pv(c, r, t) = 1−

|rt−uc|∫
0

pt(uθ̂c + uc) du (5.8)

However, this formulation leads to undesirable behaviour. As an example, with such

a formulation, the first nonzero point along the ray may have a very low probability

of being visibile. This makes little sense as by definition, nothing can occlude the first

point on the ray. To extend this example further, the visibility of any particle becomes

dependent not only on the weight of particles in front of it, but also behind it. Instead,

the occlusion probability is normalised by the probability at rt as follows:

pv(c, r, t) =
pt(rt)

|rt−uc|∫
0

pt(uθ̂c + uc) du

(5.9)

The integral on the denominator relates to the probability at all points up to and

including rt. Hence, the visibility probability correctly lies within the range 0 ≤

pv(c, r, t) ≤ 1, with the first nonzero point on the ray always assigned pv(c, r, t) = 1.

With this formulation, the probability of point rt being visible, does not depend on the

probability of any points lying behind rt, which is sensible. The occlusion probability

is similarly defined as 1− pv(c, r, t).

Figure 5.5 illustrates the behaviour of the pv(c, r, t) distribution, along a single ray,

for the discrete case involving 4 particles (figure 5.5a and the continuous case obtained

by assuming a constant gradient between each sample (figure 5.5b). Note that the

visibility probability for the first particle is one despite its low weight, as nothing is

present to occlude it. Further, particle 2 has a very high probability of visibility despite

another the presence of particle 1 in front of it, due to its significantly higher weight.

Intuitively, the occlusion probability is related to the probability that point r exists, and

to the probability that one or more points exist in front of r. The complete visibility

maps are 3D probability distributions in ẋ, ẏ, ż. Obviously this is much richer than

the 2 dimensional binary masks, that are often employed for handling occlusion. Each

viewpoint has a separate visibility map, which may be used in other vision tasks, such

as tracking and object recognition.
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(a) Discrete case (b) Continuous case

Figure 5.5: Occlusion Probability example. The cases of both continuous and discrete

priors are shown. The discrete example is composed of 4 scene particles of varying

weights, while the continuous case assumes a constant gradient between each sample.

Note that the probability of occlusion for particle 2 is low, as its weight is much

greater than that of particles in front of it.

These visibility maps must still be integrated into the scene flow estimation system. A

modification to the original likelihood formulation of equation 4.7 may be performed:

pa(Ia | r,v) =
1

1 + ea

M∑
m=1

t∑
τ=t-1

pv(m, r, τ)

2M p̄v(r)

(
Iτa,m(Πm(rτ ))− Ī

)2 (5.10)

Under this new scheme, the contribution of each sensor to the variance calculation and

to the mean colour,

Ī =

M∑
m=1

t∑
τ=t-1

pv(m, r, τ)

2M p̄v(r)
Iτa,m(Πm(rτ )) (5.11)

is weighted based on its visibility probability. As such, the consistency between view-

points which are unlikely to be occluded, is assigned greater importance. A similar

modification is also applied to the depth likelihood from equation 4.8. It is important

to note that the visibility probabilities are normalised, by the total visibility at that

point (which is 2(M + L) times the average visibility p̄v(r)):
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p̄v(r) =
M∑
m=1

t∑
τ=t-1

pv(m, r, τ) (5.12)

Thus, the visibility probabilities do not directly increase or decrease the likelihood of

a point, regardless of how many viewpoints it is visible in.

Using the new formulation, allows points to receive high likelihoods, even when their

appearance is only consistent within a subset of sensors, provided that subset is justified

by the visibility maps. Iteratively analysing the likelihood p (I | r,v) and recomput-

ing the visibility maps, as described in section 4.3.2, leads them both to converge on

mutually consistent distributions.

However, the new formulation is susceptible to the degenerate case, where a point

is occluded in all but a single sensor. In this case, the consistency (of one sensor

with itself) will be high. This is similar to the degeneracy of the original likelihood

formulation, discussed in section 4.2.2. The issue can also be solved in a similar way,

by adapting the constraints shown in figure 4.1, so that the number of sensors with a

greater than average visibility must be at least 3, including at least 1 at both the current

and previous frames. These constraints are formalised in the following equations.

|{c, τ |pv(c, r, τ) ≥ p̄v(r)}| ≥ 3 (5.13)

|{c |pv(c, r, 0) ≥ p̄v(r)}| ≥ 1 (5.14)

|{c |pv(c, r, 1) ≥ p̄v(r)}| ≥ 1 (5.15)

5.5 Assumption Variant Analysis

In table 5.2 the performance of the standard scene particles algorithm (SP) from the

previous chapter, is compared to the forwards-backwards formulation (FB), and the
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Algorithm Dataset errnof errnsf errnst errnae Runtime

SP Cones 0.06 0.00 0.29 4.08 213 secs

SP (FB) Cones 0.06 0.01 0.28 4.07 217 secs

SP (OCC) Cones 0.05 0.00 0.26 4.24 268 secs

Basha et al. [19] Cones 1.32 0.01 6.22 0.12 -

Huguetet al. [64] Cones 5.79 8.24 5.55 0.69 5 Hours

SP Teddy 0.04 0.00 0.20 4.23 207 secs

SP (FB) Teddy 0.04 0.00 0.20 4.21 213 secs

SP (OCC) Teddy 0.04 0.00 0.18 4.16 265 secs

Basha et al. [19] Teddy 2.53 0.02 6.13 0.22 -

Huguet et al. [64] Teddy 6.21 11.58 5.64 0.51 5 Hours

SP Venus 0.04 0.00 0.25 4.26 213 secs

SP (FB) Venus 0.04 0.00 0.24 4.24 214 secs

SP (OCC) Venus 0.03 0.00 0.23 4.21 277 secs

Basha et al. [19] Venus 1.55 0.00 5.39 1.09 -

Huguet et al. [64] Venus 3.70 3.05 5.79 0.98 5 Hours

Table 5.2: scene particle performance with constant velocity and occlusions. Results

of scene flow estimation for a multi-view, appearance only setup. scene particles

embodying both the constant velocity and probabilistic occlusions, are compared to

Basha et al. [19] and Huguet et al. [64].
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occlusion aware system (OCC). The previous state of the art techniques from table 4.1

are also included for comparison.

The FB variant appears to provide slightly improved performance, particularly in terms

of structural accuracy errnst, with a negligible increase in computational cost. In con-

trast the occlusion aware approach (OCC) provides larger improvements, accross all

error measures, but at the cost of around 30% increased runtime.

5.6 Non-Constant Velocity

The forwards-backwards formulation appears to offer improved performance for negli-

gible cost. However the analysis was perhaps unfair, as the dataset satisfied the newly

incorporated assumption, of constant velocity. For real applications such as the action

recognition task that is the focus of this thesis, the assumption will not be perfectly

obeyed. Thus, it is important to examine the sensitivity of the system to divergences

from the assumption.

It is trivial to use the middlebury datasets, to create test sequences undergoing various

levels of acceleration. For example, a 3 frame sequence comprising {I1, I2, I4} relates

to a 100% increase in velocity, between the second and third frames (scene motion

increases from 1 to 2 times the sensor separation). Using this approach sequences can

be generated for 10 different levels of acceleration, ranging from −75% to 300%. Results

are shown in figure 5.6 with the performance of the standard scene particle algorithm

also displayed for comparison purposes.

All error metrics display similar trends. Even small deviations from zero acceleration,

lead to drastic reductions in accuracy. Thus, although the forwards-backwards system

was able to provide significant gains “for free” in the original evaluation, it is far too

sensitive to the constant velocity assumption for use in the action recognition task.
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(a) Optical flow error against scene acceleration (b) Stereo flow error against scene acceleration

(c) Structure error against scene acceleration (d) Directional error against scene acceleration

Figure 5.6: Constant velocity violation performance. Analysis of scene flow estimation

accuracy, using the forwards-backwards scene particles algorithm, under various

violations of the constant velocity assumption.
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5.7 Improving Brightness Constancy

The sensitivity of the forwards-backwards formulation, to deviations from the constant

velocity assumption, raises similar questions about the brightness constancy assump-

tion, which is used in all motion estimation techniques (both optical flow and scene

flow). In fact, it is well known that there are many situations in real data, where

the brightness constancy assumption is not obeyed. Examples of this include specular

effects, shadows, occlusions and directional lighting. In the case of scene flow estima-

tion, these issues are exacerbated by the use of multiple sensors, with different response

characteristics.

In previous work, sensitivity to these effects has rarely been explored. Indeed, many

motion estimation schemes are analysed on synthetic datasets, as it is quite challenging

to get ground truth motion fields for real data (particularly for scene flow fields). As

synthetic datasets rarely contain any of these artefacts, this is equivalent to the tests

in section 5.5, where the forwards-backwards system seemed valuable, because it was

analysed under artificial conditions where its assumption was satisfied. Indeed Vaudrey

et al. have noted that existing motion estimation techniques often exhibit different

behaviours when moved out of the lab and onto real data [123].

The conclusions drawn in the following sections, are equally applicable for multiview

scene flow and hybrid scene flow (using appearance and depth). In fact, as the bright-

ness constancy assumption only involves the appearance sensors, the hybrid scene flow

scenario is equivalent to single view optical flow in the following analysis. As such, it

is useful to briefly outline a unified formulation, before exploring the behaviour of the

brightness constancy assumption.

For a given motion vector (either vx, vy in the image plane, or vẋ, vẏ, vż in the scene) we

can define the set Γ of supporting pixel locations. This set contains the image position

x, y and frame number τ for all pixels involved in the motion. For the optical flow

(M = 1) case, Γ contains one entry from the current frame (t + 1), and one from the

previous frame(t):
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Γ = {(x, y, t), (x+ vx, y + vy, t+ 1)} (5.16)

For scene flow estimation (M > 1), a motion has 2M associated pixel locations. The

set of pixel locations taken from sensor m, obtained by projecting the start and end

points of the motion vector, are given by:

Γm = {(Πm(r, t)) , (Πm (r + v) , t+ 1)} (5.17)

Given the sets of supporting pixel locations from each sensor (Γ1..m), the set of asso-

ciated pixel values is defined as Ψ.

Ψ = {Im(x, y, τ) | x, y, τ ∈ Γm for all m} (5.18)

5.7.1 Matching Functions

Given this unified formulation, the behaviour of the brightness constancy assumption

may be analysed. A relatively small number of matching functions have been proposed

to embody the brightness constancy assumption, particularly in comparison to the vast

number of smoothness formulations.

The simplest of these functions, is based on the absolute deviation (i.e. the l1 norm)

from brightness constancy [100]. This function is defined as ABS in equation 5.20,

where Ī is the mean value of the supporting pixels.

Ī =
1

|Ψ|
∑
ψ∈Ψ

ψ (5.19)

ABS (Ψ) =
∑
ψ∈Ψ

|ψ − Ī| (5.20)

A related, approach used by many authors [28, 19, 64, 67, 95, 120] is to employ the l2

norm, define as SQ in equation 5.21. This relates to the sum of squared deviations,



5.7. Improving Brightness Constancy 115

across all supporting pixels. This is the function used in the scene particle algorithm,

and previously presented (in less general form) in equation 4.7.

SQ (Ψ) =
∑
ψ∈Ψ

|ψ − Ī|2 (5.21)

These functions may be applied to RGB data, as well as greyscale, by creating a separate

set of supporting pixel values Ψc for each input channel. This leads to a function based

on the colour constancy assumption. In a similar vein, gradient images may be used

as an input, leading to a set of supporting gradient values Ψg, and functions ABSg

and SQg, based on the Gradient Constancy Assumption [28, 95, 64]. functions based

on the “response consistency” of any linear filter, have also been proposed [118], which

includes the gradient constancy functions.

ABSg (Ψg) =
∑
ψ∈Ψg

|ψ − Īg| (5.22)

SQg (Ψg) =
∑
ψ∈Ψg

|ψ − Īg|2 (5.23)

The final function to be examined, is the so called “optical flow constraint” [44, 75,

82, 107, 24]. This is a more complex formulation, which ignores the supporting pixel

values from time t+ 1, and instead uses the temporal gradient image It. The function

equates to a linearised Taylor expansion of the brightness constancy assumption (i.e.

with all terms of quadratic or higher power dropped). The function is defined as OFC

in equation 5.24, where IOx and IOy are the spatial gradient images.

OFC(Γ)=
M∑
m=1

∑
(x, y,τ )∈Γm


0 if τ= t+1

It(x, y, t+1)+vxIOx(x, y, t+1)+vyIOy(x, y, t+1) otherwise

(5.24)
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Figure 5.7: An example frame from the Cones sequence

5.7.2 Function Behaviour Analysis

To analyse these functions, embodying various appearance constancy assumptions, the

responses are examined for the ground truth motion fields (both optical flow and scene

flow) of real scenes. Results for the Cones sequence [106] are shown in figure 5.8.

Figure 5.7 contains an example frame from this sequence. The analyses in the remainder

of this chapter, are also performed on 4 additional sequences from the middlebury

datasets, including a range of illumination conditions. These additional results are

presented in appendix B. Blue regions have no ground truth. Regions of brighter red,

indicate areas in which the appearance constancy assumption holds, while dark red

areas, are where the scene displays inconsistencies.

Unsurprisingly, the use of l1 or l2 norms have little effect on the general behaviour

of the functions. The brightness constancy functions ABS and SQ hold well within

objects. However, they prove very sensitive to occlusions, which can be seen by the

“shadowing” of the cones. Even within objects, there are some regions where the

brightness constancy assumption is less valid due to specular effects, such as the nose

of the mask. The scene flow case also fails on fine textures, such as the writing on the

matchbox and the pattern on the cones. This is because details close to the pixel level
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Optical Flow Scene flow

ABS

SQ

ABSg

SQg

OFC

Figure 5.8: Function response images. Response of various motion estimation

functions, for the ground truth motion of a real scene. Dark red regions indicate

deviations from the constancy assumption. Blue regions lack ground truth.
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are quantised differently in each sensor, due to varying subpixel overlap.

The gradient constancy measures ABSg and SQg, prove to be the most robust func-

tions for optical flow, performing reasonably well on occlusions and fine textures. For

scene flow estimation, the gradient constancy functions are comparable to brightness

constancy. The linearised brightness constancy function OFC appears to be far more

robust to occlusions than the other functions. However, it also displays the great-

est inconsistency within objects, particularly at edges and fine details. Interestingly,

shadowed areas such as the eye and mouth holes of the mask, provide the regions of

maximum response for all consistency measures, due to the underexposure and conse-

quent lack of contrast.

Separating Truth From Errors

Although each function breaks down under different circumstances, the inconsistencies

are generally in the minority. However, providing a high response for true motions is

only half the task for a good function. The second requirement, is to provide a low

response for incorrect motions. Indeed, an ideal function would produce a continuously

decaying output, as the error on the input was increased. In figure 5.9 the Probability

Density Function (PDF) is shown (i.e. what fraction of the scene is assigned each

response value) for each function on the cones sequence. Each graph displays two

PDFs, one for the ground truth motion field (i.e. the pdf of the red values in figure

5.8), and one for an “erroneous” motion field (where the motion magnitude at every

location is doubled). Note that the response of each function are normalised between

0 and 1 to facilitate comparisons. A response of zero implies no inconsistency with the

associated constancy assumption, and a response of 1 is a strong inconsistency.

The results are disappointing. As noted previously, most ground truth motions lie

within the lower 20% of the responses, while occlusions, specularities and other artefacts

are in the minority. However, even the significantly erroneous motions considered here,

lead to a similar distribution of responses. The linearised brightness constancy function

OFC shows an 80% overlap between the two PDFs. The gradient based functions

ABSg and SQg produce heavier tailed distributions for erroneous motions, (i.e. the
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Optical Flow Scene flow
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SQg

OFC

Figure 5.9: Response distributions. Distribution of responses for various motion

estimation functions, applied to both ground truth and error motions of a real scene.

Responses are normalized in the range 0 to 1.
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shape of the two PDFs, and the locations of the peak are the same, but there is a

slight increase in the number of outliers). The best separation occurs for the simple

brightness constancy functions ABS and SQ, however performance is still quite poor,

given the large motion error under consideration.

The large overlap of the response distributions in each case, implies that most erro-

neous motions, cannot be distinguished from cases where the scene does not obey the

constancy assumption (due to specularities, directional lighting etc). Thus, attempting

to minimize the function response across the scene will result in almost as many correct

motions being discarded, as incorrect.

Convergence Behaviour

In general, motion estimation schemes employ optimization, to follow the gradient of the

function response, assuming that reducing this inconsistency leads to reduced motion

errors. Although the scene particles algorithm is stochastic, and doesn’t explicitly

compute the response gradient, the iterative resampling and diffusion does lead to a

shift of sampling density (equivalent prior probability) towards response minima. In

figure 5.10, graphs are shown for each function, where the y axis displays the average

response over the whole motion field, as the amount of motion error is varied on the x

axis, between 0 (no motion) and 2 (twice the true motion).

The brightness constancy based schemes (ABS and SQ) do display a general trend

of reduced inconsistency towards the true motion, despite the significant overlap of

response distributions. In contrast, functions based on Gradient constancy (ABSg

and SQg) perform poorly, with roughly the same response produced for all motions

more than 10% away from the ground truth. This implies that when such a function is

employed for motion estimation, convergence will occur extremely slowly, if at all, unless

the initialization is very close to the true value. The linearised brightness constancy

constraint OFC provides the worst performance. This function always favours smaller

motions, and on average displays little tendency towards the correct motion. This

explains why multi-scale approaches are so commonly employed, attempting to enable

the function to allow larger flows.
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Optical Flow Scene flow
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SQg

OFC

Figure 5.10: Convergence performance. The average constancy deviation across the

scene, for each function, analysed with varying degrees of motion error.
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5.7.3 Intelligent Transfer Functions

The previously proposed functions for motion estimation, assume either a linear or

quadratic relationship between the deviation from appearance constancy, and the “qual-

ity” of the match. However, it has been shown that many deviations occur due to the

properties of the scene, and do not necessarily reflect errors in the input motion. The

functions do not take into account any of these “acceptable” inconsistencies, and thus

perform poorly when differentiating motion errors from scene artefacts. To address

this, it may be possible to employ machine learning techniques, to find an “intelligent”

matching criteria, of unconstrained form, which is robust to the appearance inconsis-

tencies of real data, while still being sensitive to inconsistencies from motion errors.

By learning such a nonlinear relationship, it is possible to embody more complex be-

haviours. As an example, it may be expected that in very light or dark parts of the

scene, image contrast would be reduced. In this case, little variation may be expected

naturally, and any appearance deviations may be more significant. Learning such be-

haviour, would serve to flatten the exaggerated response peaks, that were observed in

underexposed regions of figure 5.8. As a second example, specular effects often cause a

large change in appearance across all colour channels, while changes in the appearance

of only one channel may be more likely to relate to an erroneous motion.

In order to produce this nonlinear function, an Randomised Decision Forest (RDF)

classifier [27] is employed. The RDF is capable not only of classifying an input, but

also of estimating the likelihood for each class. This is advantageous in a probabilistic

framework such as the scene particles algorithm, as it removes the need for the nor-

malisation step used to produce the PDFs in section 5.7.2. Such normalisation steps

fit poorly into online estimation schemes such as motion estimation.

For a classifier which is trained to distinguish true motions from erroneous motions,

the estimated likelihood of the “erroneous motion” class, may be used as a function,

which is equivalent to the previous constancy deviation functions (i.e. a response of

1 indicates the motion was definitely erroneous, and a response of 0 indicates the

motion was definitely true). For the following evaluations (and those presented in

appendix B) the ITFs were trained using 500,000 samples, extracted from an unseen
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sequence (the Teddy series [106]). In the following chapter (section 6.3) generalisation

of these functions on data outside the Middlebury sequences is demonstrated.

Figure 5.11 shows the performance of various ITF, based on a range of input feature

sets. The first is the variance feature set Fvar, which is defined in equation 5.25. This

set contains only a single element, which is equivalent to the output of the squared

differences function SQ previously defined in equation 5.21. By learning a nonlinear

mapping function, improved separation over direct use of SQ is possible in the op-

tical flow scenario. However, in the more difficult scene flow estimation task, little

improvement is obtained over the original function.

Fvar (Ψ) =

 1

|Ψ|
∑
ψ∈Ψ

|ψ − Ī|2
 (5.25)

The second feature set are the differences features Fdif , which are calculated as the

distance of each supporting pixel value, from the mean supporting value, as in equa-

tion 5.26. This is equivalent to the input of the absolute difference function ABS pre-

viously defined in equation 5.20. By learning from the naive functions inputs, rather

than attempting to remap its outputs, the ITF is able to provide greatly improved

separation, due to considering nonlinear combinations of inputs. The improvement is

especially noticeable in the scene flow case, where the number of features is larger.

Fdif (Ψ) =
{
|ψ − Ī| : ψ ∈ Ψ

}
(5.26)

The third feature set Fpix attempts to learn directly from the raw pixel values. In-

terestingly, for the optical flow case this leads to improved performance, over using

the differences feature Fdif . However, for scene flow estimation the Fdif proves more

effective. This makes sense, as the RDF (like most classifiers) makes the assumption

that features are independent, but for Fpix, most of the information is contained in the

correlation between features. To illustrate this point, note that for an ideal true motion,

every difference feature Fdif should be low, and may be examined in isolation, and then

aggregated. However, the pixel features Fpix may take any value for an ideal motion,

as long as every feature takes the same value. Given this knowledge, it is obvious that
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the more features present in Fpix, the more difficult it will be for the RDF to learn

the correlation relationship. This explains why performance is so much lower in the

scene flow case (which consists of 8 features) than in the optical flow case (2 features).

Despite this difficulty, the raw pixel features do contain additional information, and

allow regions to be treated differently depending on their intensity (for example, one

rule may be used in dark areas, and another in light areas) which is not possible using

the normalized Fdif features. This explains the improvement gained in the optical flow

case.

Fpix (Ψ) = Ψ (5.27)

All the ITFs display a reduction in the effect of outliers. In the standard functions, the

vast majority of the motion fields (both true and erroneous) fell within the bottom 20%

of the response range, while the remaining 80% of the response values, were populated

by a very small number of outliers.

In addition to enabling complex nonlinear combinations of the information from sup-

porting pixels, it is possible to include higher level information in an ITF. As an

example, features based on local context may be utilised, such as the local image vari-

ance Fpv around each supporting pixel, which may indicate whether the pixel lies along

a boundary or within a surface. These features are defined in equation 5.29, where

Īm (x, y, τ) is the mean value of a patch centred at x, y, τ and Ω is the set of 2D off-

sets, relating to a local neighbourhood (a 3× 3 patch was used in these experiments).

Īm (x, y, τ) =
1

|Ω|
∑

x′, y′∈Ω

Im
(
x+ x′, y + y′, τ

)
(5.28)

Fpv (Γ) =

 1

|Ω|
∑

x′, y′∈Ω

(
Im

(
x+ x′, y + y′, τ

)
-Īm(x, y, τ)

)2 | x, y, τ ∈ Γm, ∀m


(5.29)

The local means around each supporting pixel may also be used to create a feature set

Fpm, which describes how light or dark the regions around the supporting pixels are.
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Optical Flow Scene flow
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Fdif

Fpix

Figure 5.11: ITF response distributions. Distribution of responses for various ITFs,

applied to ground truth and erroneous motions in a real scene.
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This is a more robust version of the information present in Fpix, which proved valuable

in the optical flow case.

Fpm (Γ) =
{
Īm (x, y, τ) | x, y, τ ∈ Γm, ∀m

}
(5.30)

A more complex form of contextual feature is defined as Fph in equation 5.31. This

relates to a coarse (3 bin for these experiments) histogram of the local values around

each supporting pixel. This contains similar information to the contextual mean and

variance features Fpm and Fpv (i.e. light versus dark regions and boundaries versus

surfaces) with some additional information.

Fph (Γ) =

{
hist

x′, y′∈Ω

(
Im

(
x+ x′, y + y′, τ

))
| x, y, τ ∈ Γm,∀m

}
(5.31)

It’s important to note that these contextual features are more general than the direct

“patch matching” which is commonly employed in local motion estimation algorithms.

For these contextual features, there does not need to be an explicit one to one corre-

spondence between pixels. This creates robustness to patch changes, due to projective

distortions, which are normally handled by a separate warping scheme. ITFs may be

employed within local “patch matching” schemes however, by replacing the pixel-wise

comparison measure.

As can be seen in figure 5.12 the inclusion of the local variance feature Fpv provides

little benefit over using Fdif alone, in both scenarios. This implies that knowing if

the motion is on an object boundary, is not useful when determining its validity. The

more complex local histogram features Fph do provide improved performance in the

optical flow scenario, but interestingly prove detrimental for scene flow estimation. It

is possible that the larger number of features (216 in the scene flow scenario) makes

it more difficult to determine accurate class boundaries. The most valuable contextual

features actually prove to be the local means Fpm, which are also simplest and fastest

to compute.

Figure 5.13 shows the average response of the learned function, across the scene, for

varying levels of motion error. The curvature of the response is far greater than even
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Optical Flow Scene flow

Fdif

Fdif+Fpv

Fdif+Fph

Fdif+Fpm

Figure 5.12: Contextual ITF response distributions. The distribution of responses for

ITFs based on Fdif , including various types of contextual information.
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the original brightness constancy functions (note that the scale of the y axis had to

be modified from that used in figure 5.10, in order to make the new curves visible).

This suggests that ITFs provide much more rapid convergence during optimization

for motion estimation, in addition to the expected gains in accuracy. The inclusion

of contextual information also yields improved convergence rates, in addition to the

improvements in separation.

5.7.4 Motion Estimation with Intelligent Transfer Functions

Although ITFs display more robustness to the appearance constancy assumption, most

motion estimation techniques, including the scene particles algorithm, already contain

mechanisms (such as multiscale estimation and iterative warping schemes) designed to

mitigate standard functions shortcomings. As such, it is important to quantify whether

the gains in robustness translate to improved accuracy in motion estimation.

In the original scene particles formulation, the sampling of the likelihood distribution

used to weight each scene particle, was achieved by analysing equation 4.7. Instead,

the supporting pixel set for each scene particle may be calculated, and an ITF may be

employed. Note however, that the scene particles algorithm is formulated in a proba-

bilistic manner, rather than than the more standard energy minimisation formulation.

As such, 1 minus the response of the ITF was used (i.e. high values likely relate to true

motions, while low values relate to erroneous motions).

Motion estimation accuracy using a number of ITFs was compared to the original SQ

formulation. Testing was performed under both the multi-view (table 5.4) and hybrid

(table 5.3) scenarios, the latter of which equates to an optical flow analysis, for the

purposes of brightness constancy sensitivity.

In addition to motion estimation accuracy, the computational complexity of each func-

tion is shown in table 5.3. These complexities are described in terms of the number of

supporting pixels (i.e. the cardinality of Ψ, which is 6 for the hybrid scenario and 24

for the multi view scenario, due to the use of 3 independent colour channels) and the

number of pixels used for local context (cardinality of Ω, which is 3× 3 in these exper-

iments). The ITFs also have an additional cost, for the RDF to analyse the features.
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Optical Flow Scene flow

SQ

Fdif

Fdif+Fpm

Figure 5.13: ITF convergence performance. The average function response for varying

levels of motion error, for the best ITFs with and without contextual information.

The previous SQ function is also shown, rescaled to the same y axis, for comparison

purposes.
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Function errnof errae Complexity

SQ 0.095 5.02 O (3|Ψ|)

Fvar 0.046 4.06 O (3 |Ψ|+ ζlog (φ))

Fdif 0.048 4.11 O (2 |Ψ|+ ζlog (φ))

Fpix 0.036 3.22 O (ζlog (φ))

Fdif + Fpv 0.051 4.39 O (3 |Ψ| |Ω|+ 2 |Ψ|+ ζlog (φ))

Fdif + Fph 0.046 3.95 O (|Ψ| |Ω|+ 2 |Ψ|+ ζlog (φ))

Fdif + Fpm 0.041 3.50 O (|Ψ| |Ω|+ 2 |Ψ|+ ζlog (φ))

Table 5.3: Single view motion estimation performance with ITFs. Performance for

hybrid scene flow estimation, based on the standard SQ function, and a range of

ITFs. Also shown is the computational complexity for analyzing each function.

For a linear implementation (not exploiting the independence of trees within the RDF),

this cost is equal to the number of trees ζ (20 in these experiments), times the log of

the tree depth φ (which averaged at 20). The complexity in relation to each parameter

is linear or better, for all functions (note however that the neighbourhood cardinality

|Ω| would often be incremented in a quadratic manner). This means that the runtime

cost of using each function should be roughly the same order of magnitude. In these

experiments these complexity relationships lead to the simpler ITFs having roughly the

same computation time as SQ for the multiview scenario, with computation for the

hybrid scenario roughly doubled. ITFs utilising contextual features have computations

times increased by roughly a factor of 2. It is interesting to note, that it is often faster

to use the Fpix ITF, rather than to simply calculate the variance (i.e. the SQ function)

particularly when estimating multiview scene flow. It should also be noted that these

changes in computational costs only affect one stage of the scene particle algorithm.

The motion estimation results, reflect the behaviour seen in the initial sensitivity anal-

ysis. This demonstrates that despite the multiscale estimation scheme and other miti-

gating factors, the scene particle algorithm is still sensitive to the brightness constancy

assumption, and that by improving robustness to the assumption, improved accuracy

may be obtained. For single view motion estimation, even the worst performing of
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Function errnof errnsf errnst errae

SQ 0.062 0.001 2.90 4.08

Fvar 0.059 0.002 2.91 4.03

Fdif 0.040 0.001 1.98 3.47

Fpix 0.051 0.001 2.24 3.62

Fdif + Fpv 0.036 0.000 2.10 3.68

Fdif + Fph 0.048 0.001 2.17 3.91

Fdif + Fpm 0.035 0.001 2.02 3.03

Table 5.4: Multi view motion estimation performance with ITFs. Performance for

scene flow estimation, based on the original SQ function, and a range of ITFs.

the ITFs, leads to almost a 50% reduction in motion magnitude errors. The raw pixel

value features Fpix prove the most effective (65% reduced errnof and 35% improvement

directional accuracy), closely followed by the combination of difference and context fea-

tures (Fdif + Fpm). In the multi-view tests, Fvar offers marginal improvement over the

original formulation, confirming that a simple nonlinear mapping is insufficient for this

more complex task. However, the other ITFs all provide some performance gain, with

the best results coming from the difference features coupled with context Fdif + Fpm,

which provides a more modest 44% improvement in magnitude accuracy, and 20%

improvement in directional accuracy, coupled with a 30% reduction in structural error.

5.8 Conclusions

In this chapter, the fundamental assumptions of the scene particle algorithm have been

explored. Initially the inclusion of additional constraints, embodying new assumptions,

was explored. Specifically, the constant velocity assumption was formalised, and various

approaches were employed to incorporate the assumption of a smooth motion field. It

was found that a traditional, local, approach to smoothness, leads to motion estimation

similar to previous state of the art performance (i.e. improved directional accuracy, and

degraded performance for all other error measures). Suggesting that previous formula-
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tions of smoothness constraints may be a significant limiting factor on the performance

of contemporary scene flow estimation. The constant velocity assumption was shown

to be valuable, and to incur very little computational cost. However, further analysis

demonstrated that the sensitivity to the assumption makes it impractical for real vision

tasks.

Motivated by this, the sensitivity of the original brightness constancy assumption was

also analysed, in the context of a number of previously proposed matching functions.

Each function was shown to be broken by different artefacts of real data. More impor-

tantly, the standard functions were shown to be violated to the same degree by both

erroneous estimates, and scene artefacts. Some of the functions were also seen to exhibit

poor convergence behaviour, with the optical flow constraint always favouring smaller

motions, while the gradient constancy assumption required accurate initialisation.

An ITF was proposed, using machine learning techniques to create a more general

and robust non-linear version of the brightness constancy assumption. Various ITFs

were examined, based on a range of inputs including a number of types of contextual

information. Such functions were shown to offer a more robust representation of the

behaviour of real data, with scene artefacts penalised less heavily than erroneous mo-

tions, while also offering improved convergence rates. By incorporating these ITFs into

the scene particles algorithm, significant improvements in accuracy were obtained in

both the hybrid and multiview scenarios, for negligible computational cost.

In the future it would be useful to confirm that the application of ITFs, leads to

improved performance in alternative motion estimation techniques, in addition to the

probabilistic framework examined here. Additionally a similar approach may be used

for the smoothness assumption, or for the depth constancy assumption used in range

flow and hybrid scene flow estimation. It may also prove valuable to learn joint ITFs,

such that for example, a single function would be used to embody both the brightness

constancy and smoothness functions. Finally it would be useful to investigate the

application of ITFs to other areas such as near duplicate image retrieval and image

registration tasks.



Chapter 6

3D Motion Features

The scene particles algorithm allows the generation of accurate 3D motion fields, with

a speed that is tractable for real vision applications. As such, it is now possible to

return to the Hollywood 3D action recognition dataset, introduced in chapter 3. The

following chapter explores techniques for encoding 3D motions, as a feature descriptor

for recognition, in much the same way that 3D structure was explored in section 3.2.3.

In section 3.2.3 the ω operator was introduced, to create a joint histogram of the

values from two images, over a local neighbourhood. A HOG descriptor, was defined

as the application of this operator to the gradient images IOx, IOy. Additionally, HOF

descriptors were defined as the result, when the operator was applied to optical flow

images (I dx
dτ

and I dy
dτ

). Here, a more detailed description of the HOF case is presented,

followed by a formulation for scene flow fields.

6.1 Histograms of Oriented Optical Flow

The HOF descriptor (sometimes also referred to as “Histogram of Oriented Optical

Flow” or HOOF [33]) encodes local motion information, around a salient point (x, y).

The descriptor is calculated over a neighbourhood, defined by the set Ω of 2D pixel

offsets. To preserve some degree of spatial information, the neighbourhood is split into

a grid of ε by ε cells. A separate histogram ωij is computed for each cell, and then

133
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concatenated, and the result normalised as in equations 6.1 and 6.2. By normalising at

the neighbourhood level, the descriptor gains scale invariance, as well as invariance to

changes in the speed the action is performed, while differences in the relative motion

between cells are maintained.

ωu = {ω11, ω12, ..., ωεε} (6.1)

ω =
ωu∑

b∈ωu

b
(6.2)

The histogram for each spatial cell, is computed using the flow magnitude and ori-

entation images, defined in equations 6.3 and 6.4 respectively. If B is the number of

bins used to quantise the flow orientations, then the value of bin b in cell histogram

ωεε is determined as in equation 6.5, where Ωεε is the 2D set of pixel locations for the

cell in question. Intuitively, this relates to each pixel casting a vote, weighted by its

magnitude, into the bin determined by its orientation.

Imag(x, y) =

√
I dx
dτ

(x, y)2 + I dy
dτ

(x, y)2 (6.3)

Iori(x, y) = arctan

I dxdτ (x, y)

I dy
dτ

(x, y)

 (6.4)

ωεε[b] =
∑
o∈Ωεε


Imag((x, y) + o) if 2πb

B ≤ Iori((x, y) + o) < 2π(b+1)

B

0 otherwise

(6.5)

As an example, if the number of orientation bins is set to four (B = 4), then the first

bin (ωεε[0]) would contain votes from all pixels with an orientation between 0 and π
2

radians. Likewise the second bin (ωεε[1]) would be filled by the magnitude of all pixels,

whose orientation lay between π
2 and π. The result is that every pixel in the cell, is

entered into exactly 1 bin of the histogram.
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6.2 Histograms of Oriented Scene Flow

A similar approach can easily be employed to encode scene flow, using the output image

Io defined in section 4.3.4. This image contains 4 channels, the first two of which encode

the 2D image plane motion vx, vy (relating to images I dx
dτ

and I dy
dτ

above), while the

third channel encodes the out of plane motion vd (the fourth channel contains the

disparity of the point, and is not used here).

For three dimensional vectors, a single orientation value is not sufficient. Instead a pair

of spherical co-ordinates, azimuth and elevation, are defined in equations 6.6 and 6.7.

Figure 6.1 illustrates this binning of this 2D spherical orientation space, if the start

point for a unit magnitude flow vector is at the origin of the co-ordinate system (i.e.

the centre of the circle) then its end point will lie somewhere on the surface of the

sphere, which is divided into discrete regions. The Azimuth specifies rotation within

the xy plane (around the z axis) taking values from 0 to 360 degrees. In the diagram

this relates to motion of the flow end point along the concentric rings. Azimuth is

analogous to the in plane orientation used in HOFs. Elevation specifies the rotation

within the yz (around the x axis) and takes values from -90 to +90 degrees. The

reduced range prevents ambiguity and ensures every point on the sphere is defined by

a single unique pair of orientations. As an example, an azimuth of 0 and elevation of

10 would specify (if allowed) the same end point as an azimuth of 180 and elevation of

350. The magnitude of a flow controls its voting weight into the relevant bin, and is

defined in equation 6.8.

Iazi-p(x, y) = arctan

(
Io[1] (x, y)

Io[0] (x, y)

)
(6.6)

Iele-p(x, y) = arctan

(
Io[2] (x, y)

Io[1] (x, y)

)
(6.7)

Imag-p(x, y) =

√
Io[0] (x, y)2 + Io[1] (x, y)2 + Io[2] (x, y)2 (6.8)

Given these new definitions of orientation and magnitude, the joint histogram (where

each combination of azimuth bin b1 and elevation bin b2 is stored separately) is defined
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Figure 6.1: Azimuth and Elevation bins on a 2D spherical space. Azimuth is rotation

around the z axis, relating to moving the flows end point around the concentric rings.

Elevation is rotation around the x axis (i.e. moving between different concentric

rings). This example has 20 bins for both the azimuth and elevation dimensions.

for cell (ε,ε) in equation 6.9. As for the optical flow case, normalising and concatenating

each cell histogram produces the full HOS descriptor ωp.

ωpεε[b1][b2] =
∑
o∈Ωεε


Imag-p((x, y) + o)

if 2πb1
Bazi

≤ Iazi-p((x, y) + o) < 2π(b1+1)

Bazi

and −πb2Bele
≤ Iele-p((x, y) + o) < π(b2+1)

Bele

0 otherwise

(6.9)

6.2.1 Undistorted HOS

The ωp descriptor extends the original HOF descriptor to encode additional information

about out of plane motions. However, the formulation may comply too closely with the
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original. Using the vx, vy and vd velocities (i.e. after projection), introduces projective

distortions into the scene flow field. Additionally, as the velocities are in different units,

the computed orientation and magnitude is less meaningful.

As an alternative to using Io it is possible to use the weighted average, of the set of

scene particles Θ0,x, y which lie along ray x, y of sensor 0. This weighted average scene

particle P̄ 0,x, y is defined in equation 6.10, where w̄n is the normalised scene particle

weight, such that the total weight along the ray is 1 (see section 4.3.1). Elements 3,4

and 5 of the scene particle relate to the world velocities vẋ, vẏ, vż respectively.

P̄ 0,x, y =
∑

Pn∈Θ0,x, y

w̄nPn (6.10)

It is now possible to redefine the orientation (azimuth and elevation) and magnitude

images as in equations 6.11 to 6.13. Substituting these images into equation 6.9 to

replace their projected counterparts, produces the undistorted HOS descriptor ω3d.

Iazi-3d(x, y) = arctan

(
P̄ 0,x, y[4]

P̄ 0,x, y[3]

)
(6.11)

Iele-3d(x, y) = arctan

(
P̄ 0,x, y[5]

P̄ 0,x, y[4]

)
(6.12)

Imag-3d(x, y) =
√
P̄ 0,x, y[3]2 + P̄ 0,x, y[4]2 + P̄ 0,x, y[5]2 (6.13)

6.2.2 Independent Encoding

By moving to a 2 dimensional joint histogram, the descriptiveness of both ωp and

ω3d features, is far greater than the original, optical flow based, HOF descriptor ω.

However, if the neighbourhood size and cell sizes are left unchanged, this shift may also

lead to sparsity problems. The ratio of pixels within a cell, to the number of orientation

bins, will be greatly reduced, possible causing the descriptors to be unreliable. One

possible way to combat this, is to use independent (rather than joint) encoding of each
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orientation co-ordinate. This allows information about both the azimuth and elevation

to be encoded in a more representative way, using all the pixels from the cell. The cost,

is that any information contained in the correlation of the two orientations is lost. This

approach also leads to smaller descriptors (2B bins per cell rather than B2), improving

train and test speeds.

A simple modification to the cell histogram equation 6.9 leads to the independent

histogram for azimuth orientations ωazi, as in equation 6.14. A similar definition can

also be made for the distribution of elevation orientations ωalt. The overall descriptor

is then formed by the concatenation and normalisation of these histograms, from each

cell, as in equation 6.16.

ω3d-azi
εε [b] =

∑
o∈Ωεε


Imag-3d((x, y) + o) if 2πb

B ≤ Iazi-3d((x, y) + o) < 2π(b+1)

B

0 otherwise

(6.14)

ω3d-ind
u =

{
ω3d-azi

11 , ω3d-alt
11 , ω3d-azi

12 , ω3d-alt
12 , ..., ω3d-azi

εε , ω3d-alt
εε

}
(6.15)

ω3d-ind =
ω3d-ind
u∑

b∈ω3d-ind
u

b
(6.16)

6.3 Histogram of Scene-flow Evaluation

The applicability of the scene particles algorithm and HOS feature encoding is examined

below, both in the context of 3D action recognition, and more generally. The scene

flow field for all results was calculated with 20 particles per ray, 3 image scales and

2 diffusion iterations. With these settings, the entire Hollywood 3D dataset may be

processed in around 2 days, as opposed to thousands of years with traditional scene

flow techniques. For HOS encoding four azimuth bins and four elevation bins were used

(Bazi=Bele=4), unless specified otherwise.
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The scene particles algorithm requires estimates of the intrinsic parameters for each

camera, and their relative configuration, in order to operate. To this end it was de-

termined that eight of the fourteen films in the Hollywood 3D dataset were recorded

using the Fusion camera system, while two used products from 3ality technica (the

remaining films did not specify the camera technology employed). Rigs from 3ality are

extremely flexible and capable of operating with any camera and lens, thus the pa-

rameters obtained from the fusion camera system are taken as a rough approximation

of the setup for all films. The system contains a 2/3” CCD, with an aspect ratio of

16:9, implying pixel dimensions of around 0.0053mm (this is subject to some error, as

manufacturer specified CCD sizes are often unreliable). Fujinon lenses are used, with

focal lengths being of the order of 4mm. The relative configuration of the two cameras

may be modified, angling them together or apart to create varying perceptions of the

depth in a scene. For these experiments it is assumed that the cameras are close to par-

allel, with a separation equal to the inter-ocular distance (taken as 65mm). Naturally

these parameters are rough estimates only, as the camera may be zoomed, changing

its focal length, and the lenses used may differ between shots or films. However, these

effects may be mitigated to an extent by the scale invariance of the HOS features, which

preserve only the relative distribution of motion strength and not its absolute value.

6.3.1 Qualitative

Figure 6.2 illustrates the estimated scene flow field (6.2a), and subsequent HOS encod-

ing (6.2d to 6.2g), of a simple Kinect sequence, showing a person waving their hand and

flexing their fingers. Histogram slices relating to differing levels of out-of-plane motion

are shown, overlaid on the RGB image, in figures 6.2d to 6.2g. These correspond to

slices of the 2D histogram, for elevation bins of (-90 to -45), (-45 to 0), (0 to 45) and

(45 to 90) degrees respectively.
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(a) Scene flow

(b) RGB

(c) Depth

(d) HOS encoding (elevation bin 1) (e) HOS encoding (elevation bin 2)

(f) HOS encoding (elevation bin 3) (g) HOS encoding (elevation bin 4)

Figure 6.2: Scene flow and HOS encoding with Kinect. The RGB and depth images

from a single frame of the sequence are shown in 6.2b and 6.2c respectively. The

estimated scene flow field (with background removed for clarity) is shown in 6.2a.

The remaining images show different elevation slices of the subsequent HOS feature

encoding, performed densely across the scene (including background motion). Green

squares are “blocks” of normalised motions.
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Observing the scene flow field of figure 6.2a it can be seen that the majority of the

motion occurs at the hand, with some on the arm and shoulder, and a small amount

at the head, all of which are moving to the right. The HOS encoding images reflect

this, with the vast majority of motion falling into the first and fourth azimuth bins

(i.e. angles from (0 to 90) and (270 to 360)), which are the bins oriented along the

positive x axis (towards the right of the image). It is interesting to note that blocks

which completely overlap the torso, are encoded with some amount of motion, despite

appearing near stationary in the motion field. This is due to the scale invariance of

the HOS descriptor, which amplifies the small amount of motion present within the

block. If a faster moving region overlapped the block, these low level background

motions would become insignificant. However, in the Hollywood 3D task, the use of

spatio-temporal saliency measures make it less likely for HOS features to be extracted

in stationary regions.

Contrasting the 4 HOS images (i.e. the elevation bins) provides information about the

out of plane motion in the scene. For example, motion on the hand, shoulder and arm

regions tends to occur in figures 6.2f and 6.2g which relate to motion away from the

camera (to different degrees). This reflects the contents of the scene. The amplified

motions on the torso and head appear mostly in images 6.2e and 6.2f indicating small

amounts of in/out-of-plane motion (of the same order as the in plane motion). Image

6.2d is mostly empty, correctly indicating that nothing in the scene is moving towards

the camera.

Figure 6.3 shows an example of HOS encoding for an Eat sequence, taken from the

Hollywood 3D dataset. Figures 6.3a and 6.3b indicate very little motion is occuring

towards the camera, while figure 6.3d (i.e. elevations of 45 to 90 degrees, relating to

motions strongly away from the camera) displays significant motion at the arm interest

points. This motion is uniformly down and to the left, within the image plane, correctly

reflecting the motion of the actor, who is moving his hand towards his face (away from

the camera) and slightly to the left. Again, regions with small but nonzero motion,

such as the areas above the actors head, display some motion due to scale invariance.

In particular in figure 6.3e there is some motion towards the bottom of the image, due

to small head motions.
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(a) HOS encoding (elevation bin 1) (b) HOS encoding (elevation bin 2)

(c) HOS encoding (elevation bin 3) (d) HOS encoding (elevation bin 4)

(e) Zoomed head region for elevation bin 3 (f) Zoomed arm region for elevation bin

4

Figure 6.3: HOS encoding for Hollywood 3D Eat example. A small number interest

points have been detected, with partial overlaps of the local features. Green squares

represent blocks, with each red dot being the centre of a cell. Images 6.3e and 6.3f

show zoomed regions of interest, indicated by yellow boxes in the original images.
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6.3.2 Action Recognition

Next, the value of the HOS features is analysed quantitatively on the Hollywood 3D

dataset, using the action recognition approach of chapter 3. The 3.5D Harris saliency

measure (F3.5D-Ha) and BoVW-4D descriptors are explored, as they were previously

shown to offer the best overall performance (see table 3.5), while facilitating comparison

to optical flow features. To integrate the new 3D motion features, the HOF elements

of the ρ4D descriptors from equation 3.19 are replaced with a selection of HOS based

features. Other stages of the pipeline, such as interest point detection, codebook gen-

eration, holistic encoding, and SVM classification, remain unchanged, including the

appearance (HOG) and structure (HODG) elements of the ρ4D feature vector.

Where relevant, parameters remain unchanged from the previous Hollywood 3D exper-

iments of chapter 3. A codebook size of 4000 is again used, in conjunction with a grid

of 3× 3 cells, where each cell consists of 11× 11 pixels.

Figure 6.4 shows the performance for each type of motion feature, in multiclass and 1

vs 1 (soft voting) detection modes, which were shown in section 3.3.4 to be the most

scalable and most accurate, respectively. Feature ω2d is the same as ω3d described

in section 6.2.1 with the number of elevation bins Bele set to 1, so as to eliminate

information about out of plane motions and approximate a HOF. Feature ω3d-dep is a

standard HOS, but using the precomputed depth maps provided with the Hollywood

3D dataset as a hard constraint, rather than re-estimating the structure. Feature

ω3d-int is also the same as the ω3d encoding scheme, but employing an ITF during

scene flow estimation (based on Fdif features and trained on the cones, teddy and

venus middlebury sequences).

The previously noted relationship between detection modes is again observed, with the

less scalable 1 vs 1 approach generally providing improved performance over the stan-

dard Multiclass classification mode. It is particularly interesting to note that motion

features based on scene flow do not always provide improved performance over optical

flow based features. When using the scene particles algorithm to simulate a HOF (ω2d)

performance is significantly worse than the standard ρ4D approach. This implies that

the estimated scene flow field contains systemic errors, such as shearing of the motion
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field in some sequences, and temporal inconsistencies within zoom shots. However, the

full scene flow histogram ω3d does offer significant gains over its 2D counterpart ω2d,

confirming the hypothesis that out of plane motions contain valuable information for

action recognition.

Figure 6.4: Motion feature performance. Standard HOF features compared to a range

of scene-flow encoding schemes.

The effects of projective distortion in ωp do not significantly impact performance com-

pared to the undistorted ω3d features, and the independent encoding scheme of ω3d-ind

also makes little difference within multiclass systems. In the 1 vs 1 detection mode,

independent encoding does lead to some performance improvement. This is reasonable,

as the instability of sparsely populated histograms may be mitigated to some extent

when learning from a large number of training samples. However the simpler sub tasks

of the 1 vs 1 scheme have fewer samples available, increasing sensitivity to sample relia-

bility. It is also interesting to note that the success of the independent encoding scheme
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implies that little information is contained in the correlation between angles (i.e. the

mutual information is low). This is useful as encoding the orientations independently

leads to a greatly reduced feature vector and more efficient computation, without a

reduction in performance.

The use of precomputed depth maps during scene flow estimation is detrimental to

recognition rates. This is likely due to the sparsity of the depth maps, combined

with the formulation of the scene particles being based on the dense output of depth

sensors. This suggests that in the future, a combined scheme may prove valuable, where

structure is estimated in some regions by the scene particles, and in other regions is

provided by an external input.

By far the largest gain in performance comes from employing ITFs during scene flow

estimation (ω3d-int). This allows reasonable motion fields to be estimated, even when

calibration issues prevent perfect estimation, leading to a significant increase in per-

formance over the optical flow based features ρ4D. This implies that the improved

accuracy and convergence properties of ITFs, also lead to increased robustness to cam-

era alignment errors. Further, this demonstrates that ITFs trained on the middlebury

datasets are able to generalise very well to more varied data, including indoor and

outdoor scenes with a huge variety of illumination types.

The breakdown of performance for each class, using each type of motion feature, is

given in table 6.1. Note that the performance of the original ρ4D features is taken from

figure 3.6d, and not directly comparable to the multiclass results of table 3.4.

It can be seen that certain types of action such as Run, Drive and Swim lend themselves

to scene-flow features, leading to doubled average precisions. An example of a Drive

sequence is shown in figure 6.5. The most obvious difference to the Eat sequence of

figure 6.3, is that as the scene is less static, many more interest points are detected. The

second observation is that the majority of the motion in the scene occurs in elevation

bins 2 and 3 (figures 6.5b and 6.5c) relating to small amounts of out-of-plane motion.

Unsurprisingly, most of the motion occurs on the moving background, particularly at

the borders with the car windows. The majority of this motion falls into the same az-

imuth bin, which relates to motion towards the left of the image. This dominant global
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Action ρ4D ωp ω3d ω2d ω3d-ind ω3d-int

NoAction 12.5 13.8 13.0 10.0 14.2 12.0

Run 18.0 23.4 21.5 47.4 37.9 26.8

Punch 2.9 11.7 10.9 8.0 8.9 15.0

Kick 3.6 10.4 8.1 9.0 9.1 11.3

Shoot 16.3 16.8 24.4 8.4 17.6 21.0

Eat 3.6 4.0 5.5 7.5 6.6 4.2

Drive 35.1 46.2 45.4 20.1 49.0 51.1

UsePhone 8.1 8.2 7.8 9.0 9.0 8.7

Kiss 6.7 6.8 7.0 8.6 7.1 7.0

Hug 2.6 3.2 3.5 6.0 4.6 8.1

StandUp 8.8 7.1 7.1 10.1 7.6 10.4

SitDown 4.3 4.6 4.8 7.5 6.0 4.8

Swim 6.4 9.0 14.0 13.2 11.3 13.8

Dance 2.8 3.7 3.7 7.1 2.8 4.4

Overall 12.3 12.7 12.3 8.1 14.1 15.6

Table 6.1: Motion feature class performance. The Average Precision for each class

using each type of motion feature in the 1 vs 1 (soft) scheme. The best performing

feature for each class is shown in bold. The previous ρ4D features are taken from

figure 3.6d.

translation is also likely to occur in Run and Swim actions, and depending on camera

orientation, may occur towards or away from the camera (e.g. a driving sequence, with

the camera on the dashboard or in the back seat). This explains why out of plane

motions are so useful for recognising these particular actions, as without knowledge of

these strong global translations, there is little discriminative motion information (in

this particular example, only the motion of the head and steering wheel, both turning

to the right and towards the camera, would be left in image 6.5a).

It is particularly interesting to note that the performance of the 2D scene-flow features

ω2d differs significantly from the HOF based ρ4D features, despite the fact that they
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(a) HOS encoding (elevation bin 1) (b) HOS encoding (elevation bin 2)

(c) HOS encoding (elevation bin 3) (d) HOS encoding (elevation bin 4)

(e) Zoomed window region for elevation bin 2 (f) Zoomed head region for elevation bin 2

Figure 6.5: HOS encoding for Hollywood 3D Drive example. A large number interest

points have been detected, with some overlaps in the local features. Green squares

represent blocks, with each red dot being the centre of a cell. Images 6.5e and 6.5f

show zoomed regions of interest, indicated by yellow boxes in the original image.
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theoretically encode the same information. In general the ω2d features appear to be

less effective for classes where ρ4D features work well (such as Shoot and Drive), while

improving classes for which ρ4D fails (such as Eat, Dance and Shoot). These improved

actions are often characterised by stationary actors, exhibiting a small amount of more

complex motion at their extremities (i.e. hands, arms and legs) as seen in the Eat

sequence of figure 6.3. It is likely that traditional optical flow schemes are less able

to accurately resolve this motion due to smoothing issues, particularly as the interest

points occur at object boundaries. In contrast, the lack of smoothing in the scene

particles algorithm allows these motions to be recovered more effectively. The 3D

ω3d-int features also benefit from this lack of smoothing, and exhibit similar or better

performance on these particular actions, while also improving more global actions via

exploitation of out of plane motion as noted previously.

6.4 Conclusions

In this chapter techniques were presented which allowed the motion features of chapter 3

to be extended to exploit the 3D information in the Hollywood 3D dataset, using the

scene flow estimation techniques of chapters 4 and 5.

It was shown that the use of scene flow rather than optical flow doesn’t always lead

to improved performance, particularly for unreliable flow fields due to inexact camera

alignment. However, the use of ITFs during scene-flow estimation provides robustness

to this, leading to significantly improved recognition rates. It was also shown that

little information is encoded in the correlation of in-plane and out-of-plane motion

orientations allowing a shorter and more efficient independent encoding scheme to be

employed. Indeed this scheme was actually shown to provide improved performance

in cases where the number of training samples is low (such as 1 vs 1 schemes) by

reducing the sparsity of the histograms, but this may change with an increased number

of training samples.

Further, it was found that the lack of smoothing in the scene particles algorithm was

particularly beneficial for recognising certain classes of action, involving small amounts
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of complicated motion, such as Eat, Dance and Shoot, even when out of plane infor-

mation is not exploited. Incorporating the out of plane motion led to greatly improved

performance for other actions such as Run, Drive and Swim, which are characterised

by large amounts of simple motion (often towards or away from the camera).

As future work, it would be useful to improve the quality of the estimated scene flow

fields, either by utilising a larger number of hypotheses or more iterations. Both of these

would necessitate improved efficiency such as a parallel GPU implementation, in order

to remain tractable for datasets the size of Hollywood 3D. An alternative approach

would be to employ automatic estimation schemes for the camera parameters, such

as performing a bundle adjustment, or including the parameters within the motion

estimation framework [122]. This may lead to more reliable motion fields, however the

short length and extreme non-rigidity of the sequences may render such approaches

infeasible.

The motion feature encoding may also be developed further in future work. Sparsity is-

sues in the 1 vs 1 scheme may be addressed by allowing motions to cast (weighted) votes

into multiple neighbouring orientation bins, or by extending the independent encoding

scheme to include some redundancy (i.e. calculate the distribution of orientations on

additional non-orthogonal axes). A particularly promising avenue of exploration is the

inclusion of rotational invariance in the descriptor. Different orientations of the ob-

serving camera, lead to the same action being described as a wide range of different

feature vectors, while the distribution in an actor-centred co-ordinate frame remains

unchanged. Rotational invariance can eliminate this effect, simplifying the task of ac-

tion classification by reducing intra-class variations. Also a compensation scheme to

remove camera motions, such as that used by Uemura et al. [58], could greatly reduce

the noise of the HOS features, simplifying recognition.
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Chapter 7

Discussion

This thesis set out to explore methods for the effective use of 3D information, in the

challenging task of recognising natural human actions. The work was motivated by the

recent rise in commercially available 3D footage and sensors, and the eminent suitability

of highly invariant depth data, to a task which is characterised by complex intra-class

variations.

The first challenge addressed was the lack of any suitable dataset or benchmarks for 3D

action recognition “in the wild”. To this end, the Hollywood 3D dataset was compiled

and a wide range of existing action recognition techniques were extended to make use

of the additional 3D information, including 5 interest point detectors and two feature

descriptors. The results confirmed that 3D information is indeed well suited to action

recognition tasks, with improvements in performance in all cases. Further, it was

found that a synergy exists between depth aware interest points and features encoding

structural information. Employing both in combination served to focus estimation into

areas where structural features are most valuable, leading to a rise in average precision

of 30%.

When analysing the structural features, it was noted that varying the saliency threshold

lead to differing behaviour for each feature type. RMD descriptors became more accu-

rate with higher thresholds, while bag of words features decreased in performance. This

implies that the RMD is more sensitive to noisy features, while BoVW is better able to
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extract useful information from a large set of noisy features. In addition, this finding

highlighted the fact that sparser features can sometimes lead to improved accuracy

in addition to increased computation speed. It also shows that comparisons between

feature descriptors may lead to different conclusions at different saliency thresholds.

The next challenge was the incorporation of 3D information into the motion features.

Existing techniques for 3D motion estimation were far too computationally expensive

to be used in conjunction with a dataset the size of Hollywood 3D. Thus a new formu-

lation for scene flow estimation based on particle filtering was introduced, maintaining

multiple hypotheses and exploiting the accumulation of constraints over time. This

approach was far more applicable to real computer vision tasks than the previous state

of the art, operating orders of magnitude faster while removing over smoothing arte-

facts which damage motion estimation in the most salient regions of the scene. The

technique was also shown to be robust to various types of measurement noise, and

to offer considerably improved performance on standard scene flow benchmarks. The

developed formulation was flexible enough to operate with any combination of appear-

ance and/or depth sensors in any configuration. To highlight this wide applicability, an

alternative example application was demonstrated, tracking hands in 3D during sign

language, over 31 hours of HD video.

The scene particles algorithm was then further developed by exploring the inclusion of

additional constraints. Occlusion awareness and motion smoothness assumptions were

shown to provide large gains in performance at the cost of a significant reduction in

speed. It was also shown that when using a traditional, local, approach to smoothness,

the performance of the scene particle algorithm is similar to that of previous state of

the art techniques (i.e. directional accuracy is improved while all other performance

measures are reduced). This suggests that the formulations of smoothness may be a

significant limiting factor in contemporary algorithms.

The inclusion of the constant velocity assumption initially appeared to be useful, with

no additional computational cost. However, further analysis demonstrated extreme

sensitivity to violations of the assumption, making it impractical. This discovery mo-

tivated a similar sensitivity analysis for the original brightness constancy assumption,
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which underlies the scene particles algorithm (and, in some form, all other motion es-

timation techniques). Interestingly it was found that all the common formulations of

brightness constancy are violated to some extent in real data. Further, these viola-

tions were found to be indistinguishable to violations from erroneous motion estimates,

implying an inability to distinguish between poorly estimated motions and artefacts

of real data. Thus an “intelligent transfer function” was proposed, employing ma-

chine learning techniques to create a more general and robust matching criteria. Such

functions were found to not only better represent real scenes, but to also translate

to significantly improved motion estimation accuracy in both optical flow and scene

flow scenarios, with negligible computational cost. ITFs also appear to be valuable for

variational approaches, demonstrating superior convergence properties.

Finally the estimated 3D motion fields were exploited to generate more advanced fea-

tures for action recognition on the Hollywood 3D dataset. The use of ITFs was found

to offer robustness to errors in camera alignment, translating to less noisy motion fields

and greatly improved action recognition rates. This also demonstrated the generalisa-

tion of the ITFs to untrained location types. Results also showed that little information

was contained in the correlation of in plane and out of plane orientations, which facili-

tates a more efficient and compact independent encoding scheme. Indeed this was found

to improve performance in certain cases where the unreliability of sparse histograms

is an issue. A more detailed breakdown of the performance revealed two categories of

actions which benefit from the 3D motion features in different ways. The first category

comprises actions characterised by large amounts of strong motion, along a single di-

rection, such as Run, Drive and Swim. These actions benefited significantly from the

out of plane motion information, which aided the detection of actions when performed

directly towards or away from the camera. The second category of actions involved

small amounts of complex motion, such as Eat, Shoot and Dance. These actions were

more easily recognised due to the lack of smoothing in the scene particles algorithm,

while traditional optical flow techniques often failed to recover the motions.

In summary the contributions made during the course of this thesis include:

1. A large dataset of 3D actions “in the wild”, with a wide range of benchmark



154 Chapter 7. Discussion

results and publicly available source code.

2. Five new saliency functions based on spatio-temporal appearance and structure.

3. A range of depth-aware feature extraction schemes for action recognition (includ-

ing 2 extensions of previous work, and a number of schemes based on 3D motion

information).

4. A novel particle based approach to scene flow estimation, which avoids smoothing

errors while operating several orders of magnitude faster than previous techniques.

5. An intelligent transfer function approach, which greatly improves both the accu-

racy and robustness of motion estimation, allowing 3D motion features to provide

significant benefits to action recognition tasks, despite inaccuracies in camera

alignment.

7.1 Future Work

There is excellent scope for further development of the work in this thesis. The field

of 3D natural action recognition is still in it’s infancy, but is certain to become more

prevalent in the future. It is hoped that the release of the Hollywood 3D dataset and

benchmarks will stimulate the community to explore additional techniques for fully

exploiting this information. Some promising avenues for development include more

sophisticated feature encoding schemes such as Motion Boundary Histograms [39, 128])

or Volumetric Moments [25, 57]. Development of the depth-aware saliency detectors is

also possible by formulating scale invariant versions, which may significantly improve

performance for high resolution data such as Hollywood 3D. Integral volumes and

parallel processing may also be exploited to drastically increase saliency estimation

runtimes enabling a wider range of applications.

The classification stage of the action recognition pipeline was not addressed in this

thesis, however dedicated multi-modal learning schemes such as Multiple Kernel clas-

sifiers [61] may be better able to deal with the increased sparsity of high dimensional

feature spaces, and more effectively exploit the new 3D information. It may also prove
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interesting to explore the use of this information in voting based classification schemes

[54, 58] which are able to localise actions in time and space. It would be reasonable to

assume that structure and scene flow information would enable a full 3D localisation,

in addition to improving the accuracy 2D localisation.

The scene particles algorithm also contains significant scope for further development.

A particularly promising avenue of exploration is the use of state space smoothing

schemes such as Filter Forward Backward Smoothing (FFBS) and the Two-Filter for-

mula. These schemes were developed in the field of statistical modelling, to allow

particle filters to approximate joint distributions over time, without degeneracy due to

repeated resampling. Put simply these schemes allow the particle filter to use all pre-

vious observations, to accurately re-estimate all previous states rather than providing

only an estimate of the most recent state. In the context of the scene particles algorithm

this is extremely useful, as it allows the temporal accumulation of motion constraints

to apply both forwards and backwards. As an example, currently if the motion of

a point is particularly ambiguous there may be 5 motion hypotheses with significant

probability, leading to a poor estimate. At the next frame, 4 of these hypotheses may

be disproved leading to a clean and accurate motion field, however there is currently no

principled way for the previous noisy estimate to be refined by this new information.

The tradeoff is that estimating the joint motion field over multiple frames is naturally

more costly, however a balance may be struck using a sliding window approach.

An alternative and simpler approach to handling ambiguous motions would be to de-

velop more sophisticated versions of the interpretation stage (section 4.3.4) in which

the particle cloud is converted to an estimated motion field. Recently Basha et al. [18]

utilised a weighted multi-modal scheme, which may be easily adapted to scene parti-

cles. A more efficient GPU implementation of the scene particles algorithm would also

be extremely valuable, allowing the application of scene flow for an even wider range

of vision tasks, including real time applications. Considerable effort has already been

invested in this area, and a publicly available GPU implementation is planned for the

near future

A great deal of work remains to be done on the ITFs of section 5.7.3. It would be
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particularly interesting to explore their integration into both local and variational mo-

tion estimation schemes. In addition it is likely that the approach will yield benefits in

other areas of computer vision such as image registration and retrieval.

Finally the exploitation of scene flow as a feature descriptor may be developed further,

via the inclusion of rotational invariance and techniques to reduce histogram sparsity.

Additional elements could also be incorporated into the estimation pipeline, such as the

automatic camera parameters estimation, improving robustness in video categorisation

tasks such as Hollywood 3D.



Appendix A

Pose Recognition Using 3D

Structure

The work in this appendix explores the use of coarse depth data during instantaneous

pose estimation. This serves as a precursor to it’s use in the more complex temporal

domain of action recognition.

A.1 Texture Features

As a descriptor, Local Binary Pattern (LBP) texture features were used in both the

appearance and structure domains. These features provide invariance to monotonic

value changes, translating to resistance to illumination changes in appearance and

object distance in depth. The features are highly customisable, with the possibility for

rotational invariance[91], tunable accuracy and multiple scales.

LBPs describe an image in terms of a histogram of micro-texture components (edges,

corners, dark points and light points in the intensity channel, ridges, contours, peaks

and depressions in the depth channel). For basic LBP features, every pixel in the image

is labelled by taking a 3 × 3 neighbourhood and thresholding each point by the value

of the centre pixel. The result is an 8 bit long binary number labelling the pixel.

157
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LBP =

7∑
i=0

 2i fi ≥ fc

0 otherwise
(A.1)

LBP features were extended to capture texture components at different scales, and also

to allow for variable accuracy. The operator LBP(P,R) indicates that, rather than a

3 × 3 neighbourhood, P points are sampled uniformly around the centre, at a radius

R. So R controls feature scale detected, and P controls the length of the output label

(and so the size of the feature vector). However there is a limit on the detail possible

in the features, dependant on the scale. If P is greater than the number of distinct

pixels falling along a circle of radius R, then the new bins being added to the feature

histogram are redundant

It was also shown that for most images, 90% of the LBP labels tend to belong to a

small subset of the 2P possible patterns. These patterns were termed “uniform” LBPs

and are characterised by having at most two transitions between 0 and 1 in their binary

representation. Ojala et al. claim that the removal of these unstable histogram bins also

improves classification performance, however our experiments show that if the dataset

is large enough, their removal decreases performance.

Another variant of the LBP operator is to add rotational invariance. In order to achieve

this, the LBP for every pixel is bit-shifted until the minimum value is found, and this

minimum value is used as a label. Equation A.2 defines this conversion, where shifti

represents a binary shift of i bits.

LBP ri = minPi=0

(
shifti

(
LBP (P,R)

))
(A.2)

This gives an even greater reduction in feature vector size than uniform LBPs. It is

also possible to apply both variants, and use rotationally invariant, uniform LBPs.

Histograms of LBP features, for a single LBP variant v, are labelled LBPv. Several dif-

ferent variant histograms may be concatenated, to provide additional features. These

multi-variant histograms may be computed across a subregion r of the object, pro-

viding a description of the local texture in that region labelled HRr. Concatenating

these region histograms together forms the feature vector HIi for the image i. Finally



A.2. Pose Recognition Framework 159

concatenating image histograms for both the depth and appearance images gives the

objects feature representation H.

HRir = {LBP0, . . . , LBPv}

HIi = {HR0, . . . ,HRr}

H = {HI0, HI1}

(A.3)

In section A.7, the exact effects of the specific feature variants on performance in

different tasks is demonstrated. Additionally, by normalising the histogram of textures,

the features become invariant to the scale of the detected object.

A.2 Pose Recognition Framework

For classification, a random decision forest is used. This is an ensemble classifier where

a large number of decision trees are grown, each based on different random subset of

the data. This allows each of the trees to capture different aspects of class separability.

The outputs of these weak classifiers are then combined to act as a strong classifier.

For the experiments in this appendix a forest of 100 trees with a random sample ratio

of 0.6 was used.

One useful feature of random forest classifiers is that it provides a likelihood distribution

L over all classes c, given the input observations H. This allows likelihoods to be

estimated between classes, somewhat mitigating the drawback of a classification based

approach. This likelihood distribution also proves to be an advantage in section A.2.1

where it is used in a particle filtering framework.

L(c) = P (H|c) (A.4)

A.2.1 Particle Filtering

The particle filter takes the output of the classification stage as an observation like-

lihood, and combines it with the prior probability of the class P (c), based on the
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previous system state and system dynamics. From Bayes theorem, the probability of

each class given the new observation, is given by:

P (c|H) ∝ L (c)P (c) (A.5)

The particle filter approximates P (c) with a number of weighted hypotheses, which

are modified from the previous state based on the dynamics of the system with some

stochastic diffusion. A resampling step is used to ensure that the higher probability

portions of the distribution are more accurately estimated at the next iteration, using

a larger number of hypotheses. Each hypothesis in the previous iteration generates a

number of new hypotheses, based on it’s normalised weight. Equation A.6 illustrates

the resampling technique, where Quanti represents the ith quantile of a distribution.

W is the function of normalised hypothesis weights, n is the total number of hypotheses,

and St is the set of hypotheses at time t.

St+1(i) = St

(
Quanti/n

(∫
W

))
(A.6)

Figure A.1 shows an example output from the pose classification system (a), being

applied to the particle filter. Initially the particles are uniformly distributed. After

the classification output is applied, the particles converge towards the peaks of the

distribution (b), with more particles centred around higher peaks. This pose tracking

allows the pose estimate to be continuously valued, despite initially using a discrete

classification methodology.

A.3 Pose Data Collection

The depth information is extracted via stereo point correspondence, from a PointGrey

Bumblebee2 stereo camera system. The mask size used causes an unfortunate trade-

off between sparsity and accuracy. Smaller masks are harder to match, but provide

finer details. In order to provide a more dense depth image, stereo reconstruction is

performed with various mask sizes. The images are then combined, using the smallest
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(a) (b)

Figure A.1: Likelihood and tracking hypotheses over the pose space. The likelihood

distribution (a) across the pose classes, is applied to the pose tracker. The positions

of the hypotheses after application of the new likelihoods is shown in (b).

Figure A.2: Combining multiple depth maps. Each successive image is the previous

image, combined with an of higher mask size.

mask size wherever possible. Figure A.2 demonstrates this idea, showing a sequence of

images each of which has had unmatched pixels from the previous image, filled in by a

depth map captured at larger mask size.

A set of depth maps D was generated from the set of stereo masks S by performing

stereo point matching on the left and right images (L and R respectively). Where

S = {15× 15, 7× 7, 5× 5, 3× 3} and stereoSi represents stereo matching with the ith

mask.

Di = stereoSi (L,R) (A.7)

The output depth map O is then created by selecting each pixel value O(p) from the

corresponding pixel values Di(p), where Di is the depth map from the ith stereo mask.

O(p) =

 Di(p) Di(p) 6= NULL

Di+1(p) otherwise
(A.8)
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A.4 Discrete Head Pose

If the object whose pose is to be estimated, is a subregion of a larger image, then

initially the object must be detected. This step is task specific. In the example experi-

ments, head location is extracted using the well known, cascade of boosted haar-feature

classifiers technique [127].

A.5 Semantic Hand Classes

For hand detection a similar detector could be used, however due to the variability

possible in human hands it requires large amounts of data to train, and performs sig-

nificantly worse than with faces [92]. Many other hand detectors simplify the problem,

by using segmentation techniques. Segmentation can be performed using background

suppression, coloured gloves, motion detection, or skin segmentation [86]. In every case

this imposes a restriction on general applicability. Instead, in this work depth images

are used to segment the hand, utilising the heuristic that when gesturing at a system,

the hand is extended in front of the body.

Using the weak perspective camera model the scale (S) of the object in the image plane

stretches between two depths (z2 and z1). Thus the resultant scale of an object in the

image plane, can be determined by the distance in depth, from an object of known

image scale, if their base scale ratio (B) is known, as in equation A.9, where f is the

focal length of the camera. In this case the base scale ratio from the face to the hand

is taken as 1.2, based on the measurements of the “Vitruvian Man”.

S = B

(
1 + f

(
1

z2
− 1

z1

))
(A.9)

In both tasks, the depth is then used for background suppression. After an object is

detected, the median depth of that object is taken. Every image point, with a depth

distance further from the median than the expected object size, is suppressed in both

the intensity and depth images. This simple heuristic allows operation in noisy and
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(a) (b)

Figure A.3: Head and Hand detection and segmentation. (a) Unsegmented depth

image showing face detection (red circle) and nearest point detection (yellow dot),

with estimated hand scale (green box). (b) Hand and face appearance after

background suppression via depth.

cluttered scenes, without the need for more complicated detection strategies. Back-

ground clutter of similar depth to the object is not suppressed by this method, however

the objects location and scale have already been estimated, so there is generally little

clutter within the small region of interest. See section A.8 for the specific performance

increase using background suppression.

Figure A.3 illustrates the hand detection and segmentation. In the first image, the

face and closest region of depth are detected, represented by the red circle and yellow

dot respectively. The scale of the hand is estimated from the depth difference, and

represented by the green box. The second image shows the intensity after background

suppression is performed on the 2 objects.

A.6 Pose Recognition Evaluation

Datasets were captured for each task, as there were few pre-existing pose datasets

containing appearance and depth information. Both datasets are comprised of subjects

from various ethnicities and genders. Performance was measured using 5 fold cross

validation, with a random split of 70% training, 30% test images. The training set in

each case was enriched by adding small amounts of scale and translation variation to

each image. Specifically, each image was translated in all 4 directions by 5% and 10%
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(a) (b) (c)

Figure A.4: Hand pose examples. Two randomly selected appearance and depth

image pairs from the dataset for (a) Paper, (b) Scissors and (c) Stone. The scale

variation between images of the dataset is apparent here.

of it’s size, creating 8 additional images, and then the image was enlarged and shrunk

by 5% and 10% producing an additional 4 images.

A.7 Hand Pose Classification Results

A test situation for hand pose was required, where the lexicon consisted of a small

number of static gestures. A Rock, Paper, Scissors game was determined as a suitable

candidate for the trial (see section A.8.2). A dataset of depth and appearance images

was created for each of the 3 poses. Seven subjects, including male and female subjects

of a wide range of nationalities were asked to create the specific gesture at different ori-

entations and positions. In total 2100 appearance and depth image pairs were captured

per symbol (before enrichment). A random selection of image pairs from this dataset

is shown in figure A.4. Performance was measured with a number of different feature

variants, as shown in table A.1

The first 3 rows of the table illustrate the value of depth. Testing entirely without

the influence of depth is impossible in this task, as it is required for object detection,

however structural features may be removed from the classification stage. Classification

based on depth and appearance features both achieve respectable performance levels,

while the combination of the two improves over either alone.
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Feature type Average correct classification Standard deviation

Un-enriched, Greyscale channel 0.8929 0.0079

Un-enriched, Depth channel 0.8623 0.0054

Un-enriched, Both channels 0.9083 0.0040

LBP(8,1) 0.9689 0.0006

LBPU (8,1) 0.9656 0.0013

LBPR(8,1) 0.8865 0.0018

LBPUR(8,1) 0.8593 0.0014

LBPU (8,1) and LBPU (8,2) 0.9693 0.0043

LBPR(8,1) and LBPR(8,2) 0.8932 0.0022

Table A.1: Hand pose classification performance. Operating with different variants of

LBP features. LBPU are uniform, and LBPR are rotationally invariant LBPs.

Rock Paper Scissors

Rock 0.9740 0.0102 0.0188

Paper 0.0200 0.9822 0.0315

Scissors 0.0060 0.0076 0.9497

Table A.2: Hand classification confusion matrix. Uniform, multi-scale (8,1) (8,2)

LBPs were used. Rows are predicted classes and columns are true classes.
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Standard LBP features provide excellent performance. Utilising features across scale

does provide slightly improved performance, however in this task, class discrimination

is based upon finger location, which may be poorly represented at higher scales. Using

Uniform LBPs caused little change, implying that micro-texture components useful for

determining finger positions are mostly uniform patterns. This is useful, as removing

these patterns means a smaller feature vector, improving both training and test times

for the system.

Rotationally invariant LBPs perform significantly worse in all cases, compared to their

rotationally variant counterparts. This is likely because rotational variations are so

well represented in the dataset, that implementing the invariance within the features

is unnecessary.

The confusion matrix is shown in table A.2. The performance on the rock and paper

class is significantly higher than on the scissors class. Although scissors examples suffer

from higher class confusion, few rock or paper images are classified as scissors. The

most prominent features of the scissors class are the two extended fingers. Due to pose,

often only the tips of these fingers are visible. So the number of image points useful for

identifying a scissors shape may be low.

A.8 Head Orientation Results

The head pose parameters affecting pose direction are pan angle and tilt angle (roll

is ignored), these 2 dimensions were segmented into a series of classes at 10 degree

intervals. Five subjects, again including male and female subjects from a range of

nationalities, were required to sit in a fixed position and look at markers placed at

the relevant angle for each class. Haar feature cascades picked out the faces and the

background was suppressed using depth. This dataset was far sparser than the hand

data, with 153 different classes, and only 1-3 images per subject, per class (2200 pairs

of appearance and depth images in total). This sparse dataset makes the task far more

difficult, and reinforces the need for a classification based method, capable of operating

with little training. As discussed above, situations with sparse datasets such as this,
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(a) (b) (c)

Figure A.5: Head Pose examples. Three randomly selected appearance and depth

image pairs from the head orientation dataset. (a) -90 degrees pan, -10 degrees tilt.

(b) +20 degrees pan, +30 degrees tilt. (c) +10 degrees pan, -20 degrees tilt. Note

that scale variations are included in the dataset.

may use feature customisation to incorporate some invariances which are not in the

dataset, directly into the feature representation.

The other difficulty with this dataset is the inconsistency of the data. Ten degrees

rotation is difficult to capture accurately for the human head, as subjects naturally

tend to move their eyes, rather than their heads when looking at close, new objects.

This means the dataset tends to have movement between classes of anywhere from 0 to

10 degrees, with the remainder made up by eye motion. Randomly selected example

images from the dataset are shown in figure A.5.

Tests were initially performed on isolated images, using a range of feature variants

(Table A.3). Classification performance is listed for classifying within 10 degrees of the

listed value, reflecting the probable range within the data, as mentioned previously.

Using depth to suppress the background from detected objects improves performance

by 1%-2% by removing clutter from the images. Using depth as the only feature

channel, is more accurate than the standard appearance channel features. However the

most effective system utilizes the combination of both feature channels to provide 4%

improved performance.

Standard LBP features achieve a respectable 74% classification rate. As expected,

the sparse dataset is unable to cover the variations in the classes. Customising the

features to suit the task, yields improved results, with uniform LBPs providing the

best performance. Due to the sparseness of the dataset, non-uniform feature bins are
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Test mode Average ex-

act classifi-

cation

Classification

within 10

degrees

Standard

devia-

tion

No seg. colour features 0.1464 0.6584 0.0202

No seg. depth and colour fea-

tures

0.1911 0.7225 0.0069

Seg. colour features 0.1691 0.6801 0.0145

Seg. depth features 0.2052 0.7064 0.0114

Seg. depth and colour fea-

tures

0.2010 0.7398 0.0113

LBP(8,1) 0.2010 0.7398 0.0113

LBPU (8,1) 0.2845 0.8364 0.0052

LBPR(8,1) 0.1981 0.6957 0.0103

LBPUR(8,1) 0.2817 0.8107 0.0062

LBPU (8,1) and LBPU (8,2) 0.2870 0.8362 0.0094

LBPR(8,1) and LBPR(8,2) 0.2043 0.7017 0.0156

Table A.3: Head pose estimation on isolated images, using different types of LBP

features and with different usage of depth. LBPU are uniform, and LBPR are

rotationally invariant LBPs.
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Mode Exact

classification

Classification

within 10

degrees

Average

pan

error

Average

tilt

error

Per frame classifica-

tion

0.0885 0.4712 N/A N/A

Pose tracking 0.1081 0.6414 10.0 10.6

Table A.4: Continuous head pose estimation. Head pose estimation on a continuous

sequence with and without pose tracking.

unstable, and when present, are mistakenly chosen as discriminatory.

As in the hand pose tests, the results show only a marginal improvement when using

features from multiple scale, while using rotationally invariant LBPs causes a consider-

able drop in performance. This is to be expected as the test dataset does not contain

roll variation, and so the rotational invariance is unnecessary.

A.8.1 Pose Tracking Framework

Head pose estimation was also performed on a continuous sequence, rather than a set

of isolated images. For this test the particle filtering framework was enabled. The se-

quence contains partial and complete occlusions of the subjects face, and also frequent,

sudden, changes in direction. The results are shown in table A.4.

As expected, applying temporal constraints is useful when determining the current pose.

As a result, 15% more examples were classified correctly over isolated classification. In

both dimensions the average error angle is roughly one class. Coupled with the fact

that 64% of frames are classified within 10 degrees, it can be inferred that most miss-

classified examples lie within two classes.

Figure A.6 shows the confusion matrices before (a) and after (b) the pose tracking

framework was used. The two dimensional arrangement of pan and tilt classes has

been flattened into a vector. The tilt angle changes most rapidly, with the pan angle

changing every 9 classes. This means that points which are 9 classes apart in the
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Figure A.6: Head Pose Confusion matrices. (a) without and (b) with pose tracking,

for the 153 class head pose task. Darker pixels indicate greater classification rates.

The average correct classification rates (within 10 degrees) are 47%, and 64%

respectively

confusion matrix, are in reality only 10 degrees apart. This can be observed in the

confusion matrix by the multiple diagonal lines, at 9 class intervals.

In the first image (without tracking) there are fewer diagonals visible, and each diagonal

is more sharply defined. These two features relate to lower average confusion in tilt

and pan respectively. In both cases there are very few extreme outliers, meaning

the classification system is able to accurately find the correct region of pose space. A

prominent feature of the confusion matrices is the increased number of diagonals present

at extreme classes, compared to the central classes. From this it can be deduced that

tilt angle is easily determined for a frontal face, but for profile faces (high pan angles)

there is greater confusion in the tilt dimension.

A.8.2 Interactive System

In order to demonstrate the systems real-time performance, an interactive demonstra-

tion system was built around the hand pose task. This demonstration uses an animated

avatar as an opponent for a user to play Paper, Scissors, Stone against. Figure A.7

shows an image of the demonstration system in use. A video of the system is also

available at http://www.youtube.com/watch?v=SRfQFOMSH3A.
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Figure A.7: Interactive demonstration of hand pose estimation in a Paper, Scissors,

Stone.
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Appendix B

Additional Motion Function

Results

In this appendix, additional results for the brightness constancy and ITF evaluations

from chapter 5 are presented for alternative sequences from the middlebury stereo

benchmark.
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Optical Flow Scene flow
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Figure B.1: Response distributions. Distribution of responses for various motion

estimation functions, applied to both ground truth and error motions of the venus

dataset. Responses are normalized in the range 0 to 1.
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Optical Flow Scene flow
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Figure B.2: Response distributions. Distribution of responses for various motion

estimation functions, applied to both ground truth and error motions of the laundry

dataset. Responses are normalized in the range 0 to 1.



176 Appendix B. Additional Motion Function Results

Optical Flow Scene flow
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Figure B.3: Response distributions. Distribution of responses for various motion

estimation functions, applied to both ground truth and error motions of the wood1

dataset. Responses are normalized in the range 0 to 1.
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Optical Flow Scene flow
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Figure B.4: Response distributions. Distribution of responses for various motion

estimation functions, applied to both ground truth and error motions of the rocks1

dataset. Responses are normalized in the range 0 to 1.



178 Appendix B. Additional Motion Function Results

Optical Flow Scene flow
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Figure B.5: ITF convergence performance - venus dataset. The average function

response for varying levels of motion error, for the best ITFs with and without

contextual information. The previous SQ function is also shown, rescaled to the same

y axis, for comparison purposes.
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Optical Flow Scene flow
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Figure B.6: ITF convergence performance - laundry dataset. The average function

response for varying levels of motion error, for the best ITFs with and without

contextual information. The previous SQ function is also shown, rescaled to the same

y axis, for comparison purposes.



180 Appendix B. Additional Motion Function Results

Optical Flow Scene flow
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Figure B.7: ITF convergence performance - wood1 dataset. The average function

response for varying levels of motion error, for the best ITFs with and without

contextual information. The previous SQ function is also shown, rescaled to the same

y axis, for comparison purposes.
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Optical Flow Scene flow
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Figure B.8: ITF convergence performance - rocks1 dataset. The average function

response for varying levels of motion error, for the best ITFs with and without

contextual information. The previous SQ function is also shown, rescaled to the same

y axis, for comparison purposes.
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