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Abstract

Sign languages have been studied by computer vision researchers for the last three
decades. One of the end goals of vision-based sign language research is to build systems
that can understand and translate sign languages to spoken/written languages or vice
versa, to create a more natural medium of communication between the hearing and the
Deaf. However, most research to date has mainly focused on isolated sign recognition
and spotting, neglecting the underlying rich grammatical and linguistic structures of sign
language that differ from spoken language. More recently, Continuous Sign Language
Recognition (CSLR) has become feasible with the availability of large benchmark
datasets, such as the RWTH-PHOENIX-Weather-2014 Dataset (PHOENIX14), and the
development of algorithms that can learn from weak annotations. Although, CSLR
is able to recognize sign gloss sequences, further progress is required to produce
meaningful spoken/written language interpretations of continuous sign language videos.

In this thesis, we introduce the Sign Language Translation (SLT) problem and lay
groundwork for future research on this topic. The objective of SLT is to generate
spoken/written language translations from continuous sign language videos, taking into
account the different word orders and grammar. We evaluate our approaches on the
RWTH-PHOENIX-Weather-2014T (PHOENIX14T) dataset, the first and the currently
only publicly available Continuous SLT dataset aimed at vision based sign language
research. It provides spoken language translations and gloss level annotations for
German Sign Language videos of weather broadcasts. We lay down several evaluation
protocols to underpin future research in this newly established field.

In the first contribution chapter of this thesis, we formalize SLT in the framework
of Neural Machine Translation (NMT) and propose the first SLT approach, Neural
Sign Language Translation. We combine Convolutional Neural Networks (CNNs) and
attention-based encoder-decoder models, which allows us to jointly learn the spatial
representations, the underlying language model, and the mapping between sign and
spoken language. We investigate different configurations of the proposed network
with both end-to-end and pretrained settings (using expert gloss annotations). In
our experiments, recognizing glosses and then translating them to spoken languages
(Sign2Gloss2Text) drastically outperforms an end-to-end direct translation approach
(Sign2Text). Sign2Gloss2Text utilizes a state-of-the-art CSLR model to predict gloss
sequences from sign language videos and then solves SLT as text-to-text translation
problem. This suggests that using gloss level intermediate representations, essentially
dividing the process into two stages, is necessary to train accurate SLT models.

Glosses are incomplete text-based representations of continuous multi-channel visual
signals, that are sign languages. Thus, the best performing two step configuration of
Neural Sign Language Translation has an inherent information bottleneck limiting
translation. To address this issue, in the second contribution chapter of this thesis we
formulate SLT as a multi-task learning problem. We introduce a novel transformer
based architecture, Sign Language Transformers, that jointly learn CSLR and SLT while
being trainable in an end-to-end manner. This is achieved by using a Connectionist
Temporal Classification (CTC) loss to bind the recognition and translation problems
into a single unified architecture. This joint approach does not require any ground-truth



timing information, simultaneously solving two co-dependant sequence-to-sequence
learning problems and leads to significant performance gains. We report state-of-the-art
CSLR and SLT results achieved by our Sign Language Transformers. Our translation
networks outperform both sign video to spoken language and gloss to spoken language
translation models, in some cases more than doubling the performance of Neural Sign
Language Translation (Sign2Text configuration - 9.58 vs. 21.80 BLEU-4 Score).

Models we introduce in both first and second contribution chapters heavily rely on
gloss information, either in the form of direct supervision or for pretraining. To realize
large scale sign language translation, that is on par with their spoken/written language
counterparts, we require more parallel datasets. However, annotating sign glosses is a
laborious task and acquiring such annotations for large datasets is infeasible. To address
this issue, in our last contribution chapter we propose modelling SLT based on sign
articulators instead of glosses. Contrary to previous research, which mainly focused on
manual features, we incorporate both both manual and non-manual features of the sign.
We utilize hand shape, mouthings and upper body pose representations to model sign in
a holistic manner.

We propose a novel transformer based architecture, called Multi-Channel Transformers,
aimed at sequence-to-sequence learning problems where the source information is
embedded over several channels. This approach allows the networks to model both the
inter and the intra relationship between asynchronous source channels. We also intro-
duce a channel anchoring loss to help our models preserve channel specific information
while also regulating training against overfitting.

We apply multi-channel transformers to the task of SLT and realize the first multi-
articulatory translation approach. Our experiments on PHOENIX14T demonstrate that
our approach achieves on par or better translation performance against several baselines,
overcoming the reliance on gloss information which underpin previous approaches.
Now we have broken the dependency upon gloss information, future work will be to
scale learning to larger datasets, such as broadcast footage, where gloss information is
not available.

Key words: Sign Language Recognition, Sign Language Translation, Multi-Articulatory
Sign Language Translation, Neural Machine Translation, Deep Learning, Sequence-to-
sequence Learning
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FC Fully Connected

GNMT Google’s Neural Machine Translation

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HMM Hidden Markov Model

HOG Histograms of Oriented Gradients

IP Inner Product

ISL Irish Sign Language

LCS Longest Common Subsequence

xi



xii Nomenclature

LSTM Long Short-Term Memory

NMT Neural Machine Translation

OCR Optical Character Recognition

PHOENIX12 RWTH-PHOENIX-Weather-2012 Dataset

PHOENIX14 RWTH-PHOENIX-Weather-2014 Dataset

PHOENIX14T RWTH-PHOENIX-Weather-2014T Dataset

RELU Rectified Linear Units

RNN Recurrent Neural Network

ROUGE Recall-Oriented Understudy for Gisting Evaluation

SGD Stochastic Gradient Descent

SLA Sign Language Assessment

SLR Sign Language Recognition

SLT Sign Language Translation

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

SMPL Skinned Multi-Person Linear Model

MANO hand Model with Articulated and Non-rigid defOrmations

BERT Bidirectional Encoder Representations from Transformers

WER Word Error Rate

SLRT Sign Language Recognition Transformer

SLTT Sign Language Translation Transformer



Symbols

Introduced in Chapter 3

X Source sequence in a sequence-to-sequence learning task.

xt tth token of a single channel source sequence X

T Cardinality of the source sequence

Y Target sequence in a sequence-to-sequence learning task.

yu uth token of a target sequence Y

U Cardinality of a target sequence

Q Query matrix used in dot-product attention function

K Key matrix used in dot-product attention function

KT Transpose of the key matrix K

V Value matrix used in dot-product attention function

dm Number of hidden units of a transformer model

Introduced in Chapter 4

|.| Cardinality operation

G∗ Ground truth sign gloss sequence

Gd A set of deleted glosses in predicted gloss sequence

Gi A set of inserted glosses in predicted gloss sequence

Gs A set of substituted glosses in predicted gloss sequence

S̃ Predicted spoken language sentence

S Ground truth spoken language sentence

S̃n A set of n-grams extracted from S̃

xiii



xiv Symbols

Sn A set of n-grams extracted from S

pn n-gram precision of a predicted sentence S̃ given the reference sentence S

BP Brevity penalty used for calculating BLEU scores

plcs Longest Common Subsequence based precision measure used for
calculating ROUGE-L score

rlcs Longest Common Subsequence based recall measure used for calculating
ROUGE-L score

Introduced in Chapter 5

V An ordered series of frames belonging to a video

It A video frame, i.e. an image, at time step t

wu uth word in a sentence

ft Spatial representation of a video frame at time step t (It)

mu Word embedding of the uth word in a sentence (wu)

f1:T Spatial representation of a video (V) with T number of frames

z1:J Tokenized representation of spatial features of a sign video (f1:T )

B A mapping function from tokenized representation of a video (z1:J ) to the
target sentence (S)

oej Encoder output given the previous hidden state hej+1 and input zj

hej Encoder’s hidden state after observing inputs zJ :j

hesign Encoder’s hidden state after observing all the inputs zJ :1

odu Decoder output given the previous hidden state odu−1 and previously
predicted word’s embedding mu−1

hdu Decoder’s hidden state after observing the word embeddings m1:u−1

< bos > Special token indicating the beginning of a sentence

< eos > Special token indicating the end of a sentence

cu Context vector that is used for predicting wu, which is a weighted sum of
the encoder outputs oeJ :1

γuj Attention weights given the encoder output oej and the decoder output odu
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Chapter 1

Introduction

Sign Languages are the natural medium of communication of the Deaf. Despite the

common belief, sign languages are not transcriptions of spoken languages but languages

in their own right. Like any spoken language, they form organically in a region and

evolve through time.

Each sign language has its own linguistic rules and grammatical structures as well as

having a unique vocabulary that does not have a one-to-one correspondence to spoken

language. Unlike their spoken counter parts, which make use of the sound patterns,

sign languages employ multiple complementary channels to convey information [185].

These channels, also known as articulators in linguistics [116], can be grouped under

two main categories with respect to their role in conveying information: manual and

non-manual features [17, 18].

Manual Features are the hand shapes and hand movements used for performing a

sign while Non-Manual Features are the actions that are produced by other body

parts, such as head movements, upper body posture, eye gaze, facial expressions and

mouthings1. Although manual features can be considered as the dominant part of

the sign morphology, they alone do not encapsulate the full context of the conveyed

information. To give clarity, emphasis and additional meaning, signers use non-manual

features, which are rich multi-modal linguistic tools that undertake numerous roles

within the syntax of sign languages.
1Mouthings are lip patterns that accompany a sign.
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The multi-channel nature of sign languages make sign language research a challenging

and intriguing field for both linguists and computer scientists. Linguistic research

concentrates on understanding the nature of sign languages. Sign language linguists

collect extensive corpora and analyze them in-depth to derive the underlying rules

[153, 78]. While linguists focus on explaining the workings of sign languages, computer

scientists aspire to develop systems that are capable of recognizing, understanding and

producing sign languages.

One of the main goals of computational sign language research is to build systems

that can translate from sign languages to spoken languages or vice versa, thus creating

a more natural medium of communication for the Deaf to converse with the hearing.

Computer science researchers, mainly from the computer vision community, have been

working towards developing such applications for the last three decades [164, 165, 43].

There have been several important advancements, such as the availability of large scale

datasets [65, 33] and the shifting of research focus towards recognising the sequence of

sign glosses2 (Continuous Sign Language Recognition (CSLR)) [97] from isolated sign

language recognition [8] and spotting [41, 19]. However, the move from recognition to

translation is still in its infancy [24].

The distinction between CSLR and Sign Language Translation (SLT) is important as the

grammar of sign and spoken languages are very different. As can be seen in Figure 1.1,

these differences include (to name a few): different word ordering, multiple channels

used to convey concurrent information and the use of direction and space to convey the

relationships between objects. Put simply, the mapping between spoken languages and

sign is complex and there is no simple word-to-sign mapping. Thus, further progress is

required to realize systems that would be able to recognize and understand continuous

sign language streams and then translate them into spoken languages in real-time in a

user-independent manner.

The motivation behind this thesis is to lay the ground work for this future sign language

translation research. We start by surveying the computer vision based sign language

recognition and translation literature in Chapter 2. Guided by the previous research, we
2Sign glosses are spoken language words that match the meaning of signs and, linguistically, manifest

as minimal lexical items.
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Figure 1.1: A sample sequence from PHOENIX14T which depicts the differences

between Continuous Sign Language Recognition and Sign Language Translation.

(Note that the free form German translations and the DGS glosses are provided by the

dataset and we added their English translations.)

hypothesise that such translation systems will require completion of several sub-tasks,

which are currently unsolved:

Sign Segmentation: Firstly, the system needs to detect sign sentences, which are com-

monly formed using topic-comment structures [173], from continuous sign language

videos. This is trivial to achieve for text based machine translation tasks [123], where

the models can use punctuation marks to separate sentences. Speech-based recognition

and translation systems, on the other hand, look for pauses, e.g. silent regions, between

phonemes to segment spoken language utterances [186, 205]. There have been studies

in the literature addressing automatic sign segmentation [93, 150, 155, 15, 35]. How-

ever, to the best of our knowledge, there is no study which utilizes sign segmentation

for realizing continuous SLT.

Sign Language Recognition and Understanding: Following successful segmenta-

tion, the system needs to understand what information is being conveyed within a sign

sentence. Current approaches tackle this by recognizing sign glosses and other linguis-

tic components. Such methods can be grouped under the banner of CSLR [97, 23].

From a computer vision perspective, this is the most challenging task. Considering the

input of the system is high dimensional spatio-temporal data, i.e. sign videos, models

are required that understand what a signer looks like and how they interact and move

within their 3D signing space. Moreover, the model needs to comprehend what these
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aspects mean in combination. This complex modelling problem is exacerbated by the

asynchronous multi-articulatory nature of sign languages [149, 168]. Although there

have been promising results towards CSLR, the state-of-the-art [96] can only recognize

sign glosses and operate within a limited domain of discourse, namely weather forecasts

[65].

Sign Language Translation: Once the information embedded in the sign sentence

is understood by the system, the final step is to generate spoken language sentences.

As with any natural language, sign languages have their own unique linguistic and

grammatical structures, which often do not have a one-to-one mapping to their spoken

language counterparts. As such, this problem truly represents a machine translation task.

Initial studies conducted by computational linguists have used text-to-text statistical

machine translation models to learn the mapping between sign glosses and their spoken

language translations [120]. However, glosses are simplified representations of sign

languages and linguists are yet to come to a consensus on how sign languages should

be annotated.

In this thesis we focus on the latter two sub-tasks, namely continuous sign language

recognition and translation. These tasks are sequence-to-sequence learning problems

by their nature. Additionally, SLT is a special case of machine translation, where the

input domain is sign videos instead of spoken language in text form. Both sequence-to-

sequence learning and machine translation fields have seen significant improvements

over the last decade with the introduction of modern Deep Learning (DL) approaches

[70]. Hence, in Chapter 3, we give a brief background on the state-of-the-art in DL

and its application to computer vision, sequence-to-sequence learning and machine

translation fields.

Inspired by the recent developments in the aforementioned fields, we propose combining

Convolutional Neural Networks (CNNs) [107] with sequence-to-sequence learning

methods [72, 123] to realize end-to-end sign language recognition and translation.

However, to be able to develop such methods we first needed a dataset with continuous

sign language videos and their spoken language translations.

Although there are vast quantities of sign language interpretations broadcast everyday,
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they lack the alignment between sign sentences and their corresponding translations

(This relates back to the Sign Segmentation task which is not investigated in the

scope of this thesis). There are also linguistic corpora with sign gloss annotations

and spoken language translations. However, these are either sparsely annotated [153]

or the number of annotated samples are too few with respect to corpora’s domain of

discourse [153, 78]. To address this, we present the first publicly available sign language

translation dataset, the RWTH-PHOENIX-Weather-2014T Dataset (PHOENIX14T).

Curated by our collaborates in RWTH-Aachen, it is an extended version of the popular

RWTH-PHOENIX-Weather-2014 Dataset (PHOENIX14). Aimed at computer vision

researchers, PHOENIX14T is composed of parallel sign videos, gloss annotations (in

DGS) and their spoken language translations (in German). In Chapter 4, we give

further statistics of the dataset, share the performance metrics used, namely Bilingual

Evaluation Understudy (BLEU) [132] and Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) [110] scores, and introduce the evaluation protocols developed to

underpin future SLT research.

Using PHOENIX14T, in Chapter 5, we investigate the feasibility of training DL based

methods to generate spoken language sentences from sign language videos. We utilize

attention-based encoder-decoder architectures [113, 11], which were state-of-the-art in

the field of Neural Machine Translation (NMT) at the time of the research, and combine

them with CNNs to realize the first continuous sign video to spoken language translation

approach, Neural Sign Language Translation. Although, the trained model is able to gen-

erate meaningful spoken language translations, its translation performance is drastically

lower than other NMT baselines (9.58 BLEU-4). We believe this is due to the fact that

going from sign language videos to spoken language sentences is a challenging task and

our model was not able to generalize well on the limited available data. To address this

issue we introduce gloss level intermediate representations in the form of a tokenization

layer to ease the translation task. An overview of this approach is visualized in Fig-

ure 1.2. We utilize state-of-the-art CSLR models to predict gloss sequences from sign

language videos. We then use these gloss predictions to train gloss to spoken language

translation models, which yield much higher translation accuracy (18.13 BLEU-4).

We hypothesise that the main reason of the performance gain is the additional gloss
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Shifted Spoken Language Words

Spoken Language Sentence
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Figure 1.2: An overview of the Neural Sign Language Translation [24] approach.

level supervision that has been introduced by the CSLR models. Furthermore, changing

the input sequences from spatial frame representations to fewer one-hot vector repre-

sentations of sign glosses eases the translation task. However, utilizing this two step

approach has its drawbacks. As our models condition translation on the predicted sign

glosses, their performance is limited by the accuracy of the preceding CSLR module.

This approach also imposes an information bottleneck as gloss annotations do not fully

encapsulate the rich linguistic tools and grammatical structures of the sign language.

To be able to utilize gloss supervision without creating an information bottleneck,

we reformulate SLT as a multi-task learning problem and introduce Sign Language

Transformers in Chapter 6. We propose assigning recognition and translation tasks

to the sub-networks of the state-of-the-art transformer models. We name these sub-

networks as Sign Language Recognition Transformer (SLRT) and Sign Language

Translation Transformer (SLTT) with respect to their task. The SLRT is a Connectionist

Temporal Classification (CTC) based transformer encoder model which learns to predict

sign gloss sequences given the spatial representations of sign video frames. The

spatio-temporal representations learned by SLRT are then passed to an autoregressive

transformer decoder model, SLTT, which is trained to generate one-spoken word at a

time. An overview of the Sign Language Transformer model can be seen in Figure 1.3.

We train our networks using gloss annotations and the spoken language translations

provided by PHOENIX14T, in an end-to-end manner. We report state-of-the-art CSLR

accuracy while significantly improving the translation performance over the Neural Sign

Language Translation approach (9.58 vs. 21.32 BLEU-4). Furthermore, we empirically
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show that joint training benefits both the CSLR (24.59 vs. 24.49 WER) and the SLT

(20.17 vs. 21.32 BLEU-4) sub-tasks.

Spatial Embedding Word Embedding

Shifted Spoken Language Words

SIGN LANGUAGE GLOSSES

Spoken Language SentenceConnectionist Temporal Classification

Transformer Encoder

Transformer Encoder Transformer Decoder

Transformer Decoder

SLRT SLTT

Figure 1.3: An overview of the Sign Language Transformers [27] approach,

jointly trained to perform CSLR and SLT.

Encouraged by the translation performance of the Sign Language Transformer, a

preliminary study investigates their effectiveness on a larger corpus, namely British

Sign Language Corpus Project (BSLCP) [153]. Compared to PHOENIX14T, BSLCP

has more annotations (10207 vs. 8257 sequences) and covers a larger domain of

discourse (free form conversation and interviews vs. weather forecast interpretations).

We conduct experiments using our best performing setup and report results which were

drastically worse than the ones we obtain on PHOENIX14T (4.00 vs. 24.54 BLEU-4,

See [46] for further information on this study). We think this performance disparity is

due to the number of annotations being relatively small with respect to the large domain

BSLCP covers (e.g. 2890 out of 5348 unique gloss tokens only occur once).

To realize sign language translation systems that are on par with their spoken and

written language counter parts, which can translate content from any domain, the SLT

field requires more parallel datasets. We believe the best option towards large scale

translation is to exploit the sign language interpretations and the accompanied subtitles

from daily broadcasts. However, there are two main difficulties one needs to address to

be able to train current state-of-the-art approaches using broadcast data: (1) Alignment:
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The subtitles and the sign language interpretations follow roughly the same temporal

information order. However, they are generally not temporally aligned. Thus curating

parallel datasets, which current approaches require, from broadcast data will require

an additional, perhaps semi-automatic, alignment step. (2) Annotation: Broadcasters

only provide the spoken language subtitles and the sign language videos. This means

that datasets created from the broadcast data will lack the sign gloss annotations which

current models heavily rely upon. Given gloss annotation is a laborious task and

requires specific sign language expertise, it is not feasible to annotate datasets in large

quantities. Furthermore, depending on gloss annotations pose further limitations as

these glosses are often language specific, making translation systems and their CSLR

sub-modules only applicable to the language they were trained on. Hence, in the

final contribution chapter we focus on eliminating the current approach’s dependence

on sign gloss annotations. We take inspiration from subunit based Sign Language

Recognition (SLR) literature [42, 44, 179]. We propose utilizing specialized models

that were trained on individual sign articulators, e.g. hand shape recognition networks

[101, 23], and then use their learnt representations in combination to model sign in a

holistic manner. This approach will also enable us to make use of datasets and models

from other relevant computer vision fields, such as human pose estimation [81] and lip

reading [37]. Furthermore, these specialized articulator networks will be applicable to

modelling other sign languages as well.

To combine subunit representations of multiple articulators and to eliminate the depen-

dence on gloss annotations, in Chapter 7 we propose a novel deep learning architecture,

named Multi-channel Transformers. Aimed at multi-channel sequence-to-sequence

problems, our approach builds on the idea of self-attention which learns the contextual

relationship within sequences. Given representations of multiple asynchronous subunit

articulators, our networks explicitly model inter and intra channel contextual relation-

ships, while being trained to perform sign language translation. An overview of the

proposed Multi-channel Transformers in the context of SLT can be seen in Figure 1.4.

We conduct experiments on PHOENIX14T to evaluate the multi-articulatory SLT

performance of our approach. We use models that were trained for human pose

estimation [81, 207], hand shape classification [101, 96] and viseme recognition [99, 96]
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Shifted Spoken Language Words

Spoken Language Sentence
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Channel Embedding
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Figure 1.4: An overview of the proposed Multi-channel Transformer [26] architecture

applied to the multi-articulatory SLT problem.

to extract representations of manual and non-manual components of sign. We examine

the effectiveness of our approach in contrast to naive fusion techniques (early and

late) and report superior translation accuracy. Furthermore, when compared against

models which utilize gloss level supervision, our approach achieve promising translation

performance (18.31 vs. 19.08 BLEU-4). These results not only indicates the importance

of modelling the contextual relationship within and between sign channels, but also

suggests that it is possible to realize SLT without gloss supervision.

We finally conclude this thesis in Chapter 8 by sharing the conclusions drawn from the

work and closing remarks. We also talk about the open questions and future directions

of computer vision based sign language research.
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Chapter 2

Computer Vision based Sign

Language Research

In this chapter we survey the literature on vision based sign language recognition and

translation. We first give a brief historical overview of sign language research, starting

from recognizing isolated signs to the more recent multi-articulatory Continuous Sign

Language Recognition (CSLR) methods. We then review the previous work on Sign

Language Translation (SLT) and discuss the contributions of this thesis to the field.

2.1 Sign Language Recognition

Sign Language Recognition (SLR) has been studied by computer vision researchers for

the last three decades [177, 165] and it has produced several real life applications such

as: TESSA [47], a post office translation application, Dicta-Sign [60], a sign language

wiki system, SignTutor [9], an interactive sign language tutoring system, HospiSign

[25, 174], a hospital information kiosk for the deaf as well as searchable sign language

dictionaries [45, 61]. However, most of these prototypical systems to date focused on

isolated sign recognition and spotting.

There are various factors that contribute to previous work focusing on isolated sign.

First and foremost is that collection and annotation of CSLR data is a laborious task.

11
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Although there are datasets available from linguistic sources [78, 153] and sign language

interpretations from broadcast footage [41, 19], they are either sparsely or weakly

annotated and lack sequence level alignment information which SLR methods require.

In addition, such datasets lack the human pose information which legacy SLR methods

heavily relied on. This has resulted in many researchers collecting their own isolated

sign language datasets [127, 25, 204]. Most of these dataset were gathered using

consumer depth cameras [209] to be able to utilize the then popular fast and real-time

human pose estimation methods [156]. However, the use of controlled environments

and a limited vocabulary inhibit the end goal of sign language translation. Another

factor is that until recently, a baseline dataset for SLR, had not been established. This

led researchers to work on their own small datasets specific for their applications

[130, 193, 206, 128], making most of the research incomparable, hence robbing the

field of competitive progress.

With the developments in the field of weakly supervised learning [44, 19, 138, 98] and

breakthroughs in the field of human body pose estimation [34, 196, 29], working on

linguistic data and sign language interpretation from broadcast footage has become a

feasible option. Although there were some efforts to develop pose estimation techniques

specialized for sign language videos [34], general purpose, Convolutional Neural

Network (CNN)-based approaches quickly became the norm [196]. OpenPose library

[29, 28] is the most commonly used technique to estimate signers’ pose from the

videos. Although OpenPose models were not trained on sign language data, due to the

utilized bootstrapping techniques [160], they are able to successfully estimate the pose

of articulated hand shapes which are common in sign. In their latest work, Hidalgo et

al. combined the OpenPose body and hand networks into a single architecture, which

drastically improved the real-time pose estimation performance [81]. More recently,

monocular 3D pose estimation techniques started becoming popular [200]. Compared

to multi-view approaches [117, 183], which might not always be applicable, monocular

techniques [135, 200] enable the extraction of valuable 3D pose information by fitting

canonical body and hand models [89], such as Skinned Multi-Person Linear Model

(SMPL) [111] and hand Model with Articulated and Non-rigid defOrmations (MANO)

[146], using 2D joint pixel coordinates on the image plane. However, these approaches
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are still far from being real-time, running on the seconds per frame scale on a modern

computer.

These developments were followed by Forster et al.’s release of RWTH-PHOENIX-

Weather-2012 Dataset (PHOENIX12) [64] and its extended version the RWTH-PHOENIX-

Weather-2014 Dataset (PHOENIX14) [65], which contained German Sign Language

- Deutsche Gebärdensprache (DGS) interpretations of weather forecasts. With the

availability of the PHOENIX datasets, research interest started to shift towards CSLR,

and PHOENIX14 quickly became a baseline for continuous SLR, pushing the field

towards the goal of continuous SLT to spoken language.

As signs are spatio-temporal constructs, generally all SLR methods consist of two steps:

(1) Extraction of spatial features from video frames and (2) Temporal modelling of these

representations. Legacy approaches [42, 43], relied heavily on hand crafted features

to represent the manual and non-manual aspects of the sign. These features are then

modelled using graphical models such as Hidden Markov Models (HMMs) [97, 179],

Conditional Random Fields (CRFs) [141] or template-based approaches to capture the

temporal changes in the sign sequences [19, 40, 127, 128].

With the rise of deep learning, enthusiasm revived and accelerated the field [22, 101,

103]. The recognition of limited domain but continuous real-life sign language became

feasible [23, 48, 86, 102, 49]. Using Deep Learning (DL) methods, which can learn

spatio-temporal representations from data with minimal human intervention, researchers

swiftly adopted CNNs and Recurrent Neural Network (RNN) based approaches. Koller

et al. [102] proposed using CNNs to model both the signer as a whole and their hand

shapes [101, 103]. They further employed a HMM based forced alignment approach

to train their networks from weakly annotated video sequences [102]. Building on

this, Camgoz et al. [23] and Cui et al. [48, 49] proposed utilizing the Connectionist

Temporal Classification (CTC) loss function [72], which marginalizes over all possible

video and annotation alignments during training, thus eliminating the costly iterative

forced alignment procedure.

Concurrently, driven by linguistic evidence [13, 197, 136], the field realized that sign

language recognition needs to focus on more than just the hands. Earlier works looked at
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several articulators separately, such as the face in general [189, 7, 97], head pose [114],

the mouth [7, 99, 100], eye-gaze [30], and body pose [137, 34]. The current state-of-

the-art CSLR approaches are based on multi-stream architectures utilizing both manual

and non-manual features of the sign [96, 212]. They report significant improvements

over methods which only utilize manual features, thus indicating the necessity of

incorporating non-manual features.

2.2 Sign Language Translation

Generally speaking, much of the available sign translation literature falsely declares

sign recognition as sign translation [63, 194, 76, 75]. There have been earlier attempts

to realize SLT by computational linguists. However, existing work has solely focused

on the text-to-text translation problem and has been very limited in size, averaging

around 3000 total words [121, 166, 167, 154]. Using statistical machine translation

methods, Stein et al. [167] proposed a weather broadcast translation system from spoken

German into DGS and vice versa, using the PHOENIX12 [64] dataset. Another method

translated air travel information from spoken English to Irish Sign Language (ISL),

spoken German to ISL, spoken English to DGS, and spoken German to DGS [120].

Ebling [56] developed an approach to translate written German train announcements

into Swiss German Sign Language - Deutschschweizer Gebärdensprache (DSGS).

While non-manual information has not been included in most previous systems, Ebling

& Huenerfauth [59] proposed a sequence classification based model to schedule the

automatic generation of non-manual features after the core machine translation step.

Conceptual video based SLT systems were introduced in the early 2000s [20]. There

have been studies, such as [31], which propose recognizing signs in isolation and

then constructing sentences using a language model. However, end-to-end SLT from

continuous sign videos has not been realized until this thesis.

The most important obstacle to vision based SLT research has been the availability

of suitable datasets. There are datasets with spoken language translations available

from linguistic sources [153, 78] and sign language interpretations from broadcasts
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[41]. However, the available annotations are either weakly aligned (subtitles) or too

few to build models which would work on a large domain of discourse. Furthermore,

the relationship between sign sentences and their spoken language translations are non-

monotonic, as they have different ordering. Also, sign glosses and linguistic constructs

do not necessarily have a one-to-one mapping with their spoken language counterparts.

This made the use of available CSLR methods [103, 102] (that were designed to learn

from weakly annotated data) infeasible, as they are built on the assumption that sign

language videos and corresponding annotations share the same temporal order.

To address these issues, in collaboration with RWTH-Aachen, we introduce the first pub-

licly available SLT dataset, RWTH-PHOENIX-Weather-2014T Dataset (PHOENIX14T)

[24], which is an extension of the popular PHOENIX14 CSLR dataset (See Chapter 4).

We approach the SLT task as a spatio-temporal Neural Machine Translation (NMT)

problem, which we term ‘Neural Sign Language Translation’. We propose a system

using CNNs in combination with attention-based NMT methods [113, 11] to realize

the first end-to-end SLT models. Although the end-to-end approach produce meaning-

ful translations, utilizing an initial CSLR tokenization step, and thus converting the

problem into a text-to-text translation task, yields significantly improved results (See

Chapter 5). However, sign languages are visual constructs and trying to represent them

with text introduces an information bottleneck. To address this issue we reformulate

SLT as a multi-task problem to incorporate gloss supervision without limiting the

information flow. We utilize state-of-the-art transformer models and train sub-networks

of our Sign Language Transformer models jointly to predict sign gloss sequences and

spoken language sentences. This end-to-end approach outperform previous translation

benchmarks and is the current state-of-the-art on PHOENIX14T (See Chapter 6).

Following our work, Orbay and Akarun [129] investigated different tokenization meth-

ods on PHOENIX14 and showed that a pretrained hand shape recognizer [101] out-

performs simpler approaches and reaches 14.6 BLEU-4. While they also investigated

transformer architectures and multiple hands as input, the results under-performed.

Ko et al. [95] describe a non-public dataset covering sign language videos, gloss anno-

tation and translation. Their method relies on detected body key-points only. It hence

misses the important appearance based characteristics of sign.
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Overall, previous work in the space of SLT had two major short-comings: (1) The

beauty of translations is the abundance of available training data as they can be created

in real-time by interpreters. Glosses are expensive to create and limit data availability.

No previous work was able to achieve state-of-the-art performance while not relying

on glosses. (2) So far SLT has never considered multiple articulators. To address these

issues, we introduce Multi-channel Transformers to realize the first multi-articulatory

SLT without utilizing gloss level supervision (See Chapter 7). We propose utilizing

specialized models from related fields, such as human pose estimation and hand shape

recognition, and model the inter and intra contextual relationship of articulator channels.

We evaluate our approach on PHOENIX14T and train our models using human pose,

hand shape and viseme representations. Our networks achieve superior translation

performance over single channel models indicating the importance of considering

multiple articulators. Furthermore, we report comparable results against models which

utilize gloss supervision, suggesting that the field’s dependency on gloss annotations

may come to an end soon.



Chapter 3

Modern Deep Learning

Approaches and Their Applications

Deep Learning (DL) [70] has gained popularity and achieved state-of-the-art perfor-

mance in various fields such as Computer Vision [105], Speech Recognition [5] and

more recently in the field of Machine Translation [123]. To realize Continuous Sign Lan-

guage Recognition (CSLR) and Sign Language Translation (SLT) models are required

that can recognize the spatio-temporal linguistic constructs of sign languages and their

mapping to spoken languages. Hence, in this chapter we give a brief background on the

state-of-the-art in DL and its applications to computer vision, sequence-to-sequence

learning and neural machine translation.

3.1 Convolutional Neural Networks

In the computer vision field, DL methods, more specifically Convolutional Neural

Networks (CNNs) [107], first became popular for the object recognition task [53, 105].

Prior to DL methods, researchers were devising hand crafted features, such as the His-

tograms of Oriented Gradients (HOG) [51], Scale Invariant Feature Transform (SIFT)

[112] or Speeded Up Robust Features (SURF) [12], to represent spatial information in

images. These features were not task specific and were biased by human intuition. DL

17
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approaches like CNNs obviated the necessity of designing such features, as they are

able to learn spatial representations from images while being trained to accomplish a

task such as object recognition.

Inspired by the feline visual cortex, the first CNN, Neurocognitron, was introduced

in the early 1980’s [67]. Lecun et al. [107] later proposed LeNet and utilized back

propagation [108] to read hand written letters and digits. Although there has been

continuous work on CNNs throughout the years, it was not popular in computer vision

for decades due to the lack of large scale dataset neural networks require to generalize

and efficient hardware to train those networks on. However, they gained popularity

after Krizhevsky et al. [105] drastically outperformed its competitors with the AlexNet

architecture in the ImageNet 2012 challenge [53]. From this point on CNNs became an

ubiquitous tool in computer vision research and it is now being used in various fields,

such as speech recognition [2], image captioning [201], visual question answering [6],

semantic segmentation and [147] much more [70].

There have been several improvements in CNNs architectures since AlexNet [105] in

recent years. One of the main objectives for developing new models was to have deeper

architectures. However, as noted by Simonyan et al., going deeper doesn’t necessary

improve the performance and in some cases worsens it [162]. One of the main factors

to this was the issue of vanishing gradients. As the networks got deeper, the error

signals got weaker due to the non-linear nature of activation functions. To overcome

this Szegedy et al. [176] proposed having multiple losses for the same objective spread

through the network, thus allowing the error signals to propagate further. Another

approach to overcome the vanishing gradient problem was to utilize skip connections

proposed by He et al. [79]. These skip connections, commonly known as residual

connections, allowed the training of networks much deeper than was previously possible,

even going up to 1000 layers [80]. However, the performance gain by building deeper

networks saturates. To address this, Huang et al. [85] proposed densely connected wide

networks and reported improved results over ResNets trained with residual connections.

While networks continued to become deeper and wider, researchers started to realize

most of the parameters in these networks are actually redundant [66]. More recently Tan

et al. [178] extensively studied the balancing of network depth, width and resolution
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and proposed EfficientNets which obtained state-of-the-art performance with fewer

parameters.

Two of the most relevant fields to sign language recognition are human action recog-

nition [141] and gesture recognition [143]. With the emergence of CNN methods

and availability of large dataset [163, 192, 148], the research into action recognition

started to become dominated by deep architectures [161, 92, 182]. Similarly in the

field of gesture recognition, research focus shifted towards DL solely relying on the

representation of capabilities of the deep architectures [32, 140, 124].

In this thesis, we utilize CNNs as a Spatial Embedding layer to extract representations

of signers from video frames. We explore a variety of architectures, ranging from the

earlier AlexNet (Chapter 5), the more recent Inception models (Chapters 6 and 7) and

the state-of-the-art EfficientNets (Chapters 6).

3.2 Sequence-to-Sequence Learning

One of the most important breakthroughs in DL was the development of sequence-to-

sequence learning approaches. Strong annotations are hard to obtain for sequence-to-

sequence tasks, in which the objective is to learn a mapping between two sequences.

Earlier methods in the field of speech recognition proposed combining neural networks

with graphical models, such as Hidden Markov Model (HMM), to learn to recognize

and align speech signals and their phoneme representations [145]. To be able to train

from weakly annotated data in an end-to-end manner, Graves et al. proposed the

Connectionist Temporal Classification (CTC) loss function [72], which considers all

possible alignments between two sequences while calculating the error. CTC quickly

became a popular loss function for many sequence-to-sequence applications. It has

obtained state-of-the-art performance on several tasks in speech [74, 5] and handwriting

recognition [73]. Computer vision researchers adopted CTC and applied it to weakly

labeled visual problems, such as sentence-level lip reading [10], action recognition [84],

hand shape recognition [23] and CSLR [23, 48, 49]. In this thesis, we utilize CTC loss

in our multi-task Sign Language Transformer approach to train our transformer encoder

models using weakly labelled gloss annotations (See Chapter 6).
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Another common sequence-to-sequence task is machine translation, which aims to

develop methods that can learn the mapping between two languages. The field of ma-

chine translation, as with any other field which employs statistical modelling, has been

drastically changed by the development of modern DL approaches [70]. Although CTC

has proven to be successful in several tasks, it is not suitable for machine translation

as CTC assumes source and target sequences share the same order. Furthermore, CTC

does not explicitly model the conditional dependence within target sequences, which in

turn does not allow networks to learn an implicit target language model. This has led to

the development of Encoder-Decoder Network architectures [91] and the emergence of

the Neural Machine Translation (NMT) field [123], which will be discussed in detail in

the next section.

3.3 Neural Machine Translation

The objective of machine translation is to learn the conditional probability p(Y|X )

where X = (x1, ..., xT ) is a sentence from source language with T tokens and

Y = (y1, ..., yU ) is the desired corresponding translation of said sentence in the target

language. To learn this mapping using neural networks, Kalchbrenner et al. [91]

proposed using an encoder-decoder architecture, where the source sentence is encoded

into a fixed sized “context” vector which is then used to decode the target sentence.

They realized this using a Convolutional n-gram Model (CGM) for the encoder and the

hybrid approach consisting of an inverse CGM and a Recurrent Neural Network (RNN)

as the decoder.

Cho et al. [36] and Sutzeker et al. [172] further improved the encoder-decoder

architectures by assigning the encoding and decoding stages of translation to individual

specialized RNNs. The context vector in this case is the hidden state of the encoder

after processing the last source token. This context vector is then used to initialize

the decoder’s hidden state which is trained to generate the target sentence in an auto-

regressive manner. The decoding process starts with a unique beginning of sentence

(< bos >) token and continues until another unique end-of-sentence (< eos >) token is

produced. A visualization of this approach can be seen in Figure 3.1.
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Figure 3.1: A generic RNN-based encoder-decoder architecture for machine

translation.

Although encoder-decoder networks improved machine translation performance, there

remains the issue of an information bottleneck caused by encoding the source sequence

into a fixed sized vector and the long term dependencies between source and target

sequences. As RNNs accumulate the context vector by considering one token at a time,

the information contribution of the earlier tokens in the sequence vanish as the source

sentence comes to an end. Although there have been practical solutions to this, such as

source sentence reversing [172], the context vector is still of fixed size, and thus cannot

perfectly encode arbitrarily long input sequences.

To overcome the information bottleneck imposed by using the last hidden state of the

RNN as the context vector, Bahdanau et al. [11] proposed an attention mechanism,

which was a breakthrough in the field of NMT. The idea behind the attention mechanism

is to use a soft-search over the encoder outputs at each step of target sentence decoding.

This was realized by conditioning target word prediction on a context vector which is a

weighted sum of the source sentence representations. The weighting in turn is done by

a learnt scoring function which measures the relevance of the encoder outputs and the

decoders current hidden state. Luong et al. [113] further improved this approach by

proposing a dot product attention (scoring) function as:

context = softmax
(
QKT

)
V (3.1)

where Queries correspond to the hidden state of the decoder at a given time step, and

Keys and V alues represent the encoder outputs (See Figure 3.2). We utilize both of

these attention mechanisms in realising the first end-to-end SLT approach, Neural Sign

Language Translation [24], and explain them in further detail in Section 5.1.
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Figure 3.2: Dot product attention-based encoder-decoder architecture proposed by

Luong et al. [113]

Various attention based architectures have been proposed for NMT, such as Google’s

Neural Machine Translation (GNMT) [199] which combines bi-directional and uni-

directional encoders in a deep architecture. One of the key differences implemented

in GNMT was only using the attention function to pass information between the

encoder and the decoder networks, thus ignoring the fixed length representation stored

in the recurrent units’ hidden state. GNMT has been further extended to do Zero-Shot

translation and was able to translate between language pairs it was not explicitly trained

on [88].

Similar sequence-to-sequence and attention based approaches have been applied to

various computer vision tasks. Xu et al. proposed the “Show, Attend and Tell” ar-

chitecture, where they extract spatial features from images using CNNs and use a

sequence-to-sequence model to map image patch features to captions [201]. Donahue

et al. introduced the CNN-Long Short-Term Memory (LSTM) hybrid “Long-term

Recurrent Convolutional Network” architecture for action recognition and video de-

scription generation [55]. Venugopalan et al. further extended this approach by utilizing

RNN-based encoder-decoder models in combination with CNNs and applied it to vari-

ous video-to-text tasks [188]. Chung et al. built up on the video-to-text approach and

introduced ”Watch, Listen, Attend, and Spell” architecture and applied it to multi-modal

lip-reading sentences in the wild task [37].

More recently, researchers proposed a convolution based sequence-to-sequence learning

approach [68] for machine translation. The motivation behind this approach was to

allow the encoder to have larger receptive fields in the temporal domain as it goes
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deeper in the network. This approach yielded better performance compared to RNN

based methods while being able to train and infer faster.

One of the most recent breakthroughs in NMT was the introduction of transformer

networks [187]. Vaswani et al. proposed modelling the contextual relationship within

source and target sequences using dedicated attention mechanisms. To realize this,

they proposed a new self-attention mechanism, which refines the source and target

token representations by looking at the context they have been used in. Combining

encoder and decoder self-attention layers with an encoder-decoder attention, Vaswani

et al. proposed Transformer networks, a fully connected network (as opposed to being

RNN-based) which has revolutionized the field of machine translation. They also utilize

multi-head attentions by separating their inputs into multiple chunks and learning

different attention weights for each chunk, allowing the networks to learn multiple

contextual relationships between words. A simplified visualization of the transformer

architecture can be seen in Figure 3.3.
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Figure 3.3: Transformer Networks proposed by Vaswani et al. [187]

In contrast to RNN-based models, transformers obtain Q, K and V values by using

individually learnt linear projection matrices at each attention layer. Vaswani et al. also

introduced the “scaled” dot-product attention as:

context = softmax

(
QKT

√
dm

)
V (3.2)

where dm is the number of hidden units of the model. The motivation behind the scaling

operation is to counteract the effect of gradients becoming extremely small in cases

where the number of hidden units is high and in-turn, the dot products grow large [187].
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In addition to NMT, transformers have achieved success in various other tasks. Dai

et al. further extended the transformer architecture and introduced Transformer-XLs,

which was able to learn longer temporal dependencies compared to both RNN and

transformer based approaches [50]. Devlin et al. proposed an unsupervised pre-

training approach, Bidirectional Encoder Representations from Transformers (BERT),

to learn sentence representations from large scale textual datasets [54]. Zhang et al.

incorporated Knowledge Graphs into the training of BERT models to enhance language

representation and reported significant improvements on various knowledge driven tasks

[208]. More recently, Clark et al. proposed ELECTRA, which replaces the masked

language modelling pre-training scheme of BERT with a modified token detection

approach to improve sample efficiency [39]. Transformers have also been used for

computer vision tasks. Tsai et al. proposed multi-modal transformers for multi-modal

language understanding, working on unaligned video, text and audio sequences [184].

Riberio et al. introduced Sketchformers, which encodes free-hand sketch input into

a latent vector space for multiple down-stream tasks, such as sketch classification,

sketch based image retrieval, and the reconstruction and interpolation of sketches [144].

Similar to the self-attention layer of transformer networks, Wang et al. proposed non-

local blocks for activity recognition from videos [195]. Sun et al. modified the BERT

architecture for visual-linguistic tasks, and introduced VideoBERT, which achieved

state-of-the-art performance on video captioning [171].

In Chapter 6, we propose a multi-task reformulation of CSLR and SLT based on

transformer networks. For CSLR, we train transformer encoders using CTC loss to

predict sign gloss sequences from continuous sign language videos. We then pass

the spatio-temporal representations learnt by the encoder to a transformer decoder,

which is trained to generate one spoken language word at a time, to realize SLT. We

report significant performance improvements over RNN-based models, and display the

benefits of the proposed multi-task learning framework.

We further extend the transformer network architecture and adapt it to the task of

multi-articulatory SLT in Chapter 7. In accordance with the original motivation of the

transformer, we believe information coming from different source channels should be

modeled in the context of that channel (i.e. channel-wise self-attention). However, we
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further propose a multi-channel attention layer to refine the representations of each

source channel in the context of other source channels. We also adapt the encoder-

decoder attention layer to be able to use multiple source channel representations. In the

case of SLT, these channels correspond to sign articulators, namely hands, body and

mouthings.
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Chapter 4

Sign Language Translation Dataset

and Evaluation Protocols

In this chapter we present the RWTH-PHOENIX-Weather-2014T Dataset (PHOENIX14T)1

[24], a Continuous Sign Language Recognition (CSLR) and Sign Language Transla-

tion (SLT) corpus, which we utilize to evaluate the performance of our approaches.

Curated by our collaborators in RWTH-Aachen, PHOENIX14T is an extension of

the RWTH-PHOENIX-Weather-2014 Dataset (PHOENIX14), which has become the

primary benchmark for CSLR in recent years. PHOENIX14T constitutes a parallel

corpus including German Sign Language - Deutsche Gebärdensprache (DGS) videos,

sign gloss annotations and also German translations (spoken by the news anchor), which

makes it the only available dataset suitable for training and evaluating joint SLR and

SLT techniques. Due to different sentence segmentation between spoken language and

sign language, it was not sufficient to simply add a translation tier to PHOENIX14. In-

stead, the segmentation boundaries also have been redefined. Wherever the addition of

a translation layer necessitated new sentence boundaries, forced alignment approaches

have been used [101] to compute the new boundaries.

In addition to changes in boundaries, PHOENIX14T has a marginally decreased sign

gloss vocabulary due to some improvements in the normalization schemes. This

means performance on PHOENIX14 and PHOENIX14T will be similar, but not exactly
1https://www-i6.informatik.rwth-aachen.de/˜koller/RWTH-PHOENIX-2014-T/

27
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comparable. However, care has been taken to assure that the development and test

sets of PHOENIX14 do not overlap with the new PHOENIX14T training set and also

that none of the new development and test sets from PHOENIX14T overlap with the

PHOENIX14 training set.

Sign Gloss German

Train Dev Test Train Dev Test

segments 7,096 519 642 ←−−−−−−− same

frames 827,354 55,775 64,627 ←−−−−−−− same

vocab. 1,066 393 411 2,887 951 1,001

tot. words 67,781 3,745 4,257 99,081 6,820 7,816

tot. OOVs - 19 22 - 57 60

singletons 337 - - 1,077 - -

Table 4.1: Key statistics of the RWTH-PHOENIX-Weather-2014T Dataset.

This corpus is publicly available to the research community to facilitate the future

growth of SLT research. The detailed statistics of the dataset can be seen in Table 4.1.

OOV stands for Out-Of-Vocabulary, e.g. words that occur in test, but not in training.

Singletons occur only once in the training set. The corpus covers unconstrained

sign language of nine different signers with a vocabulary of 1066 different signs and

translations into German spoken language with a vocabulary of 2887 different words.

The corpus features professional sign language interpreters and has been annotated using

sign glosses by deaf specialists. The spoken German translation originates from the

news speaker. It has been automatically transcribed, manually verified and normalized.

4.1 Evaluation Protocols

To underpin future work on PHOENIX14T and to be able to better understand the

shortcomings of the proposed models, we lay down several protocols for researches to

evaluate their CSLR and SLT approaches:

Sign2Gloss is a protocol which essentially performs CSLR. The goal of this task is to
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predict sequences of sign glosses from continuous sign language videos.

Sign2Text is the end goal of SLT, where the objective is to translate directly from

continuous sign videos to spoken language sentences without utilizing any intermediary

representation, such as text-based sign glosses.

Gloss2Text is a text-to-text translation protocol, where the objective is to translate

ground truth sign gloss sequences to German spoken language sentences. The results

of these experiments act as a virtual upper bound for the available Neural Machine

Translation (NMT) technology. This assumption is based on the fact that perfect

sign language recognition/understanding is simulated by using the ground truth gloss

annotation. However, as mentioned earlier, one needs to bear in mind that gloss

representations are imprecise. As glosses are textual representations of multi-channel

temporal signals, they represent an information bottleneck for any translation system.

This means that under ideal conditions, a Sign2Text system could and should outperform

Gloss2Text. However, more sophisticated network architectures and data are needed to

achieve this and hence such a goal remains a longer term objective beyond the scope of

this thesis.

Sign2Gloss2Text is the current state-of-the-art in SLT. This approach utilizes CSLR

models to extract gloss sequences from sign language videos. The predicted glosses are

then used to solve the translation task as a text-to-text problem by training a Gloss2Text

network.

Sign2Gloss→Gloss2Text is similar to Sign2Gloss2Text and also uses CSLR models to

extract gloss sequences. However, instead of training text-to-text translation networks

from scratch, Sign2Gloss→Gloss2Text models use the best performing Gloss2Text

network, which has been trained with ground truth gloss annotations. The motivation

behind this protocol is to evaluate the feasibility of separating the training of Sign2Gloss

and Gloss2Text, enabling us to utilize auxiliary data sources to train individual modules.

Sign2(Gloss+Text) is a multi-task learning protocol similar to Sign2Gloss2Text. How-

ever, unlike Sign2Gloss2Text, which utilizes a two stage pipeline, i.e. CSLR and then

text-to-text translation, Sign2(Gloss+Text) models are jointly trained to perform CSLR

and SLT, simultaneously. The motivation behind this protocol is to evaluate the effects
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of utilizing a joint training regime over training each module individually.

4.2 Performance Metrics

We utilize various metrics to measure the performance of the proposed approaches.

Following the evaluation protocols set by PHOENIX14 [65], we use Word Error

Rate (WER) to calculate the accuracy of our CSLR models. To measure our trans-

lation performance we utilize Bilingual Evaluation Understudy (BLEU) [132] and

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [110] scores, which are

commonly used metrics for machine translation.

4.2.1 Word Error Rate (WER)

WER, also known as the length normalized edit distance, is one of the most common

metrics used in speech recognition [4] and machine translation [4]. Based on the

Levenshtein alignment between the ground truth and predicted sign gloss sequences,

WER is calculated as:

WER =
|Gd|+ |Gi|+ |Gs|

|G∗|
(4.1)

where |Gd|, |Gi| and |Gs| represent the required numbers of deletion, insertion and

substitution operations to transform the predicted sign glosses into the ground truth

sequence G∗ with a cardinality of |G∗|, respectively.

4.2.2 Bilingual Evaluation Understudy (BLEU)

The BLEU score was proposed to substitute skilled human judges for rapid evaluation

of machine translation systems. To measure the BLEU score of a generated sentence

S̃ given the reference sentence S, we first extract n-grams, S̃n and Sn, from both of

the sentences, respectively. Commonly used in the fields of computational linguistics

and natural language processing, n-grams are contiguous sequences of n units, i.e.



4.2. Performance Metrics 31

characters, words or tokens, given a text sample. A sample n-gram extraction can be

seen in Table 4.2.

Type Unit Input Sn=1 (unigrams) Sn=2 (bigrams) Sn=3 (trigrams)

Sentence Word ‘to be or’ ‘to’,‘be’,‘or’ ‘to be’, ‘be or’ ‘to be or’

Word Character ‘CAT’ ‘C’, ‘A’,‘T’ ‘CA’, ‘AT’ ‘CAT’

Table 4.2: Example n-gram extractions with the lengths of one, two and three.

Using the extracted n-grams, we calculate the precision, pn, of a predicted sentence as:

pn =
|Sn ∩ S̃n|
|S̃n|

(4.2)

where |S̃n| and |Sn ∩ S̃n| represent the cardinality of S̃n and number of matching

items between S̃n and Sn, respectively. We then calculate the BLEU-N score of a

prediction-reference sentence pair as:

BLEU-N = BP · exp

(
1

N

N∑
n=1

log pn

)
(4.3)

where N is the maximum length of n-grams that is being considered and BP is a brevity

penalty computed as:

BP =

 1 if |S̃| > |S|

e(1−|S|/|S̃|) else
(4.4)

Here |S̃| and |S| correspond to the number words in predicted sentence, S̃ , and reference

sentence, S, respectively.

4.2.3 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

The ROUGE score was originally proposed to automatically determine the quality

of computer generated summaries by comparing them to other ideal, human created

summaries. The evaluation metrics come with a number of variants, namely, ROUGE-N
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(n-gram based co-occurrence statistics), ROUGE-S (skip-bigram-based co-occurrence

statistics), ROUGE-L (Longest Common Subsequence (LCS)-based statistics), and

ROUGE-W (weighted LCS-based statistics that favours consecutive LCSes).

In our experiments, we utilized the ROUGE-L F1 score which measures the longest

matching sequence of words. One of the advantages of using LCS-based statistics is

that they do not penalize non-consecutive matches, while still considering in-sequence

matches that reflect sentence level word order into consideration. We start calculating

the ROUGE-L F1 score by measuring the LCS-based precision and recall as:

plcs =
|LCS(S, S̃)|
|S̃|

(4.5)

rlcs =
|LCS(S, S̃)|
|S|

(4.6)

where the LCS function outputs the longest common subsequences between the refer-

ence sentence, S, and the predicted sentence S̃. We then use the precision and recall

values to calculate the ROUGE-L F1 score as:

ROUGE-L F1 =
2 ∗ plcs ∗ rlcs
plcs + rlcs

(4.7)
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Neural Sign Language Translation

Despite common misconceptions, sign languages have their own specific linguistic

rules [168] and do not translate to/from spoken languages as word to sign or vice versa.

While predicting the sign language glosses provides the meaning and the order of

signs in the video, the spoken language equivalent (which is what is actually desired)

has both a different length and ordering. Therefore, the numerous advances in Sign

Language Recognition (SLR) [43], discussed in Chapter 2, and the progress made

towards Continuous Sign Language Recognition (CSLR) [97, 102], do not allow us to

provide meaningful interpretations of what a signer is trying to convey.

Contrary to SLR, we propose to approach Sign Language Translation (SLT) as a Neural

Machine Translation (NMT) task, and coin the term Neural Sign Language Translation.

We employ Recurrent Neural Network (RNN) based sequence-to-sequence learning

models, which were state-of-the-art in the time of this research, in combination with

Convolutional Neural Networks (CNNs) to learn: 1) The spatio-temporal representation

of the signs, 2) the relation between these signs (in other words the language model) and

3) how these signs map to the spoken or written language. To achieve this we introduce

new vision methods, which mirror the tokenization and embedding steps of standard

NMT. Using the RWTH-PHOENIX-Weather-2014T Dataset (PHOENIX14T), we

realize the first end-to-end continuous sign language video to spoken language text

translation approach. We also conduct a wide range of experiments using the evaluation

protocols laid down in Section 4.1 to underpin future research in the field of SLT.

33



34 Chapter 5. Neural Sign Language Translation

The rest of this chapter is structured as follows: We first introduce the proposed Neural

Sign Language Translation approach in Section 5.1. We then describe our experimental

setup and report quantitative results in Section 5.2. We share qualitative examples in

Section 5.3 to give the readers further insight on the performance of our approach. We

finally conclude this chapter in Section 5.4 by discussing our findings and possible

future work.

5.1 Methodology

Translating sign videos to spoken language is a sequence-to-sequence learning problem

by nature. Our objective is to learn the conditional probability p(S|V) of generating a

spoken language sentence S = (w1, w2, ..., wU ) with U number of words given a sign

video V = (I1, I2, ..., IT ) with T number of frames. This is not a straight forward task

as the number of frames in a sign video is much higher than the number of words in its

spoken language translation (i.e. T � U ). Furthermore, the alignment between sign

and spoken language sequences are usually unknown and non-monotonic. In addition,

unlike other translation tasks that work on text, our source sequences are videos. This

renders the straightforward use of classic RNN-based sequence modeling architectures,

which work on text embeddings, difficult. Instead, we propose combining CNNs with

attention-based encoder-decoders to model the conditional probability p(S|V). We

experiment with training our approach in an end-to-end manner to jointly learn the

alignment and the translation of sign language videos to spoken language sentences.

An overview of our approach can be seen in Figure 5.1. In the remainder of this section,

we will describe each component of our architecture in detail.

5.1.1 Spatial and Word Embeddings

NMT methods start with tokenization of source and target sequences and then projecting

them to a continuous space using word embeddings [118]. The main idea behind using

word embeddings is to transform the sparse one-hot vector representations, where each

word is equidistant from each other, into a denser form, where words with similar
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Figure 5.1: An overview of our Sign Language Translation approach that generates

spoken language translations of sign language videos.

meanings are closer. These embeddings are either learned from scratch or pretrained

on larger datasets and fine-tuned during training. However, contrary to text, signs

are visual. Therefore, in addition to using word embeddings for our target sequences

(spoken language sentences), we need to learn spatial embeddings to represent sign

videos. To achieve this we utilize 2D CNNs. Given a sign video V , our CNN learns to

extract non-linear frame level spatial representations as:

ft = SpatialEmbedding(It) (5.1)

where ft corresponds to the feature vector produced by propagating a video frame It

through our CNN.

For word embedding, we use a Fully Connected (FC) layer that learns a linear projection

from one-hot vectors of spoken language words to a denser space as:

mu = WordEmbedding(wu) (5.2)

where mu is the embedded representation of the spoken word wu.
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5.1.2 Tokenization Layer

In NMT, the input and output sequences can be tokenized at many different levels of

complexity: characters, words, n-grams or phrases. Low level tokenization schemes,

such as the character level, allow smaller vocabularies to be used, but increase the

complexity of the sequence modeling problem, and require long term relationships to

be maintained. High level tokenization makes the recognition problem far more difficult

due to vastly increased vocabularies, but the language modeling generally only needs to

consider a small number of neighboring tokens.

As there has been no previous research on SLT directly from sign videos, it is not clear

what tokenization schemes are most appropriate for this problem. This is exacerbated

by the fact that, unlike NMT research, there is no simple equivalence between the

tokenizations of the input sign video and the output text. The framework developed

in this chapter is generic and can use various tokenization schemes on the spatial

embeddings sequence f1:T as:

z1:J = Tokenization(f1:T ) (5.3)

In this chapter we explore both “frame level” and “gloss level” input tokenization, with

the latter exploiting a RNN-Hidden Markov Model (HMM) based forced alignment

approach [102]. As in most modern NMT research, the output tokenization is at the

word level, but it could be an interesting avenue for the future to investigate subword

unit tokenization [106].

5.1.3 Attention-based Recurrent Encoder-Decoder Networks

To be able to generate the target sentence S from tokenized embeddings z1:J of a sign

video V , we need to learn a mapping function B(z1:J)→ S which will maximize the

conditional probability p(S|V). We propose modelling B using an attention-based

recurrent encoder-decoder network, which is composed of two specialized deep RNNs.

By using these RNNs we break down the task into two phases. In the encoding phase, a
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sign videos’ features are projected into a latent space in the form of a fixed size vector,

later to be used in the decoding phase for generating spoken sentences.

During the encoding phase, the encoder network, reads in the feature vectors one by

one. Given a sequence of tokenized representations z1:J , we first reverse its order on the

temporal axis, as suggested by [172], to shorten the long term dependencies between the

beginning of the sign video and spoken language sentence. We then feed the reversed

sequence zJ :1 to the encoder which models the changes in tokens and compresses their

cumulative representation in its hidden states while generating an output for each input

as:

oej , h
e
j = Encoder(zj , h

e
j+1) (5.4)

where oej and hej are the output and the hidden state produced by the recurrent units of

the encoder given the token representation zj and the hidden state from the previous

step1 hej+1. The initial hidden state of the encoder, heJ+1, is set to zero and the final

encoder state, he1, corresponds to the latent embedding of the whole sequence, hesign,

which is passed to the decoder.

The decoding phase starts by initializing the hidden states of the decoder network with

the latent vector hesign. In the classic encoder-decoder architecture [172], this latent rep-

resentation is the only information source of the decoding phase. By taking its previous

hidden state, hdu, and the word embedding, mu, of the previously predicted word wu as

inputs, the decoder generates an output odu+1, which represents the embedding of the

next word in the sequence, wu+1, and updates its hidden state, hdu+1:

odu+1, h
d
u+1 = Decoder(mu, h

d
u). (5.5)

Here hd0 = hesign is the spatio-temporal representation of sign language video learned

by the encoder and m0 is the embedding of the special token w0 = < bos > indicating

the beginning of a sentence. Outputs of the decoder are then fed to a FC layer which

produces probabilities over the vocabulary for each word as :
1Note that j + 1 is the previous step of j due to reversed input sequence zJ:1.
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p(wu) = FullyConnected(odu) (5.6)

This procedure continues until the decoder predicts another special token, < eos >,

which indicates the end of a sentence. By generating sentences word by word, the

decoder decomposes the conditional probability p(S|V) into ordered conditional proba-

bilities:

p(S|V) =
U∏
u=1

p(wu|w0:u−1, h
e
sign) (5.7)

which are then used to calculate the errors by applying Cross Entropy Loss [52] for

each word. For end-to-end experiments, these errors are back propagated through the

encoder-decoder network to the CNN and word embeddings, thus updating all of the

network parameters.

Encoder and Decoder Recurrent Units

Various types of recurrent units have been used for neural machine translation. The first

encoder-decoder network proposed by Kalchbrenner and Blunsom [91], which utilized

RNN decoders with colloquial recurrent units. Later approaches employed shallow

[172, 113] and deep architectures [199] of Long Short-Term Memory (LSTM) units

[82] and Gated Recurrent Units (GRUs) [38].
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Figure 5.2: Visualizations of Long Short-Term Memory [82] unit and Gated Recurrent

Unit [38].
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LSTM units and GRUs were proposed to address the vanishing and exploding gradient

issues of colloquial RNNs. To achieve this, both units utilize gating mechanisms to

update hidden states of the recurrent cells, thus maintaining long term information flow

by avoiding nonlinear operations [126].

LSTM units, visualized in Figure 5.2a, are built using three gates, namely the forget

gate, Gfu, input gate, Giu, and output gate, Gou. They also utilize cell state, Cu, which

is responsible for storing long-term dependencies and is updated only by using linear

operations.

Given an input, mu−1, and the previous cell output, odu−1, the LSTM first decides which

information it is going to eliminate from the previous cell state, Cu−1, by using the

forget gate, Gfu, which is calculated as:

Gfu = σ(Wf [o
d
u−1,mu−1] + bf ) (5.8)

After calculating the forget gate, the next operation is to update the cell state, Cu. The

first step is to calculate a new candidate cell state, C̃u, and the input gate, Giu, as:

C̃u = tanh(Wc[o
d
u−1,mu−1] + bc) (5.9)

Giu = σ(Wi[o
d
u−1,mu−1] + bi) (5.10)

Then, the new cell state Cu is calculated using the forget gate, Gfu, input gate, Giu, and

the candidate cell state C̃u as:

Cu = Gfu .
∗ Cu−1 +Giu .

∗ C̃u (5.11)

where ( .∗ ) is an element-wise multiplication. Here the forget gate, Gfu, acts as a

soft forget mask over the information flow of the cell state while the input gate, Giu,

regulates the amount of new information we are going to add to the cell state, Cu, from

the candidate cell state C̃u.
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The last operation in an LSTM cell is to generate an output based on the new cell state

Cu. This is done by utilizing the output gate, Gou, which is calculated as:

Gou = σ(Wo[o
d
u−1,mu−1] + bo) (5.12)

Finally the output gate, Gou, is applied to the cell state, Cu, to calculate the new output

odu as:

odu = Gou .
∗ tanh(Cu) (5.13)

In contrast to the LSTM units, GRUs (which are visualized in Figure 5.2b) combine the

forget and input gates into a single update gate, Gru, and use a modified output gate Ghu.

They also don’t utilize the cell state thus the only source of information between cells

are the cell outputs. This makes GRUs faster to train and less prone to over-fitting due

to the reduced number of parameters, while achieving competitive performance against

LSTM units. The modified equations of the GRUs are as follows:

Gru = σ(Wr[o
d
u−1,mu−1] + br) (5.14)

Ghu = σ(Wh[o
d
u−1,mu−1] + bh) (5.15)

ôdu = tanh(W[odu−1,mu−1] + bc) (5.16)

odu = (1−Ghu) .∗ odu−1 +Ghu .
∗ ôdu (5.17)

Attention Mechanisms

A major drawback of using a classic recurrent encoder-decoder architecture is the

information bottleneck caused by representing a whole sign language video with a fixed

sized vector. Furthermore, due to the large number of frames, our networks suffer from

long term dependencies and vanishing gradients. To overcome these issues, we utilize

attention mechanisms to provide additional information to the decoding phase. By using

attention mechanisms, our networks are able to learn where to focus while generating
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each word. We employ two of the most prominent attention approaches proposed by

Bahdanau et al. [11] and Luong et al. [113], which are visualized in Figure 5.3 and

were state-of-the-art at the time of this research.
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Figure 5.3: Visualizations of the attention mechanisms used in this chapter.

The idea behind attention mechanisms is to create a weighted summary of the source

sequence to aid the decoding phase. This summary is commonly known as the context

vector and it will be notated as cu in this chapter. For each decoding step u, a new

context vector cu is calculated by taking a weighted sum of encoder outputs oeJ :1 as:
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cu =
J∑
j=1

γuj o
e
j (5.18)

where γuj represent the attention weights, which can be interpreted as the relevance

of an encoder input zj to generating the word wu. These weights are calculated via a

scoring function of the decoder output odu against each encoder output oej as:

γuj =
exp(score(odu, o

e
j))∑J

j′=1 exp(score(o
d
u, o

e
j′)

(5.19)

where the scoring function depends on the attention mechanism that is being used. In

this chapter we examine two scoring functions. The first one is a multiplication based

approach proposed by Luong et al. [113], which is commonly known as the dot-product

attention, and the second is a concatenation based function proposed by Bahdanau et al.

[11]. These functions are as follows:

score(odu, o
e
j) =

 (odu)
>Woej [Multiplication]

V >tanh(W [odu; o
e
j ]) [Concatenation]

(5.20)

where W and V are learned parameters. The context vector cu is then combined with

the decoder output odu to calculate an updated decoder output as:

õdu = tanh(Wc[cu; o
d
u]) (5.21)

Finally, we feed the updated decoder output, õdu, to a FC layer, replacing the old decoder

output odu in Equation 5.6, to model the ordered conditional probability in Equation 5.7.

Furthermore, following Luong et al.’s architecture [113], õdu is fed to the next decoding

step u+ 1 thus changing Equation 5.5 to:

odu+1, h
d
u+1 = Decoder(mu, h

d
u, õ

d
u) (5.22)

Besides the use of different score functions noted in Equation 5.20, there are several

architectural differences between attention mechanisms proposed by Bahdanau et al.
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(See Figure 5.3a) and Luong et al. (See Figure 5.3b). While Luong et al. use the output

of the current step, odu to create the context vector, cu for the word wu, Bahdanau et al.

use the output of the previous step odu−1.

Another difference is how the context vector is incorporated into the decoder network.

Luong et al. concatenates the decoder output odu with the context vector cu to generate

an updated output õdu, as noted in Equation 5.21. Bahdanau et al. on the other hand

concatenate the context vector cu with the decoder networks top layer’s hidden state

from the previous step hdu and feed it to the same units in next time step.

The final distinction of Luong et al.’s architecture is that they feed the updated output

õdu to the next step of the decoder by concatenating it to the word embedding mu.

5.2 Quantitative Experiments

We evaluate the proposed Neural Sign Language Translation approach on the recently

released PHOENIX14T (See Chapter 4) dataset. To underpin future research and to set

baselines for SLT, we conduct several sets of experiments using some of the protocols

laid down in Section 4.1. We categorize our experiments under three groups:

1. Gloss2Text, in which we simulate having a perfect SLR system as an intermediate

tokenization.

2. Sign2Text which covers the end-to-end pipeline, translating directly from frame

level sign language video into spoken language.

3. Sign2Gloss2Text which uses an SLR system [102] as tokenization layer to add

intermediate supervision.

All of our encoder-decoder networks were built using four stacked layers of residual re-

current units with separate parameters. Each recurrent layer contains 1000 hidden units,

thus yielding 8000 units in total for each encoder-decoder network. In our Sign2Text

experiments we use AlexNet [105] without its final FC layer (FC8) as our Spatial

Embedding layer and initialize it using weights that were trained on ImageNet [53].
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For our Sign2Gloss2Text experiments we use the CNN-RNN-HMM network proposed

by Koller et al. [102] as our spatial embedding and tokenization layers, which was the

state-of-the-art CSLR model at the time of this research. It achieves a gloss recognition

performance of 25.7% and 26.6% Word Error Rate (WER) on the development and

test sets of the PHOENIX14T, respectively. All remaining parts of our networks are

initialized using Xavier [69] initialization. We use Adam [94] optimization with a

learning rate of 10−5 and its default parameters (β1 = 0.9, β2 = 0.999, ε = 10−8). We

also use gradient clipping with a threshold of five and dropout connections with a drop

probability of 0.2.

All of our networks are trained until the training perplexity has converged, which took

∼30 epochs on average. We evaluate our models on the development and test sets every

half-epoch, and report results for each setup using the model that performed the best

on the development set. In the decoding phase we generate spoken language sentences

using a beam search with a beam width of three, which we empirically show to be the

optimal beam size for our experiments.

To measure our translation performance we utilize Bilingual Evaluation Understudy

(BLEU) [132] and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [110]

scores, which are described in detail in Section 4.2.

5.2.1 Gloss2Text: Simulating Perfect Recognition

In our first set of experiments we simulate having an idealized SLR system which

performs perfect SLR as an intermediate tokenizer. To do so, NMT networks are

trained to generate spoken language translations from ground truth sign glosses. We

refer to this set of experiments as Gloss2Text.

There are two main objectives of the Gloss2Text experiments. The first objective is to

create an artificial upper bound for end-to-end SLT. This upper bound is considered as

artificial, due to the fact that sign gloss annotation is prone to human error and exactly

how sign glosses should be annotated is still an open linguistic research question.

We believe that given enough training data and more advanced network architectures,

it is possible for an end-to-end SLT system to learn more informative intermediate
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representations than sign glosses, which capture sub-unit level representations of the

signs. However, until we have more publicly available sign language resources and

more advanced machine translation methods, this artificial upper bound should serve

the SLT research community as a good comparison point for evaluating automatic sign

video to spoken language translation systems.

The second objective of the Gloss2Text experiments is to examine different encoder-

decoder network architectures and hyper-parameters, and evaluate their effects on sign

to spoken language translation performance. As training Sign2Text networks is an order

of magnitude slower than Gloss2Text (10 days vs. one day, respectively), we use the

best performing setup from our Gloss2Text experiments while training our Sign2Text

networks.

Note that we should expect the translation performance’s upper bound to be significantly

lower than 100%. As in all natural language problems, there are many ways to say the

same thing, and thus many equally valid translations. Unfortunately, this is impossible

to quantify perfectly using any existing automatic evaluation measure, given that our

dataset only provides a single reference translation.

Recurrent Units: GRU vs LSTM

To choose which recurrent unit to use, we trained two Gloss2Text networks using

LSTM units and GRUs. Both networks were trained using a batch size of 128 and the

Luong attention mechanism as described in Section 5.1.

DEV SET TEST SET

Unit Type: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

LSTM 41.69 41.54 27.90 20.66 16.40 41.92 41.22 28.03 20.77 16.58

GRU 43.85 43.71 30.49 23.15 18.78 43.73 43.43 30.73 23.36 18.75

Table 5.1: Gloss2Text: Effects of using different recurrent units on translation

performance.

As can be seen in Table 5.1, GRUs outperformed LSTM units in both BLEU and

ROUGE scores. We believe this is due to over-fitting caused by the additional parame-

ters in LSTM units and the limited number of training sequences. As discussed in detail
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in Section 5.1.3, compared to LSTM units, GRUs operate using fewer gates (two vs.

three) and hence have fewer parameters (three vs four weights per unit) which makes

them faster to train and less prone to over-fitting with smaller datasets. We therefore

use GRUs for the rest of our experiments.

Attention Mechanisms: Luong vs. Bahdanau

Next we evaluated the effects of different attention mechanisms for the Gloss2Text

translation task. We used Bahdanau [11] and Luong [113] attention, which was de-

scribed in detail in Section 5.1. We also trained a network which did not use any

attention mechanisms as a baseline. All of our networks were trained using GRUs and

a batch size of 128.

DEV SET TEST SET

Attention: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

None 40.32 40.45 27.19 20.28 16.29 40.71 40.66 27.48 20.40 16.34

Bahdanau 42.93 42.93 29.71 22.43 17.99 42.61 42.76 29.55 22.00 17.40

Luong 43.85 43.71 30.49 23.15 18.78 43.73 43.43 30.73 23.36 18.75

Table 5.2: Gloss2Text: Attention Mechanism Experiments.

Our first observation from this experiment was that having an attention mechanism

improved the translation performance drastically as shown in Table 5.2. When attention

mechanisms are compared, Luong attention outperformed Bahdanau attention and

generalized better on the test set.

We believe this is due to the architectural differences of how attention is implemented

by Luong et al. and Bahdanau et al., described in detail in Section 5.1.3. Luong et al.

injects the context vector twice into the network, first in combination with the word

embedding to the decoder and the second time in combination with the decoder output.

Compared to Bahdanau et al.’s single injection from the top recurrent layer, Luong et

al.’s approach allows further modelling of the context vector, which we believe is the

reason for the performance difference. Therefore we train our remaining Gloss2Text

networks using Luong attention.
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What Batch Size to use?

There have been several studies on the effects of batch sizes while using Stochastic

Gradient Descent (SGD) [16, 109]. Although larger batch sizes have the advantage

of providing smoother gradients, they decrease the rate of convergence. Furthermore,

recent studies on the information theory behind Deep Learning (DL) suggests the noise

provided by smaller batch sizes helps the networks to represent the data more efficiently

[180, 158].

In addition, training and evaluation set distributions of sequence-to-sequence datasets

are distinct by nature. When early stopping is employed during training, having

additional noise provided by smaller batch sizes gives the optimization the opportunity

to step closer to the target distribution. This suggests there is an optimal batch size

given a network setup. Therefore, in our third set of experiments we evaluate the effects

of the batch size on translation. We train five Gloss2Text networks using different batch

sizes that are 128, 64, 32, 16 and 1. All of our networks were trained using GRUs and

Luong attention.

DEV SET TEST SET

Batch Size: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

128 43.85 43.71 30.49 23.15 18.78 43.73 43.43 30.73 23.36 18.75

64 43.78 43.52 30.56 23.36 18.95 44.36 44.33 31.34 23.74 19.06

32 44.63 44.67 31.44 24.08 19.58 44.52 44.51 31.29 23.76 19.14

16 44.87 44.10 31.16 23.89 19.52 44.37 43.96 31.11 23.66 19.01

1 46.02 44.40 31.83 24.61 20.16 45.45 44.13 31.47 23.89 19.26

Table 5.3: Gloss2Text: Batch Size Experiments.

One interesting observation from this experiment was that, the networks trained using

smaller batch sizes converged faster but to a higher training perplexity than one. We

believe this is due to high variance between gradients. To deal with this we decrease the

learning rate to 10−6 when the training perplexity plateaus, and continue training for

100,000 iterations. Results show that having a smaller batch size helps the translation

performance. As reported in Table 5.3, the Gloss2Text network with batch size one

outperformed networks that were trained using larger batch sizes. Considering these

results, the remainder of our experiments use a batch size of one.
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Effects of Beam Width

The most straight forward decoding approach for an Encoder-Decoder networks is

to use a greedy search, in which the word with highest probability is considered the

prediction and fed to the next time step of the decoder. However, this greedy approach

is prone to errors, given that the predictions can have a low confidence. To address

this, we use a simple left-to-right Beam Search during the decoding phase, in which a

number of candidate sequences, also known as beam width, are stored and propagated

through the decoder. However, larger beam widths do not necessarily mean better

translation performance and increases decoding duration and memory requirements.

Therefore, to find the optimal value, we use our best performing Gloss2Text network to

perform a parameter search over possible beam widths and report development and test

set translation performances in the form of a BLEU-4 score.
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Figure 5.4: Effects of Beam Width on Gloss2Text performance.

As shown in Figure 5.4, a beam width of two or three was optimal for our Gloss2Text

network. Although a beam width of two yielded the highest translation performance on

the development set, beam width three generalized better to the test set. In addition,

as beam width increased, the BLEU-4 scores plateau and then start to decline. Taking

these results into consideration, we continue using a beam width of three for the rest of

our experiments.
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5.2.2 Sign2Text: From Sign Video To Spoken Text

In our second set of experiment we evaluate our Sign2Text networks which learn to

generate spoken language from sign videos without any intermediate representation

in an end-to-end manner. In this setup our tokenization layer is an Identity function,

feeding the spatial embeddings directly to the encoder-decoder network. Using the

hyper-parameters from our Gloss2Text experiments, we train three Sign2Text networks

with different attention choices.

DEV SET TEST SET

Attention: ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

Gloss2Text (Best) 46.02 44.40 31.83 24.61 20.16 45.45 44.13 31.47 23.89 19.26

None 31.00 28.10 16.81 11.82 9.12 29.70 27.10 15.61 10.82 8.35

Bahdanau 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58

Luong 32.6 31.58 18.98 13.22 10.00 30.70 29.86 17.52 11.96 9.00

Table 5.4: Sign2Text: Attention Mechanism Experiments.

As with the Gloss2Text task, utilizing attention mechanisms increases the translation

performance of our Sign2Text networks (See Table 5.4). However, when compared

against Gloss2Text, the translation performance is lower. We believe this might be

due to several reasons. As the number of frames in a sign video is much higher than

the number of its gloss level representations, our Sign2Text networks suffer from long

term dependencies and vanishing gradients. In addition, the dataset we are using might

be too small to allow our Sign2Text network to generalize considering the number

of parameters (CNN + Encoder Decoder + Attention). Furthermore, expecting our

networks to recognize visual sign language and translate them to spoken language with

only the translation supervision might be too much to ask from them. Therefore, in our

next set of experiments, which we call Sign2Gloss2Text, we introduce the gloss level

supervision to aid the task of full translation.

5.2.3 Sign2Gloss2Text: Gloss Level Supervision

In our final experiment we propose using glosses as an intermediate representation while

going from sign videos to spoken language translations. To achieve this, we use the
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CNN-RNN-HMM hybrid proposed in [102] as our spatial embedding and tokenization

layers. We evaluate two setups. In the first setup: Sign2Gloss→Gloss2Text, we use our

best performing Gloss2Text network without any retraining to generate sentences from

the estimated gloss token embeddings. In the second setup: Sign2Gloss2Text, we train

a network from scratch to learn to translate from the predicted gloss.

DEV SET TEST SET

Approach ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

Gloss2Text 46.02 44.40 31.83 24.61 20.16 45.45 44.13 31.47 23.89 19.26

Sign2Text 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58

Sign2Gloss→Gloss2Text 43.76 41.08 29.10 22.16 17.86 43.45 41.54 29.52 22.24 17.79

Sign2Gloss2Text 44.14 42.88 30.30 23.02 18.40 43.80 43.29 30.39 22.82 18.13

Table 5.5: Effects of different tokenization schemes for sign to text translation.

The Sign2Gloss→Gloss2Text network performs surprisingly well considering there

was no additional training. This shows us that our Gloss2Text network has already

learned some robustness to noisy inputs, despite being trained on perfect glosses, this

may be due to the dropout regularization employed during training. However, our

second approach Sign2Gloss2Text surpasses these results and obtains scores close

to the idealized performance of the Gloss2Text network. This is likely because the

translation system is able to correct the failure modes in the tokenizer. As can be seen

in Table 5.5, compared to the Sign2Text network Sign2Gloss2Text was able to surpass

its performance by a large margin, indicating the importance of intermediary expert

gloss level supervision to simplify the training process.

5.3 Qualitative Examples

One of the most obvious ways of qualifying translation is to examine the resultant trans-

lations. To give a better understanding to the reader, in Table 5.6 we share translation

samples generated from our Gloss2Text, Sign2Text and Sign2Gloss2Text networks

accompanied by the ground truth German and word to word English translations.

We can see that the most common error made is the mistranslation of dates, places and

numbers. Although this does not effect the overall structure of the translated sentence,

it tells us the embedding learned for these infrequent words is insufficient.
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5.4 Closing Remarks

In this chapter, we introduced the challenging task of Sign Language Translation and

proposed the first end-to-end solution. In contrast to previous research, we took a

machine translation perspective; treating sign language as a fully independent language

and proposing SLT rather than SLR. To achieve NMT from sign videos, we employed

CNN based spatial embedding, various tokenization methods including state-of-the-art

RNN-HMM hybrids [102] and attention-based encoder-decoder networks, to jointly

learn to align, recognize and translate sign videos to spoken text.

To evaluate our approach we use the recently released PHOENIX14T, the first con-

tinuous sign language translation dataset, which is publicly available. We conducted

extensive experiments, making a number of recommendations to underpin future re-

search.

One of the limiting factors in our experiments was the Graphics Processing Unit (GPU)

technology at the time. Due to the length of sign sequences, which can go up to 300

frames in PHOENIX14T, we were only able to fit one sequence at a time on a NVIDIA

Titan X Maxwell GPU with 12GB video memory. This limitation forced us to employ

smaller batch sizes and legacy CNNs, namely AlexNet [105]. Although the increased

intra-iteration noise caused by having a smaller batch size acts as a regularizer, it is not

optimal for training large networks as it is computationally inefficient, i.e. training can

take more than 10 days. One way to address this issue is to pretrain CNNs on similar

sign language tasks and use the features extracted by them as the input of our SLT

networks. This approach will not only drastically reduce the training times but will also

enable us to exploit more sophisticated CNN architectures, which would not have fitted

in the graphics card memory while training.

Another way to increase the batch size and to enable the use of more advanced CNN

architectures, such as ResNets [79], is to use key frame extraction methods on the sign

videos before feeding the frames to the networks. In sign sequences there are many

redundant and blurry frames which carry little information besides indicating the speed

of the performed sign. We can eliminate these frames by localizing stationary poses

of the signers. In addition, we can employ motion descriptors such as Optical Flow



52 Chapter 5. Neural Sign Language Translation

[83] to address the information loss caused by frame elimination. We believe such an

approach would drastically reduce the number of frames and improve the translation

performance as it would inherently shorten the long term dependencies within videos.

One of the key findings of our experiments was that using gloss information as an

intermediate step to spoken language translation improved our performance drastically.

We believe there are three reasons for this. Firstly, modelling gloss representations are

much easier than modelling spatial embeddings, as the gloss vocabulary is limited while

there are infinitely many possible input images. Secondly, gloss level representations are

user independent, as the translation system does not need to handle different identities

embedded in the spatial representations. Thirdly, gloss level representations are much

more concise. By which we mean we can represent the same sign sequence with

fewer tokens using glosses rather than frames, e.g. it is possible to represent a five

second video with 125 frames with less than 10 glosses, which makes the job of

the translation system significantly easier. However, utilizing this two step approach

imposes an information bottleneck, as glosses are imprecise text-based representations

of visual sign languages. Therefore, advancements are required to incorporate sign

gloss supervision, while not limiting the translation performance.

To address the limitations of the work presented in this chapter, namely poor perfor-

mance of Sign2Text models and the information bottleneck imposed by using text-based

intermediate gloss representations, we propose a multi-task formulation of the SLT task

in Chapter 6. We utilize pretrained CNNs to extract spatial representations of video

frames. We then use gloss supervision as an auxiliary loss function and train our joint

recognition and translation models in an end-to-end manner.
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Ground Truth: und nun die wettervorhersage für morgen samstag den zweiten april .
( and now the weatherforecast for tomorrow saturday the second april . )

Gloss2Text: und nun die wettervorhersage für morgen samstag den elften april .
( and now the weatherforecast for tomorrow saturday the eleventh april . )

Sign2Text: und nun die wettervorhersage für morgen freitag den sechsundzwanzigsten märz .
( and now the weatherforecast for tomorrow friday the twentysixth march . )

Sign2Gloss2Text: und nun die wettervorhersage für morgen samstag den siebzehnten april .
( and now the weatherforecast for tomorrow saturday the seventeenth april . )

Ground Truth: die neue woche beginnt wechselhaft und kühler .
( the new week starts unpredictable and cooler . )

Gloss2Text: die neue woche beginnt wechselhaft und wieder kühler .
( the new week starts unpredictable and again cooler . )

Sign2Text: am montag überall wechselhaft und kühler .
( on monday everywhere unpredictable and cooler . )

Sign2Gloss2Text: die neue woche beginnt wechselhaft und wechselhaft .
( the new week starts unpredictable and unpredictable . )

Ground Truth: im süden und südwesten gebietsweise regen sonst recht freundlich .
( in the south and southwest locally rain otherwise quite friendly . )

Gloss2Text: in der südwesthälfte regnet es zeitweise sonst ist es recht freundlich .
( in the southwestpart it rains temporarely otherwise it is quite friendly . )

Sign2Text: von der südhälfte beginnt es vielerorts .
( from the southpart it starts in many places . )

Sign2Gloss2Text: am freundlichsten wird es im süden .
( the friendliest it will be in the south . )

Ground Truth: am sonntag ab und an regenschauer teilweise auch gewitter .
( on sunday time to time rainshower partly also thunderstorm . )

Gloss2Text: am sonntag teilweise kräftige schauer und gewitter .
( on sunday partly heavy shower and thunderstorm . )

Sign2Text: am sonntag sonne und wolken und gewitter .
( on sunday sun and clouds and thunderstorm . )

Sign2Gloss2Text: am sonntag breiten sich teilweise kräftige schauer und gewitter .
( on sunday spreads partly heavy shower and thunderstorm . )

Table 5.6: Samples where models failed to correctly translate the target sentence.
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Chapter 6

Sign Language Transformers:

Joint End-to-end Sign Language

Recognition and Translation

One of the main findings in Chapter 5 was that using gloss based intermediate rep-

resentations improved the Sign Language Translation (SLT) performance drastically

when compared to an end-to-end Sign2Text approach. The resulting Sign2Gloss2Text

model first recognized glosses from continuous sign videos using a state-of-the-art

Continuous Sign Language Recognition (CSLR) method [102], which worked as a

tokenization layer. The recognized sign glosses were then passed to a text-to-text

attention-based Neural Machine Translation (NMT) network [113] to generate spoken

language sentences.

We hypothesize that there are two main reasons why Sign2Gloss2Text performs better

than Sign2Text (18.13 vs 9.58 BLEU-4 scores). Firstly, the number of sign glosses is

much lower than the number of frames in the videos they represent. By using gloss

representations instead of the spatial embeddings extracted from the video frames,

Sign2Gloss2Text avoids the long-term dependency issues, which Sign2Text suffers

from. However, this problem can be addressed by reducing the number of frames using

techniques proposed in the legacy key-frame based Sign Language Recognition (SLR)

55
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literature [202]. Furthermore, optical-flow based action recognition methods could be

utilized [210] to retain the motion information.

We think the second and more critical reason is the lack of direct guidance for un-

derstanding sign sentences in Sign2Text training. Given the complexity of the task, it

might be too difficult for current Neural Sign Language Translation architectures to

comprehend sign without any explicit intermediate supervision. In this chapter, we

propose a novel Sign Language Transformer approach, which addresses this issue while

avoiding the need for a two-step pipeline, where translation is solely dependent on

recognition accuracy. This is achieved by jointly learning sign language recognition

and translation from spatial-representations of sign language videos in an end-to-end

manner. Exploiting the encoder-decoder based architecture of transformer networks

[187], we propose a multi-task formalization of the joint continuous sign language

recognition and translation problem.

To help our translation networks with sign language understanding and to achieve

CSLR, we introduce a Sign Language Recognition Transformer (SLRT), an encoder

transformer model trained using a Connectionist Temporal Classification (CTC) loss

[3], to predict sign gloss sequences. SLRT takes spatial embeddings extracted from

sign videos and learns spatio-temporal representations. These representations are

then fed to the Sign Language Translation Transformer (SLTT), an autoregressive

transformer decoder model, which is trained to predict one word at a time to generate

the corresponding spoken language sentence.

We evaluate the recognition and translation performances of our approaches on the

challenging RWTH-PHOENIX-Weather-2014T Dataset (PHOENIX14T), which is

described in detail in Chapter 4. We report state-of-the-art sign language recognition

and translation results achieved by our Sign Language Transformers. Our translation

networks outperform both sign video to spoken language and gloss to spoken language

translation models, in some cases more than doubling the performance (9.58 vs. 21.80

BLEU-4 Score). We also share new baseline translation results using transformer

networks for several other text-to-text sign language translation tasks.

The rest of this chapter is organized as follows: In Section 6.1, we present Sign Lan-
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guage Transformers, a novel joint sign language recognition and translation approach

which can be trained in an end-to-end manner. We introduce our experimental setup

and report quantitative results of the Sign Language Transformers in Section 6.2. We

then share translation examples generated by our network to give the reader further

qualitative insight of how our approach performs in Section 6.3. Finally, we conclude

the chapter in Section 6.4 by discussing our findings and possible future work.

6.1 Methodology

In this section we introduce Sign Language Transformers which jointly learn to recog-

nize and translate sign video sequences into sign glosses and spoken language sentences

in an end-to-end manner. Our objective is to learn the conditional probabilities p(G|V)

and p(S|V) of generating a sign gloss sequence G = (g1, ..., gN ) with N glosses

and a spoken language sentence S = (w1, ..., wU ) with U words given a sign video

V = (I1, ..., IT ) with T frames.

Modelling these conditional probabilities is a sequence-to-sequence task, and poses sev-

eral challenges. In both cases, the number of tokens in the source domain is much larger

than the corresponding target sequence lengths (i.e. T � N and T � U ). Furthermore,

the mapping between sign language videos, V , and spoken language sentences, S, is

non-monotonic, as both languages have different vocabularies, grammatical rules and

orderings.

Previous sequence-to-sequence based literature on SLT can be categorized into two

groups: The first group break down the problem in two stages. They consider CSLR

as an initial process and then try to solve the problem as a text-to-text translation task

[31, 24]. For example, in Chapter 5, we utilized a CSLR method [102] to obtain sign

glosses, and then used an attention-based text-to-text NMT model [113] to learn the

sign gloss to spoken language sentence translation, p(S|G) [24].

However, in doing so, this approach introduces an information bottleneck in the mid-

level gloss representation. This limits the network’s ability to understand sign language

as the translation model can only be as good as the sign gloss annotations it was trained
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from. There is also an inherent loss of information as a sign gloss is an incomplete

representation intended only for linguistic annotation and study, and it therefore neglects

many crucial details and information present in the original sign language video.

The second group of methods focus on translation from the sign video representations

to spoken language with no intermediate representation [24, 95]. These approaches

attempt to learn p(S|V) directly. Given enough data and a sufficiently sophisticated

network architecture, such models could theoretically realize end-to-end SLT with

no need for human-interpretable information that acts as a bottleneck. However, due

to the lack of direct supervision guiding sign language understanding, such methods

have significantly lower performance than their counterparts on the currently available

datasets [24].
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Figure 6.1: A detailed overview of a single layered Sign Language Transformer.

(SE: Spatial Embedding, WE: Word Embedding , PE: Positional Encoding, FF: Feed

Forward)

To address this, we propose to jointly learn p(G|V) and p(S|V), in an end-to-end manner.

We build upon transformer networks [187] to create a unified model, which we call Sign

Language Transformers. We train our networks to generate spoken language sentences

from sign language video representations. During training, we inject intermediate
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gloss supervision in the form of a CTC loss into the Sign Language Recognition

Transformer (SLRT) encoder. This helps our networks learn more meaningful spatio-

temporal representations of the sign without limiting the information passed to the

decoder. We employ an autoregressive Sign Language Translation Transformer (SLTT)

decoder which predicts one word at a time to generate the spoken language sentence

translation. And overview of our approach can be seen in Figure 6.1.

6.1.1 Spatial and Word Embeddings

Following the classic NMT pipeline, we start by embedding our source and target

tokens, namely sign language video frames and spoken language words. As word

embedding we use a linear layer, which is initialized from scratch during training, to

project a one-hot-vector representation of the words into a denser space. To embed

video frames, we use the Spatial Embedding approach [24], and propagate each image

through Convolutional Neural Networks (CNNs). We formulate these operations as:

mu = WordEmbedding(wu)

ft = SpatialEmbedding(It)
(6.1)

where mu is the embedded representation of the spoken language word wu and ft

corresponds to the non-linear frame level spatial representation obtained from a CNN.

Unlike other sequence-to-sequence models [172, 68], transformer networks do not

employ recurrence or convolutions, thus lacking the positional information within

sequences. To address this issue we follow the positional encoding method proposed in

[187] and add temporal ordering information to our embedded representations as:

f̂t = ft + PositionalEncoding(t) (6.2)

m̂u = mu + PositionalEncoding(u) (6.3)

where PositionalEncoding is a predefined function which produces a unique vector in

the form of a phase shifted sine wave for each time step. The used PositionalEncoding

function can be formalized as:
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PositionalEncoding(ts, 2i) = sin(ts/100002i/dk)

PositionalEncoding(ts, 2i+ 1) = cos(ts/100002i/dk)
(6.4)

where ts is the time step that is being positionally encoded, dk is the hidden size of

the transformer network, and i ∈ {0, ..., dk/2} is used to index the feature vector.

Each dimension of the positional encoding vector corresponds to a sinusoid, whose

wavelengths form a geometric progression from 2π to 10000 · 2π [187].

6.1.2 Sign Language Recognition Transformers

The aim of SLRT is to recognize glosses from continuous sign language videos while

learning meaningful spatio-temporal representations for the end goal of sign language

translation. Using the positionally encoded spatial embeddings, f̂1:T , we train a trans-

former encoder model [187].

The inputs to SLRT are first modelled by a Self-Attention layer which learns the

contextual relationship between the frame representations of a video. Outputs of the

self-attention are then passed through a non-linear point-wise feed forward layer. All

the operations are followed by residual connections and normalization to help training.

We formulate this encoding process as:

zt = SLRT(f̂t|f̂1:T ) (6.5)

where zt denotes the spatio-temporal representation of the frame It, which is generated

by SLRT at time step t, given the spatial representations of all of the video frames, f̂1:T .

We inject intermediate supervision to help our networks understand sign language and

to guide them to learn meaningful representations which would help the main task of

translation. We train the SLRT to model p(G|V) and predict sign glosses.

Due to the spatio-temporal nature of the signs, glosses have a one-to-many mapping

to video frames but share the same ordering. One way to train the SLRT would be

using a cross-entropy loss [70] with frame level annotations. However, sign gloss
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annotations with such precision are rare. An alternative form of weaker supervision

is to use a sequence-to-sequence learning loss functions, such as CTC [72]. First

proposed by Graves et al. for phoneme recognition from speech [72], CTC has achieved

state-of-the-art continuous recognition performance in a range of fields including audio-

visual speech recognition [3], lip reading [10], hand shape recognition [23] and CSLR

[211, 142].

Given spatio-temporal representations, z1:T , we obtain frame level gloss probabilities,

p(gt|V), using a linear projection layer followed by a softmax activation. We then use

CTC to compute p(G|V) by marginalizing over all possible V to G alignments as:

p(G|V) =
∑
π∈B

p(π|V) (6.6)

where π is a path and B are the set of all viable paths that correspond to G. We then use

the p(G|V) to calculate the CSLR loss as:

LR = 1− p(G∗|V) (6.7)

where G∗ is the ground truth gloss sequence.

6.1.3 Sign Language Translation Transformers

The end goal of our approach is to generate spoken language sentences from sign video

representations. We propose training an autoregressive transformer decoder model,

named SLTT, which exploits the spatio-temporal representations learned by the SLRT.

We start by prefixing the target spoken language sentence S with the special beginning

of sentence token,< bos >. We then extract the positionally encoded word embeddings.

These embeddings are passed to a masked self-attention layer. Although the main idea

behind self-attention is the same as in SLRT, the SLTT utilizes a mask over the self-

attention layer inputs. This ensures that each token may only use its predecessors while

extracting contextual information. This masking operation is necessary, as at inference
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time the SLTT won’t have access to the output tokens which would follow the token

currently being decoded.

Representations extracted from both SLRT and SLTT self-attention layers are combined

and given to an encoder-decoder attention module which learns the mapping between

source and target sequences. Outputs of the encoder-decoder attention are then passed

through a non-linear point-wise feed forward layer. Similar to SLRT, all the operations

are followed by residual connections and normalization. We formulate this decoding

process as:

hu+1 = SLTT(m̂u|m̂1:u−1, z1:T ). (6.8)

SLTT learns to generate one word at a time until it produces the special end of sentence

token, < eos >. It is trained by decomposing the sequence level conditional probability

p(S|V) into ordered conditional probabilities

p(S|V) =
U∏
u=1

p(wu|hu) (6.9)

which are used to calculate the cross-entropy loss for each word as:

LT = 1−
U∏
u=1

D∑
d=1

p(ŵdu)p(w
d
u|hu) (6.10)

where p(ŵdu) represents the ground truth probability of word wd at decoding step u and

D is the target language vocabulary size.

We train our networks by minimizing the joint loss term L, which is a weighted sum of

the recognition loss LR and the translation loss LT as:

L = λRLR + λTLT (6.11)

where λR and λT are hyper parameters which decide the importance of each loss

function during training and are evaluated in Section 6.2.
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6.2 Quantitative Experiments

In this section we share our sign language recognition and translation experimental

setups and report quantitative results on PHOENIX14T, which is described in detail in

Chapter 4. We first go over the implementation details and provide a reminder of the

evaluation metrics used to measure the performance.

We start our experiments by applying transformer networks to the text-to-text based

SLT tasks, namely Gloss2Text, Sign2Gloss2Text, Sign2Gloss→Gloss2Text and report

improved performance over using Recurrent Neural Network (RNN) based models. We

share our Sign2Gloss experiments, in which we explore the effects of different types

of spatial embeddings and network structures on the performance of CSLR. We then

train Sign2Text and Sign2(Gloss+Text) models using the best performing Sign2Gloss

configuration and investigate the effect of different recognition loss weights on the

joint recognition and translation performance. Finally, we compare our best performing

models against other approaches and report state-of-the-art results.

6.2.1 Implementation and Evaluation Details

Framework: We used a modified version of JoeyNMT [104] to implement our Sign

Language Transformers1. All components of our network were built using the PyTorch

framework [134], except the CTC beam search decoding, for which we utilized the

TensorFlow implementation [1].

Network Details: Our transformers are built using 512 hidden units and 8 heads in

each layer. We use Xavier initialization [69] and train all of our networks from scratch.

We also utilize dropout with 0.1 drop rate on transformer layers and word embeddings

to mitigate over-fitting.

Performance Metrics: We employed the metrics introduced in Section 4.2. We use

Word Error Rate (WER) for assessing our recognition models, as it is the prevalent

metric for evaluating CSLR performance [97]. To measure the translation performance

of our networks, we utilized BLEU [132] score, which is the most common metric for
1https://github.com/neccam/slt

https://github.com/neccam/slt
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machine translation. While calculating the BLEU scores we utilize n-grams ranging

from 1 to 4 to give the reader a better understanding of the translation performance on

different segment levels.

Training: We used the Adam [94] optimizer to train our networks using a batch size of

32 with a learning rate of 10−3 (β1=0.9, β2=0.998) and a weight decay of 10−3. We

utilize plateau learning rate scheduling which tracks the development set performance,

using WER and BLEU-4 scores as evaluation metrics for recognition and translation,

respectively. We evaluate our network every 100 iterations. If the development score

does not decrease for 8 evaluation steps, we decrease the learning rate by a factor of

0.7. This continues until the learning rate drops below a minimum value, which is set

set as 10−6 in our experiments. We trained 3 networks for all of our experiments, with

different random seeds, which are common between different experiments. We then

report the best performing model for each network setup.

Decoding: Previous work has shown the importance of decoding algorithms and how

they affect both the recognition and the translation performance [23, 24]. During the

training and validation steps we employ a greedy search to decode both gloss sequences

and spoken language sentences. At inference time, we utilize beam search decoding

with widths ranging from 0 to 10. We also implement a length penalty [199] with α

values ranging from 0 to 2. We find the best performing combination of beam width

and α on the development set and use these values for the test set evaluation.

6.2.2 Text-to-Text Sign Language Translation

In Chapter 5, we used RNN-based attention mechanisms [113, 11] to tackle text-to-text

SLT tasks on the PHOENIX14T dataset. However, Transformers [187] have become

the new baseline for many natural language understanding and machine translation tasks.

To evaluate the performance gain achieved over the RNN-based attention architectures,

in our first set of experiments, we adapt the transformer backbone of our technique for

text-to-text SLT protocols.

As can be seen in Table 6.1, utilizing transformers for text-to-text sign language transla-

tion improves the performance across all tasks, reaching an impressive 25.35/24.54 BLEU-
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4 score on the development and test sets. We believe this performance gain is due to the

more sophisticated attention architectures, namely self-attention modules, which learn

the contextual information within both source and target sequences.

6.2.3 Sign2Gloss

To tackle the Sign2Gloss task, we utilize our SLRT network. Any CNN architecture

can be used as spatial embedding layers to learn the sign language video frame rep-

resentation while training SLRT in an end-to-end manner. However, due to hardware

limitations (graphics card memory) we utilize pretrained CNNs as our spatial embed-

dings. We extract frame level representations from sign videos and train our sign

language transformers to learn CSLR and SLT jointly in an end-to-end manner.

In our first set of experiments, we investigate which CNN we should be using to

represent our sign videos. We utilize state-of-the-art EfficientNets [178], namely

B0, B4 and B7 variants, which were trained on ImageNet [53]. We also use an

Inception [175] network which was pretrained for learning sign language recognition

in a CNN+LSTM+HMM setup [96]. In this set of experiments we employed a two

layered transformer encoder model.

Table 6.2 shows that as the spatial embedding layer becomes more advanced, i.e. B0

vs B7, the recognition performance increases. However, our networks benefit more

when we used pretrained features, as these networks had seen sign videos before and

had the opportunity to learn kernels which can embed more meaningful representations

in the latent space. We then tried utilizing Batch Normalization [87] followed by a

ReLU [122] to normalize our inputs and allow our networks to learn more abstract

non-linear representations. This improved our results drastically, giving us a boost

of nearly 7% and 6% of absolute WER reduction on the development and test sets,

respectively. Considering these findings, the rest of our experiments used the batch

normalized pretrained CNN features of [96] followed by ReLU.

Next, we investigated the effects of having different numbers of transformer layers.

Although having a larger number of layers would allow our networks to learn more
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DEV TEST

Spatial Embedding del / ins WER del / ins WER

EfficientNet-B0 47.22 / 1.59 57.06 46.09 / 1.75 56.29

EfficientNet-B4 40.73 / 2.45 51.26 38.34 / 2.80 50.09

EfficientNet-B7 39.29 / 2.84 50.18 37.05 / 2.76 47.96

Pretrained CNN 21.51 / 6.10 33.90 20.29 / 5.35 33.39

+ BN & ReLU 13.54 / 5.74 26.70 13.85 / 6.43 27.62

Table 6.2: Impact of the Spatial Embedding Layer variants.

abstract representations, it also makes them prone to over-fitting. To this end, we built

our SLRT networks using one to six layers and evaluate their CSLR performance.

DEV TEST

# Layers del/ins WER del/ins WER

1 11.72 / 9.02 28.08 11.20 / 10.57 29.90

2 13.54 / 5.74 26.70 13.85 / 6.43 27.62

3 11.68 / 6.48 24.88 11.16 / 6.09 24.59

4 12.55 / 5.87 24.97 13.48 / 6.02 26.87

5 11.94 / 6.12 25.23 11.81 / 6.12 25.51

6 15.01 / 6.11 27.46 14.30 / 6.28 27.78

Table 6.3: Impact of different numbers of layers

Our recognition performance initially improves with additional layers (See Table 6.3).

However, as we continue adding more layers, our networks started to over-fit on the

training data, causing performance degradation. In the light of this, for the rest of our

experiments, we constructed our sign language transformers using three layers.

6.2.4 Sign2Text and Sign2(Gloss+Text)

In our next set of experiments we examine the performance gain achieved by unifying

the recognition and translation tasks into a single model. As a baseline, we trained a

Sign2Text network by setting our recognition loss weight λR to zero. We then jointly
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train our sign language transformers, for recognition and translation, with various

weightings between the losses.

Loss Weights DEV TEST

λR λT WER BLEU-4 WER BLEU-4

1.0 0.0 24.88 - 24.59 -

0.0 1.0 - 20.69 - 20.17

1.0 1.0 35.13 21.73 33.75 21.22

2.5 1.0 26.99 22.11 27.55 21.37

5.0 1.0 24.61 22.12 24.49 21.80

10.0 1.0 24.98 22.38 26.16 21.32

20.0 1.0 25.87 20.90 25.73 20.93

Table 6.4: Training Sign Language Transformers to jointly learn recognition and

translation with different weight on recognition loss.

As can be seen in Table 6.4, jointly learning recognition and translation with equal

weighting (λR=λT=1.0) improves the translation performance, while degrading the

recognition performance compared to task specific networks. We believe this is due to

the scale differences of the CTC and word-level cross entropy losses. Increasing the

recognition loss weight improved both the recognition and the translation performance,

demonstrating the value of sharing training between these related tasks.

Compared to previously published methods, our Sign Language Transformers surpass

both their recognition and translation performance (See Table 6.1). We report a decrease

of 2% WER over [96] on the test set in both Sign2Gloss and Sign2(Gloss+Text) setups.

More impressively, both our Sign2Text and Sign2(Gloss+Text) networks doubled the

previous state-of-the-art translation results (9.58 vs. 20.17 and 21.32 BLEU-4, respec-

tively). Furthermore, our best performing translation Sign2(Gloss+Text) outperforms

our previous text-to-text based Gloss2Text translation performance (19.26 vs 21.32

BLEU-4), which was previously proposed as a pseudo upper bound on performance in

Chapter 5 [24]. This supports our claim that given more sophisticated network architec-

tures, one would and should achieve better performance translating directly from video

representations rather than doing text-to-text translation through an information limited

gloss representation.
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6.3 Qualitative Examples

In this section we report our qualitative results. We share the spoken language trans-

lations generated by our best performing Sign2(Gloss+Text) model given sign video

representations (See Table 6.5 and Table 6.6). As the annotations in the PHOENIX14T

dataset are in German, we share both the produced sentences and their translations in

English.

Overall, the quality of the translations is good, and even where the exact wording differs,

it conveys the same information. The most difficult translations seem to be named

entities like locations which occur in limited contexts in the training data. Specific

numbers are also challenging as there is no grammatical context to distinguish one

from another. Despite this, the sentences produced follow standard grammar with

surprisingly few exceptions.

6.4 Closing Remarks

Sign language recognition and understanding is an essential part of the sign language

translation task. Previous translation approaches have relied heavily on recognition as

the initial step in their pipeline. In this chapter we proposed Sign Language Transform-

ers, a novel transformer based architecture to jointly learn sign language recognition

and translation in an end-to-end manner. We utilized CTC loss to inject gloss level

supervision into the transformer encoder, training it to do sign language recognition

while learning meaningful representations for the end goal of sign language translation,

without having an explicit gloss representation as an information bottleneck.

We evaluated our approach on the challenging PHOENIX14T dataset and report state-

of-the-art sign language recognition and translation results, in some cases doubling

the performance of previous translation approaches. Our first set of experiments have

shown that using features which were pretrained on sign data outperformed using

generic ImageNet based spatial representations. Furthermore, we have shown that

jointly training for recognition and translation tasks improved the performance across

both. More importantly, we have surpassed the text-to-text translation results, which
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Reference: im süden schwacher wind .
( in the south gentle wind . )

Ours: der wind weht im süden schwach .
( the wind blows gentle in the south . )

Reference: ähnliches wetter dann auch am donnerstag .
( similar weather then also on thursday . )

Ours: ähnliches wetter auch am donnerstag .
( similar weather also on thursday . )

Reference: ganz ähnliche temperaturen wie heute zwischen sechs und elf grad .
( quite similar temperatures as today between six and eleven degrees . )

Ours: ähnlich wie heute nacht das sechs bis elf grad .
( similar as today at night that six to eleven degrees . )

Reference: heute nacht neunzehn bis fünfzehn grad im südosten bis zwölf grad .
( tonight nineteen till fifteen degrees in the southeast till twelve degrees . )

Ours: heute nacht werte zwischen neun und fünfzehn grad im südosten bis zwölf grad .
( tonight values between nine and fifteen degrees in the southeast till twelve degrees . )

Reference: am sonntag im norden und in der mitte schauer dabei ist es im norden stürmisch .
( on sunday in the north and center shower while it is stormy in the north . )

Ours: am sonntag im norden und in der mitte niederschläge im norden ist es weiter stürmisch .
( on sunday in the north and center rainfall in the north it is continuously stormy . )

Table 6.5: Generated spoken language translations by our models - I.

was set as a virtual upper-bound, by directly translating spoken language sentences

from video representations.

As with any other emerging field, SLT is in need of more data. Although incorporating

sign glosses seems essential for future translation systems, it might not be feasible for

the longer term as annotating sign glosses is a laborious task. Ideally, we would like
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Reference: im süden und südwesten gebietsweise regen sonst recht freundlich .
( in the south and southwest partly rain otherwise quite friendly . )

Ours: im südwesten regnet es zum teil kräftig .
( in the southwest partly heavy rain . )

Reference: in der nacht sinken die temperaturen auf vierzehn bis sieben grad .
( at night the temperatures lower till fourteen to seven degrees . )

Ours: heute nacht werte zwischen sieben und sieben grad .
( tonight values between seven and seven degrees . )

Reference: heute nacht ist es meist stark bewölkt örtlich regnet oder nieselt es etwas .
( tonight it is mostly cloudy locally rain or drizzle . )

Ours: heute nacht ist es verbreitet wolkenverhangen gebietsweise regnet es kräftig .
(tonight it is widespread covered with clouds partly strong rain . )

Reference: an der saar heute nacht milde sechzehn an der elbe teilweise nur acht grad .
( at the saar river tonight mild sixteen at the elbe river partly only eight degrees . )

Ours: im rhein und südwesten macht sich morgen nur knapp über null grad .
( in the rhine river and south west becomes just above zero degrees . )

Table 6.6: Generated spoken language translations by our models - II.

be able to utilize the signed content from broadcasts, which is plentiful. However, it is

not be feasible to annotate the large amounts of data that is produced daily. In addition,

even if such annotations were obtained for one sign language, it is unlikely to transfer

to other sign languages.

To generalize to other sign languages and to make use of readily available broadcast

data, we believe future research should focus more on the building blocks of the sign,

also known as subunits, which are generally common between sign languages. From

a spoken language point of view, subunits can be seen as the phonetic alphabet of the

signs. If we consider a system which aims to translate texts from images, it would not
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start with a word classifier but with Optical Character Recognition (OCR) [119]. It

would then combine the recognized characters to build up words and sentences. Such

an OCR system would also be useful for recognizing other languages with similar

alphabets. Considering this, focusing on subunits and building systems that can robustly

recognize the manual and non-manual features of signs seems the logical next step for

future research.

In an attempt to move towards a phonetic representation, to reduce our dependence

on sign gloss annotations and to incorporate manual and non-manual features into

SLT pipelines, we propose a novel multi-channel transformer architecture for multi-

articulatory SLT in Chapter 7. We use hand, mouthing and upper body pose rep-

resentations to model sign languages in a holistic manner by learning the inter and

intra-channel contextual relationships. We also introduce a channel anchoring loss to

help our models preserve channel specific information while also regulating translation

loss against overfitting. More importantly, we show it is possible to achieve on par

translation performance with models which require labor intensive gloss annotations.



Chapter 7

Multi-Channel Transformers for

Multi-Articulatory Sign Language

Translation

To date, the literature that underpins vision based sign language research has predomi-

nantly focused on using the manual features to realize sign language recognition and

translation [133, 101, 24], thus ignoring the rich and essential information contained in

the non-manual features. This focus on the manual features is partially responsible for

the common misconception that sign language recognition and translation problems are

special sub-tasks of the gesture recognition field [139]. Sign language is as rich and

complex as any spoken language. However, the multi-channel nature adds additional

complexity as channels are not synchronised.

In contrast to much of the existing literature, in this chapter we approach sign language

translation by incorporating both manual and non-manual features for the Sign Language

Translation (SLT) task. To achieve this, we use multiple channels which correspond to

a subset of the articulatory subunits of sign, namely hand shape, upper body pose and

mouthings. We explore several approaches to combine the information present in these

channels using both early and late fusion building upon the transformer architecture

developed in Chapter 6. Based on these findings we then introduce a novel deep

73
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learning architecture, named Multi-channel Transformers. This approach incorporates

both inter and intra-channel contextual relationships to learn meaningful spatio-temporal

representations of asynchronous multi-channel source signals. Although this approach

was designed specifically for SLT, we believe it can also be used to tackle other multi-

channel sequence to sequence learning tasks, such as audio-visual speech recognition

[3].

We evaluate our approach on the challenging RWTH-PHOENIX-Weather-2014T Dataset

(PHOENIX14T) which provides both sign gloss annotations and spoken language trans-

lations. Previous approaches (e.g. [24] of Chapter 5 and [27] of Chapter 6) heavily

relied upon the sign gloss annotations of PHOENIX14T, which are labor intensive to

obtain. We aim to remove this dependency on gloss annotation, by utilizing channel

specific features obtained from related tasks, such as human pose estimation approaches

[28, 81] to represent the upper body pose channel or lip reading features [37, 10] to

represent mouthings [100, 99]. Removing the dependency on manual annotation allows

our approach to scaled beyond what is possible with previous techniques, potentially

allowing the use of huge collections of un-annotated data. We empirically show that

by integrating multiple articulator channels into our multi-channel transformer, it is

possible to achieve state-of-the-art SLT performance which is on par with models

trained using additional gloss annotation.

The remainder of this chapter is structured as follows: In Section 7.1, we present the

proposed multi-channel transformer architecture. We introduce our experimental setup

and implementation details in Section 7.2. We then report extensive quantitative results

in Section 7.3 and share translation samples in Section 7.4. We finally conclude this

chapter in Section 7.5 by discussing our findings and possible future work.

7.1 Methodology

In this chapter, we extend the transformer network architecture and adapt it to the

task of multi-articulatory SLT. We introduce two novel layers, namely the Multi-

Channel Encoder and the Multi-Channel Decoder. An overview of our approach
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applied to the task of SLT can be seen in Figure 7.1. The multi-channel encoder

aims to learn the inter and intra-channel contextual relationships of sign articulator

channels. We utilize Channel-wise Self Attention modules to attend to each sign

articulator individually. Outputs of these modules are then passed to a Multi-Channel

Encoder Attention module, which enriches the channel representation by modeling

them in the context of other sign articulators. When available, we utilize anchoring

losses to help networks maintain channel specific information using weak annotations

obtained from relevant classifiers. The spatio-temporal channel representations are than

passed to the Multi-Channel Decoder layer, which employs a Multi-Channel Decoder

Attention module that combines multiple source channel representations to produce

spoken language sentences in an auto-regressive manner. Detailed visualizations of the

proposed modules can be seen in Figure 7.2.
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Figure 7.1: An overview of the proposed Multi-channel Transformer [26] approach.

Given source sequences X = (X1, ..., XN ), where Xi is the ith source channel with a

cardinality of Ti, our objective is to learn the conditional probability p(Y|X ), where

Y = (y1, ..., yU ) is the target sequence with U tokens. In the application domain of

SLT, source channels correspond to representations of the manual and non-manual

features of the sign, such as hand shapes and mouthings, while the target sequence is

the spoken/written language sentence. To keep the formulation simple, and to focus the

readers attention on the differentiating factors of the proposed architecture, we omit

the layer normalization and residual connections, which are the same as the original

transformer network [187].

In the rest of this section, we introduce each component of our Multi-Channel Trans-
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former and describe them in detail.

7.1.1 Channel and Word Embeddings

As with other machine translation tasks, we start by projecting both the source channel

features and the one-hot word vectors into a denser embedding where similar inputs lie

close to one-another. To achieve this we use linear layers. We employ normalization

and activation layers to change the scale of the embedded channel features and give

additional non-linear representational capability to the model. The transformer networks

do not have an implicit structure to model the position of a token within the sequence.

To overcome this, we employ positional encoding [187] to add temporal ordering to

the embedded representations. The embedding process for an input feature xi,t coming

from the ith channel at time t can be formalized as:

x̂i,t = Activ (Norm (xi,tW
ce
i + bce

i )) + PosEnc(t) (7.1)

where W ce
i and bce

i are channel specific learnt parameters of the linear projection layers.

Similarly, the word embedding is as follows:

ŷu = yuW
we + bwe + PosEnc(u) (7.2)

where Wwe and bwe are the weights of a linear layer which are either learned from

scratch or pretrained on a large corpus [14, 90].

7.1.2 Multi-Channel Encoder Layer

Channel-wise Self Attention (cs): Each multi-channel encoder layer starts by learning

the contextual relationships within a single channel by utilizing individual self-attention

layers. As per the original transformer implementation, we use the scaled dot prod-

uct scoring function in the attention mechanisms. Given embedded source channel

representations, X̂i, we obtain Queries, Keys and V alues for the channel i as1:
1Note that we use a vectorized formulation in our equations. All softmax and bias addition operations

are done row-wise.
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Qcs
i = X̂iW

cs,q
i + bcs,q

i

Kcs
i = X̂iW

cs,k
i + bcs,k

i

V cs
i = X̂iW

cs,v
i + bcs,v

i

(7.3)

which are then passed to the channel-wise self attention function to have their intra

channel contextual relationship modeled as:

hcs
i = softmax

(
Qcs
i (Kcs

i )T√
dm

)
V cs
i (7.4)

where hCS
i is the spatio-temporal representation of the ith source channel and dm is the

hidden size of the model. We also utilize individual feed forward layers as described in

[187] for each channel as:

FF(x) = max
(
0, xW ff

1 + b1

)
W ff

2 + b2 (7.5)

By feeding the contextually modeled channel representations through feed forward

layers, we obtain the final outputs of the channel-wise attention layer of our multi-

channel encoder layer as:

ĥcs
i = FFcs

i (h
cs
i ) (7.6)

Multi-channel Encoder Attention (me): We now introduce the multi-channel encoder

attention, which learns the contextual relationship between the self-attended channel

representations. As we are using dot product attention, we start by obtaining Q, K and

V for each source as:

Qme
i = ĥcs

i W
me,q
i + bme,q

i

Kme
i = ĥcs

i W
me,k
i + bme,k

i

V me
i = ĥcs

i W
me,v
i + bme,v

i

(7.7)
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These values are then passed to the multi-channel attention layers where the Queries of

each channel are used to estimate the scores over the concatenated Keys of the other

channels. These scores are then used to calculate the channel-fused representations by

taking a weighted sum over the other channels’ concatenated V alues. More formally,

multi-channel attention can be defined as:

hme
i = softmax

Qme
i

([
∀Kme

j where j 6= i
])T

√
dm

[∀V me
j where j 6= i

]
(7.8)

We would like to note that, the concatenation operation ([ ]) is performed over the

time axis, thus making our approach applicable to tasks where the source channels have

different numbers of tokens. We then pass multi-channel attention outputs to individual

feed forward layers to obtain the final outputs of the multi-channel encoder layer as:

ĥme
i = FFme

i (hme
i ) (7.9)

Several multi-channel encoder layers can be stacked to form the encoder network

with the aim of learning more complex multi-channel contextual representations,

he = (he1, ..., h
e
N ), where hei is the output corresponding to the ith source channel.

7.1.3 Multi-Channel Decoder Layer

Transformer networks utilize a masked self attention and an encoder-decoder attention

in each decoder layer (See Figure 3.3). The subsequent masking on self-attention is

essential, as the target tokens’ successors will not be available at inference time. In our

approach, we also employ the masked self-attention to model the contextual relationship

between target tokens’ and its predecessors. However, we replace encoder-decoder

attention with multi-channel decoder attention, which is modified to work with multiple

source channel representations. Given the word embeddings Ŷ of a sentence Y , we

first obtain the masked self-attention (sa) outputs ĥsa using the generic approach [187],

which are then in turn passed to our multi-channel decoder attention.
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Multi-channel Decoder Attention (md): In generic transformers, encoder-decoder

attention Queries are obtained from the decoder self-attention estimates, ĥsa, while

Keys and V alues are calculated from the final encoder layer outputs, he. In order to

incorporate information coming from multiple channels using transformer models, we

propose the multi-channel decoder attention module. We first obtain the Q, K and V

as:

Qmd = ĥsaWmd,q + bmd,q

Kmd
i = heiW

md,k
i + bmd,k

i

V md
i = heiW

md,v
i + bmd,v

i

(7.10)

Note that each source channel i has their own learned Key and V alue matrices, Wmd,k
i

and Wmd,v
i respectively.

These are then passed to the multi-channel decoder attention module where Queries of

each target token are scored against all channel Keys. Channel scores are then used to

calculate the weighted average of their respective V alues. Individual channel outputs

are averaged to obtain the final output of the multi-channel decoder attention module.

This process can be formalized as:

hmd =
1

N

N∑
i=1

(
softmax

(
Qmd

(
Kmd
i

)T
√
dm

)
V md
i

)
(7.11)

The attention module outputs are then passed through a feed forward layer to obtain the

final representations of the multi-channel decoder layer as:

ĥmd = FFmd(hmd) (7.12)

Like the multi-channel encoder layer, multiple decoder layers can be stacked to improve

the representation capabilities of the decoder network. The output of the stacked decoder

is denoted as hd = (h1, ..., hU ) which is used to condition target token generation.
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7.1.4 Loss Functions

We propose training multi-channel transformers using two types of loss functions,

namely Translation Loss, which is commonly used in machine translation, and Channel

Anchoring Loss, which aims to preserve channel specific information during encoding.

Translation Loss: Although different loss functions have been used to train translation

models, such as a mixture-of-softmaxes [203], token level cross-entropy loss is the

most common approach to learn network parameters. Given a source-target pair, the

translation loss, LT , is calculated as the accumulation of the error at each decoding step

u, which is estimated using a classification loss over the target vocabulary as:

LT = 1−
U∏
u=1

G∑
g=1

p(ygu)p(ŷ
g
u) (7.13)

where p(ygu) and p(ŷgu) represent the ground truth and the generation probabilities of

the target yg at decoding step u, respectively, and G is the target language vocabulary

size. In our networks, the probability of generating target token yu at the decoding step

u is conditioned on the hidden state of the decoder network hdu at the corresponding

time step, p(ŷu) = p(ŷu|hdu). Softmaxed linear projection of hdu is used to model the

probability of producing tokens over the whole target vocabulary as:

p(ŷu|hdu) = softmax(hduW
o + bo) (7.14)

where W o and bo are trainable parameters of a linear layer.

Channel Anchoring Loss: For source channels, where we have access to a relevant

classifier, we use an anchoring loss to preserve channel specific information. Predictions

of these classifiers are used as ground truth to calculate token level cross entropy losses

in the same manner as the translation loss. Given the classifier outputs corresponding to

the ith channel, Ci = (ci,1, ..., ci,Ti), and the hidden state of the encoder, he, we first

calculate the prediction probabilities over the target channel classes as:

p(ĉi,t|he) = softmax(heW o
i + boi ) (7.15)
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where p(ĉi,t|he) represent the prediction probabilities over the ith channel’s classifier

vocabulary, while W o
i and boi are weights and biases of the linear layer used for the ith

channel, respectively. We then use a modified version of the Equation 7.13 to calculate

the ith channel’s anchoring loss, LA,i, as:

LA,i = 1−
T∏
t=1

Gi∑
g=1

p(cgi,t)p(ĉ
g
i,t|h

e
t ) (7.16)

where p(cgi,t) and p(ĉgi,t) represent the classifier output and the predicted probabilities

of the class cdi at the encoders tth step, respectively, while Gi is the number of target

classes the classifier corresponding to channel i predicted. For example, as our hand

channel, we used a hand shape classifier’s convolutional layer as our source channel

and the same classifier’s outputs as our anchoring loss to preserve the hand shape

information during training as well as to regularize the translation loss.

Total Loss: We use a weighed combination of Translation loss, LT , and Anchoring

losses, LA = (LA,1, ...,LA,N ), during training as:

L = λTLT + λA

N∑
i=1

LA,i (7.17)

where λT and λA decide the importance of each loss function during training.

7.2 Implementation and Evaluation Details

Dataset: We evaluate our model on the challenging PHOENIX14T [24] dataset, which

is currently the only publicly available large vocabulary continuous SLT dataset aimed

at vision based sign language research. See Chapter 4 for further details of the dataset.

Sign Channels: We use three different articulators/channels to represent the manual and

non-manual features of the sign, namely hand shapes, mouthings and upper body pose.

Hand Shape and Mouthing Channels: Any symbolic or continuous representation

can be used in the proposed multi-channel transformer architecture. In this work, we

employ Convolutional Neural Network (CNN) classifiers proposed by Koller et al.
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[96]. In their work, the authors utilize Inception CNN architecture [175] and train

individual networks to predict hand shape, sign gloss and mouthings from full frames

(i.e. not cropped) using weakly aligned labels. They iteratively finetune the training

labels by using a HMM-based forced alignment approach [101] until the validation set

Continuous Sign Language Recognition (CSLR) performance converges.

We utilize the aforementioned hand shape and mouthing recognition networks and

obtain 1024 dimensional continuous feature vectors for each frame by extracting the

activations from the last layer before the fully connected layer. We use the forced

aligned class labels from the same networks to anchor the channel representations.

Although these networks were trained on 61 and 40 hand shape and mouthing classes,

respectively (including transition/silence class), the predictions only contained 52 and

36 classes. Hence, our anchoring losses are calculated over the predicted number of

classes.

Upper Body Pose Channel: To represent the upper body pose of the signers, we start

by extracting 2D skeletal pose information using the OpenPose library [28]. We only

consider the upper body and both hands’ joint locations provided by the OpenPose,

which are represented as 2D coordinates on the image plane. We then pass the extracted

2D joint locations to the 2D-to-3D uplifting approach proposed by Zelinka et al. [207].

Designed for sign language production, their method formalizes 2D-to-3D uplifting as

an inverse-kinematics problem, and produces a viable 3D skeleton based on OpenPose

predictions using a gradient descent solver. The resulting 3D joint positions of 50 upper

body joints are then flattened and passed through a linear projection layer to match the

transformer models hidden size. As there were no prior subunit classes for the upper

body pose on PHOENIX14T, we do not utilize an anchoring loss on the pose channel.

Training and Network Details: Our networks are trained using the PyTorch frame-

work [134] with a modified version2 of the JoeyNMT library [104]. We use Adam [94]

optimizer with a batch size of 32, a learning rate of 10−3 (β1 = 0.9, β2 = 0.998) and

a weight decay of 10−3. We utilize Xavier [69] initialization and train all networks

from scratch. We do not apply dropout and only use a single headed scaled dot-product

2The code, the models and the channel features will be made publicly available.
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attention to reduce the number of hyper-parameters in our experiments.

We employ a modified version of plateau learning rate scheduling with validation

performance on the development set as its criterion. Our networks are evaluated after

every 100 iterations (roughly half an epoch). If the validation score does not improve

for 8 consecutive evaluation steps, the scheduler decreases the learning rate by a factor

of 0.7. This continues until either the learning rate drops below a minimum value

(10−4 in our experiments) or there were no further improvements in the validation score

from the previous learning rate step. We employ early stopping by using the model

with highest validation score to report the final scores. All of our loss functions are

normalized by the number of samples in each batch.

Decoding: During training we use a greedy search to evaluate development set trans-

lation performance. At inference, we employ beam search decoding with the beam

width ranging from 0 to 10. We also employ a length penalty as proposed by [88] with

α values ranging from 0 to 5. We use the development set to find the best performing

beam width and α, and use these during test set inference for final results.

Performance Metrics: We use BLEU [132] and ROUGE [110] scores to measure the

translation performance. Following extensive code optimisation, our networks take

roughly half an hour each to train including beam search decoding. Hence, to give the

reader a better understanding of the networks behaviour, we repeat each experiment

10 times and report mean and standard deviation of BLEU-4 and ROUGE scores on

both development and test sets. We also report our best result for every setup based on

BLEU-4 score as per the development set. BLEU-4 score is also used as the validation

score for our learning scheduler and for early stopping.

7.3 Quantitative Experiments

In this section we propose several multi-channel SLT experimental setups and report

our quantitative results. We start by sharing our experiments to identify the optimal

embedding setup for using CNN features with transformer networks. We then report

single channel SLT performance using the best embedding setup with different network
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architectures, varying in number of hidden units, both to set a baseline for our multi-

channel approaches and to find the optimal network size. After that, we propose two

naive channel fusion approaches, namely early fusion and late fusion, to set a fusion

benchmark for our novel Multi-channel Transformer architecture. Finally, we report the

performance of the multi-channel transformer approach with and without the channel

anchoring losses and compare our results against the state-of-the-art.

7.3.1 Channel Feature and Word Embeddings

In our first set of experiments we investigate different ways to embed CNN based

channel features and one-hot word vectors. Machine translation orientated transformer

implementations either use pretrained word embeddings or train a linear projection layer

from scratch. Although not stated in the original paper [187], the official transformer im-

plementation also utilizes embedding scaling, where the projected word representations

are multiplied by a constant which is the square root of the hidden size3.

Compared to the one-hot vectors which have a constant scale between [0− 1], CNN

features can have an arbitrary scale. To see how important the input scale is and to

examine the effects of the different embedding setups, we initially trained translation

networks that only used hand channel features as input. Each network has two layers,

with a hidden size of 64 and 128 position-wise feed forward units.

As can been in the first row of Table 7.1, the translation performance degrades drastically

when we apply the commonly used embedding scaling on either of the embeddings. We

have experimentally found that transformer networks are extremely sensitive to input

scale and this is substantiated by these results. Thus, in our next set of experiments we

investigate ways to normalize inputs to control their scale. To do so, we utilize batch

normalization [87] and soft-sign activation [125]. While batch normalization scales

the inputs between [−3, 3] it has also been shown to improve convergence rate. On the

other hand, soft-sign activation scales the inputs between [−1, 1] while also enhancing

the representation capability of the embedding due to its non-linear nature.

3github.com/tensorflow/models/blob/master/official/nlp/transformer/

embedding_layer.py#L83

github.com/tensorflow/models/blob/master/official/nlp/transformer/embedding_layer.py#L83
github.com/tensorflow/models/blob/master/official/nlp/transformer/embedding_layer.py#L83
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Individually, both batch norm and soft-sign significantly improve the translation per-

formance when applied to the projected CNN features (see second and third rows of

Table 7.1). We then investigate their combined use on both CNN features and word

embeddings. Although there were several comparable setups, we concur that the joint

application of batch norm and soft sign only on the CNN features yield the most sta-

ble and balanced performance in terms of development and test set for BLEU-4 and

ROUGE scores. We believe this setup’s success is due to the already scaled nature

of the word embeddings and the additional stability and non-linearity introduced by

applying soft-sign and batch norm to the projected CNN features. Therefore, for the

rest of our experiments we utilize this embedding setup.

7.3.2 Single Channel Baselines

In the next set of experiments, we train single channel SLT models. The main objective

of these experiments is to set translation baselines for all future multi-channel fusion

models. However, we would also like to examine the relative information presented

in each channel by comparing their translation performance against one another. In

addition, we wish to identify the optimal network setup for each channel to guide the

future experiments. Therefore, we conduct experiments with four network setups for

all three articulators with sizes varying from 32x64 to 256x512 (hidden size (HS) x

number of feed forward (FF) units). All networks were built using two encoder and

decoder layers.

As can be seen in Table 7.2, Hand is the best performing channel in all network setups.

Furthermore, using a network setup of 128x256 outperforms all of the alternatives. We

believe this is closely related to the limited number of training samples we have and the

over-fitting issues that come with it. Therefore, for the rest of our experiments we use

128x256 parameters for each channel.

We further train a Gloss single channel network to set a baseline for our multi-channel

approaches to compare against. As shown in Table 7.2, using CNN features that

were trained using gloss level annotations outperforms all single sign articular based

models (19.52 vs. 16.44 dev BLEU-4 score). Although the 256x512 network setup
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obtained the best individual development and test set translation performances, the

mean performance of the 128x256 network was better, encouraging us to utilize this

setup going forward.

7.3.3 Early and Late Fusion of Sign Channels

To set another benchmark for our multi-channel transformer, we propose two naive

multi-channel fusion approaches, namely early and late fusion. In the early fusion setup,

features from different channels are concatenated to create a fused representation of

each frame. These representations are then used to train SLT models, as if they were

features coming from a single channel. Hence, the contextual relationship is performed

in an implicit manner by the transformer architecture. In our second, late fusion setup,

individual SLT models are built which are then fused at the decoder output level, i.e.

hd, by concatenation. The fused representation is then used to generate target tokens

using a linear projection layer. Compared to early fusion, this approach’s capability to

learn more abstract relationships is limited as the fusion is only done by a single linear

layer. We examine all four possible fusions of our three channels. Network setup is set

to linearly scale with respect to the number of channels that are fused together with a

factor of 128x256 per channel.

As can be seen in Table 7.3, fusion of Hands and Mouth yields slightly better results

than single channel translation models (excluding gloss). However, unlike late fusion,

which saw improvement in all scenarios, early fusion’s performance gets worse as

more features are added to the network. As this means having more parameters in our

networks, we believe this is due to the natural propensity of the transformers to over-fit

on small training datasets, like ours.

7.3.4 Multi-Channel Transformers

In this set of experiments we examine the translation performance of the proposed

multi-channel transformer architecture for multi-articulatory SLT. We first start by

investigating the effects of the anchoring loss. We then compare our best performing
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method against other fusion options, gloss based translation and other state-of-the-art

methods. As with other fusion experiments, we examine all possible fusion combina-

tions. In addition to using the 128x256 network setup, we also evaluate having a larger

network to see if the additional anchoring losses help with over-fitting by regularizing

the translation loss.

As can be seen in the first row of Table 7.4, while using the same number of parameters

as the early and late fusion setups, our proposed Multi-Channel Transformer approach

outperforms both configurations. However, doubling the network size does effect the

direct application of multi-channel attention negatively. To counteract this issue and to

examine the effects of the anchoring loss, we run experiments with both 128x256 and

256x512 setups. We normalize our losses on the sequence level instead of token level

and we set the anchoring loss weight, λA, to 0.15 to counteract different source (video)

and target (sentence) sequence lengths. Using the anchoring losses not only improves

the performance of the 128x256 models but also allows the 256x512 networks to

achieve similar translation performance to using gloss features. We believe this is due to

two main factors. Firstly, the anchoring loss forces the encoder channels to preserve the

channel specific information while being contextually modeled against other articulators.

Secondly, it acts as a regularizer for the translation loss and counteracts the over-fitting

previously discussed.

Furthermore, we report state-of-the art performance using both the gloss single channel

model and the proposed anchored multi-channeled transformer architecture, surpassing

the performance of methods such as Sign2Gloss→Gloss2Text [24], which are heavily

reliant on gloss annotation.

7.4 Qualitative Examples

In this section we share translation examples generated by our best performing model.

As the ground truth spoken language annotations of the PHOENIX14T dataset are in

German, we share both the original German translations and their equivalent word-

by-word translations in English. As can be seen in Table 7.5 and Table 7.6, we
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also categorize the results into three categories, namely Good, Mediocre and Poor

translations, to give further insight to the reader on the limitations of the current

approach.

We categorize translations as Good or Mediocre when the produced sentences convey

the same or similar information as the reference sentences. These examples follow

the standard grammar with few exceptions. We classify translations as Poor when the

model fails to understand and translate the conveyed information in sign videos. Most

of these examples contain repetitions. In some cases, the model is not able distinguish

some sign glosses from another, such as named entities like locations or numbers which

occur in limited contexts in the training data. One way to address this issue might be to

utilize pretrained spoken language models to improve the produced translations.

Good Translations:

Reference: und nun die wettervorhersage für morgen dienstag den ersten februar .
( and now the weather forecast for tomorrow tuesday the first of february . )

Ours: und nun die wettervorhersage für morgen dienstag den ersten februar .
( and now the weather forecast for tomorrow tuesday the first of february . )

Reference: der sorgt wieder für wolken die regen im bergland auch schnee bringen .
( it provides clouds again and the rain in the mountains also brings snow . )

Ours: im übrigen land fällt gebietsweise regen im bergland auch schnee .
( in the rest of the country there is rain in the mountains and snow in some areas. )

Reference: die neue woche beginnt wechselhaft und kühler .
( the next week starts unpredictable and colder . )

Ours: auch am montag wechselhaft und deutlich kühler .
( also on monday unpredictable and significantly colder . )

Table 7.5: Spoken language translations produced by our best Multi-Channel

Transformer model - Good Translation Examples.

We also share and compare qualitative translation examples obtained from the mod-
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Mediocre Translations:

Reference: ab sonntag wird es wieder milder dabei gibt es viele wolken zeitweise fällt regen im nordwesten windig .
(from sunday on it will be more mild with many clouds partly rain in the northwest windy .)

Ours: am sonntag mehr wolken als sonne hier und da regen im westen ist es windig .
(on sunday more clouds than sun from time to time rain in the west windy .)

Reference: im osten und südosten auch schnee oder schneeregen .
( in the east and south-east also snow or sleet . )

Ours: im südosten schnee oder schnee .
( snow or snow in the south-east . )

Reference: westlich des rheins und im nordosten bleibt es meist trocken .
( west of the rhine and in the northeast it remains mostly dry . )

Ours: im westen und südwesten bleibt es noch im nordosten trocken .
( in the west and southwest it remains still dry in the northeast . )

Poor Translations:

Reference: deutschland liegt morgen unter hochdruckeinfluss der die wolken weitgehend vertreibt .
( germany will be under the influence of high pressure tomorrow which will largely dispel the clouds . )

Ours: deutschland liegt morgen über deutschland nach deutschland .
( germany is tomorrow over germany to germany . )

Reference: am freitag insgesamt viele wolken die regen bringen .
( on friday overall many clouds bringing rain . )

Ours: am freitag gibt es am freitag viele wolken .
( on friday there are on friday many clouds )

Reference: dazu weht ein starker wind vor allen dingen wieder über vorpommern aus südost .
( in addition a strong wind blows before all things again over vorpommern from southeast . )

Ours: es weht ein kräftiger nordostwind .
( a strong north-easterly wind is blowing . )

Table 7.6: Spoken language translations produced by our best Multi-Channel

Transformer model - Mediocre and Poor Translation Examples.

els presented in different chapters of this thesis, namely the RNN-based end-to-end

Sign2Text model from Chapter 5, the transformer-based state-of-the-art multi-task learn-
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ing approach Sign2(Gloss+Text) from Chapter 6, and the multi-channel transformers

presented in this chapter. As with the quantitative results, overall, transformer-based

models yield more accurate translations than RNN-based models (See Examples 1, 2

and 3 in Table 7.7). However, in the case of Example 3, all three models fail to fully

translate the context of the source sign language video, suggesting that there is still

further room for improvement. Another interesting behaviour of transformer based

models is their capability to generate contextually similar sentences using different

vocabulary. In Example 4, the multi-channel transformer model produced the German

translation using “zeitweise” instead of “ab un an”, both of which translate to “time

to time” in this context. However, our model is penalized for producing the word

“zeitweise”, as it is not present in the reference translation. This suggests using a single

reference translation limits the accuracy of the evaluation metric, hence we recommend

future datasets to include multiple acceptable reference translations.

7.5 Closing Remarks

In contrast to most of the previous vision based sign language research, which mainly

focused on manual features, in this chapter we model sign languages in a holistic manner,

using both manual and non-manual features. We utilize hand, mouthing and upper

body pose representations and realize the first multi-articulatory video-to-text SLT. We

propose a novel multi-channel architecture, named Multi-Channel Transformers, for

sequence-to-sequence tasks, such as SLT, where the source information is embedded

over different channels. This approach allows both the inter and intra relationship

between different asynchronous sign channels to be modelled within the transformer

network itself. We also introduce a channel anchoring loss to help our models to

preserve channel specific information while also regulating training against overfitting.

We evaluate our approach on the PHOENIX14T dataset. When compared against

other fusion techniques, namely late and early, the proposed multi-channel transformer

approach achieve superior translation performance. More importantly, we report on

par or better translation performance compared to previous work which requires labor

intensive gloss annotations.
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Example 1 - Reference: und nun die wettervorhersage für morgen samstag den zweiten april .
( and now the weatherforecast for tomorrow saturday the second april . )

Sign2Text (RNN-Based) und nun die wettervorhersage für morgen freitag den sechsundzwanzigsten märz .
Chapter 5 ( and now the weatherforecast for tomorrow friday the twentysixth march . )

Sign2(Gloss+Text) (Transformers) und nun die wettervorhersage für morgen samstag den ersten april .
Chapter 6 ( and now the weatherforecast for tomorrow saturday the first april . )

Multi-Channel Transformers und nun die wettervorhersage für morgen samstag den ersten märz .
Chapter 7 ( and now the weatherforecast for tomorrow saturday the first march . )

Example 2 - Reference: die neue woche beginnt wechselhaft und kühler .
( the next week starts unpredictable and cooler . )

Sign2Text (RNN-Based) am montag überall wechselhaft und kühler .
Chapter 5 ( on monday everywhere unpredictable and cooler . )

Sign2(Gloss+Text) (Transformers) die neue woche beginnt wechselhaft und wieder kühler .
Chapter 6 ( the next week starts unpredictable and again cooler . )

Multi-Channel Transformers auch am montag wechselhaft und deutlich kühler .
Chapter 7 ( also on monday unpredictable and significantly colder . )

Example 3 - Reference: im süden und südwesten gebietsweise regen sonst recht freundlich .
( in the south and southwest partly rain otherwise quite friendly . )

Sign2Text (RNN-Based) von der südhälfte beginnt es vielerorts .
Chapter 5 ( from the southpart it starts in many places . )

Sign2(Gloss+Text) (Transformers) im südwesten regnet es zum teil kräftig .
Chapter 6 ( in the southwest partly heavy rain . )

Multi-Channel Transformers im südwesten etwas regen richtung norden freundlich .
Chapter 7 ( in the southwest a little rain towards the north friendly . )

Example 4 - Reference: am sonntag ab und an regenschauer teilweise auch gewitter .
( on sunday time to time rainshower partly also thunderstorm . )

Sign2Text (RNN-Based) am sonntag sonne und wolken und gewitter .
Chapter 5 ( on sunday sun and clouds and thunderstorm . )

Sign2(Gloss+Text) (Transformers) am sonntag muss in stellenweise mit regen oder gewittern gerechnet werden .
Chapter 6 ( on sunday rain or thunderstrom is to be expected in places . )

Multi-Channel Transformers und am sonntag fällt noch zeitweise regen .
Chapter 7 ( and on sunday rain falls from time to time . )

Table 7.7: Spokensn language translations produced by RNN-based (Chapter 5) and

transformer-based (Chapter 6 and Chapter 7) approaches presented in this thesis.

Now we have broken the dependency upon gloss information, future work will be

to scale learning to larger dataset, where gloss information is not available such as
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broadcast footage. It would also be interesting to incorporate additional channels to

our model, such as eye-brows, mouth gestures and facial expressions. For channels

where there are no previous classifiers for anchoring losses, one can either use limited

linguistic corpora with high quality annotations or learn classes in a data driven manner

from large scale broadcast footage.
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Chapter 8

Conclusions and Future Work

In this thesis we tackled the challenging Sign Language Translation (SLT) task, with a

goal of producing spoken/written language interpretations of the information conveyed

in continuous sign language videos. Using the RWTH-PHOENIX-Weather-2014T

Dataset (PHOENIX14T), the first and currently the only publicly available continuous

SLT dataset, we developed several evaluation protocols to underpin future research in

the field (See Chapter 4).

In chapter 5, using PHOENIX14T, we realized the first SLT approach, Neural Sign

Language Translation [24]. We combined Convolutional Neural Networks (CNNs) with

attention-based encoder-decoder models and trained models in an end-to-end manner.

Although these models were able to generate meaningful translations, their performance

was drastically worse than other Neural Machine Translation (NMT) baselines (9.58

BLEU-4). We think this was due to SLT being a challenging task, which requires recog-

nizing and understanding of spatio-temporal linguistic constructs, as well as the models’

limited ability to generalize from the currently available datasets. To ease the translation

problem, we proposed dividing the pipeline into two stages, namely recognition and

translation. We utilized state-of-the-art Continuous Sign Language Recognition (CSLR)

models to predict gloss sequences from continuous sign language videos. We then

trained a translation model from these gloss predictions to spoken/written language

sentences. This approach yielded much higher translation accuracy (18.13 BLEU-4),

indicating the benefits of using intermediate gloss level supervision.

99
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Translating from predicted glosses imposes an information bottleneck as they do not

fully encapsulate sign languages. However, as empirically shown in Chapter 5, their use

improve the translation performance. To utilize gloss supervision, without limiting the

translation, we reformulated the previous 2-stage SLT approach as a multi-task problem

in chapter 6. We utilized state-of-the-art transformer networks [187] and proposed Sign

Language Transformers [27]. We jointly trained our models to perform CSLR and SLT

and reported significantly improved translation performance over models trained on

single tasks.

We need more parallel datasets to realize reliable large scale sign language translation

systems. However, our reliance on sign glosses is one of the limiting factors for us

to exploit available broadcast sign language interpretations. To address this issue, in

chapter 7 we took inspiration from sub-unit based sign language recognition literature

and proposed modelling SLT based on sign articulators instead of glosses. We utilized

hand shape, mouthing and upper body pose representations to incorporate both manual

and non-manual features of the sign to our translation networks. We proposed a novel

Multi-Channel Transformer architecture that supports multi-channel, asynchronous,

sequence-to-sequence learning. We used the proposed approach to realize the first

successful approach to multi-articulatory SLT, which models the inter and intra rela-

tionship of manual and non-manual channels. Our models achieved on par or better

translation performance against several single channel and fusion baselines, including

networks that utilized gloss supervision. These results suggested that we may not need

extensive gloss annotations to realize large scale SLT.

8.1 Possible Future Work

Although there has been major progress in the field, such as realizing continuous

Sign Language Recognition (SLR) and SLT using weakly annotated data, there are

still several challenges to overcome. One of these challenges is Signer Independent

recognition and translation. In their recent paper, Koller et al. [102] evaluated their

methods’ performance both on signer dependent and independent setups and noted that

their methods performed drastically worse in the signer independent scenario.
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One approach to model signs in a user independent manner could be to focus on more

explicit modeling of sign linguistics and their building blocks, commonly known as

subunits [173]. To do so, computer vision researchers can collaborate with sign linguists

to gain access to high-quality annotated data [78, 153]. However, there are relatively

few linguistic resources at the scale required for machine learning on the fundamental

building blocks and grammar of sign e.g. the combined use of different articulators,

sign syntax and grammatical constructs such as the use of syntactic/topographic space

and placement. One way to tackle this issue would be to utilize an iterative refinement

workflow. Computer vision researchers can train systems with the available data to

generate automatic annotations which would then be corrected by sign linguists to train

better systems, thus effectively increasing the amount of high-quality annotations. These

subunit based representations can then be combined using our proposed Multi-Channel

Transformer approach to train signer-independent SLT networks.

There is also the issue of the racial bias that is being learned due to the dataset demo-

graphics. For example, a system that was trained on images of PHOENIX datasets

[64, 65], even if it was trained on subunit level, would not be able to generalize to all

sign language users, as the dataset only contain adult Caucasian signers. One way to

overcome such biases could be to change the input domains from images to canonical

body models [111]. By using such body models as a pre-processing step, we can

decouple the signers’ physical attributes from their body, face and hand poses. We can

then use these representations to train our models in a signer independent manner.

Besides CSLR and SLT, there are various other applications of computer vision based

sign language research. Such applications include, but are not limited to, automatic

sign language assessment and production. The field of automatic Sign Language

Assessment (SLA) is still in its infancy. Similar to the historical progress of SLR,

SLA has started by focusing on isolated signs and manual features. However, with

the availability of datasets, such as the SMILE Dataset [57], the field will gain more

attention from both computational linguists and computer vision researchers. Following

the footsteps of SLR, the next step for SLA would be to move to the continuous

domain, where non-manual features are more prominent. To achieve continuous SLA,

researchers will require more data. However, annotating continuous sequences with
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both manual and non-manual feature is a laborious task and considerably more complex

than working on isolated signs. One way to overcome this problem might be to exploit

the recent developments in the field of image synthesis using adversarial training [71],

and artificially increase the training data.

Another interesting line of study is sign language production, which has been mainly

dominated by avatar based methods [62]. However, Stoll et al. [169] recently combined

approaches from the fields of NMT and Generative Adversarial Networks (GANs)

to generate videos of sign sequences translated from text without the use of avatars.

Current state-of-the-art in the field of image synthesis is able to generate images of

humans in unseen poses with promising performance [115, 159] and preliminary work

[170] in sign language production has already demonstrated its utility in the generation

of signs. Using these methods, researchers could generate vast amounts of data with

variability from prototypical signs. Another solution could lie in utilizing the currently

available avatar-based sign language production systems and combining them with

recent machine learning approaches [157], which can transform simulated avatars into

real life looking images.

Considering all the recent developments and open questions, computer vision based sign

language recognition is a fruitful research field, attracting more interest as it progresses.

Being at the conjunction of language and vision, sign language research still offers

challenges to be solved which can enhance the lives of Deaf communities, and it is an

exciting time to work in this field.
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