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Abstract

Grasping is a fundamental element of robotics which has seen great advances in hardware
and engineering over the last few decades. Despite this, most current approaches struggle to
generalise to the diverse environments and challenges seen in robotic grasping. This thesis looks
at how data-driven deep learning methods can be used to provide this generalisation in various
aspects of the pick and place pipeline. Specifically, it explores the static process of detecting
repeated objects to be grasped and the dynamic process of grasping a located object.

Engineered solutions offer great accuracy and confidence in grasping technology, but are often
brittle and fail as soon as the environment or task changes. Deep learning approaches have
been shown to learn representations that provide superior performance over a wide variety of
tasks, without the need for hand-engineering. Reinforcement Learning (RL) has the potential
to transfer deep learning methods to dynamic problems by learning policies which map from
an environment’s state to an action to be taken. However, learning these methods end-to-end
requires large volumes of training data, which is often impractical and sometimes impossible to
collect in robotics applications.

This thesis offers three main contributions. The first contribution presents a method for learning
vision based policies, using separate but connected perception and control feedback during
training. The proposed Auto-Perceptive Reinforcement Learning (APRiL) method allows the
perception system to learn the necessary features to interpret the state of the environment, whilst
allowing the control policy to focus on how to complete the task at hand using all available state
information during training.

In goal driven tasks, with multiple potential targets, a method is required to determine which
target to select. In warehouse picking, the type of target object is available at deployment,
but is not always known during training and there are often multiple instances available to be
selected. To address this, the second contribution proposes a zero-shot repeated object detection
method, which can locate instances of similar objects in an image given a conditioning object.
This method can also be used with different definitions of similarity, including the ability to
distinguish between pickable and unpickable instances for a given policy.

In the final contribution, this thesis shows how these methods can be brought together in a single
framework within the Robot Operating System (ROS) to complete a warehouse style picking
task, where a given type of object can be picked using a learnt target selection method and
grasping policy.
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Chapter 1

Introduction
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Figure 1.1: Pick and Place Pipeline

Robotic grasping and manipulation is a critical yet challenging task within robotics, which

has been approached in many different ways. True human-level manipulation, which includes

simple every day tasks such as putting on a jacket, has been a long-term goal in the robotics

community. However, with current manipulators and engineered control systems, it remains

an unsolved problem. Therefore, approaches typically tackle simpler “structured” or “parame-

terised” manipulation tasks that are better defined such as cutting, bending, screwing or turning

objects. Robots designed for these tasks are often accurate and efficient, but are not able to

generalise to other tasks or environments outside their design parameters. The fundamental

action linking these tasks is grasping. In order to increase the generality of robotic systems it is

necessary to be able to reliably complete the action of grasping in a variety of environments.

Most research currently focuses on finding and evaluating the quality of a given static grasp for

a previously localised object, without considering how the object may react or what post-grasp

manipulation is required. This is an important part of the process but does not consider the full

1
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(a) Tesco Dotcom Warehouse (b) Dematic Goods-to-Person System [22] (c) Baxter Robot [31]

Figure 1.2: Examples of solutions to warehouse based online shopping fulfilment

act of grasping, including the task of reaching for the object and picking it up for manipulation.

In order to move towards true manipulation, the field must move from static “grasp” tactics

to active “grasping”, which can generalise to a variety of situations taking into account the

dynamic nature of the task.

Grasping objects is one of the key elements of the pick and place pipeline, the other components

can be summarised in Figure 1.1. To start with, the object must be localised in the grasping area,

which may include many repeated items and distractors in various positions and orientations.

The second step involves the robot moving to the desired object, in order to achieve a feasible

grasp. The next stage is the grasp synthesis, which is the problem of finding an appropriate

grasp configuration which meets a set of criteria defining a stable grasp. These configurations

and criteria may be engineered using models to create force-closure grasps, or they can be learnt

using real or simulated data to evaluate grasp strategies. In the following step the object is

manipulated in some way, for example moving from the grasp location to the place location.

Finally, the object must be placed safely in a reliable manner, not damaging the object or the

environment around it.

This thesis focuses on this fundamental task of pick and place, with the use case of order

fulfilment in online shopping warehouses. There have been a lot of advancements in warehouse

technology including scalable storage systems using conveyor belts to allow easy movement

of products (Figure 1.2a) and goods-to-person stations, such as the Dematic [22] system seen

in Figure 1.2b, allowing the products to be brought to a person to be picked and sorted into

customer orders. Currently industrial robots like Baxter, by Rethink Robotics (Figure 1.2c), are
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(a) Caging Grasps from [85] (b) Static grasp prediction from [79]

(c) Large scale data collection from [60]

Figure 1.3: Current methods used for selecting grasps. Engineered caging grasps such as those proposed

by Rodriguez et al. [85] shown in (a) require knowledge of the object geometry and precise location

before planning. Methods using deep learning started using static grasp prediction such as Pinto et al.

[79] in (b) and have needed large scale data collection using labs like Google Research’s robot array [60]

in (c).

unable to adapt to new environments or constantly changing products, meaning the pick and

place task in this application is yet to be automated.

This research aims to use machine learning techniques to aid both the initial step of locating

objects and the grasp synthesis. With current robotics and inverse kinematic solvers, moving to

a known region and manipulating the object once grasped are relatively trivial. When applying

grasping to the task of online shopping fulfilment, the placement of objects is generally to a

known location, i.e. within the customers box. In contrast, localising the object and grasping

it successfully are still challenging research problems. Learning techniques, as opposed to

engineered solutions (such as caging grasps seen in Figure 1.3a), offer a greater ability to

generalise not only to the objects and environments but to the robotic embodiment used for the
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(a) Examples of object detection tasks from COCO [63] (b) Object Detection with YOLO [80]

Figure 1.4: Traditional vision tasks from COCO [63] shown in (a) (clockwise from top left) include

image classification, object localisation, semantic segmentation and instance segmentation. Both object

localisation and instance segmentation give details of where individual objects are in the scene, but

require classification on predetermined classes to group the objects, using methods such as YOLO [80]

seen in (b).

task. Machine learning, especially deep learning, has demonstrated great success in many fields

including computer vision and speech recognition. Due to its powerful ability to learn patterns

and generalise when trained appropriately, it is now being applied in many different areas from

security to robotics.

Both the task of detecting an object and grasping it, can exploit deep learning methods in

different ways. Object detection and classification were some of the first tasks to benefit from

modern deep learning for computer vision. The ability to learn relevant features at multiple

scales and complexities mean that deep networks are well placed to detect objects at different

sizes and orientations in a scene. Most of these algorithms rely on predetermined classes of

objects known during training (such as the classes of sheep, dog, person, bike seen in Figure

1.4) in order to localise and determine which objects to grasp. In a large warehouse with many

different products being added and removed from sale every day, this can make using standard

detection algorithms impractical as not all objects can be specified in advance.

In contrast to the methods of learning used for interpreting a static scene, grasping requires the

ability to interact with the environment. Many attempts have been made to use the same learning

styles for both steps, for example, using a deep network to make a static grasp prediction (in the

form of a grasp angle shown in green in Figure 1.3b) from a single image of the object. Whilst
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this allows greater generalisation compared to hand engineered techniques, the fundamental lack

of closed loop feedback from these vision based methods means that they cannot be used alone.

The main learning style for interaction with environments is Reinforcement Learning (RL),

which aims to learn a policy which, given the state of the environment, can select the action that

should be taken to maximise some reward.

Utilisation of modern physics simulators provides a practical way to develop algorithms and

collect the large scale data required for training deep RL methods. Simulators can provide

detailed representations of how robots interact with objects (such as the GraspIt! simulator [66]

in Figure 1.5a), but require models of objects to generate detailed grasps tactics. Fast physics

simulators, such as Mujoco, are used by OpenAI (such as in the Fetch robot and Shadow hand

environments seen Figure 1.5b) to train closed loop RL systems, with the ability to collect data

efficiently and iterate through learning approaches quickly. These simulated problems often

have access to the full state of the environment instead of using the visual observations alone,

which makes it harder to transfer these techniques to physical robots where the environment is

not always fully observable. Gazebo [48] simulates ROS based robots allowing the simulated

and physical robot to share the same systems and controls. It also provides effective simulation

of sensors, including RGB and depth cameras, similar to those used in a physical environment,

meaning training can make use of visual observations without relying on a fully observable

state.

Attempting to transfer RL from simulation to real world problems has still been a challenge,

especially since training algorithms to directly learn control from pixels requires a large amount

of physical interaction data. Figure 1.3c shows a large scale data collection robotics array at

Google Research [60] used for training deep networks with continual feedback. Using this style

of data collection is not only expensive, but is slow and impractical for companies wishing to

use robotic picking in warehouses. Even with this quantity of data, the relationship between

pixel values and the optimal action can be complex and the learning signal from a reward can

be too weak for the deep networks to learn to interpret images. Whilst states may not be fully

observable at run time, there is often information available during training which goes unused.
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(a) GraspIt! Simulator [66] (b) OpenAI Mujoco

Simulations [15]

(c) Baxter simulated

in Gazebo [48]

Figure 1.5: Robotics simulators used for grasping. The GraspIt! simulator [66] shown in (a) evaluates

grasp quality for a given manipulator and shape. OpenAI Gym [15] uses the Mujoco physics simulator

shown in (b) for grasping and manipulation with the Fetch robot and Shadow hands. Gazebo [48] (c,

inset) allows for easy integration of sensors using the ROS framework with visualisation in RViz (c).

This allows smooth transfer of control algorithms to robots which also use ROS.

The challenges discussed so far provide a natural set of objectives which set a structure to the

overall aim of this thesis. These objectives are:

1. To develop an efficient learning method for robotic control which can determine actions

from visual data.

2. To develop a technique to locate repeated objects in an image without prior knowledge of

object types.

3. To explore how these methods can be used together to perform warehouse style picking.

1.1 Contributions

To achieve these objectives, this thesis presents a selection of connected pieces of work. Chapter

2 will discuss the current state-of-the-art in robotic grasping, deep learning, and computer vision.

Specific focus will be placed on different learning styles and how they can be used in robotic

grasping.
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In order to start addressing the first objective, Chapter 3 looks at how we can improve the

efficiency of RL algorithms using both model-free and model based methods. This includes

looking at end-to-end methods, which go from images directly to actions, and methods which

use a semantically understood state space as input. The chapter starts by employing discrete

action spaces to control low level dynamics, and moves to more complex continuous domains

with higher level control.

Building on the previous chapter, Chapter 4 addresses the first objective, by proposing APRiL.

Auto-Perceptive Reinforcement Learning (APRiL) allows us to deploy a policy which takes an

image as input and outputs actions, but uses any semantically understood state space available at

training time to introduce structure to the learnt features. This is achieved using deep networks

to learn an encoded state space from the image observations by attempting to reconstruct them.

The encoded state space can be semantically understood if state data is available, or can be

learnt from only the reconstruction loss. This work is inspired by the way we learn as children,

where the visual and control skills are learnt in tandem, not in one end-to-end process.

Moving to the second objective, Chapter 5 proposes Repeated Object Detection (ROD), a

solution to the initial object localisation step of the pick and place pipeline. We focus on the

scenario where we wish to detect similar objects, but do not have knowledge of which types of

object this will be in advance. Previous work has been able to detect repeated identical objects.

In contrast, the aim of this work is to detect repeated similar objects in the same crate which will

be orientated differently and may be of different scales depending on where in the crate they

are. This method includes adding a new loss to encourage similarity between features of similar

objects across different scales. The results show that, even with object types not included in the

training data, it improves on currently available methods.

To address the final objective, Chapter 6 brings these contributions together in a system that

allows them to be trained in simulation on the same infrastructure as a physical robot and then

deployed with minimal fine tuning on the real robot. This shows proof of concept that a learnt

pick and place system can be trained efficiently in simulation, and then deployed in the real

world using standard low cost robotics and sensors with minimal additional effort.
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Chapter 2

Literature Review

Grasping has been one of the fundamental research areas of robotics for many years. Approaches

to grasping are often initially driven by the hardware, with many different robotic end effectors

available for interacting with the environment. The most basic of these is the single degree

of freedom parallel gripper, often used in industry for basic repetitive tasks with objects of

a known size, shape and location. Early ventures away from this included the three fingered

Standford/JPL Hand [89], which eventually led to high degree of freedom hands, such as the 20

degree of freedom anthropomorphic Shadow hand [82]. These more complex hands provide

much greater dexterity but are incredibly complex to control, meaning there is a trade-off

between adaptability and ease of use.

Once a hardware platform as been selected, methods for autonomous grasp selection can

be split into analytic and data-driven methods [88]. Analytical methods use geometric and

dynamic criteria to form grasp maps and find force-closure grasps via contact locations. A

force-closure grasp is found if there exists a set of contact forces which can resist any external

wrench [70]. Methods that focus on using geometric models to find grasps, with no forces

considered, are referred to as kinematic grasping. Those that consider both friction and inertial

forces to find force-closure grasps are called dynamic grasping. This later category involves

having a reliable physics model to determine the forces acting on the object in order to find an

equilibrium for grasps, which is difficult when grasping unknown objects. Even when there

exists accurate models, these methods are often prone to errors from sensor noise and unreliable

robot models. Several branches of grasping research have looked into how to make grasping

9
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robust to these issues, including independent contact regions [74] and caging formulations

which, once achieved, guarantee a grasp [85] (see Figure 1.3a).

Alternatively empirical or data-driven methods, focus on sampling potential grasps and evaluat-

ing them based on some set of metrics, generally not analytic but encoding perception and prior

knowledge. A survey by Bohg et al. [14] divides the area of data-driven grasping into 3 groups:

• Known objects: Requiring the use of object recognition and pose estimation to retrieve a

suitable grasp from an experience database. Often these methods have access to geometric

models of the objects.

• Familiar objects: Assume any object encountered is similar to another object and use a

measure of similarity (shape, colour, texture) to find a possible grasp.

• Unknown objects: Do not assume any access to models or grasp experience and translate

the features of an object directly to a grasping method.

Inside the learning framework, each group implicitly encodes the constraints explicitly specified

on the previous level. For example, methods using unknown objects can learn how to interpret

the similarity of objects (such as shape) within the grasp learning system, without the need for

hand-engineered measures of similarity used in methods for familiar objects.

Data-driven methods often use existing knowledge of grasps. This can be as a direct way of map-

ping grasps onto a known or familiar object. Ekvall and Kragic [24] use human demonstrations

of grasps collected using a data glove with magnetic sensors. These grasps are mapped from the

human grasp to a robots equivalent grasping posture. At deployment, the system recognises an

object and then determines which grasp type can be used for that object. Another method for

utilising human grasps, is to observe them visually, as done by Romero et al. [86], where the

grasp type and pose is determined from an image of a human grasp and mapped to a robotic

hand. These methods do not model the objects explicitly, but do assume a single set of objects,

meaning grasps can be transferred directly.

Alternatively existing knowledge can be used as training data for a machine learning method

to learn general rules for mapping features of objects to grasps. El-Khoury and Sahbani [25]

segment 3D point clouds of objects into approximate super-quadratics labelled as graspable or
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not, which are used to train a system to determine which part of an object is graspable, but not

how to grasp it. In contrast, Pelossof et al. [77] use a super-quadratic to represent the object

and then train a system to take in the object along with a grasp configuration and predict the

quality of that grasp. This allows them to directly select a specific grasp which maximises the

grasp quality. The use of 2D data has also been employed in systems aiming to learn from grasp

experiences, such as Saxena et al. [91] who infer a grasp point on an object directly from an

image of said object. They use labelled synthetic data, and create a feature vector of image

features from hand crafted filters, which is used to train a logistic regression model to determine

successful grasp points.

The methods discussed in this section so far have used classical learning or analytical methods.

However, recently one of the biggest advances in autonomy has been the achievements in deep

learning. The many different parts of grasping, from the interpretation of the environment to the

control of a robotic agent, can make use of these advances. The key areas this thesis focuses on

are learning for control, learning for vision, and the intersection of the two.

2.1 Deep Learning

As a tool for machine learning, deep learning [57] has achieved popularity and state-of-the-art

results due to its ability to learn both hierarchical representations, combined with powerful

nonlinear classification to solve various tasks in one end-to-end process. There are various

common styles of learning applied to deep neural networks, each of which use different types of

training data. Tasks can be split into two categories - those which are independent and those

which interact with some environment. Independent tasks have no causal effect on the input

data they act upon. For example, whilst natural language translation is a task which has a time

element, the output of the translation does not cause direct changes to the next sentence to be

translated. In contrast, dependent tasks require the learnt method to interact with an environment,

hence having a causal effect on the next data point. This section will focus on learning styles

typically used for independent tasks, whilst Section 2.2 discusses methods for dependent tasks.

The most common style of learning for independent tasks is supervised learning [6], where

each element of a dataset has an associated label given by a supervisor and the aim of the learnt
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system is to predict the correct label from the input data. In contrast, unsupervised learning

[6] is used for tasks such as clustering or feature learning [55], where the aim is to find some

unknown pattern in the data. There are also hybrid styles of learning, such as semi-supervised

or self-supervised learning. Semi-supervised learning involves using training data for which

only a subsection of the data has labels, aiming to improve the precision of learning from the

labelled data by exploiting the patterns in the unlabelled data. Self-supervised learning re-frames

an unsupervised problem as a supervised one, by using information easily extracted from the

data itself. For example, image colourisation can be approached by using colour images as the

labels and generating grey-scale images to use as the input [110], this requires no additional

labelling but still frames the problem as a supervised one. Another framework used to avoid

costly, task specific labels, is weakly supervised learning, where preexisting labelled data from

one task may be used to aid in learning another related task. In object localisation, it is extremely

time-consuming to annotate images with accurate pose and scale information for each object

present. Methods similar to the one proposed by Bency et al. [12], use only image-level class

labels and an image-level classifier to predict bounding boxes for individual objects in an image.

The type of input data being used by learning algorithms can help determine the deep learning

architectures employed. One common architecture is Convolutional Neural Networks (CNNs)

[56] which take input data with spatial information, often in the form of images or depth

maps. CNNs use convolution layers which slide a set of kernels (or filters) over the input to

detect features in different areas. One of the breakthroughs for CNNs occurred in 2012 when

Krizhevsky et al. [51] created AlexNet for use in the ImageNet [23] competition to classify

images into 1000 different categories with exceptional results. This inspired researchers to use

CNNs with much deeper architectures in order to develop richer representations. However, the

gradients applied to the weights of these deeper networks become increasingly small, eventually

preventing training. This issue is known as the vanishing gradient problem. Szegedy et al. [103]

found that one way to combat this problem is by introducing intermediate loss layers at various

depths in their GoogLeNet network.

Another issue with deeper neural networks is that it increases the number of learnt parameters,

meaning the models require more memory to train and deploy. In response to this problem

Iandola et al. [42] created SqueezeNet which is designed to have far fewer parameters in

comparison to AlexNet whilst maintaining accuracy. They achieved this by the use of Fire
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modules which are comprised of a squeeze convolution layer which feed into an expand

convolution layer. Fire modules only have 1x1 and 3x3 filters in their convolution layers keeping

the number of parameters to a minimum. This makes it a suitable architecture for embedded

systems and problems where there is a reduced volume of training data such as robotics.

Whilst deep learning for vision initially saw success in image classification, it has since been

used for many different problems. One such application of deep learning in vision is learning

compact representations of images. A popular architecture for this is the Autoencoder (AE) [40]

which is a self-supervised system using a encoder network to reduce the dimensionality of an

input and then decoding this latent representation via an expansion network to reconstruct the

original input. Most recent applications of AEs use a CNN as the encoder allowing a compact

representation of images, whilst maintaining spatial information. AE style networks have been

used for learning generative models able to reconstruct both the original input image but also

to transfer domains [39] such as RGB image to semantic segmentation via encoder-decoder

style networks like SegNet [10]. One of the uses of AE style networks is generating new

outputs by adjusting the the latent space. However, this relies upon the representation being

interpretable, which is often not the case. Kingma et al. [47] propose Variational AEs (VAEs)

to solve this issue, by structuring the encoded space as a distribution from which a value is

sampled and passed to the decoder. They apply an additional loss to the encoded representation

to push the latent representation towards a unit normal. This encourages the encoded space to

be disentangled and allows for much easier interpretation of the space, whilst still maintaining

the self-supervised framework.

Generating realistic images is a challenging problem for AEs, with reconstructed images often

being blurry. Recently, the most common approach for generative networks are Generative

Adversarial Networks (GANs) [36], which use an adversarial network as a critic that attempts

to discriminate between the real images and the generated images. The competition between

the reconstruction loss and the discriminator loss causes the generator to produce more realistic

images whilst the discriminator continually improves its ability to tell the difference. This

means that GANs can be used to augment data and generate realistic artificial images, which

can be incredibly useful in domains with limited data efficiency. For example, Shrivastava et

al. [96] use a GAN based system to refine synthetic images into the real domain, allowing the

generation of self-labelled datasets for both RGB and depth images.
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Whilst the data efficiency of neural networks has certainly improved, all of the networks

discussed here require large quantities of representative data to effectively generalise to their

given domain. This is one of the key issues when applying deep learning to other fields.

Currently there are many labelled datasets available, especially for classification with the likes

of ImageNet [23] and CIFAR-100 [50] and for applications such as segmentation with COCO

[63] and Cityscapes [17]. However, these are only readily available at this scale for independent

tasks with no causal relationship between the environment being observed and the observer.

This is especially true when the solution to a task is inherently tied to the form of the agent

trying to complete it, such as the physical properties of a robot completing a grasping task.

2.2 Reinforcement Learning

The styles of learning considered so far have been for independent tasks which infer information

from data without interacting with the environment the data comes from. Reinforcement

Learning (RL) [101] is an approach to learning that involves sequential decision making for an

agent interacting with an environment. The aim of RL is to learn a policy, mapping from the

current state of the environment to an action, that can be taken by the agent to maximise the

expectation of the total reward across the remainder of the sequence. In contrast to standard

supervised learning, RL does not use static labelled ground truth data. Instead, it is trained with

data containing: a set of environment states, the actions taken from those states, the immediate

rewards achieved by those actions, and the state of the environment following the action (a

formalisation of this is presented in Chapter 3).

One of the most important decisions to be made when choosing an RL algorithm, is whether it

should be on-policy or off-policy [101]. On-policy methods optimise the same policy which is

generating the transitions to be learnt from. In-contrast, off-policy algorithms do not require the

data used for learning to have been generated by the same policy being optimised. A simple

example of this is optimising a deterministic greedy policy, whilst using a stochastic ε-greedy

policy to collect the observations. Another option to be considered is online vs offline learning.

Online learning uses data as it is made available, either by using the currently available data or

increasing the amount of learning data during training as more observations are made. Offline

learning (or batch RL [54]) works with static data, where all observations are collected prior
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to learning. It is important to note that whilst it is possible to have both online/on-policy and

online/off-policy algorithms, it is not possible to have offline/on-policy algorithms, because

as soon as the learned policy is different to that used to collect the offline data, it is no longer

on-policy learning.

2.2.1 RL Algorithms

There are many approaches to finding an optimal policy, which maps from the current state of the

environment to the optimal action for long term rewards. Value-function based approaches aim

to learn a value function which finds the expected discounted reward given the current state. The

most common value-function method is Q-learning [107] which aims to find the optimal policy

via estimating the action-value function (or Q-function), giving the expected discounted reward

for a state-action pair when following a given policy. In contrast to value based methods, policy

methods aim to optimise the policy directly. One example of such a policy gradient method

is REINFORCE [108, 102] where the policy is approximated by a function with parameters

which are updated directly by gradient ascent on the expected discounted reward. These two

approaches to RL may be combined for actor-critic learning [11], where the parameters of a

action-value function are learnt as the ‘critic’, whilst an ‘actor’ is updated to produce a policy

based on the output of the ‘critic’.

Traditionally RL methods used with function approximation tend to be highly unstable, es-

pecially when using the non-linear function approximations needed for more complex tasks.

Deep RL is the combination of RL and deep neural networks used as function approximators.

Deep RL has seen notable success including the Deep Q-Network [68] and AlphaGo [97] which

brought several improvements to stability and showed impressive results. For example, DQN

is used in an off-policy manner with experience replay and a target network to improve the

stability of the non-linear CNN used to approximate the value function.

Following these advances there have been many improvements and adaptations of deep learning

for RL. Another notable method combining the two is Asynchronous Advantage Actor-Critic

(A3C) [67], which uses deep neural networks to approximate both the policy and value functions.

This particular algorithm uses parallel actors with separate policies, to encourage exploration of

the environment, but are updated by a central update step to improve the stability of learning.
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Another actor-critic algorithm which takes advantage of deep learning is the Deep Deterministic

Policy Gradient (DDPG) algorithm [61] which applies the techniques learnt in DQN and batch-

normalisation [43] from the deep learning community to a deterministic policy gradient approach

[98].

A further way to improve the stability of RL algorithms is to restrict the size of the policy

update during training. Schulman et al. [93] propose Trust Region Policy Optimisation (TRPO),

which uses Kullback–Leibler (KL) divergence to constrain each policy update to a ‘trust-

region’. However, applying TRPO to deep neural networks is inefficient and complex since

it is not compatible with Stochastic Gradient Descent (SGD). In comparison Proximal Policy

Optimisation (PPO) [94] uses a clipped ratio of the probabilities of an action under the new

and old policies directly in the objective function, meaning it can be used with efficient SGD

methods whilst still ensuring the policy update is relatively small.

2.2.2 Experience Replay

One of the issues with algorithm selection in RL is that whilst on-policy methods allow for

exploitation of the current policy, they can often become trapped in a local minima, especially

when exploration is not sufficiently built into the policy. Alternatively, off-policy methods

evaluate one policy whilst executing another, which allows for much greater flexibility in data

collection and exploration, but can still lead to over-fitting to single observed episodes. The use

of experience replay [62], where episodes are stored in a buffer and sampled from it for training,

has been the key method used to tackle strong correlations in single episodes and increasing the

quantity of data available. Sampling from the replay buffer can be uniform but this often leads

to replaying episodes which are not significant to improving the policy. To combat this, [92]

proposed Prioritised Experience Replay (PER), where the individual transitions are assigned

priorities (approximated by the absolute policy loss) which act as weights for sampling from the

buffer, meaning that transitions that will have a higher impact on the policy are more likely to

be sampled during training.

Experience replay has since been used to combat other issues such as sparse rewards. Reinforce-

ment learning relies on having an appropriate reward function to influence which sequences or

actions have a positive or negative impact in the long run. It is often the case for RL problems



2.2. Reinforcement Learning 17

that the reward signal is sparse, namely the effects of an action are only known further through

the episode. For large state and action spaces, sparse rewards mean that reaching a state which

gives meaningful feedback may be rare. In the case of goal orientated RL, Hindsight Experience

Replay (HER) [9] can be used to artificially increase the number of episodes in the replay buffer

with relevant feedback. This is done by adapting the goal to a state which was achieved by

the agent and recalculating rewards before adding an episode to the buffer. Whilst this helps

to balance the ratio of successful episodes compared to failures, it does not ensure a good

distribution of goals across the state space, meaning we need to consider which episodes HER

is applied to. With this in mind, Nguyen et al. [73] proposed HER with Experience Ranking,

using the distance between the original and the achieved goal to ensure the newly sampled goals

are within a threshold of the original one. This helps stop the buffer being filled with episodes

targeting only goals which the original policy was able to reach.

2.2.3 Exploration vs Exploitation

One of the key challenges in RL is the trade-off between exploration of the state space and

exploitation of the learnt policy. The agent needs to explore parts of the state space not yet seen

to avoid falling into a local optima but also to use the policy to allow it to achieve the task at

hand. There have been various attempts to address this issue such as the use of asynchronous

actors [67] as mentioned above in the A3C algorithm. Fortunato et al. proposed NoisyNet [32]

which encouraged exploration by adding parametric noise directly to the network weights, with

the noise parameters also learnt alongside the network.

Another way that exploration has been driven is via the concept of curiosity. Pathak et al. [76]

propose an Intrinsic Curiosity Model (ICM) which produces an intrinsic loss comparing the

feature space at the next time step to a prediction, via a network that takes in the feature space

at the current time step and the action to be taken. To minimise this loss, the agent must take

actions which introduce it to parts of the state space which the model has not seen before and

therefore cannot predict easily. This can be used with or without the usual extrinsic reward

provided by the environment and can help to increase exploration and performance in systems

with sparse reward signals.

When looking at the sparsity of a reward signal the connection between action and potential
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reward can be too distant. This can often be because the problem is difficult or impractical to

learn without any prior understanding, meaning typical exploration will not provide enough

context to complete the task. Inspired by the way humans learn as children, curriculum learning

[13] is a training strategy which provides structure to the learning process, starting with simple

tasks and building upon knowledge learned to complete more complex tasks. However, the

curriculum used must be well designed, otherwise the jump in difficulty can cause the network

to diverge or if it is too small the agent may not learn and only attempt to exploit its current

policy. Some methods apply a curriculum more implicitly by incorporating it into the replay

buffer, such as Curriculum-guided HER (CHER) [27], where similarly to Nguyen et al. [73] the

episodes which have adapted goals are determined by the distance to the original goals along

with a curiosity based exploration metric. They enforce a curriculum by gradually changing the

proportion of episodes being selected to have their goals adapted. The aim is to have increased

curiosity at the start, even if the achieved goals are far from the original target, then gradually

forcing the achieved goals to be close to the originally selected target.

2.2.4 Model Based RL

Given the quantity of data required for training RL algorithms effectively, frequently collecting

data from the environment can be slow or impractical, especially in real world environments. All

the methods discussed so far have been model-free, meaning they directly learn either a value

function or policy without explicitly learning the transition dynamics from state to state for a

given action. In contrast, model-based RL attempts directly to learn the dynamics of the system,

which can then be used to efficiently create artificial data for training. It is important to note

that, whilst many RL approaches use simulation to obtain more data, they are not considered

model-based because the simulation is not learnt and they are often slow and computationally

intensive.

Efficient learnt models have been shown to be effective at learning the transition dynamics for

low dimensional state and action spaces, especially when the model incorporates uncertainty.

For example, Black-DROPS (Black-box Data-efficient RObot Policy Search) [16] uses Gaussian

Processes (GPs) to learn the dynamics of a 4-Degrees of Freedom (DoF) robotic arm, and then

samples additional data from this for training a policy to move to a single position. This meant
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learning an effective policy required as little as 5 episodes of physical interaction. Another way

to efficiently use model-based RL is via Guided Policy Search (GPS) [59]. This approach learns

a dynamics model based on local sampled trajectories, which then uses trajectory optimisation

methods to learn an optimal policy for said learnt dynamics. Using this policy to collect more

trajectories and then iterating over this system allows efficient continually updating dynamics

modelling.

More complex systems modelled in this way can lead to simulation biases, often referred to

as “reward hacking”, with errors in the model being exploited by the RL algorithm if they

benefit the received reward signal. One way to deal with simulation biases is to use an iterative

learning approach where simulation models are continually updated throughout the learning

of the policy. Ross et al. [87] assume a good exploration distribution and alternate between

collecting new information about the environment via a good policy for the current dynamics

model and updating the model. However, methods such as this do not generally scale well to

larger domain spaces, such as images.

2.2.5 Large State Spaces

Another challenge with both reinforcement learning and deep learning is the curse of dimension-

ality. RL methods which work well for problems with small state and action spaces often do

not generalise well to large domain spaces, such as robotic arms with high DoF or RGB images

of physical environments. Considering this, it is not surprising that dimensionality reduction

techniques have been used in conjunction with RL to improve the efficiency of learning.

One such technique proposed is Dimensionality Reduced RL (DRRL) [19] where a chosen

dimensionality reduction method is used to transform the state space to some smaller repre-

sentative state. The results showed that using Principle Component Analysis (PCA) as the

dimensionality reduction method improved the speed of convergence. Similarly, Lange and

Riedmiller [53] use a deep AE to compress images to a feature space used as the input to a

policy.

However, by transforming to much lower dimensional state spaces some low variance, potentially

important, data is lost. This can lead to learning a sub-optimal policy. To overcome this Curran et

al. suggest Iterative DRRL (IDRRL) [19], which uses transfer learning techniques to apply what
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is learnt in a low dimensional state space to learning an optimal policy in a higher dimensional

state space. This allows most of the learning to be done efficiently in the low dimensional spaces,

but still allows the policy to learn from important data only available in the high dimensional

space.

Further work showed that it is possible to use a Cascading AE (CAE) with IDRRL [18] to encode

a state space into ever decreasing dimensional spaces and then use transfer learning to build up

policies from the smallest dimension back to the full state space. Whilst this allows extremely

efficient learning at the lowest dimension spaces, the transfer learning process becomes more

complex when increasing the state-space size to that of image observations.

One of the issues with the use of dimensionality reduction in RL is that we often do not have the

semantic understanding of the lower dimensional state space to exploit valuable RL techniques

such as HER. Nair et al. [71] propose a solution to goal-conditioned RL, using an encoder-

decoder system to learn a latent space which can be used to sample goals, provide a lower

dimensional, structured input for RL and to compute a reward signal for reaching the goal.

Although this allows HER to be used for visual problems, it introduces its own limitations. In

using an image as an explicit goal, the agent’s flexibility is limited. For example, in a pick and

place problem it restrains the final pose of the robot when the final position of the object is more

important.

2.3 Application to robotics and grasping

Robotics has been one of the main application areas for RL research due to it’s interactive

nature between an agent and an environment. However, many of the environments used to

benchmark RL are simple software simulators such as video games or basic physics problems

(e.g. cart-pole), which do not represent the high complexity or unique challenges of robotics.

One of the key differences is the ability to collect meaningful quantities of data. It is easy to

collect millions of episodes of data for these benchmarking environments in less than a day. In

comparison, using realistic robotic simulators such as Gazebo [48] a thousand episodes could

take around 3 days to complete. Attempting to collect large quantities of data with physical

robots is often impractical, due to physical and safety restraints, including the need for a human

to reset the environment between episodes.
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Some works have still attempted to train RL methods with real world data. Levine et al. [58]

propose Guided Policy Search with CNN based policies to complete various tasks with a PR2

robot. The CNN is pretrained on ImageNet, followed by a selection of 1000 collected images to

regress positions of notable objects in the scene. Then it is used to produce end-to-end policies

from image to torque control, using only around 25 physical samples per task. This method

performs well on these tasks but the limited quantities of data for the training of a CNN leads to

over-fitting, with no results shown on unseen objects or even visually varied objects.

Others have attempted to scale up the quantities of data used to train CNN based networks in

more traditional deep learning frameworks. Pinto et al [79] collect 50,000 grasp attempts on a

single robot to create a dataset for robotic grasping and train a network within a self-supervised

framework. This method uses an AlexNet based CNN to predict grasp position and angles,

which show good results on a small selection of unseen objects. The network used in this case

has not been adapted from the initial computer vision application, meaning it is not designed to

learn features important for grasping, specifically spatial awareness. In contrast Allday et al. [3]

adapts the architecture of the network used to predict grasps by removing pooling layers which

lose vital spatial information and reducing the size of networks to make them more data efficient.

Unfortunately, neither of these methods allow for any correction of mistakes once the initial

action has been chosen. Researchers from Google took this a step further collecting 800,000

grasp attempts with 14 robotic arms [60]. These grasp attempts are used to train a network to

predict the likelihood of grasp success for different actions. In contrast to the previous work, it

uses visual servoing to predict the likelihood of grasp success at discrete time steps through the

grasp, allowing it to correct for mistakes. The implementation of this method involves several

heuristics such as raising the arm if the end-effector is currently below a given height and there

are no moves that currently predict a successful grasp of 50% or more. Whilst this improves the

safety of the system, it means that additional knowledge of the environment is required. Since

this method uses a fixed dataset the policy cannot be improved through exploration, as in RL,

making the assumption that all necessary exploration has been done at data collection.

A key area of research that could make RL methods more viable in robotics is the transfer of

policies learnt in simulation to real robots without retraining. In recent works the main method

used for sim-to-real transfer is domain randomisation, where various parameters of the simulated

domain are randomised during training. This reduces the discrepancy between itself and the
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physical world. Domain randomisation can either adjust visual parameters [104] such as those

relating to textures and lighting, or physical dynamics parameters [78] such as damping or

friction. These methods can stop a policy over-fitting to the simulated world but rather learn

how to adapt to a distribution of environments, with the real world laying somewhere in that

distribution. It can be difficult to adapt the simulated domain in such a distribution, one way

that this has been combated is to use an image conditioned GAN to transform images from their

respective domains (real world or randomised simulation) to a common domain which can be

used as an input along with the original image to the RL algorithm. Domain randomisation is a

powerful tool for transferring learning from simulation but does come at higher computational

and implementation costs, especially when access to cloud compute services are not readily

available.

2.4 Summary

A lot of the algorithms discussed aim to have a direct vision to action pipeline both during

training and evaluation. However, this means that we lose much of the structure provided by

additional semantically understood state information at train time. These systems also aim to

use torque controls directly on robotic joints, however, this means that the policy must not only

learn the higher level method needed to complete the task but also the inverse kinematics of the

robot, which in most cases, already has a reliable solution. In order to avoid learning the solution

to a problem that has already been solved and to provide more structure to the learning system

without providing system specific heuristics, this thesis looks at moving away from end-to-end

solutions for robotic grasping, whilst still providing an image to action solution for deployment.
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Efficient Reinforcement Learning

As discussed in Section 2, Reinforcement Learning (RL) has been used within the robotics

community for many years with model-based methods [21] and policy learning methods [49].

However, with the recent surge in developments from the area of deep learning, there are

many more options for robotics researchers to consider. Deep learning generally requires large

quantities of training data, this is also true for RL except the data collection often cannot be done

in advance. During the training of online RL algorithms, new data needs to be collected based on

the newest learnt policy. We want algorithms to require as little data as possible, meaning one of

the most important aspects of RL systems is data efficiency. This chapter provides background

formalisation for RL and looks at the effectiveness of different RL algorithms. This includes

how they can be made more efficient, especially in the robotics domain.

3.1 RL Algorithms

Most algorithms can be grouped into either value based methods, policy based methods or

composite approaches called actor-critic methods. Before describing each type we will formalise

RL below. This work focuses on episodic reinforcement learning, where an agent interacts with

an environment at discrete time steps, t. Figure 3.1 shows an overview of the data flow in a

simple RL system.

23
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Figure 3.1: Reinforcement Learning Overview

Episodic RL can be formulated as a Markov Decision Process (MDP) involving:

• a set of states st ∈ S ,

• a set of actions at ∈ A,

• a transition probability distribution P
(
st+1 | st , at

)
,

• a reward function rt
(
st , at

)
which gives the reward received after transitioning from

st to st+1 via some action at (often denoted as just rt).

The goal of the agent is to maximise the instantaneous reward, rt , over time via some policy

π
(
at | st

)
, which maps from S to A. The return is defined as Rt =

∑∞
k=0 γ

k rt+k, which is

the accrued reward over time, discounted at each time step k, from time step t, by a discount

factor γ ∈ [0, 1). Then the value of a state using policy π is given as V π (s) = E
[
Rt | st = s

]
.

In the case where tasks are of finite time, an episode is the finite sequences of states and the

actions taken to transition between those states, ending either when the goal state is reached or

when a maximum number of actions, T , have been taken.

Based on these definitions we must choose which function to approximate via learning to

obtain the policy. Value function methods focus on estimating the optimal value function,

V ∗ (s). If this is known, the optimal policy at state st , is to select the action which max-

imises E
[
V ∗ (s) | s = st+1

]
. However, this requires knowing the transition probabilities

P
(
st+1 | st , at

)
to find the states st+1, for all the possible actions at st .
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3.1.1 Q-Learning

One variant of value based methods are termed Q-learning approaches. In Q-learning the

transition probabilities are not known, and do not need to be estimated. The Q-function (or

action-value function)

Qπ (s, a) = E
[
Rt | st = s, at = a, π

]
, (3.1)

gives the expected return for a given state-action pair and policy, if the action a is taken in state

s, then the policy π is followed. Q-learning aims to maximise the accrued reward by finding

the optimal action-value function

Q∗ (s, a) = max
π

E
[
Rt | st = s, at = a, π

]
. (3.2)

Mnih et al. [68] approximated the Q-function with a CNN called the DQN. The input to this

CNN is an observation of the state of the system in the form of an image. For each action in the

discrete action space there is a network output which gives the Q-value for that action, in other

words, simultaneously generating Q∗ (s, â) for all â ∈ A. Once the Q-network is trained, it

can be used to evaluate the actions at each time step and choose the action with the highest

Q-value. This allows the policy to be implicitly learnt, whilst taking the future reward into

consideration.

To find the loss function to be used in training we consider how action choice can be related

to the action-value function. If the optimal action-value Q∗
(
st+1, at+1

)
is known for all

possible actions at the next time step, then the optimal policy would be to choose the action

with the maximum Q∗ value. Hence, Q∗ can also be interpreted as recursively maximising

rt + γ Q∗
(
st+1, at+1

)
. Due to this, the difference between rt + γ Q∗

(
st+1, at+1

)
and the

current Q-value is used for the Q-learning update function

LQ = E
[
rt + γ Q

π
θT

(
st+1, at+1

)
− Qπ

θ

(
st , at

)]2
, (3.3)

where θ are the parameters in the Q-network. Therefore, the loss of the CNN is the difference

between the expected reward for the full sequence and the instant reward plus the expected

reward for the remainder of the sequence, in other words it penalises non-recursive behaviour.

Here θ are the parameters in the Q-network and θT are the parameters in a target network which

is only updated every C steps. This delay is to make the learning algorithm more stable than



26 Chapter 3. Efficient Reinforcement Learning

true online learning where an update to Q could change both elements of the loss function at

once, possibly causing divergence or oscillations. Another way instabilities in learning are

combated is by using experience replay [62] where a set of the agent’s experiences are stored,

then mini batches are drawn uniformly from this set for training. A limit M is set on the number

of episodes to keep, so that as training progresses, older episodes are forgotten and replaced with

episodes from the current policy. The experience replay buffer Ω = {e | |Ω| < M } stores each

step from an episode in the form e =
{(
st , sg, at , rt , st+1

)
| t = 1 . . . j, j ≤ T

}
, where sg

is the goal state and j is the terminating step for that episode (up to a maximum number of

actions T ). Drawing mini-batches from this selection of episodes smooths the changes in the

data and reduces the correlations in single observation sequences.

3.1.2 Actor-Critic Learning

Actor-Critic methods simultaneously predict a policy and a value and use both to learn the

optimum solution. An example of this is Asynchronous Advantage Actor-Critic (A3C) learning.

This outputs both a policy πθ
(
at | st

)
and an estimate of the value function V π

θv
(s) from a

neural network. The networks parameterised by θ and θv share the main section of the network

but have different final layers for output. The advantage of an action is defined by

Aπ (s, a) = Qπ (s, a)− V π (s). (3.4)

This gives insight not only into how well an action performed but also how much better it was

than predicted. Since the discounted return Rt can be seen as an estimate to Qπ
(
st , at

)
,

and V π
(
st

)
is estimated via the network, an estimate of the advantage can be found as

Rt − V
π
θv

(
st

)
and used in the loss of both the policy and value estimate. The value loss is

LV =
(
Rt − V

π
θv

(
st

))2
(3.5)

and the policy loss is

Lπ = −log
(
πθ

(
at | st

))
Aπ
(
st , at

)
− βH

(
πθ

(
at | st

))
(3.6)

where H is the entropy and Aπ
(
st , at

)
is estimated by Rt − V

π
θv

(
st

)
. Since the exact Rt

is not known, it can also be estimated with

Rt ≈ rt + γ V
π
θv

(
st+1

)
. (3.7)
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Figure 3.2: 2D arm with three joints

One of the advantages of A3C is its asynchronous nature. A3C uses n instances of an environ-

ment, each with their own copy of the networks, parameterised by θi and θv,i for i ∈ [1, ..., n].

These networks each feedback to and get updated from the central “global” networks with

parameters θg and θv,g. Using many simulators or real life robots in parallel offers a great

opportunity to speed up training, which is especially important when data acquisition is slow,

such as in robotics. The way in which the networks share updates mean that the exploration

and experience from each environment is shared across the system allowing it to learn more

efficiently from a diverse sample of data. It also provides the ability to easily vary environments

to encourage generalisation across both visual differences and slight behavioural differences

which often occur in simulators running on machines with different set-ups. As before, an

experience replay buffer can be used by each worker to store a record of the agent’s experiences

and sample mini batches for training.

3.1.3 Comparison of DQN and A3C

To compare the performance of the DQN and A3C algorithms, the results in this section look at

a mock manipulation problem involving a 2D arm with three joints. The aim is to move the end

point of the arm to a goal location in as few steps as possible. The action space for this problem

is discrete with 6 different actions. The agent can move the angles α1, α2, and α3 (See Figure

3.2) by π
8 radians in either a positive or negative direction. The maximum number of steps per

episode was set to T = 1000. The input to both algorithms is an RGB image observation of

the system. For this set of experiments, the goal location is fixed for all episodes and the start

configuration of the arm is randomly set at the start of each episode.
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Method Average Actions Std Dev

Random 369 ± 341

DQN 134 ± 99

A3C 15 ± 3

Table 3.1: DQN vs A3C Training with a single fixed target across all episodes. Average actions is the

average number of actions for the arm to reach the target per episode.

The average number of steps required to reach the goal per episode is used as a metric to judge

the performance of trained networks. The networks were trained using Adam optimisers [46] in

a Tensorflow [1] implementation. As a base line, it took an average of 369 actions per episode,

to reach the goal using a random walk.

The DQN and A3C algorithms both used the experience replay buffer as described above. DQN

uses the delayed target network updates while A3C uses the global network with multiple

workers each with their own local network.

Table 3.1 shows the final results from both algorithms after convergence. With this single

goal we can see that DQN improved on the random policy, reducing the average actions per

episode to 134. On the other hand, A3C converges to a much more effective policy, only

requiring an average of 15 actions per episode. The graphs in Figure 3.3a show the losses

during training for these networks. For DQN it shows the Q-network loss, LQ, from Equation

3.3 and for A3C it shows the policy loss, Lπ , for Equation 3.6. At first the DQN loss trends

downwards, seeming more stable than the A3C initial loss. However, after the first 500 iterations

of training the A3C loss dramatically reduces, this is likely due to the separate actor and critic

networks allowing the algorithm to have a stronger drive of whether the actions taken were

better or worse than expected. In Figure 3.3b we can see that the average length of episode

during A3C training converges quickly and is less noisy than the same metric during DQN

training. The asynchronous nature of the A3C system, with multiple workers, means it receives

a greater variance of interactions with the agent and environment over the same number of

training iterations. This allows it to generalise quicker to the varied starting states of the arm in

comparison to DQN.
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Next the problem was made more difficult by changing the position of the goal. At the start

of each episode, the goal is placed randomly in the play area, within reach of the arm. The

RL algorithm now needs to generalise to both the random start point and the random goal

placement. When the systems were trained on this problem, from randomly initialised policies,

neither converged. The additional variance in the states means there is a more complicated

relationship between actions and reward and with no further guidance, the system cannot learn

this relationship.

3.2 Curriculum Learning

With a more complex system in mind, a key challenge in reinforcement learning is the trade-off

between exploration and exploitation. The aim is to explore the space as much as possible, in

order to find more optimal policies, whilst also exploiting the learnt policy to avoid exploring

sub-optimal policies. There is also the issue of a varying initial environment which then means

more exploration is needed to discover the effects on different states.

Curriculum learning can be used to guide the exploration of the agent, gradually increasing the

difficulty of the problem by allowing different initial states. Curriculum learning [13] encourages

the network to learn simpler tasks first and then build upon those experiences to solve more

complex tasks, just as humans do. This means that the network can exploit its current knowledge

during exploration, whilst still being able to gradually learn to generalise to more complex tasks

in a structured manner.

For the problem of moving an arm to a target, the task initially solved in Section 3.1.3 was

simplified by using a target in a single location across all episodes, with the initial arm state

random. Then instead of trying to solve the random target problem from random initialisation,

the newly sampled episodes can gradually be made more challenging. This means as training

continues, the position of the target for each episode is allowed to be in an increasingly larger

space in the play area. The variance of the complexity of the task may be increased in steps or

continuously. A combined strategy may gradually increase the complexity up to a threshold,

then allow the system to re-converge before gradually increasing complexity again, until the full

problem is solved.
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Figure 3.4: Example of curriculum learning by increasing the difficulty of the problem. The possible

goal area (white) is increased gradually from a single point (top left), to half of the play area (top right).

Then again gradually increased (bottom right), to the full play area (bottom left).

To show the use of curriculum learning, we use our mock problem again. The aim is to be able

to move the arm to any goal position in the play area. Training starts with the goal set in a single

position, using the networks which were trained on a single goal from Section 3.1.3. Then the

position for each episode is randomly initialised to be in a gradually more varied position until it

can be placed anywhere in half of the space. Once this stage is reached, the network is allowed

to converge. Then it is gradually increased again until the whole play area is available (see the

increasing goal area show in white in Figure 3.4). This set of results use the A3C algorithm due

to it’s much higher performance in Section 3.1.3.

As before, the system had two asynchronous workers running on separate threads on the same

machine. The initial training with a single target position from Section 3.1.3 achieved an average

of 15 actions. Table 3.2 shows that using the curriculum learning schedule described above,

A3C is able to converge to effective policies at each stage of learning. Finally, when the target

can be placed anywhere in the play area, an average of only 25 actions per episode is achieved.

It is interesting to note that placing the goal only within a quarter of the screen, can actually be

seen as a more challenging task than both the whole screen and the single goal. This is because

the arm is less likely to be randomly initialised near the goal compared to the whole screen

scenario and there is no single solution that can be memorised as in the case of a single goal.
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Method Area Available Average Actions Std Dev

A3C Single goal 15 ± 3

A3C 1/4 screen 42 ± 12

A3C 1/2 screen 13 ± 2

A3C Whole screen 25 ± 6

Table 3.2: Curriculum Learning with A3C. Area available shows change during curriculum learning -

states the area of the screen where the target may be placed during those training episodes. Average

actions is the average number of actions for the arm to reach the target per episode.

The plots in Figure 3.5 show how, at each point where the goal variance is increased, the

performance of the policy gets worse (the actions per episode increases and the reward per

episode decreases). It is important to note that each time the problem is made more difficult,

it doesn’t diverge as far as the initial randomly initialised policy from the single target mode.

Figure 3.6 shows the losses from the same set of training. As expected, the policy and value

losses diverge each time the problem gets more difficult. It is interesting to see that the entropy

loss, H from Equation 3.6, also increases each time the complexity is increased. This indicates

a greater level of exploration in the policy, meaning that it is able to find better solutions for the

complex cases it has not seen, allowing it not to get stuck in a local minimum from the previous

level of complexity.

3.3 Semantically Understood State Spaces

The methods used thus far have used visually simple problems with an image as input. However,

the aim of this work is to apply these methods to more complex robotic problems. Even with

these simple problem domains the algorithms presented have taken hundreds of thousands of

episodes worth of training to converge. When approaching more complex problems, the training

steps needed will increase and each episode will take longer to collect, especially where it

includes the rendering of visually complex scenes from simulators.

For example, using a fast physics simulator, such as the Mujoco physics simulator [105], it takes

approximately 0.01 seconds per rendered simulation step. For the 1,000,000 episodes it took
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to achieve the final result in Section 3.2, if each episode took a maximum of 50 steps it would

still take approximately 5 days just to collect the episodes to learn to solve a similar problem.

This makes implementing and testing the techniques above, as they currently are, in a robotics

simulator extremely impractical and almost impossible on a physical robot.

In order to use these RL methods with more complex robotics problems, techniques to improve

the data efficiency of policy learning need to be employed. Traditionally, approaches used in the

RL community use a semantically understood, parameterised state space which fully describes

the system, such as euclidean poses or angular positions. This fully observed state, with all

relevant information to complete the task, will often be much smaller than an image observation,

meaning less data to capture and store. Therefore, this section will focus on using semantically

understood state spaces as input, rather than images. This style of input space also allows the

implementation of the techniques presented in this section, which aim to reduce the number of

agent-environment interactions needed for convergence.

To demonstrate the benefits of these techniques the experiments in this section will use the

OpenAI [15] framework with the Mujoco physics simulator [105]. The agent will be the

simulated Fetch robot [109] which has an arm with 7 degrees of freedom and a parallel gripper.

The environment used in this section is the Reach environment, which involves moving the end

effector to a goal location, represented as a red sphere. The maximum number of actions per

episode is set to T = 50.

3.3.1 Gaussian Process Dynamics Model

In order to reduce the number of costly agent-environment interactions we use Gaussian

Processes (GPs) to approximate the dynamics of our system and give uncertainty information.

A GP defines a distribution over functions, P (f), for a function f : X → Y mapping from an

input space X to an output space Y . This distribution is defined by a mean function m(x) and

a covariance function κ(x, x′), also known as the kernel, such that

f(x) ∼ GP (m(x), κ(x, x′)) , (3.8)

where (x, x′) are all possible pairs in the input domain X . In most cases, the mean function

can be assumed to be zero and all observed data can be zero centred to make calculations easier.
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This can then be used to build a regression model, where the GP is treated as a prior and a

posterior distribution P (f | X) can be created given some data. Assume we have n previously

observed data points (X,Y) = (xi, y i)
n
i=1 where y i = f (xi) + ε and ε ∼ N

(
0, σ2

)
is

Gaussian noise.

In order to fit the GP to the observed data, the kernel κθ is parameterised by hyper-parameters,

θ. These are fitted by maximising the marginal likelihood P (Y | X, θ) of the GP given the

observed data (X,Y). So the optimal parameters are given by

θ∗ = arg max
θ

P (Y | X, θ) . (3.9)

Assuming we have κ = κθ∗ , for some new set of input points X∗ we want to make predictions

for Y∗ = f (X∗). We know that Y and Y∗ should come from the same function, meaning

they are jointly Gaussian so we can state Y

Y∗

 ∼ N
 m (X)

m (X∗)

 ,
 κ (X,X) + σ2I κ (X,X∗)

κ (X∗,X) κ (X∗,X∗)

 , (3.10)

where I is the identity matrix. From this we can calculate the conditional distribution

P (Y∗ | Y,X,X∗) = N
(
µ∗|X , σ

2
∗|X

)
, (3.11)

where

µ∗|X = κ (X∗,X)
[
κ (X,X) + σ2I

]−1
Y (3.12)

σ2
∗|X = κ (X∗,X∗)− κ (X∗,X)

[
κ (X,X) + σ2I

]−1
κ (X,X∗) . (3.13)

This may be sampled from to get estimates of the function f (X∗) at the new points.

Figure 3.7 shows how a GP can be used to artificially increase the number of agent interactions

for training. In detail, the observed data is collected via a small number of interactions with the

agent and environment, and stored in a replay experience buffer as before, shown in the centre

of Figure 3.7. This observed data is then taken from the replay buffer and used to optimise a GP.

The input domain for the GP is X := S × A, so x = (s, a) where s is the current state, and

a the action to be taken. We represent the dynamics of the simulator as

st+1 = st + D
(
st , at

)
+ ε, (3.14)
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with ε (Gaussian system noise) and D
(
st , at

)
(unknown transition dynamics). The Gaussian

Process will be used to regress an estimate of the transition dynamics D
(
x t
)

with the output

being the change in the state, y t = ∆ s = D(x t). The GP is written as

D
(
x t
)
∼ GP

(
m
(
x t
)
, κD

(
x t , x

′
t

))
, (3.15)

where m is the mean function (which we will assume to be zero) and κD is the kernel func-

tion. With a set of observed state-action pairs X1:n = x1, ..., xn and transitions Y1:n =

D (x1) , ..., D (xn), we can optimise the hyper-parameters of our kernel via Equation 3.9.

Then the GP, with optimised hyper-parameters, is queried at a new data point x∗ = (s∗, a∗),

with state s∗ and action a∗, to obtain a distribution over expected state updates,

P (D (x∗) | X1:n,Y1:n, x∗) = N
(
µ∗|X1:n

, σ2
∗|X1:n

)
, (3.16)

where µ∗|X1:n
and σ2

∗|X1:n
are calculated as in Equations 3.12 and 3.13.

With a given start point, and actions obtained from the RL policy, we can sample from this

Gaussian allowing the rapid creation of more episodes to train the RL system. As shown in

Figure 3.7, these artificial episodes can be added to a GP generated replay buffer. The same

reward calculations as the normal environment are used so these episodes can be added directly

to main replay buffer, Ω, which contains the initial agent interactions. This replay buffer can be

sampled from to create mini batches of episodes to train the networks.

When using images as the observation, GP modelling is impractical. Firstly, it increases the

dimensionality of the input domain, making the time taken for the inverse covariance matrix

calculations required in Equations 3.12 and 3.13 prohibitive. Secondly, calculating rewards

for the artificial episodes relies on having a semantic understanding of the state, for example,

knowledge of where the goal is and if it is reached. This information would not be available to

the system if the only state information is the image observation.

Reach Environment

For the Fetch Reach environment, the RL input state is the position of the arm z ∈ R3 and

the goal position g ∈ R3. The actions available to the agent are of the form a = ∆z .

Unfortunately, the transition dynamics of the system are not perfect, so the new position after an
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Figure 3.7: Example of Gaussian Process (GP) in RL data flow

action is performed is not always z + a, meaning each episode step requires agent-environment

interaction in the simulator in order to get an accurate next state. This means it is an excellent

problem to test the benefits of the GP modelling.

Since the only part of the state that changes when an agent performs an action is the arm position

z , this is what we use as the input to the GP along with the action, giving x = (z , a). To start

with a random policy is used to collect the initial data consisting of 15 episodes. This is used to

fill the replay buffer and to train the GP. Visualisations of the trajectories from these episodes

can be seen in Figure 3.8, showing the restrictions of the agent that need to be modelled by the

GP, such as the limit at approximately 0.4 on the z-axis where the table is placed. This also

shows how much of the state space has not been explored by the initial episodes, meaning the

GP needs to generalise to these states.

The GP was trained using the Python GPy package [37] with a standard Radial-basis Func-

tion (RBF) kernel. In order to check that the GP is modelling the transition dynamics as

expected, a series of scaled unit actions in each direction from the simulator were collected from

various positions. Both the requested action and the actual change in position were recorded.
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Figure 3.8: Visualisations of the trajectories from 15 random episodes used to train the GP, showing the

physical limits of the agent (e.g. lower bound on the z-axis where the table is and the arc at the front of

the top down view where the arms reach is limited).

Visualisations of these can be seen in the left column of Figure 3.9, with the pink arrows showing

the requested action and the blue showing the change in state. The same data was then collected

using the GP and can be seen in the right column of Figure 3.9.

Comparing the two sets of actions it is clear that larger actions taken by the agent are modelled

accurately by the GP, with both sets of blue arrows showing that the action tends to be completed

in the correct direction but at a smaller step than requested. However, as the actions get smaller

the simulator does not always act as expected. Figure 3.9a show that actions taken further from

the centre of the state space are not executed as expected with the tendency to move further from

the centre, no matter what the requested action was. Figure 3.9b shows that the GP is attempting

to model this behaviour but not as accurately as the larger actions. This set of results show that

our GP is able to model the transition dynamics of the system with only 15 episodes worth of

interactions with the simulator. It also shows that the simulator is not capable of executing small

actions effectively, so from now on we limit the minimum action size to a scale of 0.4 of the

maximum possible action. Not only can the GP be used to create episodes more efficiently, it

has also given an excellent way to inspect and understand the dynamics of the agent, allowing

adaptations to the base policy.

Once the GP is trained it is used to sample additional training episodes to fill the replay buffer
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Figure 3.9: Example actions at different scales completed by the simulator (left) or the GP (right). The

pink arrows show the requested action and the blue arrow shows the change in state.
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and train the neural network without needing further simulation. It takes approximately 0.01

seconds per rendered simulation step, but only 0.0025 seconds to sample a single step from the

GP. This equates to saving 75% of the time that would have been spent on collecting simulation

examples.

The initial aim is to move the arm from a fixed start position to a fixed goal, which are both

the same for every training episode. This is the simplest problem since the system can over-fit

to a single trajectory solution. The RL algorithm was able to converge in 1500 episodes of

interaction with the GP and only 4 interactions with the simulator during RL training.

The next aim is to move from a random start point to a fixed goal. This requires the policy to

learn to adapt to the different potential starting points. Using the 400,000 episodes of interactions

with the GP our system converged to 6.69 average actions per episode. In comparison to the

number of GP episodes, only 79 episodes of interactions with the actual simulator were used. To

collect 400,000 episodes worth of simulator data would have taken up to 55.5 hours assuming

each episode took the maximum number of steps, whereas using the GP this upper bound is only

13.8 hours. This magnitude of time savings allows the applications of methods to more complex

problems. However, even with these time savings we find that our system does not converge for

randomly placed goals. With randomly placed goals, the agent rarely reaches the goal whilst

exploring, often reaching the maximum number of steps for the episode. The sparseness of this

positive feedback is not sufficient for RL algorithms to converge.

Environment Setup Average Actions per Episode Simulator Interactions GP Interactions

Fixed s0 2.00 4 1500

Noisy s0 6.69 79 400000

Table 3.3: Results for use of GP with Fetch Reach environment with a single goal state sg

3.3.2 Hindsight Experience Replay

Hindsight Experience Replay (HER) [9] is a powerful technique which allows us to learn from

unsuccessful episodes in learning, especially where rewards are sparse and success from random

exploration may be limited. Using HER, the goal of an episode is adjusted to be a state the
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Figure 3.10: Example of Hindsight Experience Replay (HER) in RL data flow

agent achieved during the data acquisition - meaning a successful episode is artificially created.

For a given unsuccessful episode
(
st , sg, at , rt , st+1

)T
t=1

, the goal state sg 6= s1, ..., sT . In

this case, we may “replay” this episode with sg = si for some 1 < i < T + 1 and recalculate

the rewards for each step, knowing that it will achieve the adapted goal. Adding these adapted

episodes to the experience replay, Ω, as shown in Figure 3.10, means the episode buffer then has

more successful episodes to learn from and has a more balanced ratio of successful episodes

without needing excessive exploration.

In this section the number of HER additions, αHER, is the number of new episodes created from

one unsuccessful episode, by sampling goals without replacement from the achieved states. The

number of HER additions per episode can be as large as the maximum length of an episode, T ,

meaning every state achieved is used as a goal for a new episode added to the HER replay buffer.

If an episode has some length, m, where m < αHER, then the HER additions for that episode

would be bound to m since there are only m states to sample new goals from.

Using images as the observation for HER is a challenge since there needs to be an understanding

of how the goal, and the current state in relation to the goal, is represented in the observation
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space in order that it can be adapted for the artificial episodes and to recalculate rewards. Using

a state space with some level of semantic understanding allows this to be possible. Whilst it

is possible to set a goal as a visual representation as in [71], in use cases like robotics, where

there are many ways to potentially achieve a goal, the system is forced to aim for one which

is visually similar to the visual goal specified. This also requires either a predetermined set of

example goal images, further limiting the potential goal states, or the use of image generation

networks to produce realistic goal images, which would require even more data to train.

Reach Environment

This section shows HER used with the same environment described in Section 3.3.1. In this

situation, the goal state sg is randomly placed at the start of each episode. In this set of

experiments, the trained GP from section 3.3.1 is also used to reduce the number of interactions

with the simulator.

As stated in Section 3.3.1, before the introduction of the HER buffer, the RL system failed to

converge for the environment with random goals. The results in Table 3.4 show the number of

iterations taken to achieve a result of less than 5 actions per episode. In these experiments, the

HER buffer is set to have maximum replay buffer sizes M , which can be varied. Training does

not start until 10% of the replay buffer is filled with either episodes sampled from the simulator,

the GP, or from the HER additional episodes. The number of episodes taken to fill the buffer to

10% capacity is also shown in Table 3.4. The number of HER additions, αHER, is also varied,

with 1 meaning that for each sampled episode a single additional artificial episode is created

using a random state from that episode as the goal state.

We can see that using a single HER addition per episode leads to the shortest number of training

iterations required to converge. Using only one additional HER episode means that the replay

buffer contains successful episodes for positive reinforcement but still maintains the diversity of

trajectories needed for the policy to learn how to reach the goal. However, it does require more

episode interactions to initially fill the replay buffer. Using a larger replay buffer does not seem

to have any significant impact to the speed of convergence but does again make the initial data

collection period (before training starts) take much longer. From these experiments it is clear that

using a smaller replay buffer with a small number of HER additions gives a good compromise
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HER additions Buffer Size Episodes till Training Iterations

αHER M |Ω| ≥ M
10

1 10000 550 12700

10 10000 100 22700

50 10000 300 114100

1 1000000 50150 13100

10 1000000 9450 21900

50 1000000 21600 66200

Table 3.4: Results showing the number of iterations till the average actions per episode converges to

below 5 for different quantities of additional HER episodes and different maximum buffer sizes M .

Includes episodes until replay buffer is filled to 10% of M (episodes till training starts) and the number

of training iterations

by keeping the initial data collection phase and the number of required training iterations small

enough to be possible to collect in a reasonable time. Figure 3.11 shows example trajectories

collected during training. On the left we see trajectories from the randomly initialised policy

used for data collection. On the right we see trajectories from the converged policy from the first

line of Table 3.4. The majority of these converged episodes reach their respective goal point via

a relatively direct trajectory. However, we can see two of the trajectories do not smoothly reach

the goal point, despite the fact that they move in the correct direction initially. It is encouraging

to see that even when these trajectories do not perform optimally, they do not diverge completely

but stay within the area of the goal, for example, the purple trajectory in the bottom right of

Figure 3.11d starts moving towards the goal effectively, then deviates by moving to the side,

before self correcting and moving in the direction of the goal again.

3.4 Conclusion

The techniques explored within this chapter are the basis for how RL can be effectively applied to

robotics problems. Initially looking at appropriate RL algorithms to use, the results showed that

A3C outperformed DQN in our simple problem, both in terms of performance once converged
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Figure 3.11: Example trajectories of episodes sampled from the initial randomly initialised policy and the

converged policy using 1 HER addition per acquired episode and replay buffer maximum size of 10000
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and the speed of the convergence. However, the issue of applying this to more complex problems

means that a structured learning approach is needed. The use of curriculum learning along side

A3C is shown to be incredibly useful in guiding the system, exploiting knowledge from easier

problems as it learns. The mock problem shows that the system can be used with image based

inputs, however, this slows down both data collection and learning.

To improve the efficiency of the system when moving to a more complex robotic domain,

Section 3.3 used a semantically understood state. The time taken to collect data in a physics

simulator means that the standard A3C technique takes too long to converge for practical use.

Using the example of the Fetch robot Reach environment, the work in this chapter showed that

the use of GP modelling provides up to a 75% speed increase.

The problem of sparse positive rewards and lack of sufficient exploration means that the system

needs more help. Introducing HER artificially increased the number of successful episodes in

the replay buffer. The results show that adding a single additional positive episode for every

other episode collected allows the system to converge in just over 12,000 training iterations. The

results also showed that adding more positive episodes can have a negative effect on the speed

of convergence, with the addition of 10 HER episodes causing the performance to decrease by

approximately 44%. This shows the importance of variation and exploration in the training

episodes for RL.

The draw back of these methods is that they use a semantically understood state at all times.

This can be less practical in the robotics domain where these states may not be available

at deployment. Instead, we often have access to image observations as in the results from

Section 3.1, but these cannot be used with GP modelling and HER which are necessary for the

convergence on more complex tasks.



Chapter 4

Reinforcement Learning with Varied

Observability

So far we have considered using RL in situations where the only available observation is an

RGB image or some semantic state. The first case is convenient since RGB sensors are readily

available and relatively simple to simulate. However, even small images lead to large observation

spaces, with a small 600× 600 RGB image giving 1,080,000 inputs per frame. Using images

with low dimensionality, learning a policy with a discrete action space is challenging but

feasible, as shown in Section 3.2. However, when introducing continuous action spaces, the

large dimension of observations mean that we require significantly more data.

Where a semantically understood state is available, the RL input tends to be much smaller and

more practical for training complex systems. This form of input also allows the methods of

Section 3.3 to be used. HER is impractical with images due to the lack of semantic understanding

for creating new episodes, with respect to both adapting the goal and recalculating the reward.

The same is true for GP modelling and GPs do not perform well for high dimensional data.

Unfortunately, most environments in which tasks need to be solved are not fully observable.

This means some of the semantically understood state, which is needed to complete the task

every episode, is not available. However, this partial observation can be enough to complete the

task some of the time. Instead of relying on purely image based inputs when the full semantic

state is unavailable, using the available semantic information along with features extracted from

47
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Figure 4.1: Human perception and control are separate systems requiring different feedback.

image observations can improve the efficiency of our training for a specific task.

It is perhaps unsurprising that even incomplete semantic data helps, since training directly from

perception through to control is a complex relationship with poorly constrained supervision.

For infants, interaction with the environment allows the visual parts of the brain to learn how

to perceive the world, even if they fail to complete the task at hand. Learning to interpret

our surroundings and then to interact with them are learnt simultaneously but not necessarily

as one continuous system. Most visual input is passed through the primary visual cortex,

then proceeds forward in two “streams”: ventral and dorsal. The ventral carries information

such as object types, whilst the dorsal stream carries information involving the location and

movement of objects via the parietal lobe to the pre-motor cortex [52]. There are different types

of feedback to train these two different streams. This is visualised in Figure 4.1, where the

perceptual understanding is learned in the visual cortex, and the control in the motor cortex, with

connections between the two. Inspired by this, this work considers using interaction with the

world to co-train separate visual perception and control systems, each with their own feedback

but learning from the same interactions.

This chapter shows how an auto-perception network can be used to learn an effective state

space for RL. We call this approach Auto-Perceptive Reinforcement Learning (APRiL). Unlike

previous RL techniques which try to learn an encoded state space, the proposed solution

generalises across all levels of state observability. When the semantically understood state space

is completely or partially observable at training time, it is used to condition the learning of a

representative feature space. The conditioned auto-perception network can be used to create a

feature space which includes this knowledge but is not limited to it - allowing retrieval of other

auxiliary information from the observations which have not been considered by the developer.
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4.1 Autoencoders in RL

As discussed in Chapter 2 (Section 2.2.5), there have been many different techniques used to

reduce dimensionality and extract information from high dimensional state spaces like images.

One of the most effective tools for extracting lower dimensional representations of images are

deep Autoencoders (AEs). Table 4.1 compares the uses of AEs in RL systems. Finn et al. [30]

use an AE to create a set of feature points representing positions in the image that describe

the environment, for example object locations. Stadie et al. [100] encode a state for training a

dynamics model in order to improve exploration by increasing curiosity, but still use the raw

observation as the input to the learning system. Lange and Riedmiller [53] use a deep AE to

compress a visual input to a low dimensional feature space, which is not semantically understood.

This improves the reinforcement learning data-efficiency. Kimura [45] uses AEs as pre-training

for a DQN system. However, none of these approaches can exploit valuable RL techniques

such as HER. For example, Lange and Reidmiller’s work does not have sufficient semantic

understanding in the features in order to adapt the episode to a new HER goal. Kimura’s requires

images, for fine-tuning of the network, which again cannot be adapted for a new goal.

Nair et al. [71] use an encoder-decoder system to learn a latent space which can be used to

sample goals, provide a lower dimensional, structured input for RL and to compute a reward

signal for reaching the goal. As discussed in Section 2.2.5, this introduces potentially undesirable

limitations on how the agents can reach the goal. Nair et al. also assume that only the image is

available to the RL system, they do not consider cases where we may want to make use of any

other state information that is available - meaning information is wasted.

4.2 Auto-Perceptive Reinforcement Learning (APRiL)

Fig. 4.2 shows the outline of the proposed APRiL approach. The blue arrows show the data flow

at deployment. The observation image of the agent and environment is passed to the encoder

which provides an encoded state, which may be completely or partially semantically understood.

This is then passed to the trained reinforcement learning system which selects an action which

is passed back to the agent to be executed.

The flow of the data during training is depicted as the orange arrows in Figure 4.2. The optional
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Figure 4.2: Overview of APRiL. The optional loss and the | S | determines how much of the encoded

latent space is semantically understood. Blue arrows: the data flow in the forward pass, Orange arrows:

the data flow in the backward pass.

loss can be used if semantically understood knowledge of the state is partly or fully available.

The perception network is trained independently on data collected with an initial random walk

policy from the RL system. The RL block can be trained using data from the agent and from

a pre-trained Gaussian Process (GP) which models the dynamics of the system (as in Section

3.3.1). This means that the RL system can obtain vast quantities of data points without having

to run them all through a physics simulator, speeding up the process.

The RL system and the auto-perception network are independent networks, which can be trained

concurrently with much of the same data but do not need to be trained end-to-end as they exploit

different types of supervision. Each of the following auto-perceptive cases, which have different

levels of semantic observability, can be integrated with the RL in the same training framework.

In the case of the encoded feature space being entirely semantically understood, the auto-

perceptive network is trained with data collected for the initial random exploration. The same

data can be used to train the GP to learn the dynamics, in order to train the control network.

The auto-perceptive network and the control network can be co-trained in parallel and tested

individually before being integrated. The perception network infers an approximated state from

an observation and then passes this approximate state to the RL network without the RL needing

to see any images during training. This means the system does not need access to the robot state

at run time and can predict actions with only visual input, but it is not necessary for it to be
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Figure 4.3: Data flow through an Autoencoder perception system

trained in an end-to-end manner, allowing RL to benefit from HER and GP modelled transition

dynamics.

When the encoded feature space is partially semantically understood then the auto-perceptive

network is still pretrained on random data but the encoder arm is used to get the encoded state

for input to the RL system. Therefore, the RL system only has to interpret the low dimensional

feature space coming from the auto-perceptive network, not the raw pixel values. This means

that training is focused on solving the control problem. Techniques such as HER are still feasible

since we have a predetermined understanding of some of the feature space being used by RL.

The final case is where there is no semantically understood state available. This is similar

to Lange and Riedmiller’s work [53] where the encoder feature space had no predetermined

semantic meaning. This case still allows a lower dimensional state space to be learnt from the

visual input even when there is no semantic state available during training.

4.3 Auto-Perception Networks

To use visual observations from the environment, without needing to train an RL system with a

high dimensional state space, the observations need to be embedded into a smaller intermediate

state. Modern deep learning techniques such as AEs or Variational AEs can be used to do this.
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4.3.1 Autoencoder

An Autoencoder (AE) allows the visual space to be mapped to a lower dimensional latent

space. The encoder uses the observations of the agent and environment in the form of an image,

transforming it to the latent space with the function φenc : O → S , whilst the decoder arm

transforms from the latent space to a reconstructed image φdec : S → O.

In the RL notation, the AE takes the image observation at time t as input and compresses it

down to the latent space st = φenc

(
It

)
and the output is a reconstruction of that image at

time t, Î t = φdec ◦ φenc

(
It

)
. To train the network, the reconstruction loss is a pixel-wise loss

against the input

Lrecon = |It − Î t |. (4.1)

We denote the semantic state space as, s̄t ∈ S̄ , which contains all available information from

the environment that has a predefined semantic meaning. The optional conditioning loss is

the absolute difference between a section of the encoded state space and the semantically

understood state. The slicing of the encoded state space, into predicted s̄t and non-conditioned

st is illustrated in Figure 4.3. In the case where S ⊂ Rn and S̄ ⊂ Rm, with m ≤ n, then the

conditioning loss is

Lcond = |st1:m − s̄t |. (4.2)

The full loss for the visual perception network is

LVP = Lrecon + ω Lcond, (4.3)

where ω is a weighting which determines how strong the conditioning is. The learnt feature

space can be:

1. entirely conditioned to be semantically understood as the observable state (m = n,

ω 6= 0),

2. partially conditioned with some learnt features relating to the observable state and some

auxiliary features with no predetermined semantic meaning (m < n, ω 6= 0),

3. or not conditioned with learnt features having no predetermined semantic meaning (ω =

0).
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Figure 4.4: Data flow through a Variational AE perception system

This network can be trained using data from initial random exploration and fine-tuned during

reinforcement learning if needed.

The encoder, φenc, in this work uses 6 convolution layers each of which halves the height and

width of the image. A single fully connected layer then produces the encoded state. The decoder,

φdec, takes this encoded state as input into a single fully connected layer, from which the output

is reshaped to allow 6 de-convolution layers outputting the reconstructed observation.

4.3.2 Variational AE

APRiL can also employ a Variational AE (VAE) to encode the latent space. VAEs learn a

probability distribution as the latent space allowing greater generalisation and a smooth latent

space. The encoder gives a set of means and standard deviations such that φenc

(
st | It

)
=

N
(
µ, σ2

)
, where µ and σ are of size n. The decoder gives a reconstruction of the input

image Î t = φdec

(
st

)
, where st ∼ φenc

(
st | It

)
. In addition to our reconstruction loss, the

assumption of some prior P
(
st

)
is enforced. This is done by minimising the Kullback–Leibler

divergence (DKL), which shows the divergence between two distributions. The prior used over

the latent variables is P
(
st

)
= N (0, 1). This gives the variational loss as

Lvar = DKL

(
φenc

(
st | It

) ∥∥∥ N (0, 1)

)
=

1

2

n∑
i=1

(
σ2
i + µ2

i − log(σ2
i )− 1

)
. (4.4)

In order to use this VAE with the semantic state space S̄ , part of this state must be conditioned.
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The L1 latent space conditioning loss from Equation 4.2 can be used. So the loss for the semantic

state conditioned elements in the VAE are

Lcond = |µ1:m
t − s̄t |. (4.5)

The remaining elements will use the standard variational loss, giving the full conditioned

variational loss as

LVAE = Lcond + βDKL

(
φenc

(
sm:n
t | It

) ∥∥∥ N (0, 1)

)
, (4.6)

where β is a constant used to vary the variational loss. Finally, the full visual perceptive loss for

the VAE is given by

LVP = Lrecon + ω LVAE. (4.7)

Again this method can be conditioned differently depending on how much semantic data is

available during training.

It is important to note that despite the naming of the conditioning loss, this is different to

Conditional Variational Autoencoders (CVAEs) [99]. CVAEs take wanted attributes (equivalent

to our known semantic state) as input to both the encoder and decoder. In comparison we want

our encoder to be able to learn this attribute along with the variational latent space from the

image. Then the decoder can use the learnt attribute and the sample from the learnt latent space

as the input.

The encoder, φenc, for the VAE in this work uses 6 convolution layers each of which halves

the height and width of the image. A single fully connected layer then produces both µ and

σ. The semantic state conditioned part of µ is used directly from this output. The σ output is

multiplied by the value sampled from the unit normal and then added to the non-conditioned

part of µ. This means the predicted σ is the same size as only the non-conditioned state. This

non-conditioned state and the semantically conditioned state are then concatenated back together

to form the full encoded state. The decoder, φdec, takes this fully encoded state as input into a

single fully connected layer, from which the output is reshaped to allow for 6 de-convolution

layers outputting the reconstructed observation as before. The flow of data between the end of
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the encoder and the input of the decoder, as described above, is illustrated for clarity in Figure

4.4.

4.4 RL with Auto-Perceptive Networks

The encoded state from the auto-perceptive network can be used with any standard RL algorithm.

In this work we focus on the actor-critic method detailed in Section 3.1.2.

We have two ways to train APRiL. In the first case where m = n, then the policy loss from

Equation 3.6 becomes

Lπ = −log
(
πθ

(
at | s̄t

))
Aπ
(
s̄t , at

)
− βH

(
πθ

(
at | s̄t

))
, (4.8)

using the semantic state s̄t . This allows the RL system to be trained with the ground truth

semantic state but then run with the state inferred from observations at deployment.

In the second case, where m < n, the full encoded state is needed as the input to the RL system

with the policy loss becoming

Lπ = −log
(
πθ

(
at | φenc(It)

))
Aπ
(
φenc(It), at

)
− βH

(
πθ

(
at | φenc(It)

))
, (4.9)

with the observation It at time t. In this case the policy and value networks cannot be fully

trained before the auto-perceptive system is trained since the encoder is needed to find the losses.

However, the policy and value networks may be trained with whatever semantic state is available

to start learning, via Equation 4.8. These networks may then be adapted to take input from the

additional non-semantic encoded state by increasing the size of the input layer and loading the

learnt weights to the appropriate slice of the first fully connected layer. This means that the

pretraining can make use of the techniques like HER presented in Section 3.3, but the final RL

system can be fine-tuned to take advantage of any additional information available from the

image.

4.5 Experiments

To evaluate APRiL we use the OpenAI [15] framework with the Mujoco physics simulator [105].

The networks are trained using Adam optimisers [46] in a Tensorflow [1] implementation.
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Figure 4.5: Mujoco Reacher simulation with goal (red sphere)

4.5.1 2D Reach Enviroment

This first set of experiments uses a Reacher problem similar to that in Section 3.2. This

environment only has two joints on the arm and has a more visually complex rendering (see

Figure 4.5). The goal is to move the end point of the arm to the goal (red sphere). The action

space is a vector of the change in joint angles ∆α ∈ (−0.1, 0.1). The available semantic state

is the 2D pose of the end point of the arm u and the 2D pose of the goal. The maximum number

of steps per episode is 50 and the average episode length using a random policy is 49.46.

The first variation of APRiL tested in this section uses an unconditioned AE as the auto-

perception network with latent space size n = 8 and ω = 0, which is similar to [53]. Some

example reconstructions can be seen in Figure 4.6d, showing the ability of the network to

reconstruct the position of the arm relatively well. Using the latent space from this auto-

perceptive network as input improves on the random policy, but only achieves an average of

44.30 actions to reach the goal. The heatmap in Figure 4.7b shows that the policy has settled to

almost a single trajectory and has not generalised to different goals, with the average steps taken

per episode reaching the maximum of 50 for most goal locations.

To make the use of the semantic state available, the next experiment uses a fully conditioned

AE as the auto-perception network. This correlates to the first case from Section 4.3.1, where

m = n = 4. Initially the policy is trained with the ground truth semantic state as the RL input.

Due to the small action sizes, the converged system takes an average of 31.02 actions to reach

the randomly placed goal. The heatmap in Figure 4.7c shows that this policy has generalised

much better than the perception based network, with most goal locations having an average

episode length of less than the maximum episode length.

The fully-conditioned auto-perceptive network is trained on the initial random buffer episodes.
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(a) Original (b) Reconstructed

(n = m = 4, ω = 1)

(c) Original (d) Reconstructed

(n = 8,m = 0, ω = 0)

Figure 4.6: Reconstructions from the auto-perceptive networks for the Reacher environment

Runtime RL Input n m Average Episode Length Std Dev

Random Policy - - 49.46 ± 4.49

Ground truth S̄ - - 31.02 ± 16.46

Perceived S [53] 8 0 44.30 ± 12.94

Perceived S 4 4 35.02 ± 16.51

Table 4.2: Average episode length (actions to complete task) of system trained on the Mujoco Reacher

environment.
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(a) Random Policy (b) Non-conditioned Inferred State Policy

(n = 8,m = 0, ω = 0)

(c) GT Semantic State Policy (d) Inferred Semantic State Policy

(n = m = 4, ω = 1)

Figure 4.7: Heat maps showing the average number of actions taken to get to goals located across the

play area with different policies
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Reconstructions from this network can be seen in Figure 4.6b, whilst they are not as clear as

the reconstructions from the non-conditioned network, they are able to indicate the position

of the arm. Finally, using the latent space of the trained auto-perceptive network, the learnt

policy achieves 35.02 average actions per episode. The heatmap in Figure 4.7d shows that

the generalisation achieved by the policy has mostly been maintained, with a small drop in

performance due to the uncertainty in predicting the images. This auto-perceptive network and

policy allows us to complete the problem using only the visual input at run time, whilst we have

made use of the semantic information available during training.

4.5.2 Robotic Reach Environment

This set of experiments uses a variation of the Fetch robot reach environment because it has a

continuous action space and has a visually interesting environment to test the auto-perceptive

system. The aim is to direct the end-effector of the Fetch arm to a goal, g , represented visually

by a red sphere. The action space is defined with actions ∆z , where z is the position of the

end-effector, and the maximum episode length is set as T = 50. This set of experiments use an

AE as the auto-perceptive network, with grey-scale input images.

Fully Semantic Features

The first experiment uses a fully observed, semantically understood state s̄t = (z t , g). We use

a random policy to collect an initial experience replay buffer. This data can be used to train

multiple aspects of the system. Initially, we train a GP on the transitions taking in (z t ,∆z) and

outputting z t+1. This allows us to create extra episodes to train our RL system as described

in Section 3.3.1. The advantage actor-critic RL system is trained with data created from both

the GP and from the agent, including the HER additions to the replay buffer. The data from the

random policy and any episodes collected using the simulator are used to train the perception

network. In this case the perception network is co-trained such that s̄t = st = φenc

(
It

)
,

which is the first case from Section 4.3.1, when m = n and ω 6= 0. Finally, at test time, the

networks can be used together to go directly from vision to actions, following the data flow

shown by the blue arrows in Figure 4.2. We compare this to a latent space with no conditioning

loss, where ω = 0, which is similar to [53].
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Runtime RL Input Average Episode Length

Ground truth S̄ 3.10

Perceived S (ω = 1.0) 12.42

Perceived S (ω = 0.5) 17.06

Perceived S (ω = 0.0) [53] 30.94

Table 4.3: Average episode length (actions to complete task) of system trained on the Fetch Reach

environment (no obstacle).

The training of the RL system, using the semantically understood state space directly, converges

with only 15 episodes of random policy interactions with the simulator, the rest of the data used

is collected from our trained GP. It takes approximately 0.01 seconds per rendered simulation

step, but only 0.0025 seconds to sample a single step from the GP. This equates to saving 75%

of the time that would have been spent on collecting simulation examples. This is a saving that

would not be possible using a traditional end-to-end visual RL algorithm.

Table 4.3 shows the policy achieves an average episode length of 3.1 actions when using the

ground truth state space as input. The perception network is trained alongside this. Examples

of the reconstructions from the AE can be seen in Figure 4.8, along with reconstructions from

the AE without the semantic conditioning (ω). Even though we fully constrain the encoded

feature space, and do not enable the system to encode any independent visual properties,

the decoder is able to learn how to produce realistic images of the scene from a semantic

intermediate state. This includes how to correctly place a fully textured robotic arm. These

reconstructions are certainly comparable to the reconstructions without the conditioning loss.

However, the reconstruction accuracy is unimportant, the key is that the reconstruction loss

encodes meaningful information into the latent space for RL.

At test time we can see the performance benefits from using the visual encoder network to

produce the latent space, providing an approximation of the semantically understood state space,

as the policy achieves an average episode length of 12.4 actions. The increase in episode length,

when compared to using the ground truth state as input, is largely due to the goal or end point
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(a) Original (b) Reconstructed (ω = 1)

(c) Original (d) Reconstructed (ω = 0)

Figure 4.8: Reconstructions from the auto-perceptive network
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Figure 4.9: Fetch simulation with obstacle (box) and goal (sphere)

Runtime RL Input n m Average Episode Length

Ground Truth S̄ - - 8.45

GT S̄ and Perceived S [30] 6 0 5.44

Perceived S [53] 16 0 37.04

Perceived S 6 6 28.55

Perceived S 8 6 20.83

Table 4.4: Average episode length of system trained on an environment with a randomly placed obstacle.

being occluded or out of the field of view, in which case the arm must move to attempt to

gather more information about its current state. In these situations, the ground truth algorithm

is an unrealistic comparison for a vision based system which will never have full access to the

state. However, APRiL provides a more effective system than using the perceived state, S , not

conditioned on the semantic state, S̄ , which is similar to [53]. This conditioning allows for a

practical image to action method when the semantic state is not known at deployment.

Partially Semantic Features

The next set of experiments introduces an element such that the state is not fully observed via

the semantically understood state space. A randomly placed obstacle (box) is added which can

affect exploration and the potential solutions to reaching the goal (red sphere), see Figure 4.9.

Again we compare the results in this section to a network trained with no access to the available

semantic state which is similar to [53]. We also train a system which takes the ground truth

semantic state and a separate latent space (in a similar way to [30]) to show that if both are

available, the system has all the information it needs.
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We first train APRiL on the same state that was available in the previous set-up - the position of

the end-effector z and the goal position g . This means that the RL system does not receive any

information about the obstacle. As expected, we see a reduction in performance compared to

the environment with no obstacle. From 3.10 average actions per episode with no obstacle to

8.45 with obstacles - this equates to approximately a 2.5 times increase in the number of actions.

Examples of the reconstructions from the perception network are seen in Figure 4.10b. These

reconstructions are comparable to those in Figure 4.8b, with some slight degradation because

the scene is more complex but no additional degrees of freedom have been provided in the latent

space. It is interesting to note that the decoder arm attempts to reconstruct the obstacle even

though it is theoretically not present in the intermediate state.

When testing with the image to action system we see that this leads to worse performance with

an average episode length of 28.55 actions (See Table 4.4). This is in comparison to 12.42

actions with no obstacles, equating to approximately a 2.5 times increase in the number of

actions which is similar to the decrease in performance seen without perception. This is likely

because it has no way of knowing about the obstacle in the encoded state and often mistakes it

for the goal, especially if the goal is occluded by the arm.

Next we allow the encoded feature space to be only partially semantically understood. We used

a feature space of size n = 8, with the semantically understood state s̄t conditioning only the

first 6 elements (i.e. m = 6). The rest were driven purely by the reconstruction loss, allowing it

to learn what is relevant to understanding the environment. Examples of reconstructions from

the perception network can be seen in Figure 4.10d. This trained perception network does a

better job of modelling the obstacle and goal as independent objects, however the robot arm has

lost a significant amount of visual fidelity. This may be because all systems have been trained

for the same number of iterations, despite having more network parameters. Regardless, a high

fidelity image of the robotic arm is not important for RL, as long as the position is known.

The proposed RL system using our partially semantically understood feature space as input

performs better than the system using the semantic state alone, with an average of 20.83 actions

(See Table 4.4). In comparison to the 12.42 actions in the environment with no obstacles,

this is only a 1.68 times increase for a more difficult problem. This is approximately a 30%

improvement compared to 28.55 average actions taken when using the semantic feature space.
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(a) Original (b) Reconstructed (n = m = 6)

(c) Original (d) Reconstructed (n = 8,m = 6)

(e) Original (f) Reconstructed (n = 16,m = 0)

Figure 4.10: Reconstructions from the auto-perceptive network for the environment with obstacles - top:

semantic features, middle: partially semantic features, bottom: non-semantic features.

This shows that when we do not have access to the full semantically understood state, our feature

space can encode the additional auxiliary information necessary to solve the task better than

with the semantic state based perception alone.

Finally we give the perception network complete freedom to encode a state space based purely

on the reconstruction loss in a similar manner to [53]. Figure 4.10f shows that this improves

the reconstruction as expected since the only feedback given to the encoder-decoder network

is reconstruction. However, as we can see from Table 4.4, the performance of the system is

significantly worse than those incorporating semantic understanding.
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Runtime RL Input n m Network Average Episode Length

Ground Truth S̄ - - - 33.57

GT S̄ and Perceived S [30] 7 0 AE 74.20

GT S̄ and Perceived S 7 0 VAE 47.80

Perceived S 9 9 AE 80.17

Perceived S 16 9 AE 71.50

Perceived S 16 9 VAE 67.80

Table 4.5: Average episode length of system trained in the pick and place environment.

4.5.3 Robotic Pick and Place Environment

The next set of experiments use a variation of the Fetch robot pick and place environment.

The aim is to direct the end-effector of the Fetch arm to grasp an object and move it to a goal,

g , represented visually by a red sphere. The action space is defined with actions
(
∆z , ag

)
where z is the position of the end-effector and ag ∈ [−1, 1] is the action determining the

state of the parallel gripper, with 1 being open and −1 being closed. Since the task is more

complex, the maximum episode length is set as T = 100. This set of experiments uses both

types auto-perception networks (AE and VAE), with RGB input images since it is difficult to

differentiate between the goal and object in grey-scale images.

In order to speed up training of the RL system for this set of experiments, we initially collect

data using a simple hand-crafted heuristic policy, which gives an average episode length of

65.33 actions. This data is used as demonstration for imitation learning. Therefore the initial RL

policy is not random as it was before but pretrained using the initial demonstrations. This gives

the RL algorithm a better chance of interacting with the object during trial episodes. When using

HER, additional modified episodes are only included in the HER buffer when object interaction

has occurred, otherwise the replay buffer is imbalanced with episodes containing no meaningful

feedback for the task at hand.

Table 4.5 shows results for the pick and place environment. First we show the results using the

ground truth semantic state as input to the network. As expected this is better than the heuristic

policy but still requires the semantic state available at run time. We also show results using the
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(a) Original (b) Reconstructed AE

(c) Original (d) Reconstructed VAE

Figure 4.11: Reconstructions from the auto-perceptive networks for Fetch pick and place

ground truth semantic state along with a learnt perceived state. In this environment this does not

add value since the task can generally be completed with the ground truth semantic state.

Finally we show results for the system with only the perceived state input at run time, conditioned

with the semantic state during training. We can see that with just the semantic state conditioning

we have an average of 80.17 actions per episode. The drop in performance is explained by noise

in the perceived conditioned state, such as when the arm obscures the goal or the object from the

cameras view. Using a partially conditioned state with an additional 7 unconditioned features,

the system improves to 71.50 actions per episode for an AE perceptive network and 67.80

actions per episode for a VAE perceptive network. The additional features allow the system
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to compensate for the lack of visual representation. Whilst this does not match the ground

truth semantic state input results, it does complete the task without the need for any semantic

state input at run time. Some example reconstructions from both the AE and VAE networks

are shown in Figure 4.11. It is interesting to note that the AE reconstructions are clearer than

the VAE reconstructions, despite the fact that the VAE latent space performs better in the RL

system.

4.6 Conclusion

In this chapter we have shown that the bio-inspired separation of percepts and control at training

time allows superior performance in reinforcement learning. The proposed system, APRiL,

can predict actions purely from visual data. We showed that allowing the perception system

to encode additional properties into the feature space improves the performance over a system

using just the approximate perceived state.

This demonstrates the value in allowing the visual system to encode additional features into the

RL algorithm input. In addition, the splitting of perception and control allows other techniques

to be used, which are typically challenging to implement in the high dimensional image domain,

such as HER and transition dynamics modelling with GPs. Whilst we still have a system which

allows us to go from visual observations to action - the training does not need to be end-to-end.



Chapter 5

Repeated Object Detection

So far, this work has focused on how to effectively learn policies for control, with both semantic

and perception based inputs. These policies are effective when we know what the goal is. For

example, the experiments from 4.5.3 show that policies can be learnt to grasp an object and

move it to a desired location, assuming that the object location is known. However, when we

have a selection of possible objects in an environment, such as a robot picking a product in a

warehouse, then there needs to be a method to determine which object, from many, we should

attempt to grasp. The method used needs to be able detect potentially graspable objects, given

the type of object required.

Object detection has been a key challenge for computer vision. Historically, object detectors

focused on identifying multiple instances of a single object, such as faces [106]. In contrast,

deep learning favours a shared feature representation, meaning training a single network for

multiple objects has obvious benefits, where early layers of the network are more generic and

shared across classes. However, it is not always known during training what set of objects need

to be detected at deployment.

This chapter focuses on situations where we do not have a predefined set of object classes.

Instead, we develop an architecture that is capable of recognising arbitrary objects, given only

a single example at run time. The required object class will often not have been seen during

training, hence requiring zero-shot detection. The use case of robotic grasping motivates this

work as follows: having successfully grasped an object, we want to find other objects of that

69



70 Chapter 5. Repeated Object Detection

type in a container. In this situation we do not want to retrain our object detection system for

every new type of object encountered. Therefore, we need a system which can locate repeated

instances of an object without needing prior knowledge of the object class.

To solve this problem we investigate both recurrent and feedforward networks, finally proposing

a feedforward network that can be trained in a zero-shot framework. This means the model

is trained on generic instance detection examples and used to detect any object, even those of

classes not included in the training dataset. There has been relatively little work that addresses

this problem, a notable example being Target Driven Instance Detection (TDID) [7] which aims

to detect multiple instances of the same object. However, unlike TDID, we do not explicitly

train on the types of object we wish to detect, hence supporting zero-shot detection.

5.1 Background

Many of the traditional approaches to object detection have relied upon hand-crafted features

such as the Scale Invariant Feature Transform (SIFT) [65] and Histogram of Oriented Gradients

(HOG) [20] used in detection methods such as a sliding window Deformable Part Models (DPM)

[28]. There have also been approaches to zero-shot detection based on objectness scores, such

as Alexe et al. [2] who uses various image cues to determine the likelihood of an image

window containing an object. However, more recently, deep convolutional neural networks have

dominated object detection. One of the milestones was the Regions with CNN (R-CNN) [35]

feature detector, which is a two stage detector that relies on a region proposals stage followed by

classification and regression of the location for the proposed region. This was used as the basis

for further two-stage detectors, such as Faster-RCNN [83] which introduces a region proposal

network to obtain the regions instead of the slow selective search algorithm used previously.

In-addition to predicting bounding boxes with a two stage detector, Mask R-CNN [38] takes

it a step further and predicts binary masks for each region of interest, giving a more detailed

location and shape of each instance. However, with all these systems, there are two stages to

detection meaning running the actual detection network multiple times (once for each proposed

region) often making it slow.

Some end-to-end CNN based solutions to this problem use recurrent neural networks. One such

example is Recurrent Neural Networks for Semantic Instance Segmentation (RSIS) [90] which
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uses a convolutional encoder and a recurrent decoder to produce a sequence of binary object

masks, along with class predictions for those masks. This is inspired by the human inspection

of images, where we scan sections of images in a sequential manner. In contrast, recent single

stage detectors such as the Single Shot MultiBox Detector (SSD) [64] and You Only Look

Once (YOLO) [80] do not perform region proposals or use recurrence, but predict bounding

boxes of instances directly. This allows a faster and more streamlined detector. With advances

in deep learning, such as residual networks and batch normalisation, further improvements have

lead to the latest version of this network: YOLOv3 [81].

The only way to use semantic detectors like YOLO or RSIS to find repetitions of a target

is to assign it a class, get the object classifications for the scene and assume the target class

was available in training. If we do not know the class of object we are aiming to detect or it

was not available during training then these detectors will not work. Target Driven Instance

Detection (TDID) [7] aims to detect instances in images based on one or more target examples.

It uses the same feature extractor on the scene image and the target image, then employs both

correlation and the difference between the features to determine where the instances are located.

Unlike a traditional object detector, TDID does not predict classes but aims to pick-out the

specific target instance based purely on the conditioning images. TDID aims to solve a similar

task to us, however we do not aim to detect a single specific instance in an image but detect all

objects similar to the target object. TDID adapts well to this but is only suitable within limited

domains which are very similar to those in the training dataset. The datasets used by TDID, such

as Active Vision Dataset (AVD) [8] and GMU Kitchens [34], all focus on a small set of objects

found in homes. In contrast, we aim to detect objects outside of a specific domain, meaning our

method can be applied to many different applications.

5.2 Recurrent Object Detection

To solve this problem, our initial solution uses a recurrent system similar to RSIS [90]. This

system uses a feature encoder followed by a recurrent network to predict a sequence of instance

masks with a stop flag to indicate when it has found all the objects in the image. The idea of

being able to detect objects in order lends itself well to detecting repeated objects, but needs a

learning signal to enforce the similarity of objects without using a class predictor.
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An image contains a set of m ground truth instance masks all of the same type. We define the

masks for an image of height h and width w as

Mn =
{
M i,j = {0, 1} | i = 1, ..., w, j = 1, ..., h

}
, (5.1)

for each object n=1, ...,m. We also have a set of features F from a fully convolutional encoder

F =
{
f i,j | i=1, ..., wf , j=1, ..., hf

}
, (5.2)

of size
(
wf , hf

)
with |f i,j | = cf being the number of channels. We can take the features from

various depths of this encoder giving a list of features [F0,F1,F2,F3,F4] where F0 is the

output from the deepest layer in the encoder.

The decoder is made up of 5 convolutional Long Short-Term Memory (LSTM) modules. The

ith convLSTM layer at time step t gives the output

Ui,t = convLSTMi

([
U2

(
Ui−1,t

)
| Fi

]
,Ui,t−1

)
, (5.3)

where U2 is upsampling by a factor of 2, and Ui−1,t is the output of the previous convLSTM.

For the first convLSTM layer the input is just F0. A final convolution layer is applied to the

output of the final convLSTM with sigmoid activation to give a binary mask prediction M̂t ,

with the same dimensions as the image for each time step t. The outputs Ui,t for each time step

are also pooled and concatenated before passing through a single fully connected layer to give a

single objectness score vt .

5.2.1 Recurrent Segmentation Loss

To train this system we need a loss to guide the segmentation and a loss to inform the network

when to stop detecting objects. The segmentation loss uses a version of Intersection over

Union (IoU) known as Soft IoU (sIoU) between the predicted mask M̂ and the ground truth

mask M giving

sIoU
(

M̂,M
)

= 1− 〈M̂,M〉
‖ M̂‖1 + ‖M‖1 − 〈M̂,M〉

. (5.4)

The order of the objects should not be imposed, so to match each predicted mask to a ground

truth mask, the Hungarian algorithm is used to find the optimal assignment of predictions to
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ground truth objects. This means that for a set of predicted masks M̂ = M̂1, ..., M̂T and a set

of ground truth masks M = M1, ...,Mm the segmentation loss is

Lseg =

T∑
i=1

m∑
j=1

sIoU
(

M̂i,Mj

)
δi,j (5.5)

where δi,j is the matrix of assignment from the Hungarian algorithm (with value 1 if masks M̂i

and Mj are matched and 0 otherwise). The stop loss is calculated using binary cross entropy as

Lstop = −
T∑
t=1

αt log vt +
(
1− αt

)
log
(

1− vt
)
, (5.6)

where αt = 1 for t ≤ m and αt = 0 for t > m.

5.2.2 Similarity Network

In order to provide a learning signal that enforces the similarity of objects, our proposed system

uses the features F0 from the encoder and the predicted masks M̂t to determine how similar

masks are with a similarity network. The similarity network passes the features F0, masked

with Mi and Mj , through the network to give points qi and qj in a latent space. The distance

between these two points is dij = |qi − qj |2. If the class labels of the objects represented by

masks Mi and Mj are li and lj respectively, then the network is trained with a contrastive loss

Lcon =

 dij if li = lj

max(0, ρ− dij) if li 6= lj

, (5.7)

for some margin ρ. This encourages masks of objects of the same type to be close in the latent

space and those of different types to be further apart. The similarity network can be trained using

the ground truth masks Mn and a fixed feature encoder pretrained on ImageNet. Figure 5.1

gives an overview of the pretraining system. A single input image (shown in orange) is passed

through the encoder backbone to get the features F0, then two instance masks are individually

applied to these features. The masked features are each passed through the similarity network

(shown in green). The resulting latent representations are the input to the contrastive loss in

Equation 5.7, such that if the applied masks are of similar instances the latent representations

will be pushed together and if they are not they will be pushed apart.
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Figure 5.1: Similarity network pretraining

5.2.3 Recurrent Mask Similarity

When training the recurrent instance detection network, the similarity network can be used to

determine the similarity of two masks from the sequence and penalise masks which are not

similar to a mask already detected. For prediction M̂i and M̂j , where i < j, we calculate the

distance between qi and qj from the latent space to give dij . Table 5.1 helps visualise this. For

each j > 1 we take the minimum dij and create a weighted sum of these to form the repetition

loss

Lrep =

T∑
n=1

γn min(din, 0 ≤ i < n), (5.8)

where T is the total number of predictions made by the system from the recurrent network and

γ ∈ [0, 1]. Lower values indicate that later predictions are close to previous predictions in the

latent space. We aim to minimise this value since the objective is to predict similar objects to

those already detected. Figure 5.2 gives an overview of how the similarity network is used in

the instance detection training. The similarity network (shown again in green) uses predicted

masks from the recurrent decoder (shown in purple), rather than the ground truth masks used for

pretraining, in order to create a similarity table as described above. The full loss for instance

detection is then calculated as

LMASK = Lseg + λs Lstop + λr Lrep (5.9)

with constants λs and λr used to weight the different losses.
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i

j
M̂0 M̂1 M̂2 M̂3

M̂0 - d01 d02 d03

M̂1 - - d12 d13

M̂2 - - - d23

M̂3 - - - -

Table 5.1: Example similarity table for predicted masks M̂i and M̂j .
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Figure 5.2: Recurrent instance detection with similarity network

To test the proposed recurrent repeated object detection system, the network was trained on a

subset of the CityScapes dataset [17] with only images including multiple instances of the same

class of objects. Whilst the CityScapes dataset is from a different domain to robotic grasping, it

has many repeated objects with labelled masks, especially repeated cars and people.

Firstly, we pretrained our similarity network with the ground truth masks and features from the

fixed encoder. Figure 5.3 shows the average euclidean distance between points in the latent space

with matching masks and non-matching masks. As desired, the matching pairs are closer in the

latent space than the non-matching pairs. Whilst it does over-fit to the training set slightly, we

can see that there is still a distinct difference between the matching and non-matching encoded

masks in the validation set.

Next we used this similarity network in our full system with the recurrent decoder predicting

masks. We use curriculum learning to introduce the different losses at various intervals starting

with the segmentation loss, then the repetition loss and finally the stop loss. The max number
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Figure 5.3: Training graphs for pretraining of similarity network with margin of 10

of objects detected is also gradually increased making the problem harder as training proceeds.

Figure 5.4a shows the recurrent systems losses during training. As each loss is introduced, or the

the maximum number of objects detected increases, we see a jump in the total loss (as expected).

Once introduced, the repetition loss converges very quickly. However, the network achieved

this by predicting the same mask at each time step, as can be see from Figure 5.5a. This is

the easiest way for the network to produce similar masks, hence minimising the similarity loss

which overpowers the other losses.

In order to combat this issue, we use the ground truth masks which were sorted with the

Hungarian algorithm to calculate the similarity table and the repetition loss. This means that the

network predicting the same masks will not reduce the repetition loss, because each predicted

mask will have a different ground truth mask assigned. Figure 5.5b shows some examples

from the network when using this method. We can see that it has stopped predicting the same

mask at each step. However, when we look at Figure 5.4b we can see that the repetition loss

never converges. Since we do not use the masks the network has predicted, there is no output

of the decoder used to calculate the repetition loss. This means the network has no way of

back-propagating the repetition loss though the decoder weights.

Due to these issues, the recurrent system is not suitable for detecting repeated objects. The

recurrent system falls into the trap of many two stage detectors, with multiple networks required,

needing multiple stages of training for a single task. In contrast a single stage, feedforward

network should be much quicker, not requiring the roll out of the recurrent modules. We also

found that using the sequential predictions did not allow the network to look at all of the objects
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(a) Using predicted masks to calculate repetition loss

(b) Using ground truth masks to calculate repetition loss

Figure 5.4: Training graphs of full recurrent system using the pretrained similarity network

(a) Using predicted masks to calculate repetition loss (b) Using ground truth masks to calculate repetition loss

(c) Order of predictions

Figure 5.5: Example predictions from the network
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in the image to find the similar ones. This supports the move to a feedforward approach such as

YOLO where the whole image is viewed at once to predict the objects. Using a feedforward

network will hopefully make it easier to condition on a previously detected object.

5.3 Feedforward Object Detection

The feedforward system proposed in this section aims to take advantage of the ability to

predict all repeated objects at once, using correlations between features, and predict bounding

boxes to detect both visual and affordance similarity. An overview of our Repeated Object

Detection (ROD) approach is shown in Figure 5.6 and our full detection system is shown in

Figure 5.8. The main feature of ROD is that it actively drives the object detection network

to learn similar features for similar objects across different scales. This section details the

components that achieve this, which can be summarised in the following three points:

1. Multiple scales of resized crops for use in cross-correlation (Part C Figure 5.6).

2. A correlation loss Lh to enforce feature similarity (Equation 5.15).

3. Application of ROD at multiple depths of the backbone network (Part C-D Figure 5.8).
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Figure 5.6: Repeated Object Detection
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To formalise the feedforward approach, an image contains a set of m ground truth instance

bounding boxes all of the same type, which need to be detected without detecting other objects

in the image. We define this set as

O = {on= (xn, yn, wn, hn) | n=1, ...,m} , (5.10)

where (xn, yn) is the top left corner of the bounding box and (wn, hn) is the size. Of these, a

single instance, ok ∈ O, is known. The aim is to predict all the other instances which are similar

to the known instance.

5.3.1 Feature Extraction

The first step is to extract important features from the image. To do this, the image is passed

through a fully-convolutional neural network (step B in Figure 5.6), creating a set of features F,

as in Equation 5.2. The known bounding box ok is transformed from the image space to the

feature space giving ôk = (x̂k, ŷk, ŵk, ĥk). This is used to create a crop of the features (step C

in Figure 5.6)

Fcrop =

f i,j
∣∣∣∣∣∣ i = x̂k, ..., x̂k + ŵk

j = ŷk, ..., ŷk + ĥk

 ⊂ F. (5.11)

The crop is used as the filter in cross-correlation across the rest of the feature map, giving a

heatmap with elements hi,j =
(
Fcrop ? F

)
i,j

. The points in the image similar to the known

instance should ideally have similar features, creating peaks in the heatmap.

However, this alone would struggle to cope with instances which are at vastly different scales to

the known instance. To combat this, the crop is resized to D different scaled crops Fs
crop for

s = 1, ..., D which are then each used to create D new heatmaps (step D in Figure 5.6). Taking

the pixelwise maximum of these D heatmaps creates a final maximum heatmap

ĥi,j = max
s=1,...,D

[(
Fs

crop ? F
)
i,j

]
, (5.12)

which can show similar objects at different scales across the image. An example of this can be

seen in Figure 5.7.

Finally, the heatmap is concatenated to the features (step E in Figure 5.6) and passed through

a further set of convolution layers (step F in Figure 5.6) to support detection. Step C - E are

collectively referred to as a Repeated Object Detection (ROD) module.
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(a) (b) (c) (d) (e)

Figure 5.7: Example heatmaps - (a) Input image with known object bounding box, (b - d) Heatmaps

created with crops at three different scales, (e) Pixel-wise max across each scale

5.3.2 Metric Learning

Ideally the initial features from the fully-convolutional network will be similar for different

instances of the same object type across scales, orientation or instance. To encourage this, a

correlation loss is proposed which promotes higher peaks at points in the heatmap where similar

instances occur. This loss aims to create a Gaussian in the heatmap around the locations of the

ground truth instances. So we define our target heatmap to have pixel values

gi,j =

m∑
n=1

G(x̂n − i, ŷn − j) (5.13)

where

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (5.14)

The heatmap correlation loss is then calculated as the Mean Squared Error (MSE) between the

generated heatmap and the target heatmap giving

Lh =
1

wf hf

wf∑
i=1

hf∑
j=1

(ĥi,j − gi,j)2. (5.15)

This loss is applied to the maximum heatmap ĥi,j in the ROD module i.e. part E of Figure 5.6.

The pixelwise maximum of the heatmaps ĥi,j is not produced directly by the network but is the

result of correlation between learned features, providing a learning signal indicating that similar

objects to the scaled crop should result in similar features.
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Figure 5.8: Multi-Scale Repeated Object Detection - example values indicate output size of each module

5.3.3 Multi-Scale Features

The feature extractor used in part B of Figure 5.6 gives a final output of features at a certain

scale. However, at intermediate points in the fully convolutional feature extractor backbone

there are features at different scales which we can make use of. To take advantage of this we

introduce skip connections, where ROD modules may be applied, allowing the later parts of the

network access to features from different scales.

With the correlation loss Lh being applied at each ROD module’s maximum heatmap, we

encourage the correlation of similar objects’ features to be consistent across scales. Figure 5.8

shows how ROD modules can be applied at different feature levels from an extractor network

and then joined later in the CNN as a skip connection.

In comparison to the different scales of the heatmaps in Figure 5.7 which uses one set of features

and adjusts the crops to different scales, here we are also using sets of features from different

depths of the feature extractor. If we use feature maps (F1, ...,FN ) at N different depths of the

feature extractor, then each of these has heatmaps created at D different crop scales. This means

we encourage features of similar objects to be correlated over N ×D scales.
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5.3.4 Object Detection

The output layer where the bounding boxes are predicted uses a grid and anchor system similar

to that proposed by [81]. The output is an S × S grid over the image, where each cell predicts 5

values. This gives us an output in the form ti =
(
txi , t

y
i , t

w
i , t

h
i , t

o
i

)
for each cell i = 1, ..., S2.

The output toi is the confidence in the predicted bounding box for cell i. The terms (txi , t
y
i ) are

passed through a sigmoid function σ and give the location of the predicted box relative to the top

left corner of that cell (cxi , c
y
i ). TheB anchor sizes give a prior on the size of the bounding boxes

pwj , p
h
j where j = 1, ..., B and twi , t

h
i are used to calculate the predicted width and height of the

box. This gives the final box predictions for cell i and anchor j as t̂i,j = (xi,j , yi,j , wi,j , hi,j)

where

xi,j = σ(txi ) + cxi (5.16)

yi,j = σ(tyi ) + cyi (5.17)

wi,j = pwj e
twi (5.18)

hi,j = phj e
thi (5.19)

Since there are S2 ×B predictions, which is likely to be greater than the number of objects to

predict, a single cell-anchor pair is selected to be responsible for predicting each object on ∈ O.

This selection is based on which prediction achieves the highest Generalised IoU (GIoU) with

on. GIoU [84] is given by

GIoU(a, b) =
|a ∩ b|
|a ∪ b|

− |c \ (a ∪ b)|
|c|

, (5.20)

where c is the smallest enclosing box for a and b. From this we get a mask of binary values ri,j

ri,j =



1 if ∃ on ∈ O s.t.

arg max
(a,b)

(GIoU(t̂a,b, on)) = (i, j)

0 otherwise

, (5.21)

where i = 1, ..., S2 indicates the cell and j = 1, ..., B indicates the anchor. This will set ri,j to

1 for cell-anchor pairs which are responsible for predicting an instance and 0 for all others.



5.4. Experiments 83

We can then formulate our bounding box loss as:

Lbbox =
S2∑
i=1

B∑
j=1

ri,j | t̂i,j − oij |22, (5.22)

where oij ∈ O is the ground truth instance for which cell-anchor pair (i, j) is responsible. The

object confidence losses are defined as

Lobj =
S2∑
i=1

B∑
j=1

[
ri,j(1− toi )2 − β(1− ri,j)(toi )2

]
, (5.23)

where β is a weight to balance the fact that there will always be more cells without objects than

those with objects. The total loss is then calculated as

LROD = Lbbox + Lobj + Lh. (5.24)

It is worth noting that since we do not care about the class of the objects we are detecting, we

do not predict a class or have a class loss. This means that ROD can focus on the patterns that

make instances similar, rather than what features relate to a specific class. This means that ROD

can be used in zero-shot learning - since it can be used to predict repeated objects which it has

not seen during training.

5.4 Experiments

The experiments employed to evaluate our approach use a subset of the Microsoft Common

Objects in Context (MSCOCO) dataset [63], including all images which have multiple objects

of the same class. This dataset gives bounding boxes for every object in an image. For each

epoch of training, each image in the training set has one object randomly selected as the query

object. This means that at each epoch, the same images will be seen but with potentially different

objects being used to condition the detections.

All the networks tested use the YOLOv3 backbone called Darknet-53 [81], this is a fully-

convolutional network with residual layers. A detailed architecture is shown in Figure 5.9.

Since the baseline (TDID) can be used with any base object detection network we have re-

implemented this using the same Darknet-53 backbone in order to make valid comparisons
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Figure 5.9: Detailed system diagram with the layers used in these experiments
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between the approaches. Our implementation of TDID uses the crop of the known instance as

the target image. All networks are implemented in PyTorch version 1.1.0 [75].

The evaluation metric we use is Average Precision (AP). To calculate AP we consider the

following concepts

• True Positive (TP) - detections that are actually ground truth objects,

• False Positive (FP) - detections that are not ground truth objects,

• False Negative (FN) - ground truth objects that are not detected.

Precision is then defined as

p =
TP

TP + FP
, (5.25)

giving the ratio of correctly detected objects to the total number of detections. Recall is defined

as

r =
TP

TP + FN
(5.26)

giving the ratio of correctly detected objects to the total number of ground truth objects. AP is

given by finding the area under the precision-recall curve plotted for a list of detections sorted

by objectness score, with a given IoU threshold determining which objects are considered a TP.

This can be approximated using

AP ≈
j∑
i=1

(ri+1 − ri) pinterp (ri+1) , (5.27)

where

pinterp (ri) = max
r̃≥ri

p (r̃) . (5.28)

In all experiments AP0.5 is the AP with the threshold that provides a TP at IoU = 0.5 and mAP

is the mean AP across thresholds IoU = [0.5, 0.55, ..., 0.95]. This follows the protocol of the

MSCOCO detection challenge [69].

5.4.1 Many-Shot Learning

First we ran experiments including all images from the training data that contained repetition,

which was around 74,000 images. We then validate on a set of 5,000 unseen images containing
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AP0.5 mAP

TDID 0.4481 0.2716

Ours (without Lh) 0.5733 0.4616

Ours 0.6181 0.4935

Table 5.2: Repeated object detection - trained with all classes

repeated instances. Table 5.2 shows that our correlation technique performs better than TDID.

It also shows that using the additional correlation loss Lh further improves the results.

Figure 5.10 shows examples of detections with different conditioning images for both TDID

and our method. We can see that our network can successfully pick out repeating instances of

the conditioned object even when other classes are present (e.g. top row in Figure 5.10). The

middle row of Figure 5.10 shows our method not only detecting objects in clear images, such

as the baseball players, but also in distorted images, such as the buses blurred by rain. The

detections in the bottom row show our method successfully conditioning with different scaled

objects by detecting both elephants no matter which is used as the target.

5.4.2 Zero-Shot Learning

In comparison to TDID, we expect ROD to perform better in zero-shot transfer, where the

network is asked to find repeated objects of a type it has not seen during training. The additional

Lh loss encourages similar objects to have correlated features without any classifier. Therefore,

as long as the training set has diverse enough training examples, the model will be able to learn

features which relate different objects together, even if they are not visually exactly the same.

This loss provides a much stronger learning signal at various scales throughout the network to

reinforce the concept of similarity regardless of the object type.

In order to show that ROD improves the ability to detect arbitrary unknown repeated objects,

it is trained excluding one of the classes from the adapted MSCOCO dataset. We do this for

a random selection of classes for both our network and TDID. The results in Table 5.3 show

the AP0.5 and mAP scores on the validation data containing objects of the excluded class. ROD
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Figure 5.10: Detections for networks trained with full dataset - blue box: known target object, orange

boxes: predicted detections
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Figure 5.11: Example detections for networks trained on dataset excluding class which we are aiming to

detect

outperforms TDID on every class in both metrics. As expected we do see a drop in performance

compared to the many shot task. However, in some cases, our zero-shot detection results actually

exceed the performance of TDID when performing many-shot detection (i.e. Table 5.2). Table

5.3 shows that ROD has the ability to generalise to detecting repeated unseen objects compared

to TDID.

Examples of the networks detecting objects which were not seen in training are shown in

Figure 5.11. Whilst TDID does detect some objects it had not seen before, such as cars, ROD

manages to pick out more of these objects. ROD shows impressive viewpoint invariance for

unknown objects in the chair detection example. We can also see that ROD shows invariance to

deformable pose changes when detecting dogs. Even though the performance of all networks

on the person dataset was significantly weaker due to a dramatic reduction in the quantity of

training data when not including people, we still see our network detecting some people in the

baseball examples in Figure 5.11.

5.4.3 Multi-scale features

The next set of experiments aim to show the effect of the ROD module at different scales.

Networks were trained with ROD modules applied at different stages of the feature extractor.
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Excluded Class
AP0.5 mAP

Ours TDID Ours TDID

Dog 0.5670 0.4955 0.4257 0.3492

Car 0.3890 0.3814 0.2752 0.2308

Chair 0.3150 0.2603 0.1747 0.1203

Bowl 0.4058 0.3341 0.2960 0.1674

Person 0.2217 0.1841 0.1209 0.0833

Table 5.3: Repeated object detection - trained with all but one class, validated on the excluded class

Our full system (shown in Figure 5.9) has a ROD module at all three scales, one at the large

scale (13× 13× 1025), one at the medium scale (26× 26× 513), and one at the small scale

(52×52×257). We denote this as RRR, with a ROD module at each scale - going from smallest

scale on the left to largest on the right. In these tests the ROD modules can be replaced with a

standard skip connection denoted as S. A network with a ROD module at the large scale and a

skip connection at the medium and small scale would be denoted as SSR. The results showing

the AP0.5 of each network at different scales can be seen in Figure 5.12. We separate the objects

into different scales based on their bounding box size. Objects in a range a to b have a bounding

box with area between a2 and b2.

The first plot in Figure 5.12 shows the results of using only one ROD module at the various

scales. This shows that the different networks all peak at the smaller scales, probably due to this

being the range with the most training data available. The network SSR, with the ROD module

at the large scale, performs better than the others at the extreme scale of 0.8-0.9. Whilst the

network RSS, with the ROD module at the small scale, performs the worst at this level.

The second plot in Figure 5.12 shows the results of using two ROD modules at various points

in the network. Again the difference in the scale of the features where the ROD modules are

applied has an effect on their ability to detect objects at different scales. The use of the mid

scale aids the transition between the two scales, in the 0.9-1 object scale we can see that both the

networks with the medium ROD module perform better than the one without. This is important

because we will often be conditioning an image on an object which appears smaller or larger
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Figure 5.12: Results for multi-scale testing - labels in the legends describe the type of the connection

(skip or ROD) at different scales (small, medium, large)
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Figure 5.13: Example ground truth robotics data: green boxes show pickable objects (Op), red boxes

show unpickable objects (Op̄), blue box show the conditioning object (ok)

than those in the image which we are aiming to detect.

5.4.4 Robotic Grasping Usecase

This section shows the application of ROD to robotic grasping. In this scenario we have a set

of data collected from the Mujoco physics simulator [105]. The simulation includes the Fetch

robot attempting to pick up a selection of objects in a cluttered environment. Once an object

is picked successfully, the task is to determine where other similar objects are and also which

of them are pickable. This requires the system to be view point invariant and deal with the

occlusion to determine objects which are both visually similar but also have similar affordances

in their current state in the environment. To support this we redefine the concept of “similar”

objects to be not only those of the same class, but those which are also graspable in their current

configuration. To relate back to our previous formalisation, the full set of objects of the same

type is

O = Op ∪ Op̄ ∪ {ok} , (5.29)

where Op is the set of similar pickable objects, Op̄ is the set of unpickable objects and ok is the

known object that has already been successfully picked.
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Results on Excluded Class Results on All Classes

Excluded Class AP0.5 mAP AP0.5 mAP

Ours TDID Ours TDID Ours TDID Ours TDID

Apple 0.6182 0.5689 0.3384 0.3094 0.6024 0.6056 0.3146 0.3197

Bottle 0.4525 0.4186 0.1434 0.1415 0.7497 0.6711 0.4807 0.3799

Can 0.5830 0.5237 0.3521 0.2923 0.6248 0.5955 0.3260 0.3241

Cereal 0.5557 0.5218 0.3134 0.2367 0.6323 0.6432 0.3542 0.3237

Pepper 0.6594 0.5809 0.3388 0.2503 0.6509 0.6236 0.3689 0.3199

None - - - - 0.9056 0.8543 0.8479 0.6196

Table 5.4: Repeated object detection for robotics - trained with all but one class, validated on the excluded

class and all data in the validation set

To this end, the dataset contains the ground truth bounding boxes of all objects of the same type

that the robotic arm successfully picked when placed in that position. We annotate this pickable

affordance automatically by repeatedly letting the robot attempt to grasp one of the similar items

after the initial successful pick. If the pick is successful it is added to Op, otherwise it is added

to Op̄. Then simulation is reset back to the initial successful pick before attempting to grasp

the next object. Examples of these annotations can be seen in Figure 5.13. In this task we want

to detect all objects in the set Op. To allow the generic repeated object detectors, which are

pretrained on MSCOCO, to gain an understanding of the pickable affordance, they are finetuned

for 4 epochs on this robotic dataset.

Table 5.4 shows that when trained with all of the data, ROD outperforms TDID by approximately

37% mAP. When classes are excluded from training, the results on the excluded classes show

ROD outperforming TDID in all cases. With the full data set we achieve similar or higher

AP. This shows that ROD achieves similar performance on the seen objects but consistently

generalises better to unseen objects compared to TDID. These results show that ROD can easily

be extended to abstract non-visual concepts of similarity.

Figure 5.14 shows some example detections from the network trained without knowledge of the
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Figure 5.14: Example detections on robotic grasping dataset for networks trained on dataset excluding

the class which we are aiming to detect
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specified object. In the bottle examples we can see that ROD prioritises pickable bottles. The

undetected bottles are unpickable since they are in awkward positions for the gripper to get to or

too close to other objects in the scene. The examples with cereal boxes show that ROD can pick

up similar pickable objects even when they are in different orientations leading to very different

visual appearances.

To further show the ability of ROD to implicitly learn affordances, Table 5.5 shows the AP

scores of the detections using the unpickable objects as the ground truth. For our system to be

successful we wish to detect all pickable objects first before detecting any of the unpickable

objects. This means that the area under the precision-recall graph (which gives us the AP score)

should be small. We can see that for the unpickable objects on average ROD achieves a lower

AP, especially in the experiments with objects that have never been seen before. This indicates

that ROD is detecting the affordance of unseen objects better than the TDID system. Both ROD

and TDID have the highest AP for the unpickable bottles, this is because it has the most complex

relationship between affordance and visual appearance. The results show that ROD does not

perform as well as TDID when the systems are trained on all the available data, however ROD

outperforms TDID in the zero-shot learning situation. This means that ROD is generalising

better than the TDID system to unseen objects and their affordances.

Table 5.6 shows the AP values for all objects regardless of affordance. We either out perform

or achieve similar results to TDID. Combined with the results from Tables 5.4 and 5.5 this

indicates that ROD has greater capacity to detect repeated objects in new environments with a

small amount of finetuning, including completely unseen objects.

5.5 Conclusion

The work in this chapter started by investigating a recurrent repeated object detection framework,

which was found not to be suitable for the task at hand. Following this, the chapter presented

Repeated Object Detection (ROD) - a feedforward technique able to find repeated instances of

a query object, outperforming other generic target driven object detectors. ROD can be used

in a zero-shot training framework to query images for classes of objects not present in the

training set. We have shown that using feature correlation fused across scales in a zero-shot
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Results on Excluded Class Results on All Classes

Excluded Class AP0.5 mAP AP0.5 mAP

Ours TDID Ours TDID Ours TDID Ours TDID

Apple 0.5086 0.5643 0.2946 0.3222 0.4463 0.4735 0.2004 0.2251

Bottle 0.6443 0.6499 0.5285 0.4540 0.5700 0.5405 0.3381 0.2717

Can 0.4623 0.4991 0.2862 0.2765 0.4519 0.4561 0.2025 0.2115

Cereal 0.5111 0.6704 0.3666 0.4320 0.4601 0.5114 0.2289 0.2375

Pepper 0.5047 0.5533 0.2932 0.3302 0.4655 0.4719 0.2164 0.2100

None - - - - 0.7499 0.7011 0.7097 0.4715

Table 5.5: Repeated object detection for robotics - trained with all but one class, AP values calculated for

the unpickable objects - lower AP scores are better

Results on Excluded Class Results on All Classes

Excluded Class AP0.5 mAP AP0.5 mAP

Ours TDID Ours TDID Ours TDID Ours TDID

Apple 0.6572 0.6780 0.5050 0.4848 0.6024 0.6056 0.3146 0.3197

Bottle 0.8704 0.8306 0.7628 0.6475 0.7497 0.6711 0.4807 0.3799

Can 0.6777 0.6788 0.5194 0.4645 0.6428 0.5955 0.3260 0.3241

Cereal 0.6906 0.7918 0.6020 0.6068 0.6323 0.6432 0.3512 0.3237

Pepper 0.6746 0.6877 0.5094 0.5087 0.6509 0.6236 0.3689 0.3199

None - - - - 0.9056 0.8543 0.8479 0.6196

Table 5.6: Repeated object detection for robotics - trained with all but one class, AP values calculated for

both pickable and unpickable objects
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framework results in successful detection of previously unseen objects. Our results show that

further refining a learned feature space, by using an added conditioning loss which guides it to

features that are invariant to the size and orientation of an object, improves the average precision

of predicted detections.

ROD has the potential to be applied to any task where we wish to find repeated objects with

similar characteristics in an image, knowing only one of the instances. Our results show that

ROD can be used to detect objects for robotic grasping - successfully recognising where other

similar graspable objects are after performing an initial grasp. This shows the potential for

not just detecting objects that are visually similar but have similar afforandances. For a given

grasping policy, whether it is designed or learned, ROD will be able to assist in determining

which objects are most likely to be graspable and similar to the previously picked object.



Chapter 6

Evaluation in an Integrated

Framework

The previous chapters of this thesis have provided data driven methods to improve the generali-

sation of two parts of our pick and place pipeline described in Chapter 1. In order to localise

objects, the previous chapter proposed ROD for finding repeated objects in the scene without

the need for the object or class to be known at training time. Additionally, to complete active

grasp synthesis, APRiL, which was presented in Chapter 4, can be used to select actions based

on the visual input with a known goal. However, in order to use these methods for a pick and

place pipeline in a realistic robotic environment, such as a warehouse, they need to be integrated

together.

To do this, it is necessary to consider how to effectively use these methods with a communica-

tion system for robotics such as ROS, ensuring it integrates with both RL and deep learning

frameworks. Increasing the speed of simulated data collection is essential in order to have

sufficient data to train deep RL systems to convergence. Transfer of knowledge between each

separate element of the pipeline must be done effectively in order to complete the task from

start to finish. This chapter will explore the best way to do this for the problem of warehouse

grasping.

97
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Figure 6.1: System Diagram for A3C setup with ROS multimaster

6.1 Integration of RL with ROS

In order to use asynchronous methods such as A3C with real robotics hardware and simulators

we need to overcome the engineering challenges that this presents. An overview of the proposed

solution is shown in Figure 6.1 and this section will explain the integration in detail.

6.1.1 ROS Implementation

One of the key challenges of implementing an asynchronous deep learning system with complex

robotics simulators is the need for machines that can run multiple simulators and with the

GPU capacity to train multiple deep neural networks. This thesis uses the Baxter robot from
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Figure 6.2: Top down view of Baxter from Rethink Robotics

Rethink Robotics as the agent. Baxter uses the ROS platform and has its own ROS master for

all communication and control. Rethink Robotics’ Baxter model is implemented so that it can

be simulated in Gazebo and integrates fully with ROS just as the real robot does. This also

involves running an individual ROS master per simulator. Multiple Gazebo simulators can be

run from the same machine, using different ports for the ROS masters. However, even running

two instances of Gazebo on a typical desktop is impractically slow, causing a bottle neck for

training. Also ROS masters are designed to be independent systems meaning that ROS nodes

can typically only communicate with a single ROS master decided by environment variables.

Dynamically switching between these different ROS masters is a non-trivial task.

The proposed solution uses a separate machine for each simulator, each with its own ROS

master which communicates with a master on a central deep learning machine via a ROS multi-

master discovery node from the package multimaster fkie [44]. This package includes

a master discovery node and a master sync node. The master discovery node

polls the ROS environment for changes and publishes these changes over the network. The

master sync node connects the master discovery nodes, requesting the ROS states

and registering the remote topics and services to the local ROS master. This system means that

each worker machine only needs to be able to run a single simulator and does not require the

level of GPU needed for deep learning.

By default, all topics are synced across the remote systems - this introduces two issues. Firstly,
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(a) Single Worker (b) Two Workers

Figure 6.3: Single goal A3C Baxter simulator training - number of actions per episode

duplicate simulators generally publish their states under the same topic name, meaning each

master sync will try and sync all the robot state topics. Secondly, complex robots have many

topics publishing and subscribing to large quantities of data, so if this is being synced across the

network, it creates a lot of network traffic which can slow down the system.

To combat these problems the system makes use of the ROS relay feature to remap the necessary

topics to new topics with a namespace specific to each worker machine (shown at the top of

Figure 6.1) to ensure no confusion between simulator topics between workers. Next a ROS

node which subscribes to the topics needed for communication across the network is created on

each simulator machine. The name of these nodes are passed to the master sync node on

the deep learning machine (at the bottom of Figure 6.1), meaning that only topics subscribed to

by this node are synced, hence reducing the data being sent over the network.

In the case of a Baxter simulator, the data that needs to be transferred depends on how the

simulator is controlled. Typically Baxter is controlled via the MoveIt! controller interface

directly. However, syncing all the topics and services to control the simulator in this manner

from the deep learning machine is impractical. Instead a ROS action server is used for a subset

of actions needed to perform the task. The ROS action server only has five topics associated

with it: goal, cancel, status, feedback, and result. Syncing these topics allows the system to send

goals and wait for updates on both the progress and the final result - meaning all control can

remain on the worker machine. This also allows the parsing of reasons for failed actions to be

done on the worker machine allowing simplified messages to be sent back to the deep learning
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machine.

Depending on the type of actions being completed by the Baxter robot (controlled by MoveIt!)

they can take several seconds to complete. This is due to both the physical limitations and the

safety limitations in place to avoid over straining the joints or damaging the environment. In

simulation there is an option to disable these safety limits, however this dramatically decreases

the reliability of the actions completing successfully. The option taken in this work to increase

the speed of simulation is to increase the “real time” factor in the physics simulator itself. By

increasing the real time updates and the maximum step size for updates we increase the speed

by a factor of approximately 5 - depending on the limits of the machine the simulator is running

on. Whilst this factor can be increased further, x5 was found to be the highest setting where the

physics simulation is still reliable.

6.1.2 Network Implementation

In order to test the functionality of this framework, we train a deep CNN using the A3C

algorithm. The input to the network is an observation of the state of the environment in the

form of an Red, Green and Blue (RGB) image. The first section of the network involves 5

convolution layers and three fully connected layers. In comparison to the network used by [67]

in the original A3C implementation, this backbone network is much deeper because the images

from the Baxter simulator are much closer to photo-realistic images than those from arcade

games. These initial layers are pretrained on the ImageNet dataset [23].

The later section of the network uses a 256 unit LSTM and finishes with two fully connected

layers - one for the policy output and one for the value prediction. The activation function for

the policy output is the softmax function, whilst the value prediction is linear. The number of

policy outputs is the number of possible actions - the action with the highest output from the

softmax is selected and passed to the action client to be converted to an action goal message.

This network is implemented in Tensorflow [1] to facilitate integration into a ROS node.

6.1.3 Evaluation

For these experiments the system described above is used with a simulated Baxter robot. In the

Gazebo simulator there is a cube goal on a table within reachable distance from Baxter’s left
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end effector. The aim of the problem is to move Baxter’s left end effector to within 10cm of

the target. We will start by attempting to reach a single goal across all episodes, then gradually

expand the range of possible goals. In this set of experiments, the actions are six discrete options

given as a positive or negative change of 3 possible angles - the shoulder, elbow and wrist. The

performance of our system is evaluated using the average length of episodes.

Initially the system is evaluated based on the average number of actions needed to reach a single

goal point. Using the system as described above we show the advantage of using multiple

simulators even when they are distributed across machines. Figure 6.3 shows the length of

episodes as training progresses. Our system manages to achieve an average of 7 actions to

get to the single goal with one simulator but takes around 10,000 episodes to achieve this. In

comparison, a system using just one more worker, is able to achieve an average of 6 actions

to get to a single goal in only 3000 episodes each. This increase in speed of convergence is

extremely useful when using real-time robotics systems.

Now that the system is able to reach a single goal, the next experiment uses curriculum learning

(as discussed in Section 3.2) to gradually expand the potential area for the goal allowing the

network to generalise to any goal. The network trained on a single goal is used to initialise

this experiment and the available area increased gradually from a single target to a quarter of

the table then again up to the whole table. Using the pretrained network, allows the system

to exploit the single goal policy for goals close to the first goal, which prevents the network

from moving back to random exploration. Figure 6.4 shows that the average number of actions

per episode never goes back above 30. It can also be seen that once the goal variance (orange

line) finished increasing, the fluctuation in the number of actions taken starts to decrease and

the final average number of actions comes down to 6, which is the same as the single goal

problem. There is a greater amount of variation in the number of actions required. However,

given the increased variance in the start position (meaning that there is more variation in the

distance to the target), this is expected. Figures 6.5b and 6.5d show an example close to optimal

performance achieved by this network in comparison to random walk in Figures 6.5a and 6.5c.

This section shows a new way of connecting ROS based robots on different machines to a single

learning system, meaning that more realistic simulations can be used in ROS to train RL policies

with multiple workers. As shown, multiple workers increase the speed of data collection during
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Figure 6.4: Random goal A3C Baxter simulator training - with curriculum learning where the full target

area is used from 30,000. The blue line shows the average episode length and the orange line shows the

goal variance during training.
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(a) Random walk episode (b) Trained episode

(c) Random walk episode (d) Trained episode

Figure 6.5: Examples of trajectories executed using the Baxter simulator - with top down view on the

first row and front view on the second. The image from each state during the episode is overlayed on the

next, with the least transparent state being the final one.
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RL which is vital when using live systems and more computationally demanding simulations.

This framework can now be used to integrate more complicated learning methods, such as

APRiL, with ROS based robots.

6.2 APRiL with ROS

The integration of ROS into RL methods with a simulator, such as Gazebo, immediately means

that there is greater potential for transferring control systems learnt entirely through simulation to

physical robots. The ROS communication methods which allow the RL system to communicate

with the simulated robot during training are identical to those used by the equivalent physical

robot.

This thesis has already discussed the large quantity of data required for training an RL policy.

Generating this scale of data is generally not realistically possible on most physical robotic

setups due to the requirement for human supervision. During training, the agent needs to explore

the state space, including failure states in order to learn from the them. However, with physical

robots, these failures could be dangerous to both the robot and the environment. In simulation,

these failures can be recorded and learned from safely.

In contrast, visual data can be more safely collected on real hardware without the worry of

damaging the robot or other objects in the scene. The data for training perception networks can

be collected once and then used to train networks repeatedly with different network architectures

and other hyper-parameters. Due to the partially online nature of the RL algorithms used, this is

not the case for data collected to train the control systems.

The separation of perception and control systems as described in APRiL, Section 4.2, allows us

to complete the time consuming control data collection in simulation whilst training the vision

system on data from the physical robot. This means that at run time, a physical robot can infer a

state from a perception network trained on physical data, and take actions from a policy which

uses this inferred state but was trained on exclusively simulated data. This reduces the task of

transferring a system to a physical robot to only transferring the perception problem. Hence,

reducing the risk to the robot and environment since it does not need to explore the failure cases.

The system diagrams in Figure 6.6 show how APRiL can be used to transfer learning to a
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Figure 6.6: System diagrams showing how APRiL can be used for transfer of control system trained in

simulation to a physical robot.
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Agent Type Policy Input
Number of Training Episodes

Average Episode Length Std Dev
Simulator GP Physical

Simulated
GT S̄ 15 2800 - 3.38 ± 2.37

Enc S 65 2800 - 10.18 ± 10.84

Physical
GT S̄ 15 2800 0 3.52 ± 2.45

Enc S 65 2800 23 8.14 ± 12.75

Table 6.1: Results from APRiL for the Baxter reach environment - showing the final average episode

length and the number of each type of episode use for training

live robot. The first diagram (Figure 6.6a) shows the initial training cycle where the control

and perception systems can be completely separated, with the simulated robot training the

RL networks and data from the physical robot used to train the perception network. The

communication between the simulator and the RL system can be facilitated by the methods

described earlier in this chapter with ability to expand to multiple simulators. The second

diagram (Figure 6.6b) shows the system used at run-time with the physical robot, with an

additional option to continue to fine-tune the RL policy if necessary but keeping the perception

network static.

6.2.1 Baxter Implementation

To demonstrate the use of APRiL with ROS and the ability to transfer to a physical robot, this

section starts with the reach environment, aiming to move the arm from a start position to a

random goal.

Reach Environment

Initially the RL control network is trained with data from the simulator and GP episodes to

improve efficiency. Then the auto-perception network is trained with additional images collected

from the simulator. Examples of the images and reconstructions can be seen in the first row of

Figure 6.7. The reconstruction shows that the encoded features have a reasonable understanding
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of the arm position and for this application, the lack of detail in reconstruction is not important.

The first two rows in Table 6.1 show the number of episodes required to train the systems to

convergence. Whilst the perception only input reduces the performance slightly, it still shows

good performance.

To transfer the control system to the physical robot, no more physical data is needed. The

network trained on the simulated data can be used directly when using the ground truth semantic

state. To transfer the perception system, a small number of episodes are needed from the

physical robot for retraining. The last two rows in Table 6.1 show the number of different types

of episode required to train this system. Using no perception it is possible to transfer the policy

trained entirely on simulation and GP episodes directly to the physical robot without losing

performance.

Using a perceived state input it was possible to transfer the the same policy to the physical

robot with only 23 episodes of physical robot interaction, which are used to train the perception

network. To encode a perceived state, images were collected from an RGB camera in the robots

right hand, this meant a consistent camera position could easily be set. Examples of the images

collected and reconstructions from the perception network can be seen in Figure 6.7. Whilst the

reconstruction of the arm is not clear, the reconstructions do indicate the same position of the

arm as in the original image.

As in Chapter 4, using the encoded state as input for control is noisier than using the ground

truth semantic state but still achieves an average of under 10 actions per episode using only

a perceived input. Interestingly this actually outperforms the simulated perception system,

likely due to the images in the simulation being flat with minimal shadows making it hard to

predict a position from them. In comparison, the images from the physical simulation give more

information about depth from shadows and using a “side-on” camera position. This shows how

the use of ROS based simulation environments, which mimic the communication of a physical

robot, allow the transfer of control with no further training and only a small amount of data

collection is needed for perception.
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(a) Simulated Original (b) Simulated Reconstructed

(c) Physical Original (d) Physical Reconstructed

Figure 6.7: Examples of images from the physical robot and reconstructions from the auto-perceptive

network
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RL Input Number of Training Episodes Average Episode Length

GT S̄ 429 40.91

Enc S 429 48.65

Table 6.2: Results from APRiL for the Baxter Pick environment - showing the final average episode

length

Pick Environment

This next set of experiments uses the same Baxter robot but in a picking environment. The aim

of the agent is to pick up a cube from a random position and move it to a goal location in as

few moves as possible. The same ROS based communication framework is used as before. The

action space is again defined as,
(
∆z , ag

)
, a change in the end-effector position and a gripper

action ag ∈ (−1, 1). In this environment ag > 0.5 sets the gripper to open, ag < −0.5 sets

the gripper to fully closed (or until a gripped object is detected), any other value causes no

change in the gripper position. The maximum length of this task is set to T = 100 and the

policy is initially pretrained in a supervised manner using data collected with a basic heuristic

approach.

The results in Table 6.2 show that on average we are able to complete the pick task in half the

time of the maximum episode length and that using only the encoded visual state, we only lose

a small amount of performance. An example episode for both the ground truth state policy

and the encoded state policy can be seen in Figure 6.8. Both types of state input show similar

performance, but it is interesting to note that the ground truth state input attempts closing the

gripper earlier, having to reopen them to complete the grasp. Here we only give results for

simulation performance, since the robotics labs were inaccessible at the time of completing this

work due to COVID-19 restrictions. The previous results show how using APRiL with ROS

allows for smooth transition from simulation to a real robot, once you have a trained policy.

6.3 Repeated Object Detection for Grasping

The previous section provides a method for learning a grasping policy once the object to be

picked is known. In order to identify which object is to be grasped during warehouse picking, an
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(a) GT S̄ Policy

(b) Enc S Policy

Figure 6.8: Example sequence of GT state policy and encoded state policy in a similar initial state
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Figure 6.9: Repeated Object Detection with external conditioning image

object of the same type as the purchased item must be selected from a bin with several repeated

instances, often with distractors. The potential objects will be varied, changing regularly

depending on what is available from the sellers at any given time. This means techniques

requiring 3D models or many training images of all available products are impractical, however,

online shops will generally have at least one image of the item being sold to show to the customer

on the store website. As set out in Chapter 5, ROD is well suited for this problem, given that it

can be used in a zero shot manner, and has the ability to implicitly infer affordances of objects.

In this section we will show how ROD can be used to select objects to be grasped using a given

policy. Online stores provide consumers with an image of an item being purchased. This image

can then be used to condition the network, instead of the crop in Section 5.3.1, allowing the

system to find all instances of that item in the scene. Figure 6.9 shows how ROD has been

adapted to take in a target image. Both the scene image and the conditioning image are fed

through the CNN backbone network to acquire two sets of features, scene features F and target

features Fcond. The target features are resized to D scales, Fs
cond for s = 1, ..., D, which are

used to create a correlation heatmap as in Equation 5.12. The remainder of the system is used as

described in Chapter 5.

Initially we show ROD being used to detect objects of the correct type in the scene. Figure

6.10 shows ROD is able to predict different selections of objects depending on the conditioning

image, which is shown in the top row. The green boxes show the ground truth bounding boxes for

the given object, whilst the orange boxes show the network predictions. Generally, the network

will pick out the repeated objects with tight bounding boxes, without many false positives,

even though there are lots of distractor objects. However, there are some false positives where



6.3. Repeated Object Detection for Grasping 113

Figure 6.10: Examples of ROD with external conditioning. The top row shows the image used to

condition the network, each subsequent row shows the output of a single image conditioned on each

object respectively.
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Figure 6.11: Examples of max heatmaps generated by a ROD module. The top row shows the scene and

predicted bounding boxes with the image used to condition the network inset in the top right corner, the

bottom row shows an elementwise maximum of cross-correlation heatmaps from three scales.

objects with similar properties are detected, including shape (the pepper detected in the second

row when conditioning on an apple) and colour (part of the red can detected in the third row

when conditioning on an apple). When conditioning on the can in the first row, it is interesting

to note that despite only detecting two of the cans in the scene, one of the cans is detected

despite being partially occluded and the other predicted bounding box is more accurate than

the ground truth. The most challenging object in this dataset is the bottle, since it is the most

visually different between instances and can have drastic variances in appearance depending on

orientation. However, in the final column we can see several different detections of bottles in

different orientations and of different colours to that of the object pictured in the conditioning

image.

In Figure 6.11 we show examples of the cross-correlation heatmaps from a ROD module. The

heatmaps show that features of similar objects are causing peaks in the heatmaps, even when the

object is in a different orientation from the conditioning image. The cereal box example in this

figure shows that these peaks in the heatmap are still present even when the object is partially

obscured. The heatmap in the final column, which is conditioned on the bottle, shows peaks

where the bottles occur, but also where the other cylindrical objects are laying next to each other.

This is likely because the two cans end-to-end are very visually similar to a bottle.
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Training Data Test Data AP0.5 mAP

Policy 1
Policy 1 0.5896 0.4277

Policy 2 0.4840 0.4198

Policy 2
Policy 1 0.3040 0.2701

Policy 2 0.5014 0.4945

Table 6.3: Results of training on data collected with different policies. The ground truth test data from

each policy only includes bounding boxes of objects which were successfully picked by that policy.

6.3.1 Affordances based on Policy

Depending on the policy used to collect the training data for ROD, the network can implicitly

determine which objects are pickable. Section 5.4.4 showed ROD could determine which objects

were pickable for a single heuristic policy. This section will use different learnt policies to

collect the training data, where each object will be labelled as pickable or not depending on the

outcome of the attempted grasp. The first policy is the one learnt in Section 6.2.1, which has

the gripper parallel to the y-axis of the robot. The second policy, learnt via the same method,

has the gripper parallel to the x-axis of the robot. Given the restraints of the parallel gripper,

different objects will be pickable with different grasping angles. For example, if the bottle is

parallel to the y-axis it is unlikely to be pickable via the first policy. However, it is likely that

the second policy will be able to pick the object.

Table 6.3 shows quantitative results from ROD trained with the two policies described above.

These results show both trained networks have higher AP values for detecting the objects which

were pickable for the policies they were trained for. Figure 6.12 shows example detections of

ROD trained with data collected from the two different policies. The columns show the results

for different policies, with the gripper orientated as shown by the images in the first row.

The model trained with the second policy (with the gripper parallel to the x-axis of the robot)

predicts that the apple with boxes either side of it is unpickable, which is correct since the gripper

would hit a box whilst attempting to approach the object in either direction. The model trained

with the first policy fails to detect any pickable apples, the only false negative here is the apple

at the front of the bin which will often be detected as unpickable since it is at the extreme of the
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Figure 6.12: Examples of ROD detections with different policies - the first policy uses a policy with the

gripper parallel to the the y-axis of the robot, the second policy uses a policy with the gripper parallel to

the x-axis of the robot - gripper orientation can be seen in the first row. The conditioning object is shown

in the first column.
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arms reach. The example conditioned on the cereal box shows how the different orientations of

the box could determine pickability, with the boxes laying down not being predicted at all by the

second policy. The first policy correctly detects the unobstructed box that is laying down and

reasonably does not detect the two stacked boxes given the position of the blue bottle blocking

the grippers approach to objects.

The example conditioned on a can shows that neither network detects the can that is partially

obscured by a cereal box, which would obviously impair the ability of any policy to pick it.

We can again see the effect of orientation with only one can pickable by both policies. The

bottle is the most challenging object in this set, since it has the least amount of successful picks

in the training data. The first model detects the shadow rather than the pickable blue bottle,

whilst correctly not detecting the other bottles which are not pickable by the first policy. The

purple bottle is pickable with the second policy as the gripper orientation would not knock it

over on approach. There is some ambiguity around pickability when it comes to objects in close

proximity to others, for example, the yellow bottle could potentially be pickable by the second

policy but the cereal box could obstruct the grippers ability to secure a reasonable grasp. In this

case, it is preferable for the detector to be cautious and predict other objects which are more

likely to be pickable first.

6.4 Conclusion

This chapter has brought together the various pieces of work detailed in this thesis to complete

the pick and place pipeline. We have shown how ROS can be used with RL in order to train

policies with multiple realistic simulators. This allows efficient training of policies using APRiL

which can be transferred to the real robot.

With a policy learnt in this manner, this work has shown how ROD can be used to detect

repeated pickable objects depending on the policy used. This showed that depending on the

policy selected, the goal object can be different in order to increase the likelihood of a successful

grasp. This method of repeated object detection with implicit affordances, together with the

policies learnt via APRiL and the ROS communication methods, provides the elements necessary

to complete the grasping pipeline in a warehouse picking environment.



118 Chapter 6. Evaluation in an Integrated Framework

Unfortunately due to restricted access to the robotics lab because of COVID-19 the physical

testing of this work was limited, but the concept was shown using the reach problem on a

physical Baxter robot.



Chapter 7

Conclusions and Future Work

The work in this thesis was driven by the problem of product picking in the context of online

shopping fulfilment warehouses. To address this challenge it breaks the problem down into the

pick and place pipeline as shown in Figure 1.1 from Chapter 1, aiming to progress both the

active grasping and object localisation stages. In order to achieve this, the main objectives of the

thesis were:

1. To develop an efficient learning method for robotic control which can determine actions

from visual data.

2. To develop techniques to locate repeated objects in an image without prior knowledge of

object type.

3. To explore how these methods can be used together to perform warehouse style picking.

This chapter will briefly summarise the conclusions from each chapter of this thesis and discuss

how it addresses these objectives.

Chapter 3 discussed Reinforcement Learning and how it could be applied to robotics problems.

It showed how techniques such as HER and GP modelling can be used together to increase

data efficiency and performance. The results showed promise at addressing the first objective

of developing an efficient learning method for robotic control, but required direct access to a

semantically understood state space at both training and deployment.

119
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Chapter 4 addressed the challenges raised in Chapter 3 by introducing Auto-Perceptive Rein-

forcement Learning (APRiL). The proposed method is inspired by how children learn visual

motor tasks, in one system but with different processes. APRiL can predict actions directly

from images at deployment, whilst making use of any available semantically understood state

during training. The value of allowing the visual system to encode additional information into

the state space, over and above the information in the available semantic state, was shown by

improvement in performance in a robotic picking task. Nevertheless, the use of the available se-

mantic information allowed the use of the efficient RL techniques that were explored in Chapter

3, giving greater performance than just encoding the state from images without conditioning.

APRiL provides both an efficient learning method for robotic control and the ability to predict

actions from visual data, concluding the first objective.

Chapter 5 moved from investigating the active grasping stage of the pick and place pipeline,

to investigating the object localisation problem described in the second objective. Initially,

a method using recurrent networks to sequentially select repeated objects from scene was

investigated. However, after some initial work, it was concluded that it did not effectively

allow for comparison of objects within the network in order to determine similarity. To solve

this issue Repeated Object Detection (ROD) was proposed which employed a feedforward

network and cross-correlation at various scales to detect similar objects in a scene. We showed

how ROD improves performance over TDID for detecting repeated objects on both generic

instance datasets and robotics datasets - where the definition of similarity includes the afforance

of pickability. ROD can be used in a zero-shot manner without needing knowledge of all

the objects during training, as shown with both styles of datasets. This addressed the second

objective of the thesis.

Chapter 6 aimed to explore how the methods from the previous chapters could be combined

to complete our initial problem of warehouse picking. This work started by describing a

system to smoothly integrate RL methods with robotics platforms in ROS, which is necessary

for deployment on real world robots. Using this framework it was shown how APRiL can

effectively be used to transfer a policy learnt in simulation into the real world with only minimal

additional data. In order to use these policies in a warehouse picking environment, this chapter

then went on to show how ROD could be used to detect pickable objects for a given policy and

hence select a target object to be picked. This means we are able to localise a desired object,
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move to it and pick it with a learnt policy. This allowed us to complete the pick and place

pipeline for warehouse style picking as described in the third objective.

7.1 Future Work

This thesis has addressed various aspects of robotic grasping using multiple forms of deep

learning. To conclude, this section will focus on several aspects of important future work which

could improve both the base performance of these algorithms but also the specific application of

warehouse picking.

7.1.1 Reinforcement Learning

The first area of future work to be considered would be to continue exploring the transfer of

simulated policies learnt using APRiL onto physical robots for more complex tasks, especially

once COVID-19 restrictions have been lifted making access to hardware possible again. In

terms of other challenges in reinforcement learning, for applications such as robotic grasping,

the sparsity of rewards is one which needs further consideration. Whilst APRiL provides an

efficient method for learning a vision based grasping policy, as well as allowing techniques

which improve learning for sparse rewards such as HER, it still uses a reward which only gives

feedback once it achieves the goal. This makes it incredibly difficult for the RL algorithm to

assign credit to the actions taken throughout an episode. However, if we have some expert

examples, a smooth, shaped reward signal could potentially be learned without hand engineering

using Inverse Reinforcement Learning (IRL) [72]. Finn et al. [29] use IRL for a selection of

robotics tasks by parameterising the reward using a neural network which takes the raw state in

terms of the gripper pose and velocity relative to the target position. Combining this method

of learning with APRiL would be an interesting line of work, in order to efficiently use IRL to

learn a vision based policy.

7.1.2 Repeated Object Detection

ROD offers a solution to the repeated instance localisation problem at the start of the pick and

place pipeline which does not require classification as part of the network. This still requires
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the training data to have instance level class annotations. A future line of work would be to

investigate how to improve the accuracy of this method without requiring labelled data via

unsupervised or weakly supervised training. In addition, ROD uses fixed scales with each

correlation module and could be improved by introducing learnable scales, in order to create

correlation maps with the conditioning features resized to the most informative scales.

To improve the integration of ROD with policy learning methods such as APRiL, the next steps

would involve considering reworking the integration of ROD and the policy learning method.

For example, we could examine how ROD could be used as part of the perception network, and

allowing the policy to select the object to be picked based on the conditioned features learnt

from detection.

7.1.3 Object Manipulation and Placement

In order to use the methods in this thesis with all possible objects within an online shopping

fulfilment warehouse, we must consider how to manipulate and place objects safely once

they have been picked. This problem has been tackled far less than grasping in the robotics

community and deep learning has not been utilised. There have been approaches to placement

which look at finding a clutter free flat surface [95], however, these require the use of 3D

information from a sensor such as a tilting laser range finder (LIDAR). There are also model

based methods [41] which use environmental constraints to find valid placement methods but

also require accurate 3D information about the environment and only consider very restricted

configurations.

In order to avoid the need for accurate 3D data, we believe deep learning could be used to

assess the most successful method for the placement of objects, especially into already cluttered

environments such as those in crates for online shopping fulfilment. This could be achieved by

building on APRiL using IRL to bypass the need for an engineered scoring function for safe

placements. Another interesting line of work would be to explore the most efficient way to pack

objects. This would involve making the most of the space in the customers crate, whilst still

making sure the object that is being placed and those already in place do not get damaged. To

do this “optimal packing” autonomously would require a step-change in forward planning. Not

only considering placement, but all future placements.
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