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Supplementary Material

In this supplementary materials document, we present

the complete results for all scenes in the Bayspec and SOP

datasets in Section 8. Additionally in Section 9 we evaluate

our performance on third dataset: a simulated ScanNetv200

dataset [7], where spectral replacements are applied to the

target images. Furthermore, we provide ablation studies on

various aspects of our approach, including the pruning strat-

egy scoring function (Section 10.1), the performance of the

system’s autoencoder with varying latent space dimension-

ality and the global pruning call frequency to the system

(Section 4.3).

We chose to ablate on the Bayspec dataset scenes in de-

velopment, and we found larger improvements in optimis-

ing from the Bayspec dataset that translated into the others.

This can be attributed to Bayspec’s high-frequency infor-

mation in most scenes, more noisy spectra, and general sig-

nicance of images in the scenes.

8. Per-scene quantitative results

Tables 4 and 5 break down the results of the SOP and

Bayspec datasets results of Tables 2 and 1 from the main

paper, into metrics for each scene. Our method consis-

tently enhances scene modeling performance on almost ev-

ery combination of metric and scenarios. This is especially

true in terms of improving the PSNR index for scene model-

ing. PSNRmeasures the extremism of outliers in the spectra

of the predicted image which highlights the overall bents

of HyperGS over other methods.

9. Simulated Scannet dataset

Since no room-scale multi-view hyperspectral dataset cur-

rently exists, we propose simulating such a dataset using

the ScanNetV2 dataset. To enhance the diversity and spec-

tral richness, we utilize longer channel depths by incorpo-

rating downsampled Raman spectra from the open-source

RRUFF dataset. Specically, we select 200 suitable spectra

(from their material description) from the RRuFF dataset

and downsample them by a factor of 16, resulting in spec-

tra with 228 channels. These spectra replace the segmenta-

tion labels in ScanNetV2 to generate a large number of sim-

ple simulated hyperspectral images. This approach provides

valuable insights into the performance degradation of sys-

tems at high channel depths, even when a dataset includes a

large number of viewpoints. Furthermore, to perform cam-

era pose estimation from the colmap scenes, we downsam-

pled the number of images and downscaled the resolutions

of the image by 2 in order to get a working camera intrinsic

estimation from the scene with COLMAP.

For fairness, we evaluate against the same baselines used

throughout the mains paper, excluding MipNeRF360, as

it was explicitly designed for “turntable style” 360-degree

datasets. Table 6 summarizes the average results for four

randomly selected scenes from the ScanNetV2 dataset.

The results consistently demonstrate that HyperGS is

more robust and accurate than all other methods evaluated

again. While 3DGS also performed well compared to other

baselines, its success can be attributed to the use of cleaner

and less varied spectra, which was found to particularly

benet 3DGS in the SOP dataset. NeRF-based methods,

as expected, were to perform better on ScanNet than on

the SOP dataset due to the larger number of viewpoints

available. However, HyperGS still provides greater results.

We attribute this to other baselines performance degrad-

ing substantially when tasked with handling high channel

counts, highlighting their limitations in hyperspectral sce-

narios. HyperGS overcomes these issues with the use of it’s

learned latent space.

We also provide the full set of quantitative results for the

scannet dataset performance in Table 7.

10. Additional ablation studies

In this section we aim to provide greater ablation studies on

the bayspec dataset for HyperGS. We found that rening the

technique on this dataset yielded greater results in the SOP

dataset that we tested on as part of the main paper.

10.1. Pruning Strategy

Choosing the appropriate pruning score function is crucial

for maintaining spectral delity after the pruning is per-

formed. We tested several functions—including L1, L2,

Huber, SAM, and mean average error (MAE) as shown in

Table 11. We also provide the results without the pruning

to highlight the positive effect it has on the system (called

‘None’ in the table). The L1-Norm loss performed best, bal-

ancing detail preservation and model simplicity by penaliz-

ing large deviations while keeping the structure intact. SAM

preserved angular relationships but resulted in worse chan-

nel intensity preservation. L2 led to over-pruning, degrad-

ing reconstruction quality in regions with complex spectral

features due to smoothing of the latent spectra when global

pruning was activated. Hence in the nal model we used an

L1 loss in equation 17.

10.2. Autoencoder Training Strategy

We investigated the performance differences between an au-

toencoder trained individually for all the scenes in Bayspec



Surface Optics Datasets

Method
Rosemary Basil Tools Origami

FPS↑PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓

NeRF 8.42 0.7461 0.0284 0.3560 9.91 0.5534 0.0769 0.5256 11.61 0.4962 0.0610 0.3018 13.64 0.5684 0.0835 0.2083 0.12

MipNeRF 13.64* 0.5684* 1000* 0.2083* 10.11 0.5878 0.0728 0.5334 12.78 0.5213 0.0598 0.2781 11.697 0.5149 0.0956 0.2595 0.092

TensoRF 12.1 0.73351 0.0212 0.2662 15.23 0.5811 0.0435 0.3628 11.697* 0.5149* 0.0956* 0.2595* 12.98 0.4488 0.0776 0.2314 0.195

Nerfacto 18.66 0.8836 0.0078 0.1205 16.54 0.7915 0.0176 0.1655 16.254 0.6135 0.0198 0.1549 14.02 0.5028 0.0953 0.1993 0.572

MipNerf360 8.47 0.7518 0.0876 0.3825 13.92 0.8584 0.0497 0.2035 16.80 0.7241 0.0832 0.1482 9.93 0.3951 0.3271 0.3288 0.011

HS-NeRF *18.60 *0.887 *0.0077 *0.1187 *16.81 *0.771 *0.0172 *0.1587 *12.001 *0.355 *0.470 *0.185 10.359 0.4530 0.3197 0.3188 0.488

3DGS 25.56 0.9695 0.0028 0.0534 21.19 0.9385 0.0101 0.0897 29.13 0.9596 0.0165 0.0391 38.46 0.9833 0.0003 0.0128 79.0

HyperGS 26.77 0.9845 0.0021 0.0445 25.30 0.9503 0.00514 0.0569 30.86 0.9773 0.0091 0.0288 39.12 0.9906 0.0002 0.0114 3.56

Table 4. Quantitative results using the HS-NeRF dataset against separate hyperspectral methods and baseline NeRF and 3DGS.

BaySpec Datasets

Method
Pinecone Caladium Anacampseros

FPS↑PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓

NeRF 22.82 0.6113 0.0446 0.0728 23.12 0.58348 0.0491 0.0709 24.12 0.6220 0.0384 0.0623 0.13

MipNeRF 21.45 0.5738 0.0410 0.0856 23.36 0.5935 0.0487 0.0685 23.43 0.6160 0.0408 0.0786 0.090

TensoRF 24.12 0.6454 0.0593 0.0625 24.79 0.6424 0.0516 0.0577 25.07 0.6569 0.0394 0.0558 0.17

Nerfacto 15.36 0.4935 0.0707 0.1709 20.67 0.6208 0.0529 0.0945 21.32 0.6423 0.0417 0.0867 0.50

MipNeRF360 25.93 0.7355 0.0279 0.0507 26.93 0.7371 0.0332 0.0461 26.73 0.7601 0.0230 0.0461 0.010

HS-NeRF 20.07 0.581 0.0725 0.1521 19.084 0.705 0.0533 0.0902 20.32 0.7260 0.0345 0.0789 0.47

3DGS 22.65 0.6039 0.0668 0.0819 23.50 0.7131 0.2889 0.0758 22.59 0.5786 0.0447 0.0853 78.1

HyperGS 27.0 0.7509 0.0309 0.0447 27.70 0.8354 0.0271 0.0414 26.62 0.7545 0.0183 0.0460 2.31

Table 5. Quantitative results using the HS-NeRF dataset against separate hyperspectral methods and baseline NeRF and 3DGS.

Simulated Scannet Dataset

Method
Average Results

PSNR ↑ SSIM↑ SAM↓ RMSE↓

NeRF 15.85 0.7200 0.1509 0.1742

MipNeRF 14.45 0.7180 0.1700 0.2094

TensoRF 7.353 0.3522 0.8201 0.4599

Nerfacto 7.928 0.3896 0.6711 0.4520

HS-NeRF 7.363 0.3258 0.4107 0.4649

3DGS 20.618 0.8224 0.06421 0.1140

HyperGS 25.12 0.8805 0.04602 0.05833

Table 6. Quantitative results using the simulated hyperspectral

scannet dataset against separate hyperspectral methods and base-

line NeRF and 3DGS. Change colours to yellow, orange, red

versus a single autoencoder trained on all scenes within

the dataset. We perform this experiment because all base-

lines are per-scene models and we aimed to provide a fairer

test experiment. The single-scene AE approach is tailored

to each scene’s unique characteristics, potentially captur-

ing ner details, while the general approach may benet

from broader exposure, improving robustness across differ-

ent scenes. Our results, Table 9 show that the single AE

provides better reconstruction quality in scenes with high

variability, as it can specialize in scene-specic features.

However, the general autoencoder, trained on all scenes,

offers more consistent performance and reduced outliers

across varied environments, albeit with a slight trade-off in

specic scene detail and overall performance. In develop-

ment, we found adding the MLP from Section 4.2 takes a

stronger role in providing better spectral reections in the

scene when added to the system, providing better latent

spectral understanding.

10.3. Latent space ablation

In this ablation, we tested the performance of HyperGS

against the change in latent space size. Reducing latent

space size can make the feature space more meaningful and

compact. However, this necessitates additional AE layers,

leading to a more rigid latent space, increased prediction er-

rors and slower performance. In table 10, we test against all

of the datasets presented in the main and supplementary ma-

terials with ranging latent space sizes. We chose to do divi-

sions of 4 and 6 of the full channel depth of the hyperspec-

tral images to highlight the changes in performance when

the latent space is reduced on the differing types of cam-

era datasets. Interestingly, latent space performance varies

signicantly for the noisier Bayspec dataset, likely due to

reduced expressiveness in handling noisy regions. Whereas

smoother hyperspectral data like that of SOP and scannet

highlights the ability to comfortably transition to smaller

channel sizes and in some cases outperform the division of

4 size used in the main paper. To provide a fair and con-

trolled experiment we use the division of 4 for all results in

the main paper and the scannet results, since this provides

the most consistent results.



Simulated Scannet Dataset

Method
0000-00 0009-00 0645-01 0703-01

FPS↑PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓ PSNR ↑ SSIM↑ SAM↓ RMSE↓

NeRF 14.18 0.6912 0.1113 0.2097 16.53 0.7298 0.0978 0.1657 16.28 0.6691 0.1372 0.1650 16.39 0.7889 0.2572 0.1564 0.070

MipNeRF 13.47 0.7062 0.1266 0.2280 14.47 0.7076 0.1212 0.2290 14.62 0.6754 0.1592 0.1999 15.23 0.7824 0.2729 0.1808 0.086

TensoRF 8.94 0.5894 0.5878 0.4021 5.86 0.1951 0.8788 0.5230 7.59 0.2689 0.8645 0.4564 7.02 0.3553 0.9494 0.4581 0.340

Nerfacto 8.78 0.5912 0.5578 0.4221 8.86 0.3211 0.6671 0.4866 6.95 0.2997 0.6585 0.4546 7.12 0.3462 0.8009 0.4447 0.132

HS-NeRF 6.53 0.3091 0.2237 0.4846 8.36 0.3142 0.5621 0.4987 7.16 0.3242 0.3219 0.4453 7.40 0.3558 0.5351 0.4310 0.0642

3DGS 23.08 0.8842 0.0194 0.0756 20.96 0.8172 0.0625 0.1273 17.47 0.7435 0.0984 0.1539 20.96 0.8448 0.0765 0.09921 81.1

HyperGS 23.11 0.9096 0.0193 0.0713 27.20 0.9372 0.0192 0.0454 24.03 0.8788 0.0416 0.0653 26.13 0.8461 0.0750 0.0513 3.11

Table 7. Quantitative results using the simulated hyperspectral scannet dataset against separate hyperspectral methods and baseline NeRF

and 3DGS. Change colours to yellow, orange, red

Ablation Step
Average Results for Bayspec

PSNR ↑ SSIM↑ SAM↓ RMSE↓ N.Prim(k) ↓

None 26.68 0.753 0.0340 0.0442 1301

MSE 24.11 0.712 0.0340 0.0493 121

Huber 27.04 0.7742 0.0257 0.0461 218

MAE 27.00 0.7753 0.0269 0.0451 532

SAM 26.89 0.7651 0.0269 0.0447 270

L1 27.11 0.7804 0.0254 0.0440 226

Table 8. Ablation performance difference using difference pruning

functions for latent hyperspectral Gaussians in the bayspec dataset.

AE type
Average results for Bayspec dataset

PSNR ↑ SSIM↑ SAM↓ RMSE↓

General 26.61 0.7722 0.02791 0.04589

Per Scene 27.11 0.7804 0.0254 0.0440

Table 9. Ablation performance difference between using a general

autoencoder trained on all scenes for each camera dataset against

individual autoencoders trained per scene.

C.

Depth

Average Size

(GB)PSNR ↑ SSIM↑ SAM↓ RMSE↓

B
.S
p
ec 36 27.11 0.7804 0.0254 0.0440 1.27

27 26.11 0.7347 0.0294 0.0481 1.15

S
O
P 32 30.51 0.9756 0.0415 0.0354 1.24

24 29.21 0.9701 0.0321 0.0469 1.13

Table 10. Ablation performance for differing latent space sizes for

the teacher model for the average metrics over all three datasets

tested.

10.4. Pruning Frequency

In this section, we aim to determine the optimal frequency

of global pruning within the HyperGS approach. We evalu-

ate three pruning strategies: Single Pruning During Den-

sication: Pruning once during the densication process

allows the model to recover any Gaussians lost during prun-

ing, if needed. Double Pruning During Densication:

Pruning twice during the densication process enables fur-

ther reduction in the number of Gaussians but may impair

accuracy if the model cannot achieve higher detail with

Ablation Step
Average results on the Bayspec dataset

PSNR ↑ SSIM↑ SAM↓ RMSE↓ N.Prim(k)↓

In Densif., 1 27.11 0.7804 0.0254 0.0440 226

In Densif, 2 26.97 0.7793 0.0268 0.0451 186

Post Densif., 1 26.11 0.7462 0.0274 0.0498 159

Hybrid, 1 26.09 0.7451 0.0281 0.0497 158

Table 11. Ablation study on performance differences using various

pruning frequencies for the Bayspec dataset. ’In Densif.’ refers to

pruning within the densication procedure before 17.5K iterations.

’Post Densif.’ refers to pruning at 17.5K iterations, and ’Hybrid’

refers to pruning once before and once at 17.5K iterations.

fewer overall Gaussians. Hybrid Pruning: Pruning once

during densication and once after densication concludes,

to assess the stability and safety of pixel-wise pruning ef-

fects. As shown in Table 11, the best-performing method

was to prune once during the densication procedure. This

improvement may be attributed to the recovery of important

information that can be reintroduced during densication.

If global pruning is performed twice within the procedure,

accuracy is further compromised, although the number of

primitives decreases signicantly. The downside of a single

pruning call is that it leaves a larger number of primitives in

the model.

Pruning after the densication process results in a sub-

stantial loss of accuracy, indicating that the information lost

becomes unrecoverable and the overall output model is neg-

atively affected. The hybrid method provides results similar

to post-densication pruning in terms of accuracy and the

number of primitives. This demonstrates that the pruning

method yields consistent pruning results even when called

twice. To achieve the best and most accurate results with

the HyperGS system, we utilize a single global pruning call

during the densication iterations for the Bayspec dataset.


