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Cross-View Geo-Localisation

CVGL ‐ the task of identifying the geographic location of an
ground‐level image by matching it to a corresponding geo‐
referenced satellite image.

This is a challenging task due to significant variation in image fea‐
tures across viewpoints. To enhance the similarity of representa‐
tions from corresponding images, datasets include paired samples
globally. Techniques with varying panoramic Fields‐of‐View (FOV)
have been developed to balance feasibility and performance.

Figure 1. Previous CVGL Data Configurations ‐ Sparse & Sequential

These datasets can be categorised into two types:

Sparsely Sampled
Image pairs are collected at scales ranging from city‐wide to
nationwide, with the only inherent relationship being individual
streetview‐satellite pairings.

Sequentially Sampled
Image sequences, sampled from videos, cover smaller areas than
sparse datasets. The data has chronological order but no spatial
relationships between samples.

SpaGBOL Graph-Based Representation

Global Distribution ‐ Nodes and Edges
London Tokyo New York Brussels Singapore
3,155 4,815 1,103 2,190 1,043
4,124 7,942 1,983 3,403 1,567

Philadelphia Chicago Hong Kong Guildford Boston
2,272 1,159 995 1,472 1,567
3,782 1,935 1,440 1,773 2,403

Geo‐Spatially Structured Data

Graph networks are based on city road networks,
simplified to nodes at junctions:

Nodes represent junctions; edges are
connecting roads.

Satellite images at nodes have a 0.22m/pixel
resolution.

Five panoramas per node capture varying
seasons, lighting, and weather for enhanced
learning.

Depth-First GraphWalk Sampling

Graph networks emulate vehicle movement via depth‐first sam‐
pling, generating walks of configurable lengths. Longer walks im‐
prove precision but raise computational complexity. At inference,
the database stores all reference walk embeddings.
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Figure 2. Depth‐first walk across the City of London with length 3.

Bearing Vector Matching (BVM)

Orientations to neighbouring nodes are calculated and matched at
query time to improve localisation. Road positions in panoramas
are quantised into binary encoding for cross‐view bearing match‐
ing.
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Figure 3. Calculating and estimating neighbour bearing→ quantising into a
binary encoding.

SpaGBOL CVGL Node Embedding Network

To leverage graph representa‐
tions for CVGL, we introduce
the first GNN‐based two‐
branch network:

1. Extract image features
from each walk image.

2. Assign features as node
features.

3. Process the walk with the
GNN to obtain refined,
low‐dimensional
embeddings.

Training employs a triplet loss:
the streetview walk as
anchor, its corresponding
satellite walk as positive, and
a random satellite walk as
negative.
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Figure 4. SpaGBOL Network: 2‐branch CVGL network with no weight sharing

Evaluation - Top-K Recall Accuracy

SpaGBOL achieves state‐of‐the‐art
performance with spatially strong node
embeddings, improving Top‐1 Recall by
11%.

With BVM, performance rises by a
further 26%.

Adding a compass boosts this by 50%.

360◦ 180◦

Model Top‐1 Top‐5 Top‐10 Top‐1% Top‐1 Top‐5 Top‐10 Top‐1%
L2LTR [1] 11.23 31.27 42.50 49.52 5.94 18.32 28.53 35.23

GeoDTR+ [2] 17.49 40.27 52.01 59.41 9.06 25.46 35.67 43.33
SAIG‐D [3] 25.65 51.44 62.29 68.22 15.12 35.55 45.63 53.10

Sample4Geo [4] 50.80 74.22 79.96 82.32 37.52 64.52 71.92 76.39
SpaGBOL 56.48 77.47 83.85 87.24 40.88 63.79 72.88 78.28
SpaGBOL+B 64.01 86.54 92.09 94.64 52.01 82.20 89.47 93.62
SpaGBOL+YB 76.13 95.21 97.96 98.98 66.82 92.69 96.38 97.30

Table 1. Recall accuracies where edge‐aligned streetview FOV θ ∈ {360◦, 180◦}
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Figure 5. Impact of varying No. Panoramas, Walk length, and BVM granularity.
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