
5 - Losses 
• Pixel-wise Contrastive 

  - Contrastive loss to drive feature learning and separation 

  - Positive samples are given by the obtained correspondences 

  - Negative samples are obtained by randomly sampling image locations 

 

 

 

 

 

• Photometric Warp 

  - Base photometric loss 

  - Weighted combination of SSIM and L1 losses 

  - Evaluates the image reconstruction from correspondences 

 

 

 

 

 

 

• Feature Warp 

  - Similar to Photometric Warp, but applied to the dense features 

  - Weighted combination of SSIM and L1 

  - Evaluates dense feature reconstruction from correspondences 

 

• Smoothness Loss 

  - Discourages changes in depth unless there’s an edge in the image 

  - Prevents smoothing over edges 
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3 - Networks 
• All networks use a separate ResNet18 encoder 

• DepthNet 

  - Convolutional decoder with skip connections 

  - Produces a dense disparity map 

  - Normalized between [0, 1] and rescaled to desired depth range 

• FeatNet 

  - Convolutional decoder with skip connections 

  - Produces a dense n-dimensional feature map, i.e. (H x W x n) 

  - Features are L2 normalized 

• PoseNet 

  - 6DoF pose regression 

  - Normalized translation, rotation as axis-angle 
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7 - Evaluation cont’d 

2 - Overview 

 

8 - Conclusions 
• We introduce DeFeat-Net, a multi-task learning approach to unsupervised depth, motion 

and dense feature learning 

• The incorporation of a novel feature learning task improves depth estimation in adverse 
conditions 

• This is achieved by providing an additional feature warp loss, which is robust to             
appearance  changes 

• Future work could attempt to enforce consistency across multiple seasons 

7.3 - Multi-Domain cont’d 

 

 

 

 

 

 

 

• Features 

  - No ground truth correspondences available 

  - Visualize features with linear projection showing image correlation 

 

 

4 - Correspondence Module 
• From depth + motion, a set of correspondences between images can be obtained 

• Correspondences are filtered using the minimum reprojection error and               

automasking 

 

 

 

• Uses: 

  - Bilinear sampling from images/features in photometric loss 

7 - Evaluation 

7.2 - Multi-Domain 

• Trained on RobotCar Seasons 

  - Data from multiple seasons: day, night, snow, rain, overcast… 

  - No ground truth depth/correspondence data 

 

• Depth 

  - Evaluate on original RobotCar subset (6k day, 6k night) 

  - Outperforms current SOTA (also trained on RobotCar Seasons) 

  - For nighttime data, photometric consistency assumptions break down 

  - Feature learning + warping provides robust/strong supervision 

7.1 - Single Domain 

• Training & evaluation on single domain daytime data: Kitti 

• Competitive results with current SOTA 

 

• Depth: Evaluation on Eigen-Zhou split 

 

• Features: Classification AUC and average distance for positives and     

negatives  

• Sample negatives from the whole image (Global) or 25-pixel radius (Local) 

 

 

7.3 - Ablation 

• Explore the benefit of concurrent training 

• Re-train on each dataset, disabling the FeatNet subsystem 

• Results show how, especially for night-time data, feature learning is a      

crucial component  

1 - Abstract 
• We present DeFeat-Net, a multi-task approach to robust depth + feature learning 

• Current photometric-based losses break down in dimly-lit environments 

• Incorporating an additional feature learning task improves nighttime robustness, 
whilst still allowing for fully unsupervised training 

• Code available at github.com/jspenmar/DeFeat-Net 
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