

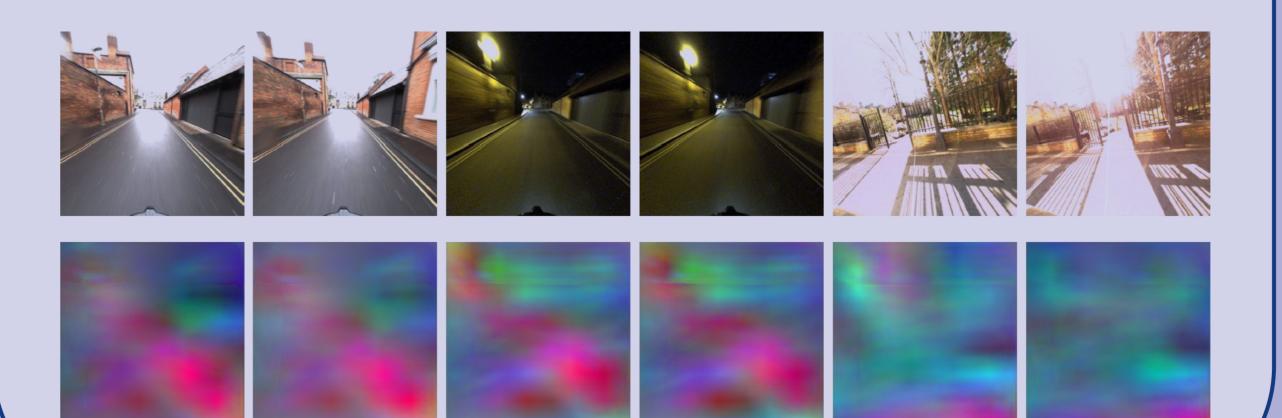
Centre for Vision, Speech and Signal Processing

- learning
- replacement for existing solutions

Deja-Vu: Weakly Supervised Feature Learning for Seasonal Invariance

Jaime Spencer Martin (jaime.spencer@surrey.ac.uk)

Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University Of Surrey, Guildford, Surrey, GU2 7XH


Richard Bowden (r.bowden@surrey.ac.uk)

Simon Hadfield (s.hadfield.@surrey.ac.uk)

7 - Evaluation

7.1 - Feature Visualization

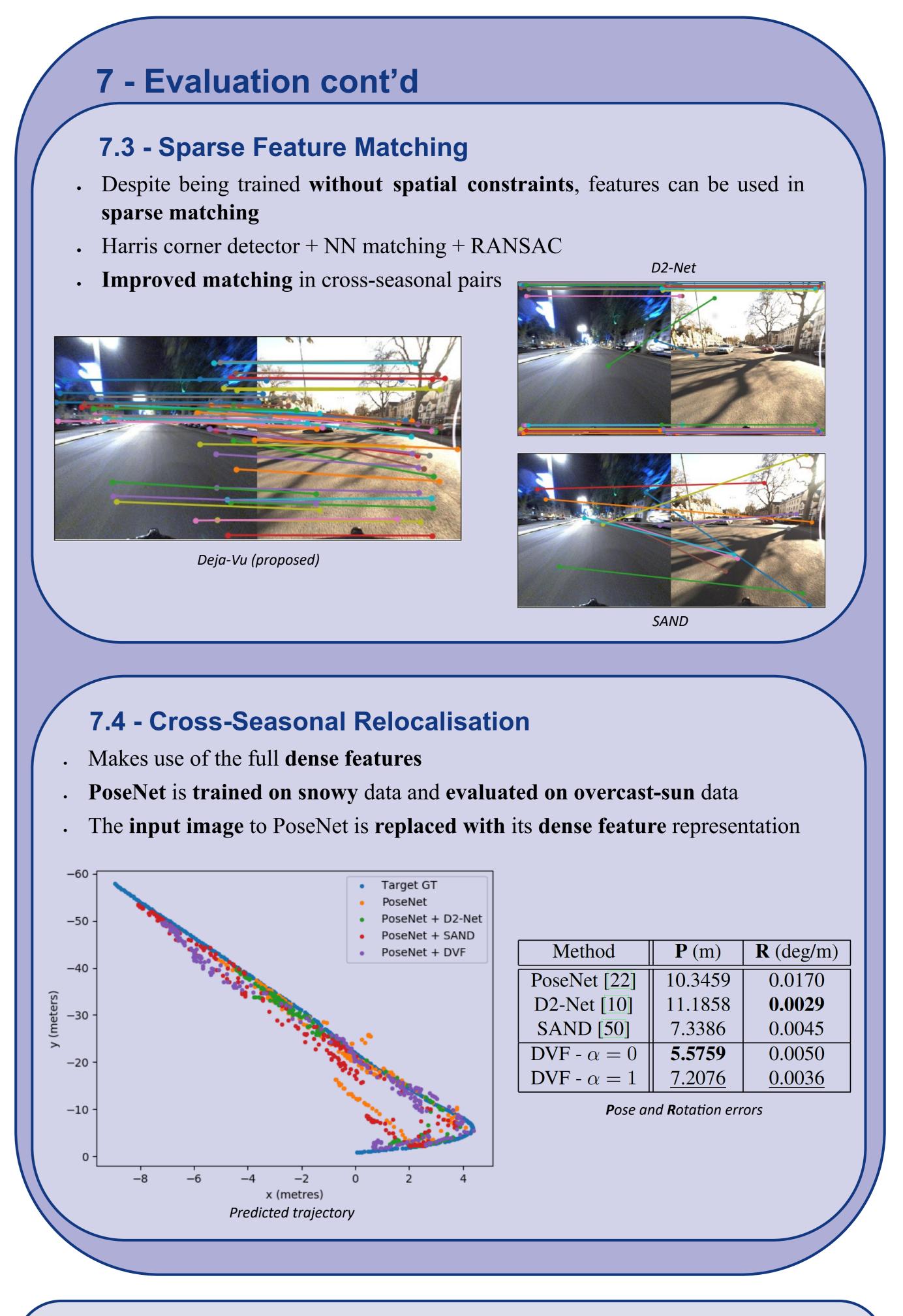
- Compact feature representation restricted to 10-D
- Features can be visualized by projecting them onto the **RGB cube via PCA**
- This visualization shows how despite drastic appearance changes we can still correctly identify the corresponding positive pair

Sample triplet visualization

7.2 - Cross-Seasonal AUC

- Akin to image retrieval
- AUC when classifying pair of images as corresponding to the same location or not
- Each new location in RobotCar Seasons as "true positive"
- The contextual similarity improves performance even in traditional methods, e.g. **ORB, (Root)SIFT**

Features	Seasonal AUC	Cross-season AUC
SIFT [28]	80.78	46.79
RootSIFT [1]	97.15	59.75
ORB [43]	96.60	66.99
SIFT + CX	94.42	64.58
RootSIFT + CX	95.55	68.36
ORB + CX	96.26	70.54
VGG [49] + CX	99.05	73.03
NC-Net [41] + CX	97.58	74.03
D2-Net [10] + CX	98.70	74.96
SAND [50] + CX	99.74	74.86
NetVLAD 2 + CX	<u>99.41</u>	77.57
$DVF - \alpha = 0$	99.30	93.82
DVF - $\alpha = 0.2$	99.82	96.56
DVF - $\alpha = 0.4$	99.59	91.37
DVF - $\alpha = 0.6$	<u>99.76</u>	93.46
DVF - $\alpha = 0.8$	99.52	<u>94.12</u>
DVF - $\alpha = 1$	99.47	92.94


Target Season Dawn Dusk Night N-R O-S O-W Rain Snow Sun												
			DUSK	Night						Uun		
	Dawn	-99.88	99.81	94.14	97.21	96.27	99.3	99.81	99.68	97.54 -		Dawn
	Dusk	-99.81	99.99	89.88	94.58	98.87	99.21	99.89	97.99	95.22 -		Dusk
	Night	-94.14	89.88	99.83	98.74	88.58	95.42	91	95.7	91.86 -		Night
	N-R	-97.21	94.58	98.74	99.9	96.09	93.21	97.49	97.92	94.49 -	Son	N-R
Ċ	N-R O-S O-W	-96.27	98.87	88.58	96.09	100	99.02	98.73	95.61	95.17 -	se Season	O-S
c	W-O Source	- 99.3	99.21	95.42	93.21	99.02	99.81	99.5	98.65	96.27 -	Source	O-W
	Rain	-99.81	99.89	91	97.49	98.73	99.5	99.85	98.99	97.01 -		Rain
	Snow	-99.68	97.99	95.7	97.92	95.61	98.65	98.99	99.91	97.24 -		Snow
	Sun	-97.54	95.22	91.86	94.49	95.17	96.27	97.01	97.24	99.24 -		Sun
DejaVu (proposed)												

		Target Season								
		Dawn	Dusk	Night	N-R	O-S	O-W	Rain	Snow	Sun
Source Season	Dawn	-99.35	84.79	68.09	59.47	90.78	93.14	90.67	91.67	79.59
	Dusk	-84.79	99.92	65.92	62.51	84.01	93	97.95	90.63	76.43
	Night	-68.09	65.92	99.68	63.56	62.52	56.95	65.75	62.04	72.86
	N-R	-59.47	62.51	63.56	99.98	62.03	56.94	71.04	60.47	57.61
	O-S	-90.78	84.01	62.52	62.03	99.07	93.61	89.01	87.4	81.01
	O-W	-93.14	93	56.95	56.94	93.61	99.78	95.83	94.7	80.07
	Rain	-90.67	97.95	65.75	71.04	89.01	95.83	99.77	93.94	74.76
	Snow	-91.67	90.63	62.04	60.47	87.4	94.7	93.94	98.94	81.66
	Sun	-79.59	76.43	72.86	57.61	81.01	80.07	74.76	81.66	98.19

NetVLAD

This work was funded by the EPSRC under grant agreement (EP/R512217/1). We would also like to thank NVIDIA Corporation for their Titan Xp GPU grant.

8 - Conclusions

- We introduce **Deja-Vu**, a framework for weakly supervised cross-seasonal feature learning
- This is one of the only approaches capable of learning dense features from a **holistic** similarity metric
- Despite this, the learnt features can still be used in **sparse matching** tasks
- Future work could include incorporating spatial constraints into the proposed loss

Engineering and Physical Sciences Research Council