
5 - Contextual Triplet Loss 
• Since we make use of relational labels between images (same location or not) 

we define a triplet loss based on this Contextual Similarity 

 

• Positive examples should be marked as highly similar, so the triplet loss di-

rection is modified accordingly  

 

 

 

• We make use of both seasonal and cross-seasonal triplets 

 

 

 

 

• α is a balancing weight in the range [0, 1], controlling the contribution of             

same-season triplets 
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7 - Evaluation cont’d 

2 - Overview 
• Encoder formed by residual blocks + Spatial Pooling Pyramid (32, 16, 8, 4) 

• 3-block convolutional decoder with skip connections 

• Maps  to  

8 - Conclusions 
• We introduce Deja-Vu, a framework for weakly supervised cross-seasonal feature 

learning  

• This is one of the only approaches capable of learning dense features from a holistic        
similarity   metric 

• Despite this, the learnt features can still be used in sparse matching tasks 

• Future work could include incorporating spatial constraints into the proposed loss 

7.3 - Sparse Feature Matching 

• Despite being trained without spatial constraints, features can be used in 

sparse matching 

• Harris corner detector + NN matching + RANSAC 

• Improved matching in cross-seasonal pairs 

 

 

4 - Contextual Similarity 
• Determine global “similarity” between dense feature maps 

• Each feature in I1 should have one matching feature in I2 

• This match should be significantly closer in embedding space than all others 

 

 

 

 

 

 

 - Compute distances between all pair of features 

 - Normalize distances for each feature 

 - Compute softmax for each feature 

 - Average the highest softmax scores for all features 

7 - Evaluation 

7.2 - Cross-Seasonal AUC 

• Akin to image retrieval 

• AUC when classifying 

pair of  images as corre-

sponding to the same       

location or not 

• Each new location in           

RobotCar Seasons as “true        

positive”  

• The contextual similarity 

improves performance even 

in traditional methods, e.g. 

ORB, (Root)SIFT 

7.1 - Feature Visualization 

• Compact feature representation restricted to 10-D 

• Features can be visualized by projecting them onto the RGB cube via PCA 

• This visualization shows how despite drastic appearance changes we can still 

correctly identify the corresponding positive pair Not Similar 

7.4 - Cross-Seasonal Relocalisation 

• Makes use of the full dense features 

• PoseNet is trained on snowy data and evaluated on overcast-sun data 

• The input image to PoseNet is replaced with its dense feature representation 

    

1 - Abstract 
• We present Deja-Vu, a weakly supervised approach to cross-seasonal dense feature 

learning 

• These features can be used in a wide variety of scenarios, serving as a drop-in             
replacement for existing solutions 

• Contrary to most approaches, Deja-Vu instead requires only rough alignment in-
dicating if a pair of images corresponds to the same location or not 

• Code available at github.com/jspenmar/DejaVu_Features 
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