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Abstract—In this paper, we propose using 3D Convolutional
Neural Networks for large scale user-independent continuous
gesture recognition. We have trained an end-to-end deep network
for continuous gesture recognition (jointly learning both the
feature representation and the classifier). The network performs
three-dimensional (i.e. space-time) convolutions to extract features
related to both the appearance and motion from volumes of
color frames. Space-time invariance of the extracted features is
encoded via pooling layers. The earlier stages of the network are
partially initialized using the work of Tran et al. before being
adapted to the task of gesture recognition. An earlier version
of the proposed method, which was trained for 11,250 iterations,
was submitted to ChaLearn 2016 Continuous Gesture Recognition
Challenge and ranked 2nd with the Mean Jaccard Index Score
of 0.269235. When the proposed method was further trained for
28,750 iterations, it achieved state-of-the-art performance on the
same dataset, yielding a 0.314779 Mean Jaccard Index Score.

I. INTRODUCTION

Gestures are a natural form of human communication. As
the use of computers has become more ubiquitous in our daily
lives, human-computer interfaces have started to mimic natural
human communication, allowing users to employ gestures to
convey their intentions to computers. Hand and arm gestures
are now widely used cues for human-computer interactions
[1]. Although gestures are more natural, the use of gestures
comes with its drawbacks, as imperfect human pose detection
coupled with inter and intra-user spatio-temporal variability of
gestures make it difficult to perform user independent gesture
recognition.

Gesture recognition systems aim to detect and recognize
gestures from a limited gesture vocabulary given a sensory
input [2]. In early work, color cameras were widely used for
the development of gesture recognition systems [3]. However,
human pose estimation from color images is susceptible to color
ambiguity between the user and the background, and this led
researchers to use colored gloves [4]. With the emergence of
consumer depth cameras [5], researchers quickly incorporated
depth sensors into their systems, as depth simplifies the task
of human pose estimation [6]. Many state-of-the-art gesture
recognition systems today use depth images as a modality or as
a means of preprocessing their data before recognizing gestures
[2], [7], [8].

The use of data gloves was also proposed for gesture
recognition. However, due to their high cost and calibration

requirements, they did not become as popular as video-based
gesture recognition systems [1].

Video-based gesture recognition typically starts with the ac-
quisition and then extraction of meaningful features. Although
the type of features may vary for each task, most of the
systems use features that describe the users’ upper body pose,
hand shape and hand movements. These features are then used
in conjunction with statistical learning methods to distinguish
classes of gestures from each other.

Classification of gestures relies heavily on learning temporal
(i.e. trajectory, speed) and spatial (i.e. visual features such as
hand shape and hand location) aspects of gesture samples.
Due to the spatio-temporal nature of gestures, modeling the
temporal aspect plays a crucial role in gesture recognition. In
the literature, there are several common approaches used to
represent the temporal aspects of gestures:

The first approach is to discard the temporal order of a
gesture and represent it by distributions of spatial features.
Hernandez-Vela et al. proposed an adaptation of Bag of Words
methods to recognize hand gestures, termed a Bag-of-Visual-
and-Depth-Words (BoVDW) [9]. In a recent Chinese Sign
Language Recognition study [10], Wang et al. proposed av-
eraging the spatial feature covariance matrices extracted from
each frame of the gesture sequences. Covariance matrices are
then used to calculate distances between gesture samples in the
Grassmannian Manifold. Although these methods may be suit-
able for small recognition tasks, they are unable to distinguish
among similar gestures with different temporal ordering.

One of the most common approaches to modeling the tem-
poral aspect of gestures is to represent gestures with spatio-
temporal grammars. In these approaches, spatial features are
grouped into the building blocks of gestures, such as states [11]
or subunits [12], and changes among these states are modeled
using graphical models. Since the pioneering work of Starner
and Pentland [3], Hidden Markov Models have often been used
for gesture recognition [13], [14], [15]. Other graphical models
such as Hidden Conditional Random Fields [16], Autoregres-
sive Models [17] and Recurrent Neural Networks [8], [18] have
also been deployed for the gesture recognition task.

Another approach for temporal modeling is using gesture
templates. Instead of grouping spatial features into clusters and
learning the interactions between these clusters, these models
learn static sequential patterns of features called templates [19].



Templates are often constructed by stacking or concatenating
a fixed number of spatial features over the temporal domain.
Motion History Images are an example of these approaches
[20]. As templates have no mechanism to represent the execu-
tion speed of a gesture, templates should either be resampled
to represent different execution speeds, or they should be tem-
porally aligned using methods such as Dynamic Time Warping
[21].

With the availability of large annotated datasets, deep learn-
ing methods have become a feasible solution for gesture recog-
nition. In recent years, Convolutional Neural Network (CNN)
based approaches have achieved state-of-the-art performance
in gesture recognition challenges [7], [8]. In [7], Neverova
et al. proposed a multi-scale and multi-modal deep learning
architecture to spot and recognize continuous gestures, and
achieved state-of-the-art performance in the ChaLearn 2014
Gesture Recognition challenge [22]. In [8], Pigou et al. pro-
posed temporally modeling the spatial features obtained from
CNNs by using Recurrent Neural Networks (RNNs) with Long
Short-Term Memory units, and shows the benefits of using
RNNs over temporal pooling approaches. In a recent study, 3D
Convolutional Neural Networks were proposed for the isolated
hand gesture recognition task using depth and intensity modal-
ities in automotive interfaces and reported a better recognition
performance than using HOG descriptors [23].

In this paper, we propose using 3D Convolutional Neural
Networks (3D CNNs), which are capable of learning both
the spatial and the temporal aspects of the data, for user-
independent large scale continuous gesture recognition tasks.
We train an end-to-end deep neural network for both feature
learning and classification from color video sequences. Each
frame of a gesture sequence is represented by a spatio-temporal
volume of its neighboring 16 color frames. We apply a sliding
volume approach over the color videos and obtain class prob-
abilities of each frame. These probabilities are then subjected
to two layers of majority filtering before assigning the final
label of each frame. We partially initialize our networks with
the work of Tran et al. [24].

To find the best performing parameters, we have performed
various experiments to evaluate the effect of mirroring the
training data, applying models that were pre-trained on different
datasets and the number and initialization of layers that will be
fully trained instead of being fine-tuned.

The rest of the paper is structured as following: In Section II,
we examine the deep learning applications in the field of gesture
recognition and describe the proposed method. In Section III,
we give details of the ConGD, which was introduced by Wan
et al. [25] for the ChaLearn 2016 Large Scale Continuous
Gesture Recognition Challenge. In Section IV, we share our
experimental setup and results. Finally, we conclude our paper
in Section V by discussing our findings and future studies.

II. 3D CONVOLUTIONAL NEURAL NETWORKS

Gestures can be defined as a time-based sequence of spatial
configurations and disregarding either the spatial or the tempo-
ral information can result in poor performance in recognition.

In the past, hand-crafted features have been used to describe
the spatial information of the gestures. These hand-crafted fea-
tures include, but are not limited to, hand shape descriptors and
upper body pose information. These descriptors are then tracked
through the time domain using approaches such as graphical
models to represent the temporal aspect of the gesture.

Inspired by the recent progress in the field of deep learning
2D Convolutional Neural Networks (2D CNNs) have been
applied to the Gesture Recognition field in order to extract
spatial features [7], [8]. In recent studies, features were either
concatenated into fixed sized gesture templates [7] or passed
to HMM [13] or Recurrent Neural Networks [8] in order to
model the temporal aspects of the gestures.

In a more recent study, 3D Convolutional Neural Networks
(3D CNNs) were proposed to recognize isolated gestures [23].
Depth and intensity information were combined into a single
image and these in turn combined to form gesture volumes. The
gesture volumes are then resampled to have fixed size before
being used for training 3D CNNs. In comparison to 2D CNNs
that are capable of learning the spatial information from single
images, 3D CNNs can learn both the spatial and the temporal
information from a sequence of images, thus eliminating the
need for secondary temporal modeling techniques.

In this paper, we propose using 3D CNNs for user-
independent continuous gesture recognition. The initial archi-
tecture is based on that proposed by Tran et al. for action
recognition [24]. The network architecture consists of 8 3D
convolutional layers, five 3D max-pooling layers, two fully con-
nected layers and a softmax classification layer (See Figure 1).

To be able to do frame-wise classification, we have con-
structed volumes for a given frame (Ft) by using its surrounding
16 frames (Ft−7:t+8). Volumes were created for each gesture
sequence in a sliding manner, with each volume having the
label of the gesture occurring at its central frame.

More formally, the first layer of the spatio-temporal CNN is
defined as

Conv1(x, y, t) =
∑

δx,δy,δt

Ft+δt(x+δx, y+δy)×w(δx, δy, δt) ,

(1)
where x and y define the pixel position within frame t. The
spatio-temporal neighbourhood that δx, δy and δt are drawn
from is defined by the kernel size of the convolutional layers
(3 × 3 × 3 in our experiments). Note that the output domain
of the convolution is still three dimensional, maintaining the
spatio-temporal arrangement of the learned patterns.

The common “Rectified linear unit” approach is used to
inject nonlinearities into the learning process. Thus

ReLU1(x, y, t) =

{
Conv1(x, y, t) if Conv1(x, y, t) > 0

0 otherwise .
(2)

Finally, the first spatio-temporal pooling layer is then defined
as

Pool1(x, y, t) = max
x,y,t

(ReLU 1(x, y, t)) , (3)

where in this case the x, y and z neighbourhoods relate to the
scale of the pooling (2× 2× 2 for all but the first layer in our



Fig. 1. Overview of the proposed framework.

experiments). This spatio-temporal helps to provide robustness
to temporal variations; distinctive patterns are encoded in the
same manner, regardless of where they occur within a local
region of the spatio-temporal volume.

In order to remove the noise from the final predictions of
the network, we have applied 2-stage majority filtering. Using
the class probabilities extracted from the deep network, we
first apply a majority filter with the size of 33 frames to the
prediction of gesture sequence frames using a sliding window.
Finally, we apply a second majority filter with a size of 17
frames to the output of the first majority filter, thus removing
the noise in a coarse to fine manner. The majority filter sizes
were chosen empirically to maximize the frame-based accuracy.

III. CHALEARN 2016 CONTINUOUS GESTURE DATASET

The Continuous Gesture Dataset (ConGD) [25], featured by
ChaLearn 2016, was designed to evaluate the performance of
user-independent gesture recognition methods. The dataset was
originally collected for the ChaLearn 2011 Gesture Recognition
Challenge [26], but the new protocol was introduced by Wan
et al. to allow researchers to evaluate their methods for user-
independent recognition. ConGD consists of 47,933 gesture
samples belonging to 249 gesture classes, making it the largest
user-independent dataset [27] surpassing the ChaLearn 2014
Gesture Recognition Dataset [22] which has 13,858 samples
and the DeviSign Chinese Sign Language Dataset which has
24,000 samples [28].

ConGD has 21 subjects that are separated into Train, Vali-
dation and Test partitions in a mutually exclusive manner. A
summary of the data partitions can be seen in Table I.

ConGD was recorded by Microsoft Kinect sensor [5]. It
only includes color and Depth video sequences provided by

TABLE I
CHALEARN 2016 CONGD PARTITION INFORMATION

Partition Name # of Samples # of Sequences # of Subjects
Train 30,442 14,134 17
Validation 8,889 4,179 2
Test 8,602 4,042 2
All 47,933 22,355 23

the sensor, making it more challenging from the other datasets
[22], [28] collected by Kinect as it does not provide the human
pose information.

ConGD was proposed by Wan et al. in [25] for the ChaLearn
2016 Continuous Gesture Recognition Challenge and a baseline
was presented for the dataset which uses Mixed Features around
Sparse Keypoints (MFSK) and Bag of Visual Words based
approach (See Table II).

IV. EXPERIMENTS & RESULTS

A. Model Selection

In order to find the best performing setup, experiments were
performed to examine the effects of mirroring input volumes,
initializing fully connected layers instead of using the pre-
trained layers, and initializing the softmax layer with different
distributions. While searching for the best performing setup,
we have used the model which was trained on Sports1m [29]
for 1.9 million iterations by Tran et al. [24] as our basis model.

The generalization capability of deep learning methods heav-
ily relies on the data it has been trained on. To make the best use
of available datasets, it is common to include ”augmentations”
which inject additional variance into the data without requiring
additional collection or labeling time. For some tasks, the
handedness of the user is not important. For gestures, users



might choose their left or right hand while performing a
gesture, without changing the meaning. Therefore both left, and
right-handed gestures should be taken into consideration while
training the system. One solution is to sometimes vertically
mirror the training data, so the system is exposed to a wider
variety of left and right-handed gestures. To evaluate the effects
of mirroring the data, two models were trained. The first with
no mirroring and a second model where the mirrored samples
were added to the training.

In Figure 2 we look at the effect of mirroring the data on the
frame based accuracy as the training proceeds. As can be seen,
mirroring the training data provides a significant improvement
in recognition performance across all iterations as expected for
gesture recognition.
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Fig. 2. The effect of mirror augmentation during training.

Initialization of layers has an immense effect on the op-
timization of the weights in a deep network. Proposed by
Grolot et al. [30], Xavier initialization help weak signals to
reach deeper in the network. Instead of the using Gaussian
Distribution (0 Mean, 0.005 Standard Deviation) as in previous
related work on action recognition, we have initialized the
softmax layer using Xavier initialization and examined its
effects.
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Fig. 3. The effect of intelligent weight initialization.

As it can be seen in Figure 3, initializing the softmax layer
with Xavier initialization improves the frame-based accuracy

throughout all of the iterations. Therefore, in our remaining
experiments we have used Xavier rather than Gaussian initial-
ization.

The later fully connected layers tend to be more specialized
to the task which the networks was trained on. It is reasonable
to question whether these layers have already converged to a
minima which is unsuitable for a new task, in which case better
performance might be obtained by initializing and training these
layers from scratch.
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Fig. 4. Pre-training of classification layers on a different task.

Counter to this reasoning, Figure 4 shows that fine-tuning
the pre-trained layers instead of initializing them performed
drastically better across all iterations. Based on these results we
have not initialized the fully connected layer in the following
experiments.

One of the cornerstones of deep learning is the ability
to exploit vast quantities of training data. As a result, it is
often beneficial to pre-train networks, even on tasks which
are seemingly very different to the intended task. The action
recognition network of Tran et al. was initially trained on the
Sports1m dataset [29]. We compare this to a second network,
which has been exposed to both the Sports1m and UCF101
[31] action recognition datasets.
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Fig. 5. Pre-training on other datasets.

As shown in Figure 5, the additional exposure to a wider
range of actions leads to some improvements in our continuous



gesture recognition task. This is despite the fact that there is
little overlap between the classes of the two action recognition
datasets, and there is no overlap with the ChaLearn dataset. It
appears that the low-level spatio-temporal patterns learned by
the network become increasingly generic as they are exposed
to more data from different tasks.

B. Model Training

In light of our previous experiments, we fine-tuned our
model from the weights that were pre-trained on Sports1m and
UCF101. We added mirrored samples to the training data and
initialized the softmax layer using Xavier initialization. The
model was fine-tuned for 100,000 iterations with a learning
rate of 0.001 and 0.9 momentum.
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Fig. 6. Training loss over 100,000 iterations.

As it can be seen from Figure 6 the training started to
converge after 15,000 iterations and converged after 60,000
iterations. We evaluated the performance of the system every
1,250 iterations on both the training and validation sets of
ConGD and chose the best performing method depending on
the frame based accuracy they yielded.
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Fig. 7. Train and validation accuracy over 100,000 iterations.

Figure 7 shows us the training and validation set accuracies
across all the iterations. The validation accuracy had a fast
rising trend until it achieved a peak score of 0.2934 frame-based
accuracy, followed by a stabilized 30,000 iterations and finally

started a slow decreasing trend. However, the training accuracy
kept rising indicating an overfit to the training samples. We
have chosen the best performing method that was trained for
28,750 iterations and compared it with the participants of the
Chalearn 2016 Continuous Gesture Recognition challenge.

C. Comparing the Performance with Challenge Participants

Due to time constraints the version that was submitted to
the ChaLearn 2016 gesture recognition challenge was ranked
second, achieving a mean Jaccard Index score of 0.269 on the
test data (See Table II). Recognition performance of the top 3
competitors was announced by the challenge organizers and all
of the methods used a variety of deep neural networks. The
first ranking method, proposed by Chai et al. [18], is based on
two stream recurrent neural networks which use multimodal
features, and achieved 0.287 mean Jaccard Index score. The
method proposed by Wang et al. [32], which ranked third,
proposed extracting improved depth motion maps from depth
sequences and classifying them using 2D CNNs. When we
subsequently fully trained our method (with an additional day
of training) it surpassed the first ranking method by achieving
a mean Jaccard Index score of 0.315.

TABLE II
CHALEARN 2016 CONGD CHALLENGE RESULTS (MJI: MEAN JACCARD

INDEX)

Rank Team Method Validation MJI Test MJI
N/A Baseline [25] MFSK 0.090200 0.146400

3 AMRL [32] IDMM + CNN N/A 0.265506
2 TARDIS (Ours) 3D CNN 0.280860 0.269235
1 ICT NHCI [18] RNNs N/A 0.286915

N/A TARDIS (Best) 3D CNN 0.342971 0.314779

V. CONCLUSION

In this study, we have proposed applying 3D Convolutional
Neural Networks (3D CNNs) to the problem of large-scale
continuous user-independent gesture recognition. Compared to
previous deep architectures what were proposed for this task,
3D CNNs are capable of encoding the spatial and temporal
information in the data without requiring additional temporal
modeling. The 3D convolution and pooling layers help to learn
the spatio-temporal variations in the data.

Our experiments have shown that mirroring improves the
gesture recognition performance drastically in tasks where
there is no dominant hand (i.e. the same gestures can be
performed using either hand). In light of our experiments, it
is obvious that the quality of the spatio-temporal patterns (and
thus the performance) provided by 3D CNNs, is improved with
exposure to more training data. This is even true for the higher
fully connected ”classification” layers, and even when the tasks
being trained for are different. If layers must be initialized
from scratch, careful choice of weight initialization can also
significantly improve performance.

We have applied the proposed method to the ConGD dataset,
which was introduced with the ChaLearn 2016 Continuous
Gesture Recognition Challenge, and ranked 2nd with a model
which was fine-tuned for 11,250 iterations. After the end of



the challenge we have obtained state-of-the-art recognition
performance on the same dataset with a model which had the
same parameters but was trained for 28,750 iterations.

As future work, it would be interesting to further investigate
the effects of data exposure, not only from different tasks but
even from different data modalities.
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V. Ponce-López, H. J. Escalante, J. Shotton, and I. Guyon, “Chalearn
Looking at People Challenge 2014: Dataset and Results,” in Workshop
at the European Conference on Computer Vision. Springer, 2014, pp.
459–473.

[23] P. Molchanov, S. Gupta, K. Kim, and J. Kautz, “Hand gesture recog-
nition with 3D convolutional neural networks,” in IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2015, pp. 1–7.

[24] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
Spatiotemporal Features with 3D Convolutional networks,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015, pp.
4489–4497.

[25] J. Wan, S. Z. Li, Y. Zhao, S. Zhou, I. Guyon, and S. Escalera, “ChaLearn
Looking at People RGB-D Isolated and Continuous Datasets for Gesture
Recognition,” in Conference on Computer Vision and Pattern Recognition
Workshops, 2016.

[26] I. Guyon, V. Athitsos, P. Jangyodsuk, H. J. Escalante, and B. Hamner,
“Results and Analysis of the ChaLearn Gesture Challenge 2012,” in
Advances in Depth Image Analysis and Applications. Springer Berlin
Heidelberg, 2013, pp. 186–204.

[27] S. Ruffieux, D. Lalanne, E. Mugellini, and O. A. Khaled, “A Survey of
Datasets for Human Gesture Recognition,” in International Conference
on Human-Computer Interaction. Springer, 2014, pp. 337–348.

[28] X. Chai, H. Wanga, M. Zhoub, G. Wub, H. Lic, and X. Chena, “DE-
VISIGN: Dataset and Evaluation for 3D Sign Language Recognition,”
Beijing, Tech. Rep., 2015.

[29] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale Video Classification with Convolutional Neural
Networks,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[30] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep
Feedforward Neural Networks,” in International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

[31] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101
Human Actions Classes from Videos in the Wild,” arXiv preprint
arXiv:1212.0402, 2012.

[32] P. Wang, W. Li, S. Liu, Y. Zhang, Z. Gao, and P. Ogunbona, “Large-scale
Continuous Gesture Recognition Using Convolutional Neutral Networks,”
International Conference on Pattern Recognition Workshops, 2016.


