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Abstract— The broad scope of obstacle avoidance has led
to many kinds of computer vision-based approaches. Despite
its popularity, it is not a solved problem. Traditional computer
vision techniques using cameras and depth sensors often focus
on static scenes, or rely on priors about the obstacles. Recent
developments in bio-inspired sensors present event cameras as
a compelling choice for dynamic scenes. Although these sensors
have many advantages over their frame-based counterparts,
such as high dynamic range and temporal resolution, event-
based perception has largely remained in 2D. This often leads
to solutions reliant on heuristics and specific to a particular
task.

We show that the fusion of events and depth overcomes
the failure cases of each individual modality when performing
obstacle avoidance. Our proposed approach unifies event cam-
era and lidar streams to estimate metric Time-To-Impact (TTI)
without prior knowledge of the scene geometry or obstacles. In
addition, we release an extensive event-based dataset with six
visual streams spanning over 700 scanned scenes.

I . I N T RO D U C T I O N

Obstacle avoidance is a cornerstone of autonomous robotic
behaviour. It enables robots to explore unknown and dynamic
environments safely, as well as being vital for Human-
Computer Interaction (HCI). As such, it has been a topic
of interest in the field of computer vision since its inception.
Vision-based techniques have historically relied on salient cues
such as image discontinuities and corner features. This causes
vision-based approaches to perform less well in poor lighting
or where there is little or repetitive texture. In these scenarios,
many motion planning implementations utilise depth sensors
like lidar, which mitigate issues with texture, lighting and
motion blur. However, limited resolution and slow scan times
make it challenging to evade small or fast moving objects.
This is particularly an issue in domains like autonomous
driving, where fast reaction times are vital.

Event cameras are an emerging technology which are a
promising alternative or supplement to traditional frame-based
cameras and depth sensors. Rather than producing entire
image frames, event cameras output a stream of per-pixel
intensity changes. This has much higher temporal resolution
and dynamic range than regular RGB images, and almost
eliminates motion blur. The bandwidth of the event stream
can widen or narrow depending on the amount of change
observed. These properties are clearly useful for the task of
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Fig. 1: Illustration of sensor capabilities for collision avoid-
ance. Depth cameras work well for large static objects
but struggle to detect small fast-moving objects. Event
cameras can segment dynamic foreground objects but cannot
infer depth to avoid large textureless obstacles. Our work
demonstrates their fusion works in both cases.

obstacle avoidance, but due to the different data composition,
specialised techniques must be created to utilise these cameras.

Similar to traditional frame-based cameras, event cameras
operate on a 2D image plane and require dedicated structure
from motion [1] or Machine Learning (ML) techniques [2,
3] to infer depth, introducing delays. The lack of direct depth
estimation is a shortcoming for obstacle avoidance, as it is
often not possible to calculate the time or location of potential
collisions, and as a result, the danger to be associated to
given objects. Additionally, as with frame based cameras, it
is impossible for an event camera to observe flat coloured
textureless objects like walls. The lack of intensity changes
causes no events to be generated in these regions.

Similar to human stereo vision, the complementary proper-
ties of events and depth have the potential to enable robust
obstacle avoidance across a previously infeasible range of
scenarios. Much like a biological creature, we argue that it is
also important for the agent to be able to prioritize either depth
perception or intensity changes depending on the situation.



As exemplified by Figure 1, this enables an agent to avoid
obstacles with low texture and also those moving quickly,
which would be challenging for a single sensor modality. To
this end, we make the following contributions:

1) An extensive dataset for developing event-based com-
puter vision techniques1: This includes RGB images,
events, as well as ground truth depth, optical flow,
semantic masks, and dense inverse TTI maps. The
extracted data covers over 700 scanned scenes from
the ScanNet dataset [4] with the inclusion of additional
flying obstacles. The data are formatted both as image
databases and as ROS messages.

2) To our knowledge, the first approach to unify lidar and
event camera sensor streams within a deep-learning
framework, as shown in Figure 1,

3) Demonstration that the above approach can be used
to develop systems which avoid a broader range of
dangerous obstacles than any previous technique.

I I . R E L AT E D W O R K

Obstacle avoidance — Fundamentally, solving obstacle
avoidance in static scenes comprises of pose estimation and
mapping. As such, robotic obstacle avoidance has shared roots
with visual odometry and Simultaneous Localization And
Mapping (SLAM). The differences between them are often
only in the framing of the problem. Early approaches such
as the work of Borenstein and Koren utilise a certainty grid
and potential field for collision-free local path planning [5].
More recently, approaches such as the work of Chakravarty
et al. use depth estimation from single images [6]. These
perform reasonably well in clear open environments but tend
to over-smooth small and distinct details. The majority of
approaches only consider static scenes, in which RGB and
depth sensors are suitable. We propose that the fusion of
depth with an event stream is more suitable where there is a
mixture of static and dynamic obstacles.
Events — While the event representation has inherent
advantages, it must be processed differently from traditional
images. Event-based approaches for many classic computer
vision problems have emerged recently. Zhu et al. estimate
optical flow from events, using a self-supervised network
supervised by corresponding greyscale images [7]. In Hidalgo-
Carrió et al.’s work, a monocular event stream is used
in a recurrent network to estimate depth using temporal
consistency. EVDodge from Sanket et al. is an approach
which uses events to estimate ‘segmentation flow’, optical
flow with foreground/background segmentation [8]. They train
in simulation and show a drone capable of dodging thrown
objects.
Event camera datasets — Following the recent availability
of event cameras, a few datasets have emerged each with a
slightly different focus. For visual-inertial odometry (VIO),
Mueggler et al. introduced an event-based dataset which
includes images and IMU, with ground truth poses [9]. The

1 The dataset, code, and instructions for running and generating additional
data are available at https://gitlab.eps.surrey.ac.uk/cw0071/EVReflex
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Fig. 2: Dataset and network data flow. The 	 represents the
application of the relevant loss function. Loss signals are
notated in red, output signals are notated in blue.

popular Multivehicle Stereo Event Camera (MVSEC) dataset
from Zhu et al. followed, which involves stereo event cameras
and additionally provides lidar point clouds and more scene
variety [10]. These have enabled successful approaches [7, 3,
2], but they lack extra data streams like ground truth optical
flow and semantic labels.

Simulated datasets, while having a domain gap to be
overcome for real-world applications, can provide accurate
ground truth to supervise or evaluate other approaches. Early
simulators emulated events by processing differences between
image frames [11]. Mueggler et al. used a custom rendering
engine for accurate event data in simple scenes [9]. InteriorNet
from Li et al. boasts many additional streams such as
optical flow and surface normals, in realistic customisable
scenes [12]. However, [9, 12] still operate on frames. Rebecq
et al. enhanced [9] with ESIM, which uses adaptive-rate
sampling [13] but does not match the realism and flexibility
of InteriorNet. We use real scanned scenes from the ScanNet
dataset [4] in conjunction with ESIM for a varied dataset
which correctly models an event camera.

I I I . M E T H O D O L O G Y

As shown in Figure 2, our approach consists of two parts.
Firstly, the event stream ε is used to predict optical flow
F̂ between image frames. The optical flow network O is
self-supervised using the greyscale image stream I which
corresponds with the events. In the second part, the resulting
optical flow is combined with depth d and processed by the
second subnetwork P . The TTI estimation network directly
estimates inverse metric TTI, the supervisory signal being
formed from depth frames warped by optical flow.

A. Optical flow estimation

The task of optical flow estimation has had a long history
of approaches based on traditional visible images. Inherent
drawbacks with the characteristics of this data, such as motion
blur, fixed framerates and poor low light performance, affect
all of these approaches. While many hand-crafted techniques
mitigate these problems [14, 15], event cameras naturally
perceive small changes with high temporal resolution. The
performance of event cameras for optical flow estimation has
been shown to exceed traditional cameras particularly for thin
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Fig. 3: Flow estimation network architecture. The
⊗

repres-
ents a concatenation operation. Total loss is calculated as the
mean of losses from each decoder layer’s output F1−4.

structures and low-texture areas [7]. These advantages are
particularly important for obstacle avoidance, where we can
expect fast-moving objects to exhibit motion blur in traditional
images.

Inspired by the work of Zhu et al. [7], the first module of
our approach is a network which estimates the optical flow
for use in our second module (Section III-B). This network
is trained in a self-supervised manner, using the grayscale
images in the training loss function. This means that ground
truth optical flow is not required to train for a new dataset.

Although events themselves are streamed asynchronously
between pixels, many works opt to treat them similar to
image frames. This is often implemented as an accumulation
of events between t and t − 1. It is known that both the
positive/negative event counts and event times are informative
signals for event-based learning [16]. Following the work of
Zhu et al., we represent the accumulated events ε as a 4
channel image [4, H,W ]. The channels of this event map
are the positive and negative event count at that pixel (εn+,
εn−) and the timestamps of the most recent positive/negative
event (εt+, εt−). This compact format has been shown to be
sufficient for many event-based image processing tasks [17,
18]. Resembling a U-Net [19], our network O is composed of
four encoder and four decoder layers with skip connections,
shown in Figure 3. Given network weights θO, the result is
an estimated flow field F at each decoder layer:

F = O(ε|θO). (1)

The application of F on the corresponding grayscale image
It is compared with the next image It+1 using photometric
and smoothness losses. The photometric loss lp minimises
intensity differences with Charbonnier loss [20] ρ:

lp(F, It, It+1) =
∑
i

ρ (It(i)− It+1(W(i|F ))) ∀i ∈ I ,

(2)
where i is a pixel coordinate {x, y} and W warps an image
by sampling it according to a flow field. ρ is calculated using
ε=0.001, α=0.45. The smoothness loss ls regularises flow
discontinuities in a pixel’s neighbourhood N ,

ls(F ) =
∑
i

∑
n∈N

ρ (i− n) ∀i ∈ F . (3)
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Fig. 4: Inverse TTI estimation network architecture.

The two losses are combined as a weighted sum, lf = lp+αls,
with α as the weight. By substituting Equations (2) and (3),
the training process for the self-supervised flow network in
isolation is

θ̂O = argmin
θO

(lp(O(ε|θP ), It, It+1) + αls(O(ε|θO))) . (4)

B. TTI estimation

The task of this network is to regress the inverse TTI
τ̂ for each pixel given optical flow F and depth values d.
Inverse TTI is used to avoid the asymptote in TTI at the point
where the relative egocentric velocity between the agent and
an obstacle is zero. To investigate the network’s reliance
between optical flow and instantaneous depth, we define two
versions, and each are tested independently in Section IV.
The first, which we refer to as the ‘static’ version, takes
the stacked optical flow Ft and instantaneous depth dt as
input. Here, the speed of geometry moving into the image
plane must be estimated implicitly during the computation
of the TTI map. The second version additionally uses the
next sequential depth frame dt+1 to provide additional cues
about motion in the Z axis. We refer to this version as the
‘dynamic’ version.

The network P , shown in Figure 4, downsamples the input
twice through 9 convolutional layers with branched residual
connections, and performs the transposed version to upsample
back to the original resolution. The network is supervised by
the ground truth inverse TTI τ , explained in Section III-D,
using mean-squared error loss lτ such that

θ̂P = argmin
θP

(lτ (τ̂ , τ)) where τ̂ = P ([F, d] |θP ).

(5)

C. Control policy

In the work of Sanket et al., some obstacle detection is
based on priors. For completely unknown objects, the input to
the control policy is the optical flow after masking segmented
background regions [8]. The obstacle trajectory is assumed
to be the average direction of the masked optical flow on the
image plane, and evasion is directed to be perpendicular to
this. There is no check that this motion is safe; the priority
is to avoid a fast-moving object.

For the comparison in Section IV-C, we take a similar
approach without any priors on the obstacles. We combine
the depth with predicted TTI into a 3D motion vector, and
then use the cross-product of this with the agent’s egomotion



v as the direction of evasion ψ,

ψ =

(
1

n

n∑
i=1

(F (i), d(i)τ̂(i))

)
× v. (6)

Because our network makes a prediction for every pixel, we
can additionally avoid colliding with ‘background’ regions if
they are within the field of view.

D. Dataset

A dataset, EVReflex, was created to facilitate evaluation
of our approach. With its extensive ground truth for multiple
sensors, it is also a useful asset for future event camera-based
research.

To collect this dataset, the movement of a robotic agent is
simulated in indoor scenes. The robot is equipped with an
RGB camera, a depth camera, IMU, and an event camera. The
simulator also outputs the pose of the agent and ground truth
optical flow [13], and has been extended to be capable of
producing semantic class labels. At the time of writing, there
are very few other datasets which provide an event stream
as well as semantic labels.

A problem for many synthetic datasets is the domain gap
between simulated environments and the real world, due
to the lack of realism. This issue applies to most event
camera datasets including EVDodge [8] and those based
on ESIM [13]. EVReflex overcomes this major problem
by simulating in RGB-D scanned scenes from the ScanNet
dataset [4], with a total of over 700 different real-world rooms.
The simulated robot follows random floor-based trajectories2

within each room, which brings it into proximity with various
static obstacles. Concurrent with this, a few dynamic obstacles
are simulated, each of which follow randomized trajectories
that periodically bring them into proximity with the robot.

A notable contribution of this dataset to aid future research
on collision avoidance tasks is the additional image stream
for the identification of dangerous image regions. Each pixel
i in these images represents inverse Time-To-Impact (TTI)
values for that point in the scene. These are computed by
comparing the previous depth dt−1 warped by the optical
flow F with the current depth dt,

τ(i) = max

(
0,
dt(i)− dt−1(W(i|F ))

dt

)
. (7)

This is fundamentally different from foreground/background
segmentation such as the estimated in EVDodge [8]. Firstly,
this approach can function with an arbitrary number of
obstacles of any shape. There is no intrinsic preference
between compact dynamic obstacles and static geometry.
Secondly, objects which are not approaching the robot,
including those in close proximity, have zero values.

The dataset is available to download1 in both image data-
bases and ROS formats. We also provide the full simulation
system to allow people to customise and generate additional
data if needed.

2Most translational variation is in the [X,Y ] floor plane, and most
rotational variation in Z rotation (yaw).

I V. E X P E R I M E N T S

The evaluation is split into three parts. Firstly, evaluation
was performed on the performance of the optical flow network.
Secondly the accuracy of the dense TTI regression. This
evaluation was broken down across different semantic classes
to highlight the performance for different types of obstacles.
Where applicable, we compare against the state-of-the-art in
event-based obstacle avoidance (EVDodge [8]), and against
a depth-sensor baseline, which thresholds nearby objects as
obstacles. Finally, we evaluate the accuracy of the signal for
the control policy across the baselines.

The EVReflex dataset was split into training, evaluation
and test splits at a ratio of 70%, 15% and 15% respectively.
This split was performed across the environments, meaning
that the same environment is not visible in more than one
set.

The optical flow estimation subnetwork (Section III-A) was
trained with a initial learning rate of 1× 10−5, with a batch
size of 8 for 30 epochs.

The TTI estimation subnetwork (Section III-B) was trained
for 40 epochs, with a batch size of 40 and a learning rate
of 0.01 which reduced by a factor of 10 on a validation loss
plateau.

A. Event-based optical flow evaluation

We evaluate optical flow by computing average endpoint
error (EE) with respect to the ground truth optical flow. By
filtering to event locations only, the system achieved an overall
average EE of 0.36, with 0.47% of those being outliers with
an EE of greater than 3 pixels. However, without filtering,
the average EE is 15.69 with 84.44% outliers. Our dataset
utilises laser-scanned scenes from the ScanNet dataset. The
scanning process has high spatial accuracy, but textures are
smoothed. This leads to decreased events, and as a result,
higher difficulty estimating optical flow. This is especially
visible in Figure 5. Note that regions with events are still
generally correct.

This reliance on salient texture is a drawback of visual
sensors in general, and is one of the motivations of our overall
approach. Depth sensors perceive textureless objects well, and
Section IV-B shows that fusing instanataneous depth with
this optical flow is enough determine potential collisions.

B. Dense TTI evaluation

A naı̈ve approach to obstacle avoidance may be to consider
the closest objects as the most dangerous. This may be true
for linear forward motion, but does not necessarily hold true
for others. We show a qualitative comparison of the estimated
TTI versus the ground truth and EVDodge (SegFlowNet) [8]
in Figure 6. EVDodge expects a clear foreground/background
distinction and without it the performance is reduced. Where
the camera is rotating clockwise, static geometry on the left
side of the image draws nearer while that on the right side
moves further away. Similarly, where the camera is moving
backwards, TTI does not correlate with depth. For these cases,
instantaneous depth is insufficient for collision avoidance. The
output of our approach resembles the ground truth TTI rather
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Fig. 5: Qualitative optical flow estimation results. Clearly,
optical flow cannot be estimated for low texture regions which
do not generate events.
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Fig. 6: Qualitative TTI estimation results. Row 1: Camera is
moving forwards, ball is approaching camera. Row 2: Camera
is rotating clockwise. Row 3: Camera is moving backwards,
TTI is negative.

than depth, and it has learned to associate motion derived
from events with the depth data. Note that we do not use
explicit pose information.

To enable quantitative comparison with previous techniques
based on binary segmentation of dangerous objects, we
threshold our inverse TTI values to pixels which are projected
to collide within 1.0 s. We compare both versions of our
network against the naı̈ve thresholded depth baseline using
a value of 0.5 m. This value was chosen to give similar
output to the other approaches. We also compare against
EVDodge, current state-of-the-art for event-based obstacle
avoidance [8], for which we similarly apply a binary threshold
to its ‘segmentation flow’ output. Table I shows that our
approach more consistently identifies the dangerous regions.
The dataset, and as such, the task, is not suited to EVDodge,
which expects clearer foreground/background delineation. The
‘dynamic’ version of our approach achieves very high precision

but poor recall, likely as an over-reliance on depth cues.
The regular ‘static’ version outperforms the baselines by a
wide margin for recall and f1 scores. The performance of all
approaches is better for flying objects, which produce many
events, than on the floor class, which produces few events.

Approach Flying objects Floor Overall

p r f1 p r f1 p r f1

Depth baseline 0.88 0.82 0.85 0.69 0.26 0.38 0.55 0.27 0.36
EVDodge 0.35 0.40 0.37 0.87 0.27 0.42 0.75 0.22 0.34
Ours 0.94 0.89 0.91 0.38 0.95 0.54 0.61 0.95 0.74
Ours (dynamic) 1.00 0.59 0.74 0.99 0.25 0.41 0.99 0.22 0.36

TABLE I: Precision (p), recall (r) and F1 (f1) scores for
thresholded TTI (potential collision within 1 second), with
semantic-specific scores.

C. Evasion

Where Section IV-B examined the magnitude and spatial
accuracy of the predicted inverse TTI maps, a control policy
such as described in Section III-C acts upon directional
cues. The evasion direction is based on the estimated motion
vector of obstacles relative to the agent. With a fixed control
policy, the accuracy of this estimate represents an approach’s
ability to avoid oncoming obstacles. Over the test set, we
evaluate the average error magnitude between the estimated
and ground truth motion vectors, and report the values in
Table II. The table shows that all our approach much more

Approach AAE AAE (top 10%)

Inverse depth (baseline) 16.58◦ 27.54◦
EVDodge 25.80◦ 22.28◦
Ours 2.65◦ 4.93◦
Ours (dynamic) 10.70◦ 17.11◦

TABLE II: Average angle error for estimated trajectory of
dangerous obstacles. ‘Top 10%’ represents the values with
the top 10% motion vector magnitudes

accurately estimates the direction with the most associated
danger. Those in the top 10% of ground truth magnitudes are
particularly important as this relates to having the least time
to avoid a collision. This accuracy is possible through being
able to filter out objects which may be in close proximity
but are not currently dangerous.

V. C O N C L U S I O N S

In this paper, we proposed that the fusion of events and
depth data enable better collision avoidance strategies than
using a single modality. Depth sensors, while accurate for
simple static scenes, struggle with fast-moving objects. On the
other hand, event cameras have excellent temporal resolution
and dynamic range, but are not effective with textureless
surfaces. Each sensor modality complements the failure cases
of the other. We presented an approach which overcomes
these issues, and directly estimates Time-To-Impact (TTI)
for every pixel. Our method outperforms those based on
foreground/background segmentation, and we demonstrated



that the resulting TTI maps can subsequently be used to
direct a control policy to circumvent collsions. We believe
that this is an important step in utilising the benefits of bio-
inspired sensors. To complement our approach, we provide
an extensive supporting dataset with a wide variety of data
types to support further research.
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