Centre for Vision Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University Of Surrey, Guildford, Surrey, GU2 7XH

1-Abstract

Localisation is fundamental to interacting with the world. Our work aims to perform on-the-fly monocular localisation using a prebuilt 3 D map of the world.
new environments after a single visitation by creating a feature embedded 3 D map.
The system uses the built map to "imagine" the scene's appearance and propagate the particles in a Deep Imagination localiser.

2-Overview - Map building

Dense feature extraction - Siamese FCU-Net pre-trained to produce appearance invariant descriptors.
Feature embedded 3D map - Backproject FCU-Net feature maps into 3D space

3 - Overview - Deployment

Deep Imagination localiser - VMCL; Project feature embedded map to particle pose hypothesis to "imagine" the appearance and calculate view likelihood. Visual odometry Visual odometry - Particle filter motion model.

4 - FCU-Net

Dense feature extractor Fully convolutional encoder-decoder - No size restriction Skip connections
Combine low level spatial and
high level semantic features
Mapping $\quad U: \mathbb{N}^{3} \rightarrow \mathbb{R}^{n}$ Training Siamese network - Pre-trained on Kittid dataset

- Novel pixel-wise - Novel pixel-wise contrastive loss:

5 - Feature embedded 3D map FCU-Net

- Dense feature extraction from each image

Backproject
-3D location of each feature from ground truth pose and depth Merge
Final voxel descriptor i s average of all candidates
 Ω

Embedded map details

Particle likelihood computation

- RMSE between observation \& imagined view Particle weight update
- Combine likelihood and vo motion estimation
- Approximate MAP encoding prior and likelihood

7 - Visual odometry

Essential matrix estimation given $I_{t} \& I_{t-1}$

- ORB feature matching

4 possible $\boldsymbol{R}, \mathrm{t}$ tombinations
Combination with most points in front of camera

9 - Conclusions

Deep Imagination localiser generates feature representations for

unseen viewpoints.

Build a representation of an environment and imagine what it looks like
from any new position after a single visitation.
Generic features means no additional training is required in new environments
Eurther improvements from a more soophisticated pose likelihood estim tion (PnP) or additional motion models (non-holonomic constraints)

