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Figure 1. (a) NTIRE-2022 (b) HySpecNet-11k (c) LIB-HSI. HYDRA excels in spectral reconstruction across various channel depths,
balancing computational efficiency (FLOPS) with high performance (PSNR). Circle size indicates memory cost.

Abstract

Hyperspectral images (HSI) promise to support a range
of new applications in computer vision. Recent research
has explored the feasibility of generalizable Spectral Recon-
struction (SR), the problem of recovering a HSI from a nat-
ural three-channel color image in unseen scenarios. How-
ever, previous Multi-Scale Attention (MSA) works have only
demonstrated sufficient generalizable results for very sparse
spectra, while modern HSI sensors contain hundreds of
channels. This paper introduces a novel approach to spec-
tral reconstruction via our HYbrid knowledge Distillation
and spectral Reconstruction Architecture (HYDRA). Using
a Teacher model that encapsulates latent hyperspectral im-
age data and a Student model that learns mappings from
natural images to the Teacher’s encoded domain, alongside
a novel training method, we achieve high-quality spectral
reconstruction. This addresses key limitations of prior SR

models, providing SOTA performance across all metrics,
including an 18% boost in accuracy, and faster inference
times than current SOTA models at various channel depths.

1. Introduction

Hyperspectral Imaging (HSI) extends traditional Red,
Green, and Blue (RGB) imaging by capturing a broader
spectrum across numerous narrow bands, offering detailed
wavelength information invaluable in fields like medical
imaging[20] and remote sensing[28]. However, conven-
tional HSI acquisition, reliant on spectrometers, is often
impractical for dynamic or real-time applications due to its
time-intensive nature and the high costs of HSI cameras.
Emerging technologies in Snapshot Compressive Imaging
(SCI) and computational reconstruction algorithms have



started to address these challenges [23, 35]. However,
HSI still demands costly hardware and long exposures. A
promising alternative is spectral reconstruction (SR) from
RGB images: it leverages standard cameras to estimate hy-
perspectral data, slashing costs and acquisition time. SR
can’t replace a true HSI camera everywhere, yet it is already
an industrial tool for multispectral systems that recover far
fewer bands. However, SR often serves as a bridge, allow-
ing models trained on one sensor to be deployed on another
or facilitating rapid filtering during active exploration tasks.
Traditional SR methods are based on sparse coding; as such,
they have limited representational ability for this task and
have been mostly tested on single scenes split into multiple
images, such as Salinas or Indiana Pines [24]. Advances in
deep learning, especially deep Convolutional Neural Net-
works (CNNs), have provided initial attempts at a gener-
alizable mapping from RGB to HSI data. However, these
CNN-based methods struggle with capturing long-range de-
pendencies and inter-spectral similarities. When applying
current SOTA approaches directly to SR tasks there are two
primary challenges: first, an inefficiency in capturing spa-
tial interdependencies in HSIs; second, the computational
intensity of global Multi-head Self Attention (MSA), which
scales quadratically, and the limitations of local window-
based MSA. This is demonstrated in Fig.!l where increas-
ing the channel depth of previous techniques leads vari-
ously to dramatic increases in model size, FLOPS and in-
ference times or a decrease in accuracy. These remarks are
echoed by the parameter count and computational complex-
ity increasing logarithmically for larger channel datasets
that SOTA models have not been tested on.

Our work introduces HYDRA, to solve these flaws while
improving the overall performance. This is done by refor-
mulating the SR problem to operate in a learned latent space
with drastically reduced dimensionality. To this end, HY-
DRA employs a knowledge distillation framework to per-
form SR from RGB images via the latent HSI space of a
Teacher model. The HYDRA architecture is based on a
cross-modal Teacher-student architecture, which is yet to
be explored in the field of SR. This approach diverges from
standard knowledge distillation methods by using differ-
ent input data modalities in a three-step process: First, the
teacher model is trained as a compressive autoencoder. Sec-
ond, a student spectral reconstruction model is trained to
convert RGB images to latent codes matching those of the
teacher model. Finally, a further training step in both mod-
els we call the ‘refinement’ step.

The HSI input modality is reserved solely for the Teacher
model training phase, where it is learnt channel-wise to
exploit spectral information in a latent space via unsuper-
vised training. Our Student model instead operates on RGB
and uses spatial information alongside channel-wise atten-
tion mechanisms. As a result, HYDRA demonstrates a re-

markable capability to efficiently handle generalisable SR
of large datasets containing a significantly higher number
of channels compared to current SOTA models, which have
only been tested on channel depths of around 31. This novel
approach outperforms existing methods at a fraction of the
complexity and model sizes as seen in Fig. 1. The main
contributions of our work are as follows:

1. Introduction of HYDRA, a novel approach enhancing
generalizable spectral reconstruction efficiency with a
unique cross-modal knowledge distillation.

2. An SR architecture combining modern attention mecha-
nisms with squeeze-excitation blocks for improved com-
putational efficiency at high channel depth.

3. The first SR benchmark and evaluation protocol for
the spectral reconstruction of high dimensional HSI
datasets, to support further developments in the field.

2. Related Work

Generalizable spectral reconstruction (SR) from RGB to hy-
perspectral images (HSIs) is challenging due to the wide
spectral range of HSIs contrasted with the narrower RGB
spectrum [2-4]. Earlier methods used specialized RGB
cameras and machine learning techniques to address the
complex RGB-HSI relationship [1, 2, 11].

2.1. Deep Learning for SR

Supervised SR models like those by Nguyen et al. [20]
and Robles-Kelly [29] introduced white-balancing normal-
ization and sparse coding. However, these model-based
methods have limited representation capacities and poor
generalization. Deep learning, particularly using convolu-
tional neural networks (CNNs) and generative adversarial
networks (GANSs), has revolutionized hyperspectral recon-
struction. Vision transformers have been adapted for hy-
perspectral SR, improving long-range dependency handling
[4, 17]. Models like HSCNN+ [36] and MST++ [7] en-
hance accuracy and incorporate spectral attention. How-
ever, global transformers’ computational demands scale
quadratically with spatial and channel dimensions (see for
example MST++ in Fig. 1 and Tab. 2 and Tab. 3), While lo-
cal transformers have limited receptive fields, which hinders
effective self-attention [4, 7]. Despite advancements, these
methods still require extensive training data and accurate
labelling. Previous approaches are bottlenecked in com-
putational capacity and generalization, especially at higher
channel depths (see Tables 3 and 2). Datasets like NTIRE
2022 [4] and ICVL [2] offer complex data but remain shal-
low in channel depth, which is impractical in modern hy-
perspectral applications. Many SR models are untested
on deeper datasets recently released [10, 13], which offer
broader spectral coverage for diverse scenes. We aim to
bridge this gap by enhancing SR performance across diverse



datasets, including those with up to 204 channels like LIB-
HSI [13] and HySpecNet-11k [10].

2.2. HSI Compression

Hyperspectral imagery’s spatial and spectral redundancies
offer ample compression opportunities. While lossless
methods provide accurate reconstruction with limited size
reduction [25], lossy techniques offer greater reductions
with acceptable quality. Inter-band and intra-band meth-
ods reduce spectral [8] and spatial [40] redundancies, re-
spectively, improving performance but potentially increas-
ing inference time. JPEG2000 HSI compression standards
[6, 9] exploit PCA to minimize spectral correlation. Un-
like PCA-based compression, which assumes linear rela-
tionships, HYDRA'’s Teacher model uses a non-linear latent
space to better encapsulate hyperspectral variations. Tensor
decomposition reduces dimensions while preserving spa-
tial details [39]. Techniques like DCT and 3D-DCT ad-
dress spatial and spectral aspects but may introduce arte-
facts, mitigated by wavelet transforms [27]. These methods
have improved image quality and compression ratios in ap-
plications like FuSENet [32]. Our approach combines these
innovations to transform spectral signatures into a lower-
dimensional space, aiming to surpass existing lossy meth-
ods in efficiency.

2.3. Teacher-Student Architectures

Knowledge Distillation (KD) [15] efficiently trains
lightweight deep learning models. In KD, a complex
‘teacher’ model transfers knowledge to a simpler ‘student’
model, enhancing efficiency. Traditional KD methods often
require extensive datasets and computational resources [5],
leading to generalization issues. Recent advancements
expand Teacher-Student architectures to knowledge expan-
sion, adaptation, and multi-task learning [12, 34]. However,
balancing teacher and student complexities remains chal-
lenging [19], prompting research into more -efficient
designs. In computer vision, these architectures enable
compact models to replicate larger models’ performance,
crucial for resource-limited deployments. Adaptability
issues persist in diverse or data-scarce environments [30].
Our HYDRA architecture introduces a transformative train-
ing methodology, surpassing traditional single-modality
techniques. The student and teacher operate on different
modalities with varying supervision and data availability.
This is particularly important in precision-critical fields
like hyperspectral image processing [22]. Most Teacher-
Student frameworks operate within the same data modality,
whereas HYDRA uniquely leverages cross-modal learning
to bridge RGB and hyperspectral data.
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Figure 2. (a) The Teacher model, (b) the operation of an SE block.
3. Method
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Fig. 4 illustrates the HYDRA model’s architecture. The
Teacher model compresses and reconstructs HSI spectra
without compromising spectral detail, effectively encapsu-
lating the hyperspectral camera’s sensitivity function within
its latent space. The Student model maps RGB inputs to this
latent space, ensuring efficient optimisation over long-range
channel image modalities while bounding the inference pre-
diction space for more accurate spectral reconstruction. By
optimizing the Student model within this feature-dense and
regularized space, the loss function becomes more mean-
ingful during training, facilitating the learning process and
reducing the likelihood of significant errors due to predic-
tions outside the latent space. Noisy spectral regions are
unpredictable and challenging for existing models to regress
from full HSI, often resulting in smoother representations in
these areas (seen in Fig. 6). By leveraging the regularized
latent space that smooths out these noisy bands, the Student
network can learn more effectively during training. More-
over, during inference on unseen data, the embedded sensi-
tivity function aids in predicting the overall spectral shape,
even if specific band intensities are inaccurate. We detail
the Teacher model in Section 3.1, the Student model in Sec-
tion 3.2, and the HYDRA training procedure in Section 3.3.

3.1. Teacher model

The Teacher model of HYDRA is an unsupervised autoen-
coder defined generally as an encoder and decoder such
that S =~ Dec(Enc(S)). It employs squeeze-excitation (SE-
Blocks) [16] for high-quality, pixel-wise compression. The
choice of SEBlocks over other attention mechanisms, such
as Transformers or Convolutional Block Attention Mod-
ules, is motivated by their proven effectiveness in enhancing
channel interdependencies with increasing channel depth
without significantly increasing computational complexity.
The encoder is comprised of 1D convolution paired with 1D
max-pooling layers and squeeze-excitation modules, estab-
lishing a high compression ratio (CR) for different channel
depths. This ensures high-fidelity decoding by the mirrored
decoder, thus maintaining the integrity of the compressed
spectra. The detailed architecture of the Teacher network is
shown in Fig. 2.

It is worth noting that these operations function in
1D across the spectral (i.e. channels) dimension. While



spatial information could also be captured in the Teacher
model, we found this contextual information was harder to
generalise given the small dataset sizes currently available
compared to non-HSI task datasets. Furthermore, in
development, we found it makes edges and structures of
output images blurred around low-frequency details.

3.1.1. Encoder Structure

The encoder converts a 1-dimensional input signal .S taken
from a single pixel of an HSI containing b samples into a
compressed latent representation S’. We introduce interme-
diate variables to simplify the equations.

Let F! = Conv(S!) represent the output of the convolu-
tional layer at layer [, and A! = E(F") denote the attention
weights computed via the Squeeze-Excitation (SE) block.
The encoder updates are then defined as:

St = Enc(S") = Pool (F' & A') (1)

Here, ® denotes element-wise multiplication, and St is the
output of the I-th layer, with SV being the final compressed
form S’. In this context, Conv denotes a 1D convolution
operation, and Pool is a 1D max-pooling operation that re-
duces the spectral dimensionality.

3.1.2. Decoder Structure

The decoder reconstructs the original signal .S from its com-
pressed form S’. Similar to the encoder, we define interme-
diate variables for the decoder. Let F' = Conv(S') be the
convolutional output at layer [, and A' = E(F") represent
the attention weights. The decoder updates are given by:

§I=1 = Dec(S!) = UpS (Fl © Al) 2)

Since these functions operate in 1D across the spectrum, the
upsampling process UpS increases the spectral dimension-
ality of the feature map using nearest-neighbour interpola-
tion, facilitating reconstruction. The final output of the de-
coder is the reconstructed signal, matching the input dimen-
sions of the encoder. In this modular approach, the encoder
and decoder share a symmetrical structure, where W, S s
and associated parameters act as the decoder’s counterparts
to the encoder’s weights and inputs. Differently from a tra-
ditional U-Net [31], this network omits skip connections be-
tween the encoder and decoder blocks to allow the decoder
to operate independently of the Student network during in-
ference. We discovered that pixel-wise compression more
effectively encapsulates hyperspectral data, subsequently
refining the Student network’s spectral predictions. These
improvements are demonstrated in the heatmaps presented
in Fig. 5b.

3.2. Student Model

Our proposed composite framework HYDRA integrates a
Teacher network for efficient spectral compression and a

Student network for high-fidelity spectral reconstruction.
The architecture of our Student model, depicted in Fig. 3, is
inspired by U-Net style attention networks [14], renowned
for their channel-focused attention mechanisms, but tailored
for natural image restoration tasks.

Our Student model employs the Multi-Dconv Head
Transposed Attention (MDTA) [38] as its transformer back-
bone, integrating spatial convolution within the channel-
wise attention mechanism for enhanced feature extraction
and representation. Each block in the U-Net pipeline lever-
ages these Transformer blocks to capture both spatial and
spectral dependencies.

In the encoder, the feature extraction function Y (X) rep-
resents the process where input feature maps X are trans-
formed by applying a series of MDTA blocks, reducing the
spatial dimensions while increasing the number of channels.
In the decoder, the function f/(f( ) represents the upsam-
pling process, where the decoder reconstructs the feature
maps to their original spatial dimensions by reversing the
operations of the encoder. Skip connections between corre-
sponding encoder and decoder layers ensure that spatial de-
tails are preserved, providing rich feature representations at
multiple scales. This architecture allows for efficient long-
range dependency modelling, similar to the Restormer ar-
chitecture. The model operation is formalised explicitly in
the following subsections.

3.2.1. U-Net Pipeline

The Student model’s U-Net-like encoder-decoder architec-
ture processes an input image I € R¥>*W >3 through four
levels. The initial convolutional layer transforms the input
into feature embeddings X° € R *W*C where C repre-
sents the number of channels.

In the encoder, each layer generates feature maps
Y(XI-1) = X! e RH/ZXW/2'x2'C by employing an
increasing number of Transformer blocks, which utilize
MDTA. This process reduces the spatial dimensions ([
and W) while increasing the channel count. The decoder,
using upsampling operations, reconstructs the original im-
age dimensions, with the help of skip connections be-
tween the corresponding Student encoder and decoder lay-
ers Y(X!) + X! = X!=1. This helps retain important fea-
tures from earlier stages during the reconstruction process.

In the student decoder stage, deep features are refined
through a convolutional layer, leading to the generation of
the residual encoded hyperspectral image. The system out-
puts the final encoded image, which is a combination of the
initial feature embeddings and the residual image:

S = X+ Conv(X°) 3)

Here, S represents the final latent restored image, and X0
is the output of the final decoder block The U-Net architec-
ture [31] is particularly well-suited for tasks that require de-
tailed spatial-channel correlation, such as super-resolution
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Figure 3. Our Student model: A U-Net shaped Vision Transformer
network in the channel domain, utilizing Multi-Dconv Head
Transposed Attention (MDTA) and Dual-Gated-Dconv Feed-
Forward Network (DGDF) modules. Green 3x3 blocks are depth-
wise convolutions and blue blocks 1x1 are pixel-wise convolutions
to capture spatial and spectral shapes.

or spectral-reconstruction. Its encoder-decoder structure ef-
ficiently captures both high-level and low-level features.

3.2.2. MDTA blocks

The MDTA block is a key part of the Y (X) and Y (X)
functions, responsible for feature extraction within the U-
Net pipeline. It operates with channel depth-wise (Hy4) and
pixel-wise (Hp) convolutions on layer-normalized input X:

Hy(X) = Cp(LN(X)) 4)
Hy(X) = Cp(LN(X)) (5)

where LN denotes layer normalization.
The combined operation of depth-wise and pixel-wise
convolutions is then defined as:

Cap(X) = Ha(Hp(X)) (6)
The Student model, unlike the Teacher model, empha-
sizes spatial context across RGB images. It employs MSA
blocks for channel-wise attention calculation, coupled with
feed-forward blocks to effectively propagate feature trans-
formations through the network.
The attention mechanism operates by computing a dot-
product interaction of the query (@), key (K), and value (V)
outputs to generate the attention map:

CE(X)-c2(X)"
A(X) = C¥(X) - Softmax a )adp( ) .

where « is a learnable scaling parameter. The enhanced
feature representation M DT A is generated by combining
the attention map A with the input feature X:

MDTA(X) = Hy(A(X)) + X. (8)

The combination of depth-wise and pixel-wise convolutions
in MDTA allows for a more nuanced and effective feature
transformation. Depth-wise convolutions handle channel-
wise interactions efficiently, while pixel-wise convolutions
focus on spatial details, making the model adept at captur-
ing both spatial and spectral features.

3.2.3. DGFN

The Dual Gated-Dconv Feed-Forward Network processes
the output from preceding layers, focusing on the effective
propagation of texture features. The DGFN incorporates a
dual gating mechanism defined as:

ME(X) = ¢(Cap(MDTA(X))) )

where g is either the first (1) or second (2) gate, and ¢ rep-
resents an activation function.

These pathways are combined in the encoder branch as
follows:

Ya(X) = (Mg(X) © ME(X)) + (Mg(X) © Mé()gz))
Y(X) = Hy(Yo(X)) + MDTA(X). (11)

This approach merges gated features with the original fea-
tures, ensuring the preservation of essential information
while emphasizing critical textural elements. This represen-
tation is then fed into the decoder of the Teacher model for
SR. The addition of a skip connection from the encoder en-
hances the Student decoder’s ability to recover fine details
lost during compression. The Student decoder operation,
along with the skip connection from the encoder, is formal-
ized as:

Y(X) = H,(Yo(X)) +MDTA(X) + X (12

where X represents the input to the Teacher’s decoder, H,,
denotes pixel-wise convolutions, 17(; is the Dual Gated-
Dconv Feed-Forward Network as in eq.10, and X is the
feature map from the equivalent layer of the Student’s en-
coder provided via the skip connection. This output is then
passed to the Teacher’s decoder, which reconstructs the fi-
nal hyperspectral image. To clarify, the Student processes
RGB to latent space, and the Teacher converts this latent
space into hyperspectral data.

3.3. Training Procedure

The training procedure outlined in this section is illustrated
via Fig. 4. Our novel HYDRA training methodology uses a
three-stage process.

Training stage one: The first stage trains the Teacher net-
work (section 3.1 and Fig. 4.a) to compress HSIs into
a compact representation, providing a feature dense latent
space for the Student network. The loss function used is
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Figure 4. (a) The traditional training method for SR. (b), (c) and
(d) show the stages of the HYDRA training procedure.

the Huber loss which provides a smooth loss throughout
training, as it handles outliers effectively while maintaining
smooth gradients.

Training stage Two: In the second stage, the Student net-
work learns to map RGB images to the frozen Teacher’s la-
tent HSI representations (see Fig. 4(c)). The loss function,
mean absolute error (MAE), is defined as:

1< -
Ly = E;m — S| (13)

where Y, represents the Student’s predictions and S’ is the
Teachers latent representation and n is number of data sam-
ple. We choose MAE because it penalizes all errors equally,
making it robust to outliers. Unlike squared loss, which
disproportionately emphasizes larger errors, MAE treats all
deviations uniformly. This helps the Student network mini-
mize discrepancies with the Teacher’s outputs across latent
spectral channels without being overly influenced by out-
liers, leading to more stable training.

Training stage Three: The final stage involves fine-
tuning both the Teacher’s decoder and the Student model to-
gether (Fig. 4.c), To this end, we unfreeze the Teachers de-
coder, and train the system end to end using an MSE loss to
minimize the difference between the predicted and ground
truth HSI. The refinement step aligns the latent space with
the end goal of spectral reconstruction, addressing minor
discrepancies that may arise due to independent training in
earlier stages.

4. Experiments

We trained our models on a single NVIDIA A100 80GB
GPU, though HYDRA remains compatible with smaller
GPUs due to its low memory usage. We used the
ARADIK/NTIRE2022 [4], LIB-HSI [13], and HySpec-
Netl1K [10] datasets with their specified training splits. All
methods were implemented in PyTorch, utilising the recom-
mended optimisation and learning rates from their original
papers, with minor noise removal adjustments made for the
larger LIB-HSI and HySpecNet11K datasets. Each model

was trained for 300 epochs with a batch size of 20, and we
report the average accuracy per dataset to provide consis-
tency.

As seen from Tables 1, 2, and 3, HYDRA outperforms
existing current SOTA SR models in the SR task. This im-
provement is attributed to our innovative Teacher-Student
framework, which efficiently leverages a compact latent
space for the Student model to explore. This effect provides
a defined space that improves optimisation via a bounded
space via a more descriptive latent space modality. Addi-
tionally, this modality is inherently smoother and avoids re-
gression over noisy areas of spectra, which can be handled
more elegantly via the Teacher network’s latent space. In
our quantitative analysis (refer to Tables 1, 2, 3 and Fig.
1), our approach exhibits significant improvements across
all three accuracy evaluation metrics and inference times
against other transformer models (Table 4, particularly in
datasets with far deeper channel depths like HyspecNet-
11k and LIB-HSI being over six times that of NTIRE-22.
Notably, we maintain a stable parameter count and FLOPS
compared to other methods. Methods with smaller param-
eters or FLOPS tend to perform poorly across all metrics.
FLOPS are computed using the fvcore library for consis-
tency. In HYDRA, the Teacher’s decoder is included with
the Student during inference to calculate total FLOPS.

HYDRA'’s impressive computational efficiency is due to
the offloading of initial computation to a compact Teacher
model, which shrinks the channel space for the MSA Stu-
dent model. In most baseline models, larger channel depth
datasets cause models to expand significantly, whereas HY-
DRA remains much smaller due to the reduced channel size
provided by the Teacher model. By offering a compact,
lower-dimensional target, the latent space reduces the com-
putational load during stage 2 of training, simplifying the
process and facilitating more efficient learning of spectral
distributions from the full architecture. Our architecture’s
ability to capture complex spectral relationships through the
latent space enables accurate reconstruction even in high-
dimensional settings. Importantly, HYDRA maintains a sta-
ble parameter count and low FLOPS due to the Teacher’s
efficient spectral compression and the Student’s focused re-
construction. In contrast, methods with fewer parameters or
lower FLOPS cannot often model intricate spectral details,
resulting in poorer performance.

HYDRA surpasses MSA-based models on complex
datasets, as MSA models often struggle with high-
dimensional spectral data. By effectively modelling inter-
channel dependencies in the Teacher’s latent space, HY-
DRA guides the Student in a smoother latent space. This ap-
proach handles high-dimensional data more efficiently and
robustly than other models.

These results highlight the efficacy of our Teacher-
Student cross-modality approach. By mapping RGB in-
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Figure 5. MRAE heatmap errors for different datasets.

Table 1. Results on NTIRE-22 [4] (31 channels). Best-in-column Table 2. Results on HySpecNet-11k [10] (202 channel) dataset.
in bold, second best underlined. The * indicates current SOTA Model FLOPS (G) | MRAE (}) | RMSE () | PSNR (1)
transformer backbone methods. FMST++ [7] 25952 0.3133 0.019 36.159
Vodel FLOPS (G) | MRAE (J) | RMSE (J) | PSNR () :MPRNet 3 ]] 4007.32 0.3283 0.0210 35.163
MSTH+[7] 23.05 01645 00243 TRy Restormer [38] 96.34 0.2960 0.0187 36.041
*MPRNet [37] 101.59 0.1817 0.0270 33.50 HDNet [;‘J 166.37 0.2856 LG 36.09
*Restormer [38] |  93.77 0.1833 0.0274 33.40 AWAN [21] 306.07 Lo 0.0268 32.894
HDNet [ 18] 173.81 02048 0.0317 13 HRNet [41] 158.57 0.2627 0.0192 36.012
AWAN [21] 27061 0.2500 0.0367 3122 HSCNN++ [33] 294.89 0.2953 0.0242 33.961
HRNet [41] 163.81 03476 0.0550 26.89 HYDRA (ours) 86.59 0.1563 0.0160 37.759
HSCNN++ [33] 304.45 0.3814 0.0588 26.36 Table 3. Results on LIB-HSI [13] (204 channel) dataset.
HYDRA (ours) 85.90 0.1556 0.0221 34.83 Model FLOPS (G) | MRAE () | RMSE (}) | PSNR (D)
*MST++ [7] 2595.2 0.4041 0.01254 39.316
*MPRNet [37] 4008.53 0.3922 0.01181 39.133
puts to the Teacher’s latent space, the Student is guided le]s)“;;z?l 5[;]8] 19:673;7 gz?gg 881322 350%618
by rich spectral information, improving generalisation and AWAN [21] 306.07 0.4230 0.01248 38.812
enabling more accurate HSI reconstruction than methods HRNet [41] 158.57 0.3881 0.01280 38.777
: } : . HSCNN++ [33] 294.89 0.4334 0.01350 38.069
without cross-modality learning. HYDRA (ours) | 86.59 03004 | 0.00905 | 42.242
In table 4, we record the time taken to do inference on of e
. . . 4.1. Qualitative
a single image from each dataset for the top-performing
methods in previous tests. Here, this highlights how HY- We visualised error rates with MRAE heat-maps and in-
DRA’s lower FLOP counts translate to high-accuracy appli- put test RGB images (Fig.5); blue marks lower errors, red
cations. higher. HYDRA'’s superiority is evident in NTIRE-2022,
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Figure 6. Visualisation of 6 random pixel reconstructions at inference from selected test datasets and approaches

Table 4. Inference time (ms) for a single image for the three best
SOTA methods and HYDRA (ours).

Model NTIRE-22 | HySpecNet-11k | LIB-HSI
MST++ [7] 102.52 233.53 3119.04
MPRNet [37] 74.97 212.25 2861.39
Restormer [38] 147.30 32.42 219.98
HYDRA (ours) 154.11 16.09 172.70

with darker blue hues outshining other models. This stems
from our Teacher-Student approach, which constrains the
Student’s predictions within the latent space, reducing out-
liers compared to reconstructing the full high-dimensional
spectra directly. Models like Restormer, lacking such guid-
ance, are more prone to errors. In the larger HyspecNet-11k
dataset (Fig. 5b), HYDRA excels in land shade reconstruc-
tion, benefiting from the increased dataset size. The LIB-
HSI dataset exhibits artifacts and noise, analyzed further in
our pixel reconstruction study (Fig. 6). We compare ran-
dom pixel spectra from reconstructed HSIs to ground truth
(GT in red) across all datasets. Unlike a single global met-
ric, these plots provide a visual analysis of spectral shapes
across the visible-to-infrared range. This approach lets us
assess how well each model captures the structure of the
spectrum without being biased by aggregate accuracy val-
ues—i.e., a model might score better on a global error met-
ric yet fail to replicate the correct overall shape. By visually
inspecting these spectra, we gain a more nuanced under-
standing of each model’s strengths and weaknesses in re-
constructing hyperspectral data. As seen in Fig. 0, the test
NTIRE-2022 images show the best reconstruction quality,
due to their shallower channel depth. Although the gen-
eral spectral shapes are well-predicted, some discrepancies
in absolute intensity levels occur. Figures 6a, 6b, and 6¢
illustrate that models with attention more closely match the

Table 5. Ablation study for HYDRA with different latent-channel
sizes and training stages. The Stage 1 column shows the Teacher
model’s HSI auto-encoding performance (upper bound for Stages
2-3).

Dataset Latent Stage 1 (Teacher) Stage 2 (Teach.—Stud.) Stage 3 (Refinement)
Size | MRAE RMSE PSNR | MRAE RMSE PSNR | MRAE RMSE PSNR
4 0.0419  0.0057 46.51 | 0.2412 0.0328 31.89 | 0.2207 0.0386 32.53
NTIRE-2022 6 0.0198  0.0027 53.17 | 0.1772 0.0250 33.97 | 0.1556 0.0221 34.83
8 0.0125 0.0017 56.70 | 0.2164 0.0252 33.77 | 0.1723 0.0245 34.02
13 0.1011  0.0047 47.35 | 0.1701  0.0178 37.11 | 0.1658 0.0168 37.25
HySpecNet-11k 17 0.0756  0.0032  50.90 | 0.1621 0.0166 37.38 | 0.1563 0.0160 37.76
34 0.0683  0.0025 52.95 | 0.1685 0.0171 3732 | 0.1597 0.0161 37.64
13 0.0228 0.0012  59.29 | 0.4373 0.0139 3855 | 04211 0.0120 39.64
LIB-HSI 17 0.0187 0.0010 60.49 | 03171 0.0110 4191 | 0.3004 0.0091 42.24
34 0.0143  0.0008 62.52 | 0.3278 0.0141 40.18 | 0.3201 0.0125 41.84

ground truth. Further analysis in figures 6d, 6e, and 6f high-
lights HYDRA’s superior accuracy over other models, with
more consistent reconstructions across all datasets.

4.2. Ablation Study

Below we analyse how different latent sizes and training
stages affect HYDRA’s performance (see table 5). The three
training stages are: Teacher-only, Teacher-Student, and Re-
finement. The Teacher-only column encodes and decodes
test HSIs, illustrating the model’s upper bound in stages 2
and 3, but does not address the SR task. HYDRA is sen-
sitive to latent size changes: size 6 is optimal for NTIRE-
2022, while 17 is best for HySpecNet-11k and LIB-HSI.
This indicates the need to balance representation capacity
with minimal latent size for accurate RGB-to-HSI mapping.
Further comparison of three training variations—Stage 1+3
only, Student-only, and the full Three-Stage training is de-
tailed in Table 6. The comprehensive Three-Stage training
approach surpasses the alternatives, underscoring its critical
role in enhancing the HYDRA model’s performance across
all tested datasets.



Table 6. 17-channel latent-space comparison of refinement only,
student only, and three-stage training.

Dataset Stage 1+3 Student Only Three-Stage
MRAE RMSE PSNR | MRAE RMSE PSNR | MRAE RMSE PSNR
NTIRE-2022 0.1689  0.0273 3292 | 0.1833 0.0274 33.40 | 0.1556 0.0221 34.83
HySpecNet-11k | 0.2689  0.0215  35.11 | 0.2960 0.0187 36.04 | 0.1563 0.0160 37.76
LIB-HSI 0.8820 0.0229 33.74 | 0.3905 0.0131 38.67 | 0.3004 0.0091 42.24

5. Conclusion

We introduce HYDRA, a novel spectral reconstruc-
tion approach that leverages knowledge distillation,
Teacher-Student architectures, and cross-modal learn-
ing to outperform existing SOTA models. @ HYDRA
not only achieves superior accuracy on primary bench-
marks but also demonstrates exceptional computational
efficiency across varying hyperspectral channel sizes.
It excels in diverse channel-depth scenarios, position-
ing it as a novel technique for future HSI applica-
tions.
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