E-Mamba: Using state-space-models for direct CVSSP event processing in space situational awareness Centre for Vision, Speech and Signal Processing

Alejandro Hernández Díaz*, Rebecca Davidson⁺, Steve Eckersley⁺, Christopher Bridges⁺, Simon Hadfield^{*}

*Centre for Vision, Speech and Signal Processing, University Of Surrey, Guildford, GU2 7XH *Surrey Space Centre, University Of Surrey, Guildford, GU2 7XH [†]Surrey Satellite Technology Limited, Guildford, GU2 7XH

Idea

How can we grant **satellites** the ability **to see locally**?

- ***** Conventional **optical sensors** are **ill-suited** for the **space** environment.
 - High power consumption and data storage usage
 - + slow capture rates
- Event cameras overcome these limitations with a human vision-inspired design.
 - Asynchronous, µs temporal resolution + minimal power and storage requirements

We propose a novel event-processing approach based on State-Space Models, capable of processing event-data in real-time during in-orbit operations. Our technique can exhibit **competitive performance** with < 76K parameters.

Quantitative Results

Dataset	Model	Base	N _{bins}			lr		Repre.		ug.	# params	Time*	<u> </u>	Highlights!
			15	2	$1e^{-3}$	$3e^{-4}$	Voxel	Hist.	NDA	Rand.	- " Parallio	Time		
DVS128	EvT+	97.57	-	-	-	-	-	-	-	-	0.66M	_		Competitive task performance.
	TORE	96.2	-	-	-	-	-	-	-	-	5.94M	-		>99% reduction in model size
	S-former	98.96	-	-	-	-	-	-	-	-	9.28M	-		w.r.t. state of the art.
	E-Mamba	60.02	-	-	-	-	-	-	90.97	-	75.5K	1.45 <i>ms</i>	Event-by-event stream	Event-by-event streaming
	E-Vim _S	84.03	84.03	79.51	84.03	80.9	84.03	91.01	86.46	83.4	383 <i>K</i>	1.66 <i>ms</i>		inference.
CIFAR10-DVS	EvS	68.0	-	-	-	-	-	-	-	-	N/A	-		<15ms prediction_rate on
	NDA	81.7	-	-	-	-	-	-	-	-	132.8M	-		desktop CPUs.
	S-former	81.4	-	-	-	-	-	-	-	-	9.28M	-	· · ·	
	E-Mamba	32.4	-	-	-	-	-	-	35.97	-	75.5K	1.45 <i>ms</i>		
	E-Vim _S	59.7	59.7	53.8	59.1	58.9	59.7	60.01	62.5	54.3	1.2M	4.01 <i>ms</i>		Conclusion —
* Avg. inferenc	ce time over 1	000 runs	5.										We pe	e introduced an efficient rception framework based on
	Dataset	Mode	l N _{bins}		;	lr		Repre.		_ # para	ams		Mo	dels to enhance the high-speed
			3	30	40	$1e^{-3}$	$5e^{-5}$	Hist.	Voxel	1			CO	llision avoidance and situational
														aranaee canabilities of

