Optimal Use of Machine Learning for Planetary
Terrain Navigation

Peter Charles Blacker

Submitted for the Degree of
Doctor of Philosophy
from the
University of Surrey

Surrey Space Centre
Faculty of Engineering and Physical Sciences
University of Surrey
Guildford, Surrey GU2 7XH, U.K.

May 2020

(© Peter Charles Blacker 2020

Abstract

Machine Learning (ML) is spreading into more application areas and facilitating a step change
in autonomous perception and comprehension capabilities. Within the space sector it is currently
used in the ground segment and its use in the space segment is being actively investigated. ML is
especially good at perception tasks that have traditionally been difficult for computers to master,
improvements in these perception capabilities have facilitated a wide range of new terrestrial
applications such as autonomous vehicles and drones as well as language comprehension and
translation. Deep space probes and rovers are reliant upon their on-board autonomy since
communication opportunities are sporadic, low bandwidth, and high latency. The levels of
autonomy these craft have directly affects their capabilities, enabling them to perform activities
without direct commands from ground controllers.

ML models have the potential to increase the level of spacecraft autonomy, expanding mission
capabilities, science returns, and returns on investment however two formidable barriers to
adoption exist. Firstly confidence in ML as a discipline and of the performance of specific
models is lower than that usually expected in the aerospace community, careful mission design
is required to demonstrate and especially utilise ML on active space missions. Secondly limited
processing power of space qualified radiation tolerant processors presents challenges not seen in
many terrestrial applications to date. On-board anomaly detection and robotic perception are two
applications where the use of ML on-board space vehicles and rovers is currently undergoing
active research and development.

To the authors knowledge this thesis presents the first investigation into the use of ML for the es-
timation of terrain navigability on-board planetary rovers. The suitability of both Convolutional
Neural Network (CNN)s and encoder-decoder models is evaluated in terms of their accuracy
and computational performance using two planetary terrain data-sets. Their accuracy was found
to match that of existing state of the art navigability estimators, while surpassing their perfor-
mance. Deployment of ML models onto radiation hardened processors is identified as barrier to
adoption, since no software tools existed which targeted these processors.

Experimental tools automating the deployment and validation tasks are developed, which are
the first of their kind to target radiation hardened processors. Enabling new insights in the study
of low level ML implementation on current and next generation radiation hardened processors.
Using these tools novel techniques are found that significantly reduce the amount of memory
required to perform inference on a wide range of contemporary benchmark models, while using
state of the art techniques to optimise execution time. The memory requirement of MobileNet
v1 is reduced by 33% while MobileNet v2 is reduced by 53%. The impacts of new techniques
are been analytically characterised, and automated tools developed which allow rapid evaluation
and adoption in the wider ML community.

New techniques discovered during this work are informing the current development of the Mars
Sample Fetch and Return rover at Airbus as well as other machine learning groups in the space
industry. These tools are enabling transfer of existing techniques from the ML community into
the space sector. While these methods have been developed for space applications on radiation
hardened processors, they are equally applicable to low power terrestrial computing. The spread
of ML onto micro-controllers in embedded Internet of Things (IoT) devices is using these
techniques impacting the performance a wide range of applications outside of the space sector.

Key words: Planetary Rover, Cost-mapping, Machine Learning, Optimisation, Autonomy

Email: Pete.Blacker @ Gmail.com

WWW: https://www.linkedin.com/in/pete-blacker

Acknowledgements

I would like to thank my supervisors at Surrey University, Chris Bridges and Simon Hadfield, for
stepping up and guiding me through this PhD when I needed support. The work presented would
not have been possible without their help. My thanks also goes to my supervisors at Airbus who
have kept my work grounded in reality, and provided unique insights into the Exomars rover,
Mattias Winter, Anton Donchev, and Piotr Weclewski. All the staff and students at Surrey Space
Centre, I have enjoyed my time here immensely, and have been introduced to the fascinating
world of putting things in space and hoping they don’t break!

Most importantly of all I express my deep gratitude to my partner Donna who has supported
me so much during these four years. Even when you had to concentrate on the, slightly more
important, task of looking after our son. I can not thank you enough for motivating me at my
low points, keeping me sane when it all seemed impossible, and being there for me regardless
how tired, grumpy or incoherent I was!

Declaration

This thesis and the work to which it refers are the results of my own efforts. Any ideas, data,
images or text resulting from the work of others (whether published or unpublished) are fully
identified as such within the work and attributed to their originator in the text, bibliography or in
footnotes. This thesis has not been submitted in whole or in part for any other academic degree
or professional qualification. I agree that the University has the right to submit my work to
the plagiarism detection service TurnitinUK for originality checks. Whether or not drafts have
been so-assessed, the University reserves the right to require an electronic version of the final
document (as submitted) for assessment as above.

The work presented in this thesis is also present in the following manuscripts:
e P Blacker, CP Bridges, and S Hadfield. Rapid prototyping of deep learning models on

radiation hardened cpus. In 2019 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), pages 25-32. IEEE, 2019.

e Blacker, P, Bridges, C.P. and Hadfield, S., 2020. Diagonal Memory Optimisation for
Machine Learning on Micro-controllers. arXiv preprint arXiv:2010.01668.

p b

Signed:
Date: 25th October 2020

Contents

Nomenclature

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Research Motivation L
ResearchScope L
PhD Aims and Objectives
Research Contributions
Publicationsand Releases,

Overview of Thesis e

2 Literature Review

2.1
2.2

23

24

Introduction
GNC Architectures e e
2.2.1 Limitations of Telecommand

2.2.2 Jet Propulsion Laboratory (JPL) Rover Guidance Navigation and Con-
trol (GNC) Architectures

2.2.3 Archiecture of the Exomars Rosalind Franklin Rover
Rover Nagivation Sensors o
23,1 SteroposiS i e e e e e e
232 LidarSensing
Navigation Cost-map Generation

24.1 Cost-map Generation Techniques

vii

xi

XV

xxi

viii Contents

2.5 Machine Learning Onboard Spacecraft 24
2.5.1 Software Development and Validation & Verification 26

2.5.2 Computational Power Limitations 27

2.53 DeploymentTools 32

2.6 GapsinKnowledge 35
3 Industrial Problem & ML Solution 37
3.1 Introduction e e 37
3.2 Industrial Problem Definition L., 39
3.2.1 Existing Techniques, 40

3.3 ML Model Analysis e e 41
3.3.1 ML Models Evaluated 43

332 Model Evalulation, 46

333 Datasets e e e e e e 47

3.3.4 Pre-processing and Data Augmentation 51

3.3.5 Absolute Elevation Invariance 54

33.6 Model Training 56

3.3.7 Initial Inference Timing 59

3.4 Inference Feasablilty on LEON Processors 60
34.1 LEON Deployment Using Existing Tools 61

34.2 Tools Released During thisWork 63

35 Results.o 64
3.5.1 Effectsof Model Scale 66

3.5.2 Costmapping Performance Results 67

3.5.3 Comparison of Model Accuracies on Different Terrains 68

3.6 Summary e e 70
3.6.1 FutureWork 71

4 TFMin Tool 73
4.1 Introduction 73
4.2 Motivation L. e e e e e 74

4.3 Architecture e e 74

Contents ix
4.3.1 DesignRquirements 76

4.3.2 GraphRepresentation. 77

4.3.3 Graph Translation Pipeline 78

4.3.4 Using Graph-Translators for Introspection 80

4.3.5 Tensor Memory Model 80

43.6 OperationKernels 84

437 Memory Optimisation 86

4.4 Analysing Deployed Models 89
4.4.1 Memory Requirements Analysis 89

4.4.2 Detailed Memory Access Analysis 90

4.4.3 Analysing the Output of Generated Implementations 93

45 UseCases . . . v v v v v it e e 96
4.5.1 Layer Implementation Performance Analysis 97

4,52 Memory Optimisation 97

4.5.3 Computationl Requirements of Cost-Mapping Models 98

4.6 Summary e e e e e e e e e 103
5 Memory Optimisation 107
5.1 Introduction 107
5.2 Problem Definition 109
5.2.1 Effectson PowerandLatency 111

5.3 Existing Approach to Reducing Peak Memory Use 112
5.3.1 TensorBufferReuse, 112

5.4 Novel Techniques for Memory Optimisation 115
5.4.1 Operation Splitting 115

5.4.2 Diagonal Memory Optimisation 121

5.4.3 Calculating the Safe BufferOverlap 123

5.5 Results. 137
5.5.1 Sequential Published Models 137

5.5.2 Connected Published Models 140

5.53 Cost-MappingModels 142

5.6 Summaryl e 144

X Contents

6 Conclusion and Future Work 149
6.1 Future Work L 152
A Detailed Cost-Mapping Model Descriptions 155
Al Cnn-AModel e 155
A2 Cnn-BModel 157
A3 Cnn-CModel e 159
A4 Cnn-DModel 161
AS Cnn-EModel 163
A.6 EncDec-AModel 165
A7 EncDec-BModel 167
A8 EncDec-CModel 169
A9 EncDec-DModel 171
A.10 EncDec-EModel 173
A.11 EncDec-FModel 175
A.12 EncDec-XModel 177
B Memory Optimisation Appendix 179
B.1 Tensorflow Lite Reference Operations 179

Bibliography 183

Nomenclature

AHS Adaptive Hardware and Systems
ML Machine Learning

DL Deep Learning

TF Tensorflow

TFL Tensorflow Lite

TFLy Tensorflow Lite Micro

NN Neural Network

CNN Convolutional Neural Network
RNN Recurrent Neural Network

XLA Accelerated Linear Algebra
AOT Ahead of Time

RL Reinforcement Learning

ONNX' Open Neural Network Exchange
AMC AutoML for Model Compression
MSE Mean Squared Error

SVM Support Vector Machine

TPU Tensor Processing Unit

DMO Diagonal Memory Optimisation
VMT Visual Memory Tracer

DEM Digital Elevation Model

FOV Field of View

SLAM Simultaneous Localisation and Mapping

X1

Xii Nomenclature

LIDAR Light Detection and Ranging

GESTALT Grid-based Estimation of Surface Traversability Applied to Local Terrain
GPR Ground Penetrating Radar

SPA Sense Plan Act

VO Visual Odometry

WAC Wide Angle Camera

IMU Inertial Measurement Unit

ESA European Space Agency

NASA National Air and Space Administration

JPL Jet Propulsion Laboratory

MER Mars Exploration Rovers

MSL Mars Science Laboratory

V&V Verification and Validation

LEO Low Earth Orbit

LMO Low Mars Orbit

OBDH On Board Data Handling

GNC Guidance Navigation and Control

TRL Technology Readiness Level

ERGO European Robotic Goal-Oriented Autonomous Controller
SSC Surrey Space Centre

DSN Deep Space Network

SFR Sample Fetch Rover

MAV Mars Ascent Vehicle

AIT Assembly Integration and Test

RTG Radioisotope Thermoelectric Generator

TID Total Ionising Dose

BAE British Aerospace Marconi Electronic

ECSS European Cooperation for Space Standardization

EO Earth Observation

Nomenclature

xiii

SAA South Atlantic Anomaly

COTS Commercial of the Shelf

GCR Galactic Cosmic Rays

PROBA Project for On-Board Autonomy
MDA Macdonald, Dettwiler And Associates
OBDH On-board Data Handling

ISRO Indian Space Research Organisation
OBC On-board Computer

CI Confidence Interval

CB Confidence Band

ARM Advanced RISC Machines

IEEE Institute of Electrical and Electronics Engineers

ICP Iterative Closest Point

CMOS Complimentary Metal Oxide Silicon
SEU Single Event Upset

SET Single Event Transient

SEL Single Event Latchup

SEB Single Event Burnout

TDC Time to Digital Converter

RAM Random Access Memory

SRAM Static Random Access Memory

SDRAM Synchronous Dynamic Random Access Memory

EEPROM Electronically Erasable Programmable Read Only Memory

DSP Digital Signal Processor
CPU Central Processing Unit
GPU Graphics Processing Unit
FPU Floating Point Unit
FLOP Floating Point Operation

FLOPS Floating Point Operations per Second

X1V

Nomenclature

MIPS Million of Instructions per Second
FIFO First In First Out

SIMD Single Instruction Multiple Data
FPGA Field Programmable Gate Array
LLVM Low Level Virtual Machine

IR Intermediate Representation

DMA Direct Memory Access

MAC Multiply-Accumulator

XML Extensible Mark-up Language

RGB Red Green Blue

ANSI American National Standards Institute
API Application Programming Interface
GCC GNU Compiler Collection

IoT Internet of Things

GPL GNU General Public License

CUDA Compute Unified Device Architecture
OS Operation System

FDIV Floating Point Divide

JIT Justin Time

List of Figures

2.1

2.2

23

24

25

2.6

2.7

2.8

29

2.10
2.11

2.12

3.1

Points inside the maximal rover footprint which are isolated and used to calculate
geometric terrain metrics. Rover image courtesy of edupics.com. 11

Goodness (Cost) map generated by Spirit on sol 107 of its mission. Red areas
are impassible and yellow/green are traversable with differing levels of ease.
Taken from Biesiadeckietal. [21] 12

Architecture of the Exomars rover on-board GNC systems, courtesy of Airbus
[I54]. . . o 13

Stereo depth estimation errors of the Mars Science Laboratory (MSL) naviation
and hazard cameras, taken from Makietal [99]. 17

Comparison of navigation camera depth errors for MSL Curiosity and Exomars,
full and half resolution disparity maps, based on published values from [99] [129]. 18

Opto-mechanical design of the fast scanning Light Detection and Ranging
(LIDAR) developed by Bakambu et al. taken from [13]. 19

Example navigation map produced using obstacle expansion. Obstacles (blue)
have been expanded by the radius of the maximal rover footprint into hazard
areas (red), the resulting map can be used to easily plan safe routes by finding
the shortest line which does not enter the hazard area (green). 21

Exomars on-board mapping perception pipeline which captures pan cam stereo
pairs and processed them into navigation route plans towards the requested goal.

Courtesy of Airbus [154]. 23
RAD750 single board computer currently in use by the MSL curiosity rover on
Mars, courtesy of British Aerospace Marconi Electronic (BAE) systems. 31
The GR712RC radiation hardened space processor, courtesy of Gaisler Aeroflex. 31
Block diagram of the GR740 quad core LEON 4 radiation hardened micropro-
cessor. Courtesy of Gaisler Aeroflex. 32
Labelled chip plot of the radiation hardened RAD5545 quad core space proces-

sor, courtesy of BAE Systems. 33

(top) Digital elevation map taken from the Airbus Marsyard. (bottom) Generated
navigation cost-map of values, white border areas are of unknown cost. 40

XV

XVvi

List of Figures

32
33

34

3.5

3.6
3.7

3.8

39

3.10

3.11
3.12

3.13

3.14

3.15

3.16

High level processing steps of our ML terrain estimator evaluation experiment. 42

High level description of the five CNN models evaluated in our Adaptive Hard-
ware and Systems (AHS) publication [22]. Detailed descriptions of these models
canbe found in Appendix A 44

Topology of an encoder decoder model E used in this work. Here two transposed
convolution layers with 5 x 5 filters and strides of 2 have been used to expand
the outputof themodel. L 45

a) 2D histogram of ML estimates against true cost-values. b) Confidence bands
of navigability estimates. 47

The Mars Yard test terrain at Airbus Stevenage. 48

Low resolution Digital Elevation Model (DEM) of the Mars Yard generated
using photogrammetry. Note the lack of fine detail, especially around the edges
ofthemap. e 49

Custom made Lidar camera fusion sensor, used for detailed mapping of the
Stevenage Mars Yard.o Lo 50

High resolution DEM of the Mars Yard generated from LIDAR data. Rocks
and edges are much more clearly defined than the earlier map generated using
photogrammetry. e 50

Terrain DEM from the European Robotic Goal-Oriented Autonomous Controller
(ERGO) field trial site, covering an area of approximately 300 x 300 metres.
Two sub regions of the ERGO terrain map have been used for model training
and evaluation. ’Slope Hill® region is shown in blue, ’River Bed® region is
showningreen. Lo 51

Ergo "River Bed* terrain on the left, *Slope Hill* terrain on the right. 52

Extraction of a single training pair from a registered DEM and navigation cost
map. Where O is the output edge length. 52

Rotation augmentation of the Mars Yard lidar dataset, with rotations from 9 to
81 degrees. Additional augmentation using reflections and cardinal rotations is
performed online during training. L. 53

Navigation estimate confidence bands for the encoder-decoder-A model trained
on all four test terrains, with either no elevation invariance, weight normali-
sation, or layer normalisation. It can clearly be seen that layer normalisation
produces consistently better models, although weight normalisation is also an
improvement over the baseline. The models trained on maps from the ERGO
dataset failed to converge at all without one of elevation invariance techniques
beingapplied. 55

Comparison of elevation invariance pre-processing techniques on all four train-
ing maps. A, shows the mean error at 3 sigma. B, shows the worst error at 3

List of Figures xvii

3.17

3.18

3.19

3.20

3.21
3.22

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11

2D Histogram and confidence bands of estimates against training values for the
Encoder Decoder topology D trained for 5000 steps. 64
Cost map estimated using a trained Encoder Decoder model on the left in
comparison with the ground truth cost map on theright. 65
3 sigma error results for all CNN models and scales. Encoder Decoder results
are shown in grey for comparison. 66
3 sigma error results for all Encoder Decoder models and scales. CNN results
are shown in grey forcomparison. Lo 66
GPU performance measurements of all models collected on an Nvidia GTX-1070. 68

3 sigma error averaged across all model scales, shown for each training dataset
and three model topologies. L L. 69

Data flow of ML model deployment using TFMin, showing the three top level
processes performed. Lo 75

Data structure of the three Core objects TFMin uses to represent ML models
internally. In the interests of clarity only high level attributes are shown. 78

Example of (a) memory and (b) graph visualisations generated generated af-
ter operation-splitting optimisation, see Section 5.4.1. Operation and Tensor
highlights have been added by the algorithm to clearly identify the parts of the
model’s graph which were split into parallel chains. 81

SqueezeNet intermediate buffer layout within a 6.3 MB tensor arena. Buffer
locations computed using a forwards pass of a heap algorithm. 82

Example of tensor-buffer reuse which is made possible by non-contiguous
memory addressing. 83

SqueezeNet intermediate buffer layout, showing how the layout generated using
a heap algotithm shown in Figure4.4, can be further optimised to use less memory. 88

Pre-allocation pattern for a deployment of the Inception Resnet V2 model.
Buffers which define the tensor arena size are highlighted in blue. 90

Information flow diagram of a binary being traced by the Visual Memory Tracer. 92

Full memory trace of a Diagonal Memory Optimisation (DMO) optimised
deployment of Mobile Net using TFMin. High resolution images are produced
by Visual Memory Tracer (VMT) to better capture the fine detail of the memory
trace. These do not work well in print, so zoomed areas are provided to reveal
the details of the tensor operations. 94

The five terrain assessment models analysed in [22], convolution layers shown
in yellow and fully-connected layers shown in blue. Filter/weight sizes indicated
undereachlayer. 97

Inference execution time results of the EncDec-A model. Desktop Graphics
Processing Unit (GPU) results shown in milliseconds on the left and single core
200 MHz LEON3 results shown in seconds on the right. 100

XViil

List of Figures

4.12

4.13

4.14

5.1

52

53

54

5.5

5.6

5.7

Multiply-Accumulator (MAC) operation count of the EncDec-A model com-
pared to the execution time of this modelona LEON3. 100

Inference execution time results of all cost-mapping models. Desktop GPU
results shown on the left and single core 200 MHz LEON3 results shown on the

Accuracies of all models with the Encoder-Decoder model X highlighted shown
in comparison to the performance of all models on a single core 200 MHz LEON3.102

Intermediate tensor buffer locations for MobileNet v1 0.25 128, 8 bit quantised.
Location within the tensor arena is shown on the x-axis while the scope of each
buffer from first to last use is shownon the y-axis. 109

a, Sub-graph showing the 3rd fire module of the Squeezenet model. b, Interme-
diate buffer allocations of this model. It can be seen that the buffers of 3rd fire
module (highlighted in blue) define the 6428 KB peak memory requirement of
thismodel.. e 113

a, 3rd fire module of Squeezenet where the 2D convolution operations write
directly into the super-tensor. b, Intermediate buffer allocations of this model.
Buffers of the 3rd fire module are highlighted in blue. It can be seen that the
optimised fire module no longer defines peak memory requirement of the model,
it is now set by the the first max-pooling operation at 5838 KB. 114

a, Subset of MobileNet showing the 2nd and 3rd operations before optimisation.
b, Equivalent subset of the optimised graph, which computes the output tensor
using five parallel pairs of operations. Note that there is a necessary overlap
between the three intermediate tensors and input tensor slices because of the
overlapping receptive fields of the depth-wise convolution operation. 116

a, Intermediate buffer allocations of a full sized MobileNet V2 implementation.
b, Intermediate buffer allocations of the same model in which the second and
third operations have been split into five parallel branches. Buffers that have
been effected by this optimisation are highlighted in blue. 117

Intermediate buffer memory access pattern for the example model (MobileNet
vl 0.25 128 quantised). In use areas shown in grey, load, store, and update
events in red, blue, and green respectively. Plot a shows the memory access
pattern when the original heap allocation strategy is used to allocate intermediate
buffers, large areas of unused memory can be see which could be used to reduce
the size of the tensor arena. Plot b shows the memory access pattern of the same
model with intermediate buffers allocated using diagonal memory optimisation,
in-use memory is packed more densely allowing the size of the tensor area to be
reduced. L e 122

Memory traces of four common ML tensor operations. (a) Rectified Linear
Unit, (b) Matrix Multiplication, (c) Depthwise Convolution, (d) 2D Convolution.
These traces only show intermediate input & output tensor buffers, ignoring the
filter and weight buffers. L oL oL 124

List of Figures Xix

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Definition of the safe buffer overlap (Os) metric, defined as the maximum
overlap where no in-use areas of memory are clobbered. In use memory shown
in grey, write operations in red, and read operations in blue. 125

Memory read pattern example from a depthwise 2D convolution. Points high-
lighted define a linear boundary containing all read operations. 131

minR (i) bounding function for the depthwise 2D convolution implementation.
It can be seen that all read operations (in blue) lie above the monotonic function
(Breen). e e 133

The two possible definitions of the analytical minimum bound, depending on
the relative gradient of the minR & maxW functions. 133

Memory trace of a 5 x 5 2D Convolution operation being executed using four
threads.o 136

a, Original buffer allocation pattern of MobileNet v1 2.0 224. b, Optimised
buffer allocation pattern after operation-splitting has been applied to the graph. 138

a, Original buffer allocation pattern of MobileNet v2 0.35 224. b, Optimised
buffer allocation pattern after operation-splitting has been applied to the graph. 139

a, Inception v4 original buffer allocation pattern (only the first third of the model
is shown for clarity). b, Buffer allocation pattern produced using operation-
splitting, split tensors shown in yellow, final output of split block shown in
green. Note that in this operation-splitting optimisation the input buffer is the
start of the split, so is not shown in this figure. 141

a, DenseNet original buffer allocation pattern (only the first fifth of the model
is shown for clarity). b, Buffer allocation pattern optimised using DMO, Peak
memory defining buffers are shown in blue. It can be seen that none of the peak

memory defining buffers of the optimised pattern use DMO to overlap. 142
Original buffer pre-allocation patterns of: a, Model EncDec-F. b, Model EncDec-
X. Intermediate buffers defining the peak memory requirement are highlighted
inblue. 142
Initial section of the tensor graph of Encoder Decoder model X after modi-

fication by the operation-splitting memory optimiser. Showing the first two
operations split into five parallel chains. 143

XX

List of Figures

List of Tables

2.1

3.1
32
33

34

4.1
4.2

5.1
52
53
54
5.5
5.6
5.7

6.1

Al
A2
A3
A4
AS
A6

Opportunities identified during this literature review. 36
Set of eleven model topologies trained and analysed during our work. 45
Scalar metrics for example model Lo 47
Sizes of training datasets with cardinal rotation augmentation and arbitrary

rotation augmentation. e e e e e e e 53
Opportunities at the end of the cost mapping investigation. 72
Memory requirements of proposed cost-mapping models. 103
Opportunities at the end of the cost mapping investigation. 105
Possible operation splitting optimisations found using algorithm. 121
Specification of 2nd Depthwise 2D Convolution in MobileNet 135
Estimation Error of Safe Overlap (Og) 135
Reduction in memory requirements of sequential published models 139
Reduction in memory requirements of connected published models 141

Reduction in required memory for inference of proposed cost-mapping models 144

Opportunities at the end of the cost mapping investigation. 147
Opportunities and proposed solutions presented in this thesis. 151
Detailed description of Cnn-Amodel. 156
Detailed description of Cnn-Bmodel. 158
Detailed description of Cnn-Cmodel. 160
Detailed description of Cnn-Dmodel. 162
Detailed description of Cnn-Emodel. 164
Detailed description of EncDec-Amodel. 166

XX1

XXii List of Tables

A.7 Detailed description of EncDec-Bmodel. 168
A.8 Detailed description of EncDec-Cmodel. 170
A.9 Detailed description of EncDec-Dmodel. 172
A.10 Detailed description of EncDec-Emodel. 174
A.11 Detailed description of EncDec-Fmodel. 176

A.12 Detailed description of EncDec-X model. 178

Chapter 1

Introduction

To date four robotic rovers have successfully landed and explored the surface of Mars, increasing
our knowledge and understanding of the red planet considerably while throwing up many
fascinating new questions. Unexpected sub-annual variances in atmospheric methane detected
by the MSL Curiosity, are a tantalising indication of past or present microbial life [149] [74].
These discoveries are made possible by the defining capability of these rovers to travel across

Martian terrain in search of varied locations for scientific study.

It follows that the greater distance these rovers are capable of travelling, the more scientific
targets can be visited increasing overall knowledge gained and value of a mission. However due
to the manifold challenges of operating at a distance of three to twenty two light minutes on
unknown terrain, the traverse speeds of these rovers are incredibly low. The JPLs solar powered
Mars Exploration Rovers (MER) Spirit and Opportunity had a maximum speed of 3.75 cm per
second [21]. While the Radioisotope Thermoelectric Generator (RTG) powered Curiosity rover

has a maximum speed of 4.2 cm per second [119].

The autonomous GNC systems of these rovers all use the sense-plan-act architecture [128] due
to the limited processing capabilities of the radiation hardened processors used [2] [133]. While
operating in autonomous drive mode these rovers spend a significant time stationary, while
complex perception algorithms execute on board. The distance they are capable of travelling
in a sol is limited not only by the speed of their locomotion system but also the speed of their

on-board computers and GNC algorithms.

2 Chapter 1. Introduction

These limitations of autonomy are the reason that direct teleoperation is still commonplace
for these rovers, MSL has been mostly operated in ’blind drive‘ mode [119], and both the
MER rovers used a combination of blind drive and autonomous mode on each sol [21]. Direct
operation of rovers in this way increases demands on ground controllers and the Deep Space
Network (DSN) used to communicate with them. This network already runs at capacity, so

adding to its workload results in less bandwidth for other deep space probes.

In the mean time back on Earth where processing power is far more abundant, the field of
Machine Learning has increased the capabilities of many autonomous algorithms from machine
translation [41], image classification [35] to obstacle detection [120]. Two of the most com-
putationally demanding autonomy tasks performed on-board Mars rovers are stereo disparity
map generation and navigation cost-map generation. ML has been proposed to improve both of
these tasks for terrestrial autonomous vehicles [104] [150]. The goal of this work is to use ML
to increase the autonomy level of the current generation of Mars rover GNC systems, allowing

greater distances to be traversed with a lower demand on the DSN and ground controllers.

The National Air and Space Administration (NASA)s Mars 2020 rover Perseverance is currently
in its cruise phase on the way to the red planet carrying sample cannisters which will hopefully
be returned to earth by future missions. In Europe the Exomars rover 'Rosalind Franklin® is
undergoing final Assembly Integration and Test (AIT) in preparation for launch during the
2022/2023 window. European Space Agency (ESA) is currently contracting early design and
development work for the Sample Fetch Rover (SFR), as part of the Mars sample return mission.
Unlike rovers which have gone before it, the SFRs primary goal is not scientific but logistic, it’s
task is to collect sample canisters deposited by Perseverance and transport them to the Mars
Ascent Vehicle (MAV) for launch into Low Mars Orbit (LMO). As such the speed at which
it can traverse Martian terrain is a more important design driver than it has been for previous

rovers.

The SFR is an ideal candidate for novel autonomous GNC algorithms which shorten the
stationary phases of Sense Plan Act (SPA) autonomy, thereby increasing the distance travelled
per sol. Increasing the autonomy of this rover will also reduce demand on the DSN which may
be required to shares its resources between an unprecedented four rovers at the time, depending

on their lifetimes. The inclusion of ML modules within a GNC system could increase the speed

1.1. Research Motivation 3

rovers can cover Martian terrain, and prove a technology for use on future robotic explorers.

This research presents an ML solution to the cost-map generation task performed by planetary
rover GNC systems. Analyses are performed studying the accuracy and computational cost of
this approach on desktop and representative flight processors. A new tool has been developed
that allows the automated conversion of high level ML models into American National Standards
Institute (ANSI) C code suitable for use in the flight software development process. Novel
optimisation algorithms have been presented and implemented using this tool which reduce the
amount of Random Access Memory (RAM) required to perform inference. These optimisations
increase the feasibility of implementing the cost-mapping models presented on the space

qualified Central Processing Unit (CPU)s required for the SFR mission.

1.1 Research Motivation

There are two factors which limit the speed Mars rovers are able to cross terrain, and neither of
these is the speed of their locomotion systems. Under direct tele-operation the light delay, and
bandwidth of the DSN limits opportunities for manual routes to be sent. While in autonomous
driving modes the speed of perception algorithms limits the amount of time the rover is in

motion.

Nothing can be done about the round trip light delay, and short of investing in more dishes
the capacity of the DSN will remain fixed. However we see an opportunity to increase the
autonomy level of Mars rovers, thereby increasing the capabilities of these missions while

reducing dependence upon the resources of the DSN and ground controllers.

1.2 Research Scope

This research is focussed on bringing recent advances in the field of ML to the application of
autonomous GNC systems on-board planetary rovers. There are many hurdles to overcome
before this technology is flown, our work contributes an increase in the Technology Readiness
Level (TRL) of these techniques and argues they are compelling enough to warrant further

investigation. Our specific application is the Mars Sample Fetch rover. Although our findings

4 Chapter 1. Introduction

are equally applicable to any surface or orbital mission in deep space, which will benefit from

the deployment of ML.

1.3 PhD Aims and Objectives

The initial aim of this work is to improve the current autonomy capabilities of Mars rovers,
focussing specifically on the challenges of the SFR currently being developed by ESA and
NASA. This objective is broken down as follows:

e Identify opportunities for ML to improve the on-board cost-map generation task and

demonstrate the suitability of this new approach.

o Investigate the challenges of deploying ML models to the LEON family of radiation

hardened processors which will be used on the SFR rover.

e Discuss the challenges which remain before this novel technique could be used on an

actual space mission and propose tools to aid adoption.

1.4 Research Contributions

This research contributes an analysis of ML cost-mapping models, presenting tools and novel
optimisation algorithms for the deployment of any ML model to small CPU targets. These

contributions can be summarised as:

1. A range of ML models for generating navigation cost-maps have been presented. These
models are shown to produce maps as accurate as state of the art algorithms while ex-
ceeding their performance. Factors affecting the accuracy and computational cost of this

approach have been analysed.

2. A new tool has been developed and released open source to the community which can
convert ML models into platform independent ANSI C code. This code can be used for
research into the deployment process, or as an engineering tool in an industrial setting.

This is currently the only ML deployment tool which generates ANSI C code and creates

1.5. Publications and Releases 5

the most lightweight implementations of the new generation of edge ML tools. This tool
is enabling research and development of ML solutions within the space sector which was

not possible with the tools which preceded it.

3. After discovering that larger navigation cost models are more computationally efficient,
two novel memory optimisation algorithms are presented that significantly reduce the
amount of RAM required to perform inference. These algorithms outperform the cur-
rent state of the art deployment tools, whilst being complementary to existing model

compression techniques.

1.5 Publications and Releases

The work presented in this thesis has been published in the following papers, and released

open-source to the community.

e Blacker, P., Bridges, C.P. and Hadfield, S., 2019, July. Rapid Prototyping of Deep
Learning Models on Radiation Hardened CPUs. In 2019 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS) (pp. 25-32). IEEE.

e Blacker, P., Bridges, C.P. and Hadfield, S., 2020. Diagonal Memory Optimisation for

Machine Learning on Micro-controllers. arXiv preprint arXiv:2010.01668.

e TFMin Tensorflow deployment tool is available under the GNU General Public License

(GPL) v3 licence from [https://github.com/PeteBlackerThe3rd/TFMin]

1.6 Overview of Thesis

Chapter 2 reviews the current state-of-the-art GNC systems used on-board Mars rovers from
NASA and ESA. The level of autonomy available to ground controllers is discussed along
with its used in practice. Sensors and algorithms used by these rovers to perceive the terrain
around them are discussed, along with downstream cost-mapping algorithms which facilitate au-

tonomous route planning. The new field of terrestrial ML cost-map generation is introduced and

6 Chapter 1. Introduction

its suitability for use on planetary robotics discussed. Finally the use of ML in the space sector
is described, including examples of its use on-board spacecraft and technical and operational

challenges that still remain.

Chapter 3 describes our analysis of using ML models to produce navigation cost-maps on-board
planetary rovers. We initially study the problem itself and existing solutions used on previous
Mars rovers, then define our experimental set up including training datasets and evaluation
strategy. The performance of a set of twelve different ML topologies are given in terms of
model size and the accuracy of navigation cost estimates. This demonstrates the feasibility of

this approach and identifies a number of opportunities for future improvements.

Chapter 4 addresses the challenge of deploying ML onto the low power radiation hardened
CPUs required for deep space missions. This is achieved using a new code generation tool
which converts high level ML models described in Tensorflow to platform independent ANSI C
code. An open and extensible tool is presented which allows the process to be optimised and
adapted to specific applications. Importantly the code generation approach allows this method
to fit into the existing software Verification and Validation (V&V) practices used in the space

industry.

Chapter 5 presents two novel optimisation algorithms which can significantly reduce the amount
of RAM required when performing inference using ML models. These two algorithms are
demonstrated on a range of state of the art models and the terrain evaluation models proposed in
Chapter 2. These new algorithms are not just applicable to the radiation hardened processors
used in space but also to the emerging area of ‘Edge ML’ whereby embedded micro-controllers

on the periphery of networked systems are starting to implement ML inference.

Chapter 6 concludes this thesis summing up our findings and impact. Recommendations are
made for promising future areas of research and engineering which can raise the TRL level of

this technology and get ML closer to performing inference on the surface of Mars.

Chapter 2

State-of-the-Art

2.1 Introduction

This work aims to improve the speed with which planetary rovers are able to understand their
environment and plan safe routes across it. This task currently consumes the majority of CPU
time for the GNC process and is largely responsible for the slow speeds at which rovers move
across the Martian surface. The technology used on the current generation of Mars rovers will
be reviewed and opportunities to improve the cost-map generation task within the GNC process

identified.

A review will be presented showing the latest developments in ML techniques with reference
to their potential use in space. Specifically the challenge of deploying these networks on
radiation hardened processors and the challenge of implementing them within the context of a
space mission. The limited history of ML on-board spacecraft will be reviewed along with the

approaches used to fly this technology in the past.

The final summary describes current technological opportunities and identifies gaps in research
literature with a focus on increasing the speed of the cost-mapping process. Our goal is to use
this improvement in processing efficiency to increase the traverse speed of the next generation

of planetary rovers, subsequently increasing the science return and scope of future missions.

7

8 Chapter 2. Literature Review

2.2 GNC Architectures

The GNC system of a planetary rover is responsible for perceiving its environment, estimating its
state within it and controlling actuators to safely traverse the surface and arrive at a defined goal.
Current state of the art planetary rover GNC systems are heavily dependent upon their ground
segments and human involvement. This dependency is due to the high reliability requirements
placed on these missions and the relatively low reliability of the rovers autonomous capabilities
when operating in isolation. Their speeds are measured in centimetres per second at best,
limiting the number of locations they can visit and therefore the amount of information returned
to scientists on Earth. The reason for this literal snails pace is the speed at which the rovers
GNC system can perceive the environment and their place within it, limited for the most part
by the low computing power of current radiation hardened space processors. Improvements in
these autonomous capabilities and their ability to ensure the safety of the rover is a significant
area of research with the potential to increase the ground covered and therefore science returned

by these missions.

The following sections will provide a high level overview of the GNC systems of JPLs MER and
MSL rovers and ESA Exomars rover, Rosalind Franklin. As form follows function the overall
architecture of these three rover designs is largely similar, the differences will be described
particularly focussing on the mapping and route planning elements which are the focus of this

research.

2.2.1 Limitations of Telecommand

The first robotic planetary explorers were the Soviet Lunokhod (moon walker) 1 & 2 rovers
launched in 1970 and 1973 respectively [81]. These early rovers were entirely remotely operated
by ground controllers on Earth, traversing significant distances across the lunar plains of 9.3 km
and 39.1 km. Lunokhod 2’s distance has only ever been surpassed by JPLs Opportunity rover
over four decades later [26]. The remote operation of these rovers was only possible because of
the short round-trip light delay between the Earth and Moon of 2.5 seconds, and the absence of

communication black-outs.

Communicating with robotic explorers in orbit around or on the surface of Mars presents far

2.2. GNC Architectures 9

greater challenges. Round trip delay times between Earth and Mars vary between approximately
9 minutes and 44 minutes. Additionally once per synodic period a solar conjunction occurs
preventing all communications with Martian probes. This communications black-out lasts
around two weeks, with the precise duration dependant upon orbital paths and solar activity

[158].

At the time of writing there are six operational probes in orbit around Mars: Three NASA
probes Maven, Mars Reconnaissance Orbiter, and Mars Odyssey. Two ESA probes the Trace
Gas Orbiter and Mars Express. One Indian Space Research Organisation (ISRO) probe the Mars
Orbiter Mission. The five ESA and NASA probes are able to relay data back to Earth for each
other as well as the MSL Curiosity rover on the surface. While this relay capability increases
communication opportunities even when eclipsed by Mars, the sheer number of probes which

have to share time on the DSN reduces the bandwidth available for each probe.

In summary unlike lunar missions, direction tele-operation of Martian rovers is highly impracti-
cal, due to bandwidth limitations, communications latency and blackouts. This has motivated the
development of semi-autonomous GNC systems going back to the first Martian rover Sojourner
delivered along with NASAs Pathfinder lander [102]. Today Martian rovers are operated in
either fully or semi autonomous modes with commands being given in the form of goal locations

or terrestrially generated route plans.

2.2.2 JPL Rover GNC Architectures

JPLs most recent three Mars rovers, Spirit, Opportunity, and MSL Curiosity all share the
same fundamental locomotion and GNC system design. Common six wheeled rocker-bogie
suspension is used [62], with almost identical cameras and camera placement [99]. There are
however two significant design differences which affect their autonomous capabilities. The
increase in processing power on-board Curiosity provided by switching to the RAD750 [18]
from the less powerful RAD6000 [59], and the switch from solar panels as a power source to an

RTG.

The use of a more powerful computer coupled with the experience gained from operating the
two MER rovers for a decade on Mars has resulted in MSL having more numerous and powerful

autonomy modes than its predecessors. MER rovers had three driving modes available [21]:

10 Chapter 2. Literature Review

Autonayv, is a fully autonomous mode where the rover assesses terrain maps, then plans and
follows routes towards a goal location without the involvement of ground control. Visodom, is a
reactive autonomous mode where a route planned on the ground is executed while the rover uses
Visual Odometry (VO) to ensure the path is followed correctly and wheel slip and sinkage are
kept within safe limits. Finally Blind as the name implies follows pre-planned routes without
any checks and is used to perform traverses in known areas and around scientific points of

interest.

The MSL rover has a wider range of modes, where the algorithms used in different parts of
the GNC system can be controlled individually resulting in 24 possible driving configurations
[119]. The VO system can set to Off, VO Full, Slip Check, or VO Auto mode. In VO Auto
mode the type of local terrain is assessed and used to switch between VO Full and Slip Check to
conserved CPU time. The Four path selection modes are: Directed which is analogous to Blind
mode on the MER rovers. Guarded is similar to Directed mode, except hazards are detected and
if the rover gets to close to one, the drive is terminated for ground control to intervene. Avoid
Keepout-Zones, autonomously drives towards a goal but only avoids manually specified hazards,
no on-board cost-map is produced. Finally Autonav is the same on the MER rovers, where the

rover traverses terrain fully autonomously.

Both of JPLs rover designs use a version of the Grid-based Estimation of Surface Traversability
Applied to Local Terrain (GESTALT) software to process stereo images into navigation cost
maps. It should be noted that this is a different process to VO using stereo which computes
motion via matching of sparse visual features. Unlike more recent rovers such as the Rosalind
Franklin rover (Exomars), the details of this GNC system have been published in detail [21]. A

geometric approach is used to generate cost maps from input DEMs, based on three metrics.

First a patch of DEM cells are extracted from a 2.6 meter diameter circular region which
encompasses the maximum wheelbase of the rover in all possible orientations Figure 2.1. Three
geometric scalar metrics are then computed using this DEM patch, ’Slope‘, ’'Roughness®, and
"Step*‘. Each of these metrics are then scaled using the known capabilities of the rover platform
and the costliest value chosen. This algorithm is a form of obstacle expansion [45], so that
routes can be found on the resulting cost maps using low cost route planners such as A-Star [64].

GESTALT uses goodness metric which is the inverse of the navigation cost metric used in our

2.2. GNC Architectures 11

Figure 2.1: Points inside the maximal rover footprint which are isolated and used to calculate

geometric terrain metrics. Rover image courtesy of edupics.com.

work, so lower values are worse than higher ones, Figure 2.2.

e ’Slope‘ metric is defined by the best fit plane to the set of points, this metric is the angle
between this planes normal and the local gravity vector. This metric is scaled based on

the known maximum tipping angle of the rover and a safety factor.

e ’Roughness metric is the largest distance between any point and this best fit plane, this is
a measure of how "un-flat’ the terrain is. This metric is scaled by the ground clearance of

the rover body and suspension and is used to avoid the risk of grounding on large rocks.

e ’'Step‘ metric is the largest elevation difference between any two adjacent DEM cells, this
metric is scaled by the maximum obstacle height that the rovers wheels are capable of

driving over.

2.2.3 Archiecture of the Exomars Rosalind Franklin Rover

The Exomars rover will be the European Space Agencys first planetary rover mission, after many
delays it is scheduled launch in the September 2022 Mars transfer window. The primary goal of
the Exomars programme is the search for signs of Martian life, past or present. This includes the
trace gas orbiter which will measure the chirality of methane in the upper Martian atmosphere
to determine if its origin was geological or biological [85]. The primary science payload of the

rover phase of this mission is a drill and the Pasteur biological instrument suite that will collect

12 Chapter 2. Literature Review

Goodhess
ZEB

1z7

[AT
|

I

ENEEERLDEE l

|allign =15
I=EEREL meters
-5 meters Goodness index © £ meters

Figure 2.2: Goodness (Cost) map generated by Spirit on sol 107 of its mission. Red areas
are impassible and yellow/green are traversable with differing levels of ease. Taken from

Biesiadecki et al. [21]

samples from up to 2 metres below the surface and search for organic compounds [142]. The
harsh radiation and photochemical environment of the top 50 cm of Martian regolith is expected
to have destroyed any organic molecules if they existed there. It is hoped sampling beneath this

level may find compounds that are unstable on the surface [141].

It is hoped that the Exomars rover will set new speed records on the Martian surface and push
the boundaries of autonomous operation, these are ambitious goals requiring a novel design of
GNC system to accomplish. Like the MSL and MER rovers before it Exomars will perceive
its environment using multiple sets of stereo cameras [99] [129], and propel itself across the
surface using a six wheeled locomotion system. Proprioceptive sensors are also present, an
Inertial Measurement Unit (IMU) senses linear and angular acceleration while wheel odometry
and bogie angle sensors report the motion and current draws of the locomotion system. Its
On-board Computer (OBC) is comprised of two 96 MHz LEON?2 processors one dedicated to

data handling and the other to the autonomy system.

2.2. GNC Architectures 13

The rover has a hybrid autonomy system which at the top level uses a SPA paradigm to navigate
its way across the surface. Every two metres the rover stops and performs the Sense and
Plan cycles, using its navigation cameras to perceive the environment in front of the rover and
generating a navigation cost-map, this map is then used to plan a safe route for the next two
metres. The rover then follows this route in the *Act‘ cycle with a reactive system, using both

proprioceptive sensors and VO to monitor progress.

A pair of wide-band navigation cameras are mounted on the rovers mast, along with a pair of
high resolution multi-spectral wide angle cameras. Either of these redundant stereo cameras
can be used by the GNC system to generate elevations maps. These elevation maps are then
converted into navigation cost-map and used to plan safe routes for the rover to drive. Due to the
limitations of the depth precision, these maps and their associated routes will only be generated
up to seven metres from the current rover location.

goto_target(x.y)

pe— \ Navigation
NavCam AbsLoc
> 5 Reference NavCam
IMU attitude
(acc) Mool
lavMap
+ | mobitity | | (] RelLoc) Pan & Til
IMU Equip. |- Mobility Manager
(gyro) Interface
LocCam [NavMap, Pose
Position & & Target
Attitude
Locomotion Path Path Planning
—
_
NavMap, Loc information Position, Heading,
~ ¢ Path Sequence

Traverse Moni!wln?“
\ [Traj.c‘ow Gontrel

$GenAck, GenPT, Stop, ...
Slippage
Locomotion
Manoeuver Control
Manoeuvre Motor Commands %l
-
CAN Bus
Mobility Equip. » Pan&Tilt
Interface :

Corrected Manoeuvre
Motor Commands BEMA
(x18 motors)

Figure 2.3: Architecture of the Exomars rover on-board GNC systems, courtesy of Airbus [154].

After a two metre route segment has been planned the GNC system switches to a reactive path
following mode, both proprioceptive sensors and the exteroceptive localisation cameras are
used to determine the relative position of the rover in this mode. Wheel odometry and inertial
measurements are computationally easy to integrate so this pose is updated at around 100 Hz

however this estimate is not robust enough to be used alone. Wheel slippage and sinkage cannot

14 Chapter 2. Literature Review

be detected using these sensors and inertial measurements are prone to drift. To correct these
sources of error a VO system is used, based upon stereopsis using a pair of hazard cameras
mounted on the rovers belly which produce relative pose estimates once every 10 seconds [129].
In order to achieve this, relatively slow, update speed the only one in five cycles of this system
perform full stereo matching the remaining four cycles use a single monocular image, its features

being matched to 3D feature locations determined in the most recent stereo matching cycle.

Since VO updates are the only method for detecting slippage and sinkage this 0.1 Hz update rate
is the limiting factor for the speed of the rover. In the worst case scenario this system can take
20 seconds before it will detect anomalous rover motion. This 20 second worst case combined
with how far the rover could dig itself in over that time determines the maximum safe speed of
the rover. It can be seen that processing algorithms and the hardware used in this part of the

GNC must be as optimised as much as possible, given the effect they have on rover speed.

Exomars has smaller wheels and therefore higher wheel pressure than Curiosity, which was
designed to be buoyant whilst traversing soft sand, to address the risk of sinkage whilst traversing
over soft terrain Exomars uses a novel wheel walking approach [107]. On soft terrain the
suspension deployment motors combine with the wheel motors to ‘walk’ three of its wheels
forward while the other three are braked. Followed by the opposite three wheels doing the
same, this significantly reduces the traction forces needing to be transmitted to the terrain
reducing the risk of wheel slippage. As well as the mechanical advantages of the wheel-walking
technique, forwards motion is slower in this mode meaning that the 0.1 Hz visual pose updates
are geometrically closer together. This lower speed further reduces the risk of sinking too far

before the VO system can detect that sinkage.

2.3 Rover Nagivation Sensors

Complex, ambitious sensors have been carried by planetary rovers such as MSL Curiosity’s
Chem Cam instrument [103] or the WISDOM Ground Penetrating Radar (GPR) instrument
[34] on ESAs Roslind Franklin rover. Such exotic sensors however are reserved for scientific
payloads, exteroceptive navigation sensors used by GNC systems are almost universally solid-

state optical cameras. GNC perception sensors are mission critical components, therefore

2.3. Rover Nagivation Sensors 15

reliability is prioritised above all else. Heritage optical cameras meet this requirement since they
have no moving parts, and decades of flight heritage with proven reliability. Additionally they

are lightweight and consume a small amount of power.

These cameras can be divided into two sets: Hazard cameras are mounted on the rover body and
used by reactive GNC processes for VO and obstacle detection [98]. Mast cameras are used by
the SPA GNC process to plan the rovers route and localise itself relative to past maps and lower
resolution orbital maps [106]. Mast cameras are optimised for 3D perception of terrain around
the rover, being located as high as possible to shorten the occlusion shadows produced by rocks.
Their stereo baseline is as large as possible to decrease depth estimation errors, 500 mm in the

case of the Exomars Wide Angle Camera (WAC)s [36].

Mast camera images are used for 3D GNC perception as well as scientific data collection. Both
Exomars and MSL Curiosity carry high quality multi-spectral stereo imagers as well as lower
quality single channel wideband stereo imagers [36] [100]. This adds redundancy into the
sensor suite and allows the most suitable sensor to be used at a given time. The Exomars GNC
system is able to use higher quality WAC stereo pairs taken with the wideband red filter when
time and power allows or wideband stereo images from the NavCam if time and power is more

constrained.

Section 2.3.1 describes the implementation and performance of stereopsis on the current gener-
ation of Mars rovers, while Section 2.3.2 discusses the opportunities and challenges of using
LIDAR sensors. It is concluded that high value rover missions including the Mars SFR baseline
for our work, will use stereo cameras for 3D perception. It is expected that LIDAR will be
adopted when this technology matures, and higher risk missions such as commercial lunar

rovers could be where this sensor is proved.

2.3.1 Steroposis

Stereopsis is a biomimetic technique which uses the baseline distance between two cameras
to infer depth information from images pairs. Along with depth of focus is it one of the two
mechanisms by which humans and many other creatures perceive the world in three dimensions.
This mechanism was first formalised and applied to photographs by Albrecht Meydenbauer in

1858 to record the 3D shape of buildings and cultural artefacts [3]. The earliest and still most

16 Chapter 2. Literature Review

common 3D perception systems used in robotics is stereopsis, only in recent years has direct 3D

perception using LIDAR and RADAR been adopted.

Depth information is extracted from image pairs by computing the horizontal disparity between
common features in both images. Values in this disparity map are inversely proportional to
the depth of the objective feature at that point [60]. Before this process can be performed each
image must be un-distorted and projected to a common plane (rectification). This process means
that a matching pair of horizontal pixel rows and the optical centres of each camera will always

lie in a single plane, this is essential for disparity map generation.

Disparity map computation is analogous to autocorrelation in a spatial context, at each point
along an epipolar line the disparity is found which minimises the difference between the pixels
of the left and right images. If sufficient detail exists in both images then it is possible to
compute these disparities with sub-pixel precision [109]. However this ideal situation does not
always occur, if images contain little detail or smooth areas then disparity errors will increase or
fail to be estimated at all. The relationship between disparity error and depth error is described

in Equation 2.1, taken from Gallup et al [54].

Z2

Where E. is the depth estimation error, Z is the objective depth, B is the baseline between the
optical centres of the cameras, F’ is the focal length, and Ej is the disparity estimation error.
It can be seen that depth estimation error is quadratic with respect to depth, meaning that the
effective range of stereo camera systems will always be limited by this factor. The remaining
three terms can be controlled within reason to reduce this error. Increasing the baseline or focal
length will both decrease depth errors, at the cost of reducing the overlap between left and
right images. This overlap reduction reduces the effective Field of View (FOV) of the stereo
camera system. Disparity estimation error F,; can be reduced using higher resolution sensors, or

improved disparity algorithms but only to the limit of visual sharpness in the scene.

JPLs MSL Curiosity rover carries two redundant pairs of navigation cameras on its mast as
well as eight redundant hazard cameras mounted on its body. These cameras are identical to
those used successfully on the two MER rovers. These monochrome cameras have a spectral

range of 600 - 800 nm optimised to perceive detail on the Martian surface. Mapping and global

2.3. Rover Nagivation Sensors 17

Ranging Error vs. Distance from Camera, 0-100 meters
100.0000 ‘ e T

L

N

o vl vl el Nl

10.0000

)
=
o
S
S
S

0.1000

Ranging Error (m

0.0100

0.0010

LA B AL B R R A L R R L/ B SRR B R AL

0.0001 . . PR SN
1 10

Distance from Camera (m)

_AA
o
o

Figure 2.4: Stereo depth estimation errors of the MSL naviation and hazard cameras, taken from

Maki et al [99].

localisation is performed using the mast mounted Navigation cameras, which have a resolution
of 1024 x 1024, FOV of 45 degrees, and a stereo baseline of 422 mm [99]. The remote sensing
mast these cameras are mounted on is capable of pointing at any part of the terrain around the
rover, allowing it to produce panoramic maps if needed. The measured depth estimation error of
the navigation cameras is shown in Figure 2.4 using an assumed disparity estimation error of

0.25 pixels.

The Exomars rover Rosalind Franklin collects mapping data using a pair of mast mounted
cameras, again these are single channel cameras with a resolution of 1024 x 1024, a FOV
of 65 degrees, and a stereo baseline of 150 mm [153] [129]. The on-board computers used
on this rover are more restricted than the nuclear powered MSL rover, so a more optimised
stereo pipeline has been developed. The navigation cameras developed by Neptec Design
Group, include an Field Programmable Gate Array (FPGA) which performs un-distortion and
rectification internally, transmitting the corrected images directly to the GNC computer. To
speed up the disparity computation the near-field in the lower part of the image is generated at
half the resolution of the top half [154]. Points in these nearer the rover will be denser due to

their proximity.

Depth estimation error for the full and half resolution depth estimates are shown in Figure

2.5 alongside those of the MSL navigation camera for comparison. Full resolution Exomars

18 Chapter 2. Literature Review

10 NavCam Depth Estimation Errors

— MSL Curiosity
— Exomars full resolution
gll — Exomars half resolution

Depth error (metres)

0 10 2l0 3l0 4l0 50
Depth (metres)
Figure 2.5: Comparison of navigation camera depth errors for MSL Curiosity and Exomars, full

and half resolution disparity maps, based on published values from [99] [129].

navigation camera depth errors are approximately 3.8 times greater than those of MSL, this
is mostly due to the larger baseline used on curiosity although Exomars’ wider FOV also
contributes. Alongside these theoretical "best case’ depth errors, even greater errors will occur
on surfaces will little detail. This is particularly relevant on Mars where dune fields are common

and hazardous to rovers.

2.3.2 Lidar Sensing

LIDAR sensors are commonly used on terrestrial autonomous ground vehicles, 3D information
is produced directly by measuring the time that reflected light takes to travel between the sensor
and an object. This is a marked difference from the inferred 3D information produced by
stereopsis which has greater uncertainty and requires computationally expensive processing.
LIDAR sensors have a key advantage over stereopsis, being an active sensor they are immune to
changes in ambient lighting so function equally well in the dark as they do in extreme lighting

such as sun set or sub rise.

Although not strictly LIDAR it is worth noting that JPLs sojourner rover used a structured
light sensor [47] to improve the performance of its stereo cameras [124]. Five laser stripes
were projected in front of the rover, allowing faster 3D reconstruction than was possible using

stereopsis alone. It is notable that this type of sensor was dropped from future JPL rovers as the

2.3. Rover Nagivation Sensors 19

Galvanometer
Scanner

Polygon Scanner

Main
FRecziver
Detector

Palygon
Feed
Nirrar

Collimator

Figure 2.6: Opto-mechanical design of the fast scanning LIDAR developed by Bakambu et al.

taken from [13].

power of on-board computers increased.

The advantages of LIDAR over stereopsis the cause of their widespread use in terrestrial robotics,
use in space and particularly planetary rovers however has been restricted by the additional
challenges of this environment. Measuring distances to cm precision by timing the movement of
light requires electronic Time to Digital Converter (TDC)s operating at pico second scales [113].
Modern high frequency digital electronics is capable of meeting this requirement with relative
easy, however these types of circuit are particularly susceptible to radiation damage, Section
2.5.2. Space qualified LIDAR sensors require less efficient analogue front-ends which in-turn
require more powerful lasers to function. Scanning LIDAR sensor such as the fast scanning
LIDAR developed by Macdonald, Dettwiler And Associates (MDA) [13] additional contain

moving parts which need to operate at optical precision directing the laser and return signal

20 Chapter 2. Literature Review

paths, Figure 2.6. Engineering these parts to survive launch and operate in vacuum, significantly

increases their cost and mass.

The results of space qualifying these LIDAR sensors results in a mass of at least 5 Kg and
power consumption in the region of 25 Watts, [13]. To date these sensor have only been used
on orbital spacecraft while performing proximity operations during docking [121] [4] or close
approaches to asteroids [152] [159]. These mass and power requirements are the primary reason
why LIDAR sensors have not been used on any planetary rover missions to date, and why they

are not under consideration for the future Mars SFR rover Airbus is developing.

2.4 Navigation Cost-map Generation

Early autonomous mobile robotics research was largely focussed on indoor built spaces where
obstacles and surfaces are more predicable than outdoor environments. The maps estimated by
these robots were occupancy maps representing only the presence or absence of obstacles [44].
Autonomous robots use these maps for two tasks, localisation of the robot, and planning of paths
towards goals. While it is possibly to plan routes directly on an occupancy map this requires
checking if any part of the robot will collide with an obstacle making the task computationally
expensive. The concept of navigation cost-maps produced via obstacle expansion is now
a standard solution to this problem [45], which allows efficient path planning using simple
algorithms such as A* [64]. The shape of the robot is simplified to the smallest circle which
encompasses its whole shape, then known obstacles on the occupancy map are expanded by the
radius of this circle Figure 2.7. The resulting navigation map can then be used to plan paths as if

the robot were a single point, greatly simplifying planning algorithms.

The concept of these navigation maps has been developed for more complex environments by
describing the difficulty of traversing over a point as opposed to a binary possible/not possible
value, Figure 2.8. These maps are suitable when mobile robots need to traverse unstructured
terrain without prepared surfaces to drive on, and find use in agricultural robots [14], robotic
search & rescue [31], and planetary rovers [67]. The precise meaning of these maps and methods

used to generate them are more complex and application specific than expanded obstacle maps.

Navigation cost-maps represent the difficulty of traversing over terrain as a grid of scalar values.

2.4. Navigation Cost-map Generation 21

Safe area
Hazard area
Obstacles
Planned path

Maximal footprint

Figure 2.7: Example navigation map produced using obstacle expansion. Obstacles (blue) have
been expanded by the radius of the maximal rover footprint into hazard areas (red), the resulting
map can be used to easily plan safe routes by finding the shortest line which does not enter the

hazard area (green).

In many cases these values are not strictly defined metrics, but simply values between zero and
one, which capture to some degree the difficulty of driving over terrain [28]. This is sufficient
for safe routes to be planned, although it does not guarantee that they will be optimal. It is
possible to define cost-maps more formally to estimate quantifiable values, such as the time or
energy required to drive over a cell [91]. These cost-maps can then be used to plan routes which

minimise the relevant quantities.

Quantified cost-maps such as these are still an active area of research and practical generation
techniques which accurately estimate them are still under development [139]. The trade-off
between the complexity of the cost-mapping algorithm itself and the benefit of more optimal
routes is not clear cut at this time. An interesting related area of research that should be noted,
are planning algorithms which optimise the energy harvested on a route as well as the energy
cost of locomotion. Solar powered rovers can use this technique to optimise routes based on

both the terrain and the angle of solar illumination [125].

Although cost-maps are an established technique for mobile robot path planning, they are not
without limitations. These maps simplify the cost of driving over a cell, in all possible directions,
to a single value. This simplifications means they fail to capture the true cost of a path in many
situations, such as the difference in slippage between up or down a slope as opposed to across
it [127] or diving through narrow gaps[126]. Complexity and computational cost is the cause
of these limitations, cost-maps can be extended into 3D where rover orientation is the third

dimension, but memory and computational costs explode in this higher dimensional space.

22 Chapter 2. Literature Review

24.1 Cost-map Generation Techniques

The simplest and most computationally efficient method to generation a navigation cost-map is
to apply geometric measurements to the perceived terrain model, Figure 2.8. Properties relevant
to the mobile robot in question are chosen such as mean slope and maximum step for wheeled
rovers [21], or small-patch slope for quadruped robots. Existing geometric algorithms can be
used to compute these metrics, which are then scaled based upon the capabilities of the robot
in question [84]. The navigation cost estimates produce by this method are more approximate
that more advanced methods, which requires them to deliberately over-estimate costs for safety
reasons. Another limitation is the lack of surface material knowledge, all shapes are considered

equal even if one is tarmac and another is sand.

Additional sensor information can be used to generate cost-maps which either directly measures
or infers the material properties of terrain. Direct sensor measurements are used to classify
the type of material, which is then used to estimate terra-mechanical properties [76]. These
techniques have been researched for both terrestrial applications [97] and planetary rovers [67].
JPL no longer release technical details of the GNC systems they are flying on Mars rovers, but
it is likely given the time of the work by Helmick et al [67] that this approach has been adopted
by both the MSL Curiosity, and Mars 2020, Perseverance rovers.

The most precise cost-map generation algorithms are those which use a full dynamical model
of the rover chassis, along with a terrain map including terra-mechanical estimates. Exomars
uses a form of this technique to estimate the wheel pressure that would be applied on the terrain
map. More complex algorithms can simulate the dynamics of the rover chassis moving over
terrain to generate the most precise estimates [117]. Both the computational cost and the detail
configuration required to use these algorithms mean they are not commonly used, in the case of
Exomars a highly simplified algorithm was distilled in order for it to execute on the radiation

hardened processor used.

The generation of navigation cost maps using Deep Learning (DL) is a less mature field,
the earliest published work the author is aware of is Wulfmeier et al in 2016 [155]. Many
application specific solutions have been proposed, which is not hugely surprising given that cost
map functions vary significantly between different domains: An autonomous car, agricultural

tractor, or planetary rover can all use cost maps but the cost functions used will vary greatly.

2.4. Navigation Cost-map Generation

23

3 Multi-Resclution Disparity Maps

Terrain Feature Map (example attribute here: discontinuity)

Finalised Region Navigation Map with complete history of 21 driven Path
Sequences (2 metre length each) projected on the simulated terrain.
white: non-traversable areas; grey: controller and localisation margins;
green/yellow/orange/red: cost of plannable areas (low to high);

black: already driven path sequences; blue: currently planned path sequence

Classification Maps Cost Maps Meta Data
Location Navigation Map
L
Classification Maps Cost Maps Meta Data

Persistent Region Navigation Map

Figure 2.8: Exomars on-board mapping perception pipeline which captures pan cam stereo pairs

and processed them into navigation route plans towards the requested goal. Courtesy of Airbus

[154].

24 Chapter 2. Literature Review

Waulfmeier et al [156] demonstrated a Reinforcement Learning (RL) approach to generating cost
maps for autonomous road vehicles using data fused from a range of sensor types. Wei el al
[150] use an encoder-decoder model to estimate cost maps from registered aerial images. Drews
et al [43] used a Recurrent Neural Network (RNN) to generate cost maps directly from an input
video stream. Although none of these models are a perfect fit for the cost mapping task on a

planetary rover, they demonstrate that the concept has been successfully tackled before.

2.5 Machine Learning Onboard Spacecraft

Machine learning has seen considerable use in the space industry to date, however the majority of
these applications are within the ground segment. Commercial processing of Earth Observation
(EO) datasets is now routinely facilitated using ML models to improve metrology [89], segment
cloud cover [11], and perform sensor fusion [143] amongst many others. However these
applications are far removed from the operational challenges of space, and are performed

without posing any risk to the space-borne observatories where this data originates.

Two significant challenges have to be addressed before ML is able to safely perform mission
critical functions on-board the majority of spacecraft. ML models must be accommodated
within the limited computing power of radiation hardened CPUs, and functional V&V of ML
solutions to the levels required by space industry will need to be addressed [33]. ML models
are traditionally computationally intensive solutions, usually executed on GPUs. however
the computing power available on-board spacecraft is far more limited than it is on terrestrial
computers and space qualified GPUs do not yet exist. Mass, electrical power, and heat dissipation
are expensive and finite resources [115]. Then there is the harsh radiation environment of space
which increases in severity beyond Low Earth Orbit (LEO) and for longer duration missions, as

discussed in Section 2.5.2.

The limitations of fully space qualified CPUs can be avoided somewhat by missions in LEO.
These orbits, below 1000 km in altitude, enjoy significant radiation shielding by the Earth’s
magnetic field. There are patches of higher radiation such as the South Atlantic Anomaly
(SAA) [66] with increased high energy electron flux and over the poles where Galactic Cosmic

Rays (GCR)s increase [17]. Overall though LEO has a relatively benign radiation environment

2.5. Machine Learning Onboard Spacecraft 25

when compared with higher orbits and deep space, allowing Commercial of the Shelf (COTS)

processors to be flown successfully on numerous missions [130] [146].

These COTS processors have been used to demonstrate ML image processing on-board LEO
spacecraft. Manning et al demonstrated a satellite which used a COTS Zynq chip [157] to
process EO images on-board [101] [55]. This enabled the satellite to automatically select the
most suitable images is for downlinking, making more efficient use of its ground station contacts.
However these ML models are limited to data handling tasks to avoiding the need for strict
V&V, and are too computationally intensive for the radiation hardened computers necessary

deeper into space.

ML techniques with lower computational cost have been investigated for missions beyond
LEO Castano et al [29] studied the use of Support Vector Machine (SVM)s on-board the Mars
Odessy spacecraft to perform on-board estimates of atmospheric dust and ice distributions using
THEMIS [105] data. This technique was evaluated theoretically on datasets, as well as being
deployed onto a flight representative computer. The trained SVM was hand implemented in C
then executed on a PPC750 testbed which emulated the RAD 750 processor [18] used on-board
this spacecraft. The scale of the two SVMs was reduced by over an order of magnitude to 40

support vectors each to achieve the required performance on this processor.

The applications studied by Manning et al and Castano et al both optimise the use of space
vehicle downlinks by autonomously selecting salient observations on-board. In the Mars Odessy
case the ML solution was deployed to a fully radiation hardened computer, by minimising
the implementation as much as possible. Both of these ML algorithms perform payload data
processing tasks, so their V&V requirements are not as strict as that of critical spacecraft

software.

Autonomous control of critical spacecraft functions has been a demonstrated on range of flight
missions such as ESAs Project for On-Board Autonomy (PROBA) and rosetta [19] [46] and
NASAs OSIRIS-Rex [96] [20] to name but a few. None of these missions however are using DL
models in their decision making processes. Resources are allocated using dynamic algorithms,

and pre-planned tasks are executed using autonomous perception and safety systems.

Missions have made use of ML and on-board autonomy, but to date none have used ML in an

autonomous system. Two main obstacles are preventing the advantages of ML being used in

26 Chapter 2. Literature Review

deep space missions; the limitations of radiation hardened processors, Section 2.5.2 and the
difficulties of integration them into the flight software development process, Section 2.5.1. The
following sections explore these challenges in more detail and survey the current state of ML

deployment tools and their suitability for use on a high value space mission.

2.5.1 Software Development and Validation & Verification

The challenges of adopting ML solutions to critical spacecraft operations has been discussed
in Section 2.5. Fundamentally these same challenges are faced by any flight control software,
and the route through their development up to a flight mission is described by flight software
development standards. The software development requirements and V&V processes of flight
software comprise a wide and complex discipline. This section presents a brief overview of
these standards and requirements. European Cooperation for Space Standardization (ECSS)
define the flight software processes that are required by high value ESA missions and can be
found in the ECSS-E-ST-40C (software engineering) [48] and the ECSS-Q-ST-80C (software

product assurance) [49] standards.

Due to the strict software engineering requirements imposed by ESA and NASA on high
value missions, final flight software for high value missions is commonly written by specialist
contractors. These companies have access to the skills and tools required to perform the
stringent verification which is necessary. This was the case for the Exomars rover, Rosalind
Franklin, Airbus developed prototype GNC software for the LEON 2, which met performance
and operational requirements. This software was then passed to an external contractor who

re-implemented and verified the GNC software stack to ESA standards.

In order for this process to be possible access to the complete code base including any non-
standard library dependencies is needed. Even if the source code of external libraries is available
it is preferable avoid them due the time and cost of implementing them in to flight standards.
It is not always feasible to re-implement algorithms to ESA standards due to the restrictions
placed on code. Dynamic memory allocation is a potential source of many bug types, especially
when systems are required to run for long periods of time. For these reasons dynamic memory

allocation is not permitted in any flight software [71].

For a range of reasons flight software is required to be written in ANSI C. The heritage required

2.5. Machine Learning Onboard Spacecraft 27

for the development tools is one reason behind this, compilers, linkers and debuggers which
have multiple decades of use are available [71]. These are not the most efficient or easiest tools
to work with but the level of confidence in their correctness is very high. The nature of the C
language itself is also better suited to the tight resource constraints of flight software than more
complex languages such as C++. While this is a powerful language, binaries are easily bloated

by polymorphic objects and template definitions [144].

Space V&V practices are concerned with ensuring that flight software is both functionally
correct and safe to execute [147]. Functional correctness is the requirement that algorithms
produce the output/behaviour that is required. Code is considered safe to execute if it can be
ensured to complete executing within a certain duration of time and not use more than a known
amount of RAM. These limits will take into account maximum utilisation ratios of at most 50%

for critical flight software [110].

Analytically proving that the output of a ML model will meet a set of requirements is still an
open research question, with a much work still to be done. The field of ML introspection is
still a young topic with concepts such as natural language [15] and input salience [94] being
developed to try and understand how ML models are affected by their inputs. A more familiar
verification technique to the space industry is testing, a large test set which covers edge cases
sufficiently well has been suggested by our sponsor Airbus as an acceptable method for use with

ML models.

Unlike the functional verification of ML models which is more challenging than conventional
algorithms, execution safety analysis is more straight forward. Tensor flow graphs which are
used to execute ML models are sequences of fixed size tensor operations. It is possible to have
flow control operations within models but this is not common and is not used by any of the
models presented in this work. Therefore each of the cost-mapping models presented will have
a fixed execution time and RAM requirement, which is not affected by the values of the input

tensor.

2.5.2 Computational Power Limitations

The first computer to be constructed from silicon microchips was the Apollo guidance computer

[82], it is ironic therefore that space qualified microprocessors today lag so far behind their

28 Chapter 2. Literature Review

terrestrial counterparts. This disparity is primarily caused by the shrinking size of silicon
transistors that can be fabricated resulting in their increased sensitivity to radiation effects. The
use of specially designed chips which mitigate these radiation effects and the low volumes
they are produced in, is why the computers used in deep space are so much slower and more

expensive than their earthbound counterparts.

A secondary reason is the strict reliability requirements of value deep space missions. These
requirements necessitate the use of thoroughly tested systems with long heritages of success.
There is a risk that new processor designs may contain design flaws, even with the rigorous
testing and evaluation they go through. Such flaws have been known to be discovered after chips
have been in production and use for time years. A classic example is the Intel Pentium Floating
Point Divide (FDIV) bug discovered in 1994 after the CPU had been in production for over a
year [118]. These two reasons mean that legacy CPU architectures with long heritage are used
along with radiation hardened fabrication processes and fault tolerant design methods, resulting

in performances which lag significantly behind that of cutting edge terrestrial processors.

There is no easy mechanism to access more CPU power on deep space missions: If higher risk
is accepted then the latest generation of radiation hardened processors can be used. If more of
the power and mass budgets is used for On-board Data Handling (OBDH) then more computers
heritage computers can be used. Moving away from CPUs however challenging algorithms
are often deployed to FPGAs on-board spacecraft, and this technique holds great promise for
implementing ML. This is still an active research topic with no automatic tools deployment tools
available [145] [162]. Although this is a potential solution to the deployment of ML models on

radiation hardened hardware, it comes with significant development and V&V challenges.

Machine Learning is a notoriously computationally expensive technique to deploy, most ter-
restrial applications are cloud based and GPUs are used to execute models on mobile robotic
platforms. Recent work however has started to find utility in smaller ML models which can
run on embedded computers and micro-controllers while still performing useful tasks such as
person detection [116]. If utility can be found for such smaller models for space applications

then the computational limitations in deep space may be avoided.

This section will present a brief description of the effects of radiation on microchips and the

techniques used to harden them. Currently available radiation hardened processors will then

2.5. Machine Learning Onboard Spacecraft 29

be surveyed. The computational performances listed here will be used to assess the feasibility
of ML models proposed later in this work. It will be shown that the current state of the art
processors are capable of 200 to 400 Million of Instructions per Second (MIPS) while the best
next generation chips, which exist but lack the same level of space heritage are capable of over

5000 MIPS.

Radiation Hardening Challenges and Solutions

Radiation effects Complimentary Metal Oxide Silicon (CMOS) microchips in two ways: Single
event effects are caused by a single particle strike and usually cause temporary upsets to the logic
levels in a circuit but in some cases can cause permanent damage. Total Ionising Dose (TID)
damage is caused by particle strikes cumulatively depositing charge into the insulating layer
of CMOS transistors, over time this increases the charge needed to open or close the transistor
[40]. The effect is a gradual increases the leakage current of the device until the charge builds
up to a point that transistors are unable to switch. When this point is reached, nothing can
be done to reverse the damage and the device has reached the end of its operational life. For
this reason TID tolerance is especially important to long duration deep space missions, which
expect to experience high levels of radiation [63]. These expected doses include the unlikely but

unpredictable case of a large solar particle event occurring during a mission.

Single event effects fall into three classes [112]: Single Event Upset (SEU) such as a memory
or latch flipping between states, Single Event Transient (SET) such as a signal trace being
charged to an incorrect logic level and Single Event Latchup (SEL) semi-permanent events
which can lock a memory register into a fixed state that can only be fixed by power cycling
the device. Finally Single Event Burnout (SEB) are a special destructive case of SEL where a
particle switches a transistor such that a short circuit is created. Unless these are rectified within

milliseconds, these events can permanently destroy a circuit within a chip.

These single event effects can be mitigated through a range of radiation hardening by design
techniques, a full discussion of this area is beyond the scope of this thesis, but they are outlined
here so their effect on CPU performance can be understood. SEUs can be protected against using
error correcting codes within both off-chip memories and on-chip data paths, these extra checks

add delays in accessing memory and between blocks on the data path [80]. SET events are harder

30 Chapter 2. Literature Review

to detect but can be protected against using multiple execution. Latch up and burn out resistance
requires that chips are designed using special radiation hardened transistor layouts. Radiation
hardened component layout libraries have been developed by several chip manufacturers [131]
to avoid these faults. While these libraries do not increase the component count of a chip, the die
area used and power consumed is higher than normal libraries which contributes to the slower

clock speed of equivalent radiation hardened designs.

Review of Available Radiation Hardened CPUs

e IBM RAD6000

Designed in the late 1990s the RAD6000 radiation hardened single board computer went
on to be used on many deep space missions including NASAs MER rovers Sprit and
Opportunity [73] and the Pathfinder lander [59]. This CPU and single board computer
has a TID tolerance of 100 Krads and is available at clock speeds up to 33 MHz across its
full operating temperature range, at this speed the processor is capable of 35 MIPS and

26 Mega Floating Point Operations per Second (FLOPS) [59].

e BAE RAD750

The successor to the RAD6000, now being produced by BAE systems was first flown in
2005 on the Deep Impact comet mission [86], with a clock speed of up to 200 MHz and
a performance of 400 MIPS, Figure 2.9. This system has a TID tolerance not less than
100 Krad again making it suitable for long duration deep space missions [18]. Notably
this is the CPU used on the MSL rover Curiosity, on this rover the CPU is shared by the
autonomy systems and on-board data handling system so less than 75% of CPU time was

available for the autonomous systems [12].

e LEON 2

The LEON 2 processor was developed by Gaisler Aeroflex for the ESA and radiation
hardened versions (AT697, AT7913) are currently available from Atmel, these 32 bit
processors are available with clock speeds up to 100 MHz and are capable of 86 MIPS
and 23 Mega FLOPS [7]. Two LEON 2 processors will be used on the ESAs upcoming

Exomars Rosalind Franklin rover, one of these processors will be dedicated to housekeep-

2.5. Machine Learning Onboard Spacecraft 31

Figure 2.9: RAD750 single board computer currently in use by the MSL curiosity rover on

Mars, courtesy of BAE systems.

ing and data handling, allowing the second processor to be dedicated to the perception

and autonomy systems.

e LEON 3

The GR712 from Cobham Gaisler is the most powerful LEON 3 radiation hardened
processor with space heritage, it is a dual core LEON 3 CPU with a clock speed of up
to 200 MHz [2], Figure 2.10. At this maximum clock speed the processor is capable of
200 Mega FLOPS, a significant increase from the LEON 2 family of processors which
preceded it. Due to its space heritage this processor is likely to be the used for the next
SER rover, for this reason it is the baseline processor for testing if the techniques proposed

in this work are feasible for near term planetary rover design.

Figure 2.10: The GR712RC radiation hardened space processor, courtesy of Gaisler Aeroflex.

e LEON 4

Recently completing development, with engineering and flight units now available is the
Cobham Gaisler GR740 next generation of European high performance space processor,

Figure 2.11. It is a quad core CPU with a minimum clock speed of 250 MHz across its

32 Chapter 2. Literature Review

full operating temperature range (-40 125 o C) and is capable of up to 1000 MIPS [52].
It will be some time before this processor builds up enough heritage to be considered for
flagship rover missions such as Exomars, but it clearly shows the amount of processing

power that will be available to such missions being planned over the next ten years.

L3

%6t

Figure 2.11: Block diagram of the GR740 quad core LEON 4 radiation hardened microprocessor.

Courtesy of Gaisler Aeroflex.

e BAE RADS5500

The successor to the RAD750, this is the first 64bit radiation hardened space processor
and is available in single core (RAD5510, RADS5515) and quad core (RADS5545) versions,
Figure 2.12. Although this processor lacks the level of space heritage of the RAD750
or LEON 3 families its performance is a significant step up, the quad core RAD5545
is capable of 5600 MIPS and 3.7 Giga FLOPS while consuming 20 Watts of power
[134]. The performance level of this processor enables for the first time makes many
computationally intensive machine vision techniques and large CNNs feasible in the

context of a deep space mission.

2.5.3 Deployment Tools

A wide field of ML development frameworks have sprung up in recent times and these tools
have been instrumental in the rapid progress of research which have been achieved. The majority
of these frameworks include built in tools for the deployment of models onto targets ranging

from full Tensor Processing Unit (TPU) pods on the cloud to hand held consumer devices. Here

2.5. Machine Learning Onboard Spacecraft 33

Figure 2.12: Labelled chip plot of the radiation hardened RAD5545 quad core space processor,

courtesy of BAE Systems.

we review these deployment tools against the requirements of the flight software development

process described in Section 2.5.1.

Tensorflow and the Keras tool which is built upon it remain the most popular ML research
frameworks [1] [58]. Backed by Google this open source project started life as proprietary
system at Google Brain and has enjoyed a large user base since its V1.0 release in 2017. three
deployment tools are built into the Tensorflow (TF) framework: Tensorflow Lite (TFL) is aimed
at mobile phone scale targets. The Accelerated Linear Algebra (XLA) compiler is used internally
by TF to accelerate desktop CPU implementations through Just in Time (JIT) compilation,
but is also capable of compiling models to bare-bones CPU targets. While Tensorflow Lite
Micro (TFLy) is aimed at embedded micro-controller scale targets. The latter of these tools it

should be noted had not been released when our work started, so it will not be described here.

Core TFL is implemented in C++ 11 although Java support has since been added, GPU devices
are supported allowing ML models to be accelerated even on mobile devices. Models are
serialised to and from protocol buffers which store their structure and weights in a single
definition. When the C++ Application Programming Interface (API) is used a pre built run-time
library must be loaded which de-serialises the model allocates resources and executes the flow
graph. Comparing this technique to the requirements described in Section 2.5.1 it is clear they
are not met. The binary size of TFLs run-time is over 100 MB and is therefore an impractically
large amount of code re-implement. The GPL license of this code is also problematic, derivative
work is required to be released under the same open source license. This means that very

expensive flight quality code would have to be freely released to the public, which would not

34 Chapter 2. Literature Review

only be bad for business but could potentially breach export regulations.

It is clear that the TFL tool is not suitable for integration the flight software development
process, even before its C++ compiler requirement and lack of support for any real time
Operation System (OS) is taken into account. The XLA Ahead of Time (AOT) compiler on
the other hand is more promising. This tool compiles ML models directly into binary code,
removing the need for the large run-time of TFL, a lightweight support is required to execute
these binaries. The versatile Low Level Virtual Machine (LLVM) compiler architecture allows
new target CPUs to be used with only the addition of a new backed. It is also possible to export
LLVM Intermediate Representation (IR) instead of binary code, in theory this allows any LLVM

compiler to deploy a model via this tool.

The TF XLA compiler appears to be a promising option, with fewer technical challenges than
TFL. However there are still problems with integration into the flight software development
process. It does not generate prototype code beyond low level IR, which cannot then be manually
re-coded to ESA flight standards. If it is considered as a compiler in its own right then it lacks the
heritage and reliability expected of the tools usually used to build flight C code. In conclusion
neither of the TF deployment tools which existed in 2017 are suitable for deploying ML models
as part of a critical flight system, the XLA compiler however does appear promising for the

purposes of deploying prototype models to radiation hardened CPUs.

Pytorch is another popular ML framework backed by Facebook, it is a more recent tool than TF
and provides an API using an imperative ’code as a model‘ paradigm designed to make research
tasks as efficient and easy as possible [114]. A wide range of containerised deployment tools are
provided by Pytorch to execute models on cloud services such as Kubernetes [69]. Alongside
these tools the TorchScript module allows models to be exported and executed in native C++ 14

projects [38].

The architecture of deployed TorchScript is close to that used by TFL, models are serialised to
the file system and a large run-time is linked into the target binary which loads and interprets
the model to perform inference. These similarities pose the same obstacles to use on radiation
hardened CPUs and integration with flight software development processes. Being designed for
use within a high-level OS means that significant re-designing would be needed for it to work

with the more restricted real-time OS used for critical flight systems. The size of the run-time

2.6. Gaps in Knowledge 35

library and its C++ 14 requirement put this tool out of contention.

In conclusion none of the deployment tools provided within the leading ML machine learn-
ing frameworks are suitable for integration within the flight software development processes
necessary for mission critical system. There are both technical and procedural barriers to the
use of these tools. Desktop software has long since moved away from the C programming
language in favour of the more powerful and scalable C++ language. The use of C today
is restricted to embedded micro-controllers, Digital Signal Processor (DSP)s and niche high
reliability applications such as medicine, nuclear, and aerospace. There is little reason why
these tools would target the C language given how much more restricted it is and its smaller user
base. With the exception of TF XLLA these ML deployment tools all target more powerful CPUs
than the current generation of space processors, preventing their use. The use of high-level OS
features not present on embedded real-time OSs is a further technical barrier. The scale of the
deployment frameworks and ML models themselves will need to be reduced before they can be

automatically deployed within mission critical flight software.

2.6 Gaps in Knowledge

Research into a new application for ML models has recently developed, the production of
navigation cost-maps for mobile robots. This task is currently a performance limiting algorithm
on-board planetary rovers operating on Mars and planned in the near future. Literature describ-
ing the existing cost-map generation algorithms has be reviewed along with the sensors and
perception systems which feed into this task. Two gaps in literature have been found, regarding
the suitability of ML cost-map generation for planetary rovers. The suitability of ML for this
task in terms of its accuracy and computational requirements has not been studies, and a process
for deploying ML models within the flight software development processor does not currently

exist. These open questions and the best answers currently available listed in Table 2.1.

Section 2.4.1 reviewed current algorithms used to generate navigation cost-maps on-board
Mars rovers and reviews the latest research into the new field of ML cost-map generation
techniques. This process currently consumes a significant amount of time during the GNC

loop, ML techniques have been demonstrated which can perform this task on terrestrial robots,

36

Chapter 2. Literature Review

although this is still a new research topic with the earliest publication released in 2016. The

authors are not aware on any work applying this technique to planetary robotics, given the

nascent state of ML technique on Earth we feel it could bring novel benefits to this domain.

Section 2.5 has surveyed the challenges of deploying ML models on board the computers

necessary in deep. Covering both the technical challenges caused by limited computing power,

Section 2.5.2, and the process challenges of working within the software development systems

required on high value missions, Section 2.5.1.

Table 2.1: Opportunities identified during this literature review.

Challenge

Solution

Is it possible to generate planetary rover cost-

maps using ML?

e Research into use on terrestrial robotics is
promising, no studies for planetary robotics

currently exist.

Are ML cost-mapping models feasible to use

on radiation hardened LEON3 computers?

e Performance known to be challenging on
space processors, but no systems deployed and

measured in literature.

Does a deployment process exist to implement
this model within the flight software develop-

ment process?

e Existing automated tools reviewed, none
found to be suitable, hand coded implementa-

tion only option.

Chapter 3

Industrial Problem & ML Solution

3.1 Introduction

The goal of this research is to investigate an opportunity to use deep learning to improve the
GNC capabilities of planetary rovers. The sub-system selected for this work is the cost-mapping
process on-board a planetary rover. There are two mechanism for any replacement algorithm to
improve a system: It could produce output superior to an existing algorithm, such as a more
optimal route or longer range reconstruction. Or it could produce equivalent output to an existing
algorithm while requiring lower computational resources. It should be noted that the latter case
is only beneficial if the process in question is resource constrained. Luckily many processes on
planetary rover GNC systems are resource constrained due to the heritage radiation hardened

processors that must be used.

The cost-mapping task takes a map generated directly from sensor data, and produces a new
map which estimates the difficulty of driving the rover over each cell of the map. The exact
nature of input maps can vary but the output must be a map of scalar values that can be used by
route planning algorithms. Two reasons lie behind this choice of application, it currently has a

high computational cost, and superficially appears to be a good fit for existing ML models.

The two most computationally expensive navigation tasks performed by the current generation
of planetary rovers are stereo disparity calculation and cost map generation [154]. The amount

of time taken to perform these tasks puts them on the critical path of the GNC system, meaning

37

38 Chapter 3. Industrial Problem & ML Solution

a speed up of these algorithms directly translates to an increase in the speed that the rover can
cover ground. This in turn impacts the distance the rover can travel and therefore the number of

science targets which can be studied.

Using deep learning to improve the performance of stereo disparity matching has been an active
area of research for some time, with techniques focussed on end-to-end stereo matching [104]
[42] as well as parts of the stereo pipeline such as feature matching [161] [56]. This research
area is focussed on improving the results of stereo matching on platforms with significant
processing power, "Moreover, end-to-end stereo matching networks-based approaches basically
require huge memory and are relatively time consuming.” Zhou et al. [163]. These algorithms
can be utilised by autonomous cars and larger terrestrial mobile robots, which are capable of
carrying and powering large computers. Executing these models in real time requires large
(2020 context) GPUs so are far too large to be practical on conventional CPUs let alone radiation

hardened processors.

The generation of navigation cost-maps using ML has been discussed in Section 2.4.1 which
concluded that the concept itself was feasible, although no work to-date has been done on the
planetary rover application. Given that all research into this technique described in literature has
focussed on terrestrial applications, the computational cost and it’s applicability to radiation

hardened CPUs will need careful analysis.

Other GNC tasks could have been considered such as the route planning algorithm used to
generate paths across terrain. However these implementations do not take a significant fraction
of the ‘sense’ and ‘plan’ phases of the GNC loop and the output of these algorithms is already
optimal. Even a large increase in the speed of these algorithms would not have an impact on
the duration of the ‘sense’ and ‘plan’ phase. There is therefore little value in for performance

improvements to these algorithms.

ML appears to be a good fit for this task, since the input map (an M x N x C tensor) is being
converted to a cost-map (an M x N tensor). There is similarity between tasks already tackled by
ML such as depth from monocular images [50], and auto-encoders [70]. Baseline cost-mapping

algorithms already exist enabling supervised learning to be performed.

Our research into this application starts with the analysis of two standard types of ML model,

to determine if they are able to perform the cost-mapping task. This is the most fundamental

3.2. Industrial Problem Definition 39

question which must be answered before the more detailed application of this technique can be
studied. Latter stages of this work studies two interrelated questions, can these ML models be
executed on-board a planetary rover fast enough to be practical, and how can they be deployed

within the software engineering processes used in the space industry.

The work described in this chapter has been published in the following conference paper:

e Blacker, P., Bridges, C.P. and Hadfield, S., 2019, July. Rapid Prototyping of Deep
Learning Models on Radiation Hardened CPUs. In 2019 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS) (pp. 25-32). IEEE.

3.2 Industrial Problem Definition

Our challenge is to investigate the feasibility of producing navigation cost-maps (Figure 3.1)
on-board a Mars rover using ML. In this case the input map is a single channel map of elevation
values (a DEM), although the impact of other types of map are discussed in Section 3.6.1. A
published cost-map generation algorithm used within JPLs GESTALT sofware [21] will be
used to generate datasets for supervised learning. Emulated and engineering models of the
LEON3 radiation hardened processor will be used to test the deployment process and evaluate

the execution time of the proposed models.

As with any supervised learning task, sets of training data will need to be created and labelled,
for this we were given access to two proprietary datasets as well as access to the Stevenage Mars
yard to collect our own data. Labels were generated using the published GESTALT algorithm

described below.

The reliability of the proposed ML solution will be evaluated by measuring its percentage error
to three sigma, as described in Section 3.3.2. The computational requirements of models will
be investigated to determine if they are feasible to execute on the radiation hardened CPUs
necessary for Mars rovers. The target performance given for the cost-mapping task is to be able
to process a map with an area of 77m? and a DEM cell size of 4 x 4cm into a cost map in 20
seconds. This area requirement is due to the 7 metre radius semi-circular DEM maps produced

by the Exomars pan cam [154], during its ’sense‘ phase. This translates into a rate of 2405

40 Chapter 3. Industrial Problem & ML Solution

Navigation Cost

Figure 3.1: (top) Digital elevation map taken from the Airbus Marsyard. (bottom) Generated

navigation cost-map of values, white border areas are of unknown cost.

DEM cells per second, and must be performed on a single core of a 200 MHz LEON3 radiation
hardened CPU. Finally the challenges associated with deploying a ML algorithm within the
software and V&V processes used on high value space missions will be discussed and potential

opportunities described.

3.2.1 Existing Techniques

GESTALT is the full GNC system developed by JPL for use on their MER rovers Spirit and
Opportunity, and is described in detail in Section 2.2.2. This GNC system uses a geometric
approach to terrain assessment, resulting in three metrics. The maximum, slope, step and
roughness of the surface at each location. These simple geometric measures are then scaled with

the known capabilities of the rover chassis to measure the safety of driving over each area of the

3.3. ML Model Analysis 41

map.

The exact cost mapping algorithm used on the Exomars rover is proprietary, and this information
has not been shared with the authors, however some details are known about its requirements.
Similar to the MER rovers, Exomars has solar wings protruding a significant distance beyond
its wheel base. Potential collisions of these panels with terrain is an additional risk which the
cost mapping algorithm needs to account for in addition to the usual locomotion challenge. The
dynamical model of the rovers chassis is taken into account when generating the cost map to
accurately reflect the behaviour of the rover [154], this is in contrast the the GESTALT system
which used an entirely geometric approach with tuning weights. This technique has the advan-
tage of producing more accurate navigation cost-maps but with an increase in computational

cost.

3.3 ML Model Analysis

The goal of this section is to evaluate the accuracy of a range of ML models when used to
estimate navigability. Our initial work published in [22] used CNN regression models to estimate
individual cost map elements, the performance of these models was unacceptably slow compared
to existing algorithms. Later work investigated Encoder Decoder models which are able to
estimate multiple cost map cells in a single inference pass and displayed significantly improved
performance. These ML models are described in Section 3.3.1, and results of both classes of
model are shown so that the progression of this work can be discussed. Figure 3.2 describes the

setup that was used to evaluate all the models used in this work.

In order to train and evaluate an ML regression model a set of inputs and expected outputs is
required. The input to the navigability assessment task is a DEM which would normally be
generated from upstream perception processes on the vehicle, for our experiment we use a set of
four planetary DEMs captured using a range of sensor modalities. The variation in modalities is
primarily out of necessity, these are not commonly available data sets so we have had to use
those we have access to, however it does give us the opportunity to study the effect of different
sensors on the whole mapping process. These datasets are described in more detail in Section

3.3.3.

42 Chapter 3. Industrial Problem & ML Solution

Terrain DEMs
! @
o O
Baseline g EJ—
Navigability 5
Algarithm Y wm
1 3
Navigation
Cost Maps
L l

Bias Removal

‘ Data Augmentation ‘

v

‘ Elevation Invariance ‘

v

‘ Split into Train, Val & Test sets ‘

7 o

Buisseooig-aid
eled

Train | ____| Validation —_____ Test
Data Data Data
Ll E 5
-
Model L
lodel -
=
Topology Training ‘ 2
¥ a
Trained
Model
Model Evaluation |'<|'|
o
c
¥ g‘
Weights Size Execution Time Confidence S

Bands

Figure 3.2: High level processing steps of our ML terrain estimator evaluation experiment.

The desired output of these models is a map of navigation costs over the terrain in question, this
map should be closely correlated with the time or energy cost of driving a real rover over the
terrain. Collecting this data directly using an actual rover is impractical given the quantity of
training data required, so instead a published navigation cost algorithm from JPLs MER rovers

is used to label training data.

Regression ML model accuracy is commonly measured using the Mean Squared Error (MSE)
loss function [123], however during our analysis we have discovered that these residual errors
were in some cases related to the true cost value itself. To visualise this relationship Confidence

Band plots are used to describe the output quality of our models. The metrics used to describe

3.3. ML Model Analysis 43

and measure the accuracy of these models is described in Section 3.3.2.

During this early feasibility investigation the execution time of our models was measured
using the desktop platform used for development, two metrics could be measured reliably the
execution time of the model and the size of the models weights. These metrics are clearly of
limited use given our eventual target platform is a radiation hardened LEON processor, but they
do indicate the relative speed of the models. Chapter 4 addresses these concerns by describing
the deployment tool that was developed which produces LEON compatible C implementations.
Building and executing these models on a LEON emulator produced the accurate performance

metrics presented in later chapters.

3.3.1 ML Models Evaluated

Common image processing CNN models can be adapted to generate cost-maps since they
process input matrices of scalars and estimate the continuous scalar navigability value. Our
early work [22] used these regression CNNs for cost mapping and found them to be effective at
producing accurate results, but required more processing power than the baseline algorithms
they were intended to replace. It was realised that using a whole ML model to estimate
the navigability of a single location would never be as efficient as the hand crafted baseline
algorithms. After surveying a range of ML models it was decided to evaluate Encoder Decoders
models [30]. These models can process input tensors into output tensors so they should be able

to estimate an area of navigation cost elements in a single inference pass.

A range of CNN and Encoder-Decoder models of various sizes will be evaluated to measure
the effect that a model size has on its accuracy. Each of the models listed in Table 3.3.1 are
described in terms of their layers, filter sizes and activation functions, detailed descriptions of
these models can be found in Appendix A. These models have been defined in such a way that
their size can be automatically scaled. This is done by altering the number of convolution filters
and sizes of dense layers for each model. This technique has been used so that the computational

cost of models can me compared to the accuracy of estimates they produce.

44 Chapter 3. Industrial Problem & ML Solution

33
x3 33 338 3);3 .
X X X 64

A b 202 202
R R

3x3 3x3
3x3 3x3); X

mmﬁﬁﬁ ® m@ Dl ®

: 5 32 148 148

m 3x3 33 m 33 33
3x3 3§3 X x = 3x3 X X
D : 1 8 24 112 12 E ; 12 32 102 102

Figure 3.3: High level description of the five CNN models evaluated in our AHS publication

[22]. Detailed descriptions of these models can be found in Appendix A

CNN Regression Models

A standard CNN regression model processes a two or three dimensional input tensor into a
scalar estimate Figure 3.3. This is done using an input stage comprising several convolution
layers followed by one or more fully connected layers. The five CNN models presented in our

AHS conference paper [22] have been included to show the progression of our work.

Encoder Decoder Models

Spatial Encoder Decoder models are used in applications such as segmentation [30] [10]. These
models use transposed convolution layers (commonly known as deconvolution layers) to expand
the spatial size of a layer in a manner complimentary to convolution layers. In our application
transposed convolution layers are used to expand fully the connected layers into the larger final

output matrix of navigation cost estimates.

3.3. ML Model Analysis 45

% Input
% Convolution Layer
@ E @ % Fully Connected Layer
14 6 1 % Deconvolution Layer
30
! E;(8 3x3 X : 5 . oA % Output
y 0 M 6 504 504 11 X X
LA x x x 212
X X X X 32 64 32 « "
1 16 16 32 g

Figure 3.4: Topology of an encoder decoder model E used in this work. Here two transposed
convolution layers with 5 x 5 filters and strides of 2 have been used to expand the output of the

model.

Table of Evaluated Models

The following set of terrain assessment models have been evaluated, Table 3.1 summarises
the structure of each model, number of weights and MAC instructions needed to perform an

inference pass. Appendix A includes the complete description of each model.

Table 3.1: Set of eleven model topologies trained and analysed during our work.

Label H Topology Cells Estimated | Weights (MB) | MACs (M)
Cnn-A 5x Conv 3x Dense 1 7.9 10.5
Cnn-B 4x Conv 3x Dense 1 16.9 12.5
Cnn-C 4x Conv 3x Dense 1 9.8 10.7
Cnn-D 3x Conv 3x Dense 1 39.7 16.3
Cnn-E 3x Conv 3x Dense 1 7.2 8.0
EncDec-A || 5x Conv 2x Dense 1x Deconv 121 9.9 16.4
EncDec-B || 5x Conv 2x Dense 2x Deconv 441 13.2 24.2
EncDec-C || 5x Conv 2x Dense 3x Deconv 1681 16.9 431
EncDec-D || 5x Conv 2x Dense 1x Deconv 121 3.1 14.6
EncDec-E || 5x Conv 2x Dense 2x Deconv 441 5.7 22.3
EncDec-F || 5x Conv 2x Dense 3x Deconv 1681 9.2 41.2
EncDec-X || 5x Conv 2x Dense 3x Deconv 7921 23.6 26.0

The five CNN models studied during my earlier work vary the number of 3 x 3 convolution
layers used in the input stage and the size of full connected layers in the output stage. It can be
seen that the number of weights and MACs increases as the number of convolution layers in
decreased, this is caused by the size of the output of the the final convolution layer increasing.

The size of this layer in turn affects the size of the following fully connected layer.

46 Chapter 3. Industrial Problem & ML Solution

Six Encoder Decoder models have been investigated, they all share a common input stage of
five 3 x 3 convolution filters and two fully connected layers. The difference between them is
in the number of transposed convolution layers in the output stage and the size of the filters
used in these layers. Encoder Decoder models A, B, and C use 3 x 3 transposed convolutions
while D, E, and F use 5 x 5. This was chosen so the effect of the expansion ratio of the output
stage and the filter size could be studied. It should be noted that the Encoder Decoder models
have larger input matrix sizes than the CNN models because the input must always be the same
amount larger than the output due to the nature of the cost mapping problem as described in
Section 3.11. This relationship between input and output sizes is the reason for the majority of

the increase in weight and MAC count of these models.

3.3.2 Model Evalulation

The accuracy of regression models of the type investigated is commonly measured using the
MSE loss function [123]. This metric is used internally by Huber loss function during training
however different metrics are used to evaluate the accuracy of models once they have been
trained. The requirement given to us for the cost-mapping process is a maximum error of 10%
at three sigma, this threshold can be visualised using a 99.7% Confidence Interval (CI) where

99.7% of estimates are expected to fall within the 10% error requirement.

Cost-map estimate errors were discovered to be non-uniformly distributed as shown by the
2D histogram in Figure 3.5.a. It can be seen that the standard MSE metric or a scaling of it
to 3 sigma will not capture the peak errors at different true cost-values. Visualisation using
2D histograms is useful but is distorted by the non-uniform density of true cost-values, shown
on the z axis in Figure 3.5.a. For this reason Confidence Band (CB) plots have been used to
visualise the detailed accuracy of trained models in this work as shown in Figure 3.5.b. These
plots are immune to variations in true cost-value density and clearly show the worst case errors
at the 3 sigma requirement. The results shown in Figure 3.5 are from an early poorly performing
model which has been chosen to highlight non-uniform errors. The estimates can been seen to
be more accurate over costlier terrain except for extremely hard or impassible terrain where the

error increases.

While confidence band plots such as Figure 3.5.b are an insightful description of a models

3.3. ML Model Analysis 47

Estimation Errors Confidence Errors
1.0 = 1.0 —99.7% CB
—95% CB

= 0.8 = 0.8
8 S
506 0.6
g 3
© ©
£0.4 £0.4
o2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(A) True Cost (B) True Cost

Figure 3.5: a) 2D histogram of ML estimates against true cost-values. b) Confidence bands of

navigability estimates.

Table 3.2: Scalar metrics for example model

Worst 99.7% CI | Mean 99.7% CI

0.1703% 0.1211%

performance, scalar metrics are needed for the quantitative comparison of models. For this
purpose two metrics have been used, the worst 99.7% confidence band error and the mean 99.7%
confidence band error. These quality metrics for the early model described in Figure 3.5 are

shown in Table 3.2, showing that this model does not meet the 10% requirement.

3.3.3 Datasets

In order to train and evaluate ML models for navigability estimation it is necessary to have
datasets of elevation maps and their associated navigation cost maps. These are not common
datasets and nothing suitable for this work is publicly available. This Section describes the
sources of data that have been used in this work and the processing steps that were necessary

before they could be used for training ML models.

Two proprietary datasets were made available by Airbus for us in this work; A sets of localised
stereo images pairs from an Exomars breadboard rover traversing the Stevenage Mars Yard,
and a high resolution DEM from the ERGO dataset collected by an ESA consortium. A further
dataset was collected ourselves using a hybrid LIDAR camera sensor in also in the Stevenage

Mars Yard.

48 Chapter 3. Industrial Problem & ML Solution

Although all three of these datasets were collected using different sensors and have been
processed to different levels, they all essentially describe the geometric shape of a planetary
analogue terrain. This has meant we have had to generate our own navigation cost maps for
these terrains. The published navigation cost algorithm using on JPLs MER rovers was used for

this task as described in Section 2.2.2.

The decision to collect our own dataset was motivated by the need to publish our work, we were
able to use the proprietary datasets for research but were unable publish this data alongside it. In
the interests of repeatability we wanted to be able to publish a fully working system including
code and data to disseminate our findings. Since this was not possible with the data initially
made available to us we decided it was worthwhile collecting our own. This terrain dataset was

collected using a hybrid camera and 3D LIDAR sensor and is described in Section 3.3.3.

The following sections describe each source dataset and the processing required to generate a
usable DEM from it. Finally four different maps are described, two of which are regions of the

larger ERGO dataset, these four maps were used for all the analyses presented in this chapter.

Stevenage Mars Yard

Figure 3.6: The Mars Yard test terrain at Airbus Stevenage.

Two DEMs have been produced of the Airbus Mars Yard in Stevenage, Figure 3.6, the first
was generated using stereo image pairs while the second was produced using a hybrid LIDAR

camera sensor. Early in our work, before we had access to a 3D LIDAR or the Mars Yard facility,

3.3. ML Model Analysis 49

Airbus provided a set of navcam stereo image pairs taken from a breadboard rover traversing the
room. Some time later we had built a working 3D LIDAR camera sensor, Figure 3.8, which we

used to collect our own dataset at the Mars Yard in person.

Figure 3.7: Low resolution DEM of the Mars Yard generated using photogrammetry. Note the

lack of fine detail, especially around the edges of the map.

The first dataset was produced using photogrammetry to generate a triangulated mesh from input
images, this mesh was then converted into the DEM shown in Figure 3.7. This was the first
representative planetary terrain model which was used to train our DL traversability estimation
models, [22]. However this terrain model suffered from a problem common to photogrammetric
reconstructions, fine details were lacking resulting smoothed rocks and poor differentiation of
rocks and sand. We were concerned that this smoothness would make this dataset easier to train
than one with more detail. In order to test this hypothesis we decided to create our own higher

quality reconstruction of the Mars Yard.

Our high resolution LIDAR dataset of the Mars Yard was produced using a scanning LIDAR
with a 1 cm depth precision. It is far easier to produce highly detail reconstructions using this
type of sensor, that doesn’t suffer from the non-linear depth error of stereopsis. Our custom
built LIDAR camera sensor comprised an 80 metre range Hikoyu scanning LIDAR and GoPro
monocular camera both mounted on a precision tilt platform, Figure 3.8. This sensor can
produce a variety of data products, for this dataset we collected colour 3D point clouds. Forty
five of these were captured at a variety of locations and headings around the Mars Yard, which
were aligned using Iterative Closest Point (ICP) and converting into a high resolution DEM.
As can be seen in Figure 3.9 the resulting DEM contains far more fine details than the original

stereopsis reconstruction. These two datasets have been used to compare the effect that detail

50 Chapter 3. Industrial Problem & ML Solution

Figure 3.8: Custom made Lidar camera fusion sensor, used for detailed mapping of the Stevenage

Mars Yard.

Figure 3.9: High resolution DEM of the Mars Yard generated from LIDAR data. Rocks and

edges are much more clearly defined than the earlier map generated using photogrammetry.

level has on the difficulty of training a terrain assessment model on them.

Unfortunately Brian the mass simulator breadboard had been left in the middle of the test terrain,
and we were unable to drive him out. So our map has a large and unusual shaped rock in the
centre of it, luckily this doesn’t negatively impact our terrain assessment task since it is treated

as just another obstacle, albeit and unusual one.

ERGO Dataset

The European Robotic Goal-Oriented Autonomous Controller Field trials took place in the
Moroccan Sahara desert during November to December 2018. The primary goal of this trial
was a 1 km autonomous traverse conducted by the SherpaTT rover. During these field trials

a high quality DEM of the site was generated from drone captured images, Figure 3.10, this

3.3. ML Model Analysis 51

Figure 3.10: Terrain DEM from the ERGO field trial site, covering an area of approximately
300 x 300 metres. Two sub regions of the ERGO terrain map have been used for model training

and evaluation. *Slope Hill‘ region is shown in blue, 'River Bed* region is shown in green.

was compared with the map generated on-board Sherpa to evaluate the performance of its
Simultaneous Localisation and Mapping (SLAM) system. This DEM is large, approximately

300 by 300 metres, and covers a terrain of rock and sand with virtually no vegetation.

We have used several regions of this full dataset to train and evaluate our models, although
this map is significantly larger than the Mars Yard and has a wider variety of terrain it has less
fine detail than the other two maps. Two sub-maps of the full ERGO DEM were extracted for
use in our work, a sloping hill feature blue highlight in Figure 3.10 and a gully highlighted in
Green. These both include a range of different types of obstacle and overall navigation difficultly.

Detailed views of the *Slope Hill* and "River Bed‘ sub maps are shown in Figure 3.11.

3.3.4 Pre-processing and Data Augmentation

The navigation cost function used in the GESTALT rover GNC system as described in Section
2.2.2 has been used to generate the navigation costs maps used to train our models. The resulting
input data and labels for all our models are 2D matrices of DEM and cost map values as shown

in Figure 3.12. CNN regression models which estimate a single cost value are treated as a

52 Chapter 3. Industrial Problem & ML Solution

Figure 3.11: Ergo ’River Bed‘ terrain on the left, ’Slope Hill‘ terrain on the right.

special case where the costs label is a 1 x 1 matrix. The input matrix is always larger than
the output matrix because these cost maps use obstacle expansion [45] based upon the size of
the maximal rover footprint. The exomars rover maximal rover footprint is a circle 1 metre in
diameter, when expanded to a square each cost map element can be effected by a 51 x 51 matrix
of elevation values (representing a 2m X 2m square of the 4 cm resolution DEM, so the input

matrix always has 50 more rows and columns than the output matrix.

Elevation Map

Input Elevation Matrix
—— [O+50 x O+50]

Navigation Cost Map

Costs Label Matrix

‘ — . [O. % O]

Figure 3.12: Extraction of a single training pair from a registered DEM and navigation cost map.

Where O, is the output edge length.

Before this input matrix of elevation values is passed to the ML model it’s absolute elevation
information is removed as described in Section 3.3.5. The mean of the input matrix is subtracted
for each element, forcing it to have a mean elevation of zero. When model inference is being
evaluated this is the only pre-processing step required, however during training additional steps

are taken to artificially augment data.

3.3. ML Model Analysis 53

Data Augmentation

The two stereo and lidar Mars Yard datasets contain 135k and 154k training sample respectively,
while each sub-map of the ERGO dataset include 487k, this a significant amount and is enough
to successfully train our navigability assessment models, however more training data will always
improve the quality of trained models. Since the terrain assessment task is rotation agnostic
and symmetric it is trivial to use reflection and cardinal rotations to increase the size of these

datasets eight times.

$PP PP PP

Figure 3.13: Rotation augmentation of the Mars Yard lidar dataset, with rotations from 9 to 81

degrees. Additional augmentation using reflections and cardinal rotations is performed online

during training.

Table 3.3: Sizes of training datasets with cardinal rotation augmentation and arbitrary rotation

augmentation.
Dataset Original | Cardinal Rotations | Semi-Arbitrary Rotations
Mars Yard Stereo 135k 1,077k 10,185k
Mars Yard LIDAR 154k 1,235k 11,733k
ERGO River Bed 487k 3,898k 37,591k
ERGO Slope Hill 487k 3,898k 37,591k

These cardinal rotations were implemented in the dataset provider code directly, since they are
simple and quick to apply to the data as it is being fed into the model. However the terrain
assessment task is agnostic to any arbitrary rotation so we can augment our dataset more than
just eight times. Due to the complexities of the non-uniform maps we are working with the
simplest method to add semi-arbitrary rotations was to expand the original source DEMs with
nine rotated copies of itself at angles from 9 to 81 degrees. This further multiplied the size of

our training sets approximately ten times, resulting in the final sets that were used for model

54 Chapter 3. Industrial Problem & ML Solution

training and evaluation shown in Table 3.3.

3.3.5 Absolute Elevation Invariance

DEMs represent the shape of terrain using a grid of elevation values, these values are defined
with reference to a vertical datum. In the case of the two Mars Yard datasets this datum is
the floor of the room it is housed in, while for the ERGO dataset it is mean sea level. This
entirely arbitrary difference means that elevation values in the ERGO maps are approximately
800 metres higher than the other two maps. This difference serves to highlight that the absolute

elevation of a map region should have no bearing on its traversability estimates.

This elevation invariance can be seen in the baseline GESTALT algorithm which produces its
estimate based upon the overall slope and relative elevations of a DEM patch. This section
investigates two methods by which absolute elevation invariance can be built into an ML model
and compares their performance. The techniques of weight normalisation [122] and layer
normalisation [9] were both adapted to enforce elevation invariance, and their effectiveness for

this application evaluated.

Weight normalisation was adapted by applying mean only normalisation at the first layer such
that each individual filter has a mean of zero. This forces filters to be invariant to the absolute
values of their inputs. Removing any absolute elevation information in the first layer like this
means it is impossible for it to have a bearing on the final estimate. This technique differs from
weight normalisation as described by Salimans et. al. [122] because only the mean is normalised

not the variance and each filter is normalised individually.

Complimentary to weight normalisation, layer normalisation can be applied to the input elevation
matrix, Hinton et. al [9]. Again mean normalisation is performed, because the variance of
the elevation values describes information relevant to navigability. Superficially these two
techniques look symmetric however they are mathematically different and will be shown to

perform differently.

The adapted weight and layer normalisation techniques have been evaluated alongside a base
case where no elevation invariance is enforced. These three input configurations are evaluated

using the four maps: Mars Yard stereo, Mars Yard LIDAR, ERGO slope hill, and ERGO river

3.3. ML Model Analysis

55

No Height Pre-Processing

Zero Sum Filters

Zero Sum Input

1.0 10 o
o",', y
O
R g / 3
[2 7 g
s i £ £ £
= 4 7 7 £
0.0 00 oo
0.0 True Cost 1.0 0.0 True Cost 1.0 0.0 True Cost o
C 1.0 1.0 Z
] -
o
- = ;
° S :
o | 3 S
> © 3
n £ H
© & £
=
0.0 oo
2 et 2 o0 True Cost 10 0.0 True Cost 1.0
{10 1.0
o =0
@ %]
- S 8
o3 2
208 2
o E g
H 2 s
(@] ow a
Q
oo
w
i 0o 0.0
0.0 True Cost 1.0 0.0 True Cost 1.0 0.0 True Cost 1.0
1.0 S ——2) R 1.0 10
v | — —] 3 5
o (o] Pd S i
o3 B 3
-] g g
Lo E g f
Q i B £ £
Q ¥ 2 i
<
w o
0.0 00 oo
° True Cost e 00 True Cost 1.0 0.0 True Cost 1.0

—— 99.7% Confidence Band
—— 95% Confidence Band

Figure 3.14: Navigation estimate confidence bands for the encoder-decoder-A model trained

on all four test terrains, with either no elevation invariance, weight normalisation, or layer

normalisation. It can clearly be seen that layer normalisation produces consistently better

models, although weight normalisation is also an improvement over the baseline. The models

trained on maps from the ERGO dataset failed to converge at all without one of elevation

invariance techniques being applied.

56 Chapter 3. Industrial Problem & ML Solution

bed. Figure 3.14 shows the confidence bands for these twelve experiments, their mean and worst

errors at 3 sigma are shown in Figure 3.15.

1.0 Mean Errors 10 Worst Errors
I No Pre Processing
[Zero Sum Filters
081 \==1 Zero Sum Inputs 08
© ©
£ £
o k=)
& &
" 0.6 0.6
® ®
5 5
& 0.4 & 0.4
i @
o o
= =
0.2+ 0.2
0.0 0.0
Mars Yard Mars Yard ERGO ERGO Mars Yard Mars Yard ERGO ERGO
(A) Stereo Lidar River Bed Slope Hill (B) Stereo Lidar River Bed Slope Hill

Figure 3.15: Comparison of elevation invariance pre-processing techniques on all four training

maps. A, shows the mean error at 3 sigma. B, shows the worst error at 3 sigma.

When training Encoder Decoder model A on all four of the test terrains, weight normalisation
offers some improvement over the baseline, however layer normalisation provides the greatest
improvement in all cases. This is a minor engineering contribution, as far as the author is aware
these techniques have not been used before, but they represent a small incremental development

upon existing techniques.

A possible explanation for the difference in performance between the two techniques is that the
layer normalisation preserves the relative elevation information across the whole of the input
matrix. weight normalisation meanwhile only preserves the relative elevation of the input within
a single filter kernel, 3 x 3 or 5 x 5 for the models tested. The additional information that is

preserved by layer normalisation could explain why it produces most accurate trained models.

3.3.6 Model Training

Cost-mapping models described in this chapter were trained for 10k steps with a batch size of
100. The Huber loss function was used with a delta parameter of 0.45 [160]. In this regard the
training configuration used is quite standard, however there are some important differences to

which are described here.

The division of training data into train, test, and evaluation sets needed special attention because

3.3. ML Model Analysis 57

of the nature of this task. A subtle improvement was found if the dynamic range of the cost
value was allowed to extend past 1.0. If this cost-map generation technique is used as part of a
practical GNC system then an adapted loss function should be used due to the consequences

different types of estimation error.

Division of Train, Test, and Evaluation

When training a model it is critical to evaluate its performance on data which is representative
but not the same data it was trained on. If a model is evaluated on the same data it was trained
on then over-fitting can be mistaken for increased accuracy. During supervised learning it is
common to split training data into three sets, Training data used to train the model, Test data
used to evaluate the model in between training steps, and Evaluation data used to ultimately

measure its trained accuracy.

In most cases these sets can be created by randomly splitting the data because each training
case in independent. However in our case because each element of the cost-map depends on
many adjacent elements of the input cost-map they are not independent. If training data was
split randomly then during training the model would be exposed to all the input data of the test

and evaluation sets, means over fitting could not be detected.

In our cost-mapping experiment the Test, Train, and Evaluation sets were produced by selecting
contiguous regions of the training cost-map and discarding elements along the boundaries of
these sets. The width’ of the discarded region along this boundary was 25 elements, because
(Receptive FieldWidth — 1)/2 = 25. These boundaries although wasteful of training data

mean that the receptive fields of samples from the three different sets will never overlap.

Extended Dynamic Range

Two observations lay behind the idea to use extended dynamic range training data. The first was
that estimation errors in earlier experiments were often greater at the limit of the true cost values,
near 1.0. The second was that this navigation cost limit is actually artificial. It is imposed as the
safe limit of the rovers capabilities, it has no meaning in terms of the terrain itself. For example

if your rover has a tipping angle of 25 degrees so a safe limit of 20 degrees has been chosen to

58 Chapter 3. Industrial Problem & ML Solution

have a cost value of 1.0. Here two slopes of 20 and 40 degrees would both have a cost of 1.0

even though the 40 degree slope is clearly more difficult to traverse.

It was found in our work that if training cost-maps were generated with values extending beyond
1.0 and this cap was instead applied after the ML model that accuracy increased slightly. The
increase in accuracy was most pronounced around the 1.0 limit which as described in Figure

3.16 is the most critical region for errors.

Training for Flight

The goal of many ML models is to match an existing algorithm or dataset as closely as possible,
image classification or segmentation for example. It may seem non-intuitive at first but the goal
of a cost-map generation algorithm is not to estimate the navigation cost of terrain as accurately
as possible. It is in fact to to help the rover reach its destination quickly and safely as part of
the whole GNC system. This is a subtle but important distinction because it means we have to
understand estimation errors not as an abstract scalar metric but in terms of their consequences

on rover behaviour.

Four distinct error regions can be identified based upon the sign of the error and the true
navigation cost of terrain, Figure 3.16. Exaggeration errors are defined as erroneously thinking
terrain is harder to traverse than it actually is, but not so hard that it will never be traversed. The
effect on the path planner in this region is to force it away from optimal route in some cases,
there is no danger to the rover and no gross effect on planned routes. The same effect is caused
by the Understatement error region, the path can be forced through harder terrain than expected

but not to the point that the rover is in danger.

The final two error regions have more serious consequences. The False Wall region is defined
by the cost-mapping algorithm erroneously marking safe terrain as impassible. This can have
the effect that a region of safe terrain is excluded from any planned paths potentially forcing
routes to be far longer or even fail to be found at all. This can slow the rover down significantly

or force ground control to intervene.

Danger Zone errors are classified as where the cost-map shows terrain is safe where in reality

it is hazardous to the rover. Routes could be planned and executed which put the rover at risk

3.3. ML Model Analysis 59

Error Regions

1.0} =
rd

.

> 1

Ve 1

081 r |

. // I’I

Increasing < s 1

Exaggeration y Y !
7] A | o
8 0.6 /’Qg’g\ y g
o r v 'N
] e [
3 PR @
© xR, =
£ 0.4 y QGQ 4 =

2 04r &L

; S E

“ , 1

// - 1

ozl p y Increasing |

: y y Understatement 1

“ p 1

s 1

~ [

7
0.0 -
=0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
True Cost

Figure 3.16: Map of error regions divided by their effects.

of becoming trapped or damaged. While there are additional safety systems which can abort
a traverse if it appears to be unsafe, they are not foolproof and even a small risk of a mission

ending event must be avoided is possible.

The MSE loss function was used in this work to theoretically demonstrate that ML models
are capable of generating cost-maps. However the MSE metric does not capture the varied
consequences of estimation errors, if this technique is used in a complete GNC system a utility
cost function would be more appropriate. This could potentially be implemented by artificially
increasing the magnitude of errors in the danger zone, or artificially increasing the truth-cost
values around 1.0 to ’push’ estimates away from the danger zone. Further research into this

training detail would be a valuable addition to the field.

3.3.7 Initial Inference Timing

The industrial case has a requirement that the cost-mapping process for a complete local map
must complete within 20 seconds on the LEON3 processor as described in Section 3.2. At this
stage in our work however there were no tools available to deploy ML models to this target [22].
It would have been possible to hand code these models, however the time required to implement

and verify these models was considered prohibitive. Since it was not possible to implement

60 Chapter 3. Industrial Problem & ML Solution

these models on the LEON3 processor no performance measurements could be taken.

A crude initial timing of inference execution was performed on our desktop development
platform, an Intel 8 core i7 PC with an Nvidia GTX 1070 GPU, these results are shown in
Section 3.5.2. Each model was built with a batch size of one and inference was performed a
thousand times, the median of these runs was then taken. These performance results do not tell
us anything about the execution time on the target radiation hardened processors but they do

provide an indication of the relative execution time of each model.

The amount of memory required to store the weights of each model is easy to measure from
the models flow-graph, while the amount of memory required to perform inference with each
model is harder to determine. No mechanism exists within the TF library to compute the RAM
required to perform inference. Given the large overhead of the library itself it was not possible
to measure this using external tools. The TFL library was considered to measure RAM use
however this is intended for mobile and tablet targets so it still has significant overheads of over

100 MB as described in Section 3.4.1.

The tools available to us are a great limitation at this point, the only measurement we can make
accurately is the trivial size of model weights. Neither the execution time or RAM can be

measured for our target platform.

3.4 Inference Feasablilty on LEON Processors

Evaluating the accuracy of ML models used for cost-map generation is only a part of our task.
Inference using these models must to executed on the LEON3 processor, and this deployment
has to be performed using a software process that is suitable to the space industry. This is
where we step outside of the usual realm of ML and investigate the deployment of models on a
platform which to the authors knowledge has never been done before. Our motivation for this
task is twofold, to evaluate if the models presented in Section 3.3.1 are feasible to execute on
LEON3 processors. Secondly to study the ML deployment process necessary for ML to be used
within the software development and V&V processes of the space industry. An overview of the

flight software development process for high-value missions is described in Section 2.5.1.

Model performance was measured on the desktop platform that was used for training as described

3.4. Inference Feasablilty on LEON Processors 61

in Section 3.3.7. This is a crude relative measurement, and not applicable to the LEON3 platform
we are targeting. Section 3.4.1 describes our attempts to implement these models on the LEON3
using existing tool which were ultimately unsuccessful. These limitations were the reason why

these crude initial timing measurement were taken.

Section 3.4.2 reviews the latest Edge ML deployment tools against the requirements discussed
in literature review Section 2.5.1, it has to be noted that these tools were not available at the
start of this research. If they had existed then they could have been used to measure model
performance on the LEON3, but would not be suitable for use in the flight software development

process.

3.4.1 LEON Deployment Using Existing Tools

In early 2018 when our investigation into ML cost-mapping models started there were a range
of software tools aimed at deploying ML models onto platforms smaller than desktop computers.
The majority of these are aimed at phone & tablet scale targets, although the Tensorflow XLA

AOQOT compiler is capable of targeting more constrained platforms.

C++ ML Deployment Frameworks

Two frameworks which deploy ML models to C++ code were evaluated, the TFL tool and
the MatLab statstics and machine learning toolbox. Both of these tools are able to produce
C++ projects implementing trained ML models. However they are aimed at desktop or mobile
platforms, and as such they have dependencies upon large runtime libraries (greater than 100MB
in the case of TFL) making them impossible to deploy to the LEON3 development boards we
have access too. The Pender GR-XC3S LEON3 development board has 8 MB of flash PROM
and 64 MB of Synchronous Dynamic Random Access Memory (SDRAM).

The size of run-time libraries required by both TFL and the MatLab statstics and machine
learning toolbox ruled out both these options. Even if this had not been the case, the challenge
of building the support libraries for the bare-bones Sparc V8 LEON3 platform would have been

a non-trivial.

62 Chapter 3. Industrial Problem & ML Solution

Tensorflow XLA

TensorFlow XLA is an LLVM compiler tool which generates object binaries directly from a
trained TF model. The resulting compiled static-libraries can be linked into larger projects with
minimal library over heads. This process is suitable for deploying our models on to the LEON
platform, because use of the versatile LLVM compiler architecture [90] means it can produce

Sparc V8 binary code, and it has minimal library overheads.

The Sparc V8 architecture of the LEON family of processors is not explicitly supported by the
XLA tool, after some initially promising results the authors failed to successfully integrate it
with the Gaisler LLVM compiler [53]. The Gaisler Clang compiler is built on LLVM version 4.0
while the TF XL A compiler generates IR using features only present in versions 5.0 and above.
By taking the LLVM IR produced by the XLLA compiler then building it using the Gaisler clang
compiler simple fully connected networks were successfully deployed to the LEON3. However
LLVM version incompatibilities prevented larger dense or convolutional models from being

deployed using this tool.

The XLLA compiler process cannot be integrated into the flight software development process,
it produces either IR or compiled objects. Since it does not generate human readable code its
output cannot be re-implemented to ECSS standards. Given the tool itself has only recently
(2019) been moved out of the experimental part of TF, it is far too immature to be considered a

reliable compiler in of itself.

Hand Coding

Alongside the automated deployment tools described in Sections 3.4.1 & 3.4.1 there is always
the option of manually implementing any given model without using any support libraries. In
practice this would involve writing and testing functions for each type of layer used by the
model, then writing the core model flow graph itself. This approach would be practical for a
one-off small model but quickly becomes untenable and error-prone for larger models. It was
concluded that the effort needed to manually implement all the models described in Section

3.3.1 was greater than the effort to build a tool to do the same job.

3.4. Inference Feasablilty on LEON Processors 63

3.4.2 Tools Released During this Work

During the course of this research two open source Edge ML tools were released which are
capable of deploying models to the LEON3. They came about too late to be used for the timing
measurements of our models, however it is worthwhile to review their capabilities in terms
of the flight software development process described in Section 2.5.1. As is described below
both of these tools are aimed at the rapidly growing field of Edge ML IoT applications, so are

unsurprisingly not tailored to the rigorous reliability requirements of the space sector.

TFL micro

Spearheaded by Pete Warden the TFLu tool was first released in January 2019 as an experimental
module of Tensorflow V1.13.0 [116]. This tool enables TFL models to be deployed onto micro-
controller scale targets, and is tightly integrated into the wider TF workflow. An interpreter
paradigm is used, with models being encoded into the binary as data then loaded and interpreted
using generic execution code. Use of dynamic memory allocation is avoided by using a single
area of stack memory known as the tensor arena to store working data, which it manages itself.

It requires a C++ 11 compiler and has dependencies upon the wider TFL code base.

TFLy is a powerful tool with a growing user base, many of whom work on IoT projects, and
targets CPUs smaller than the LEON3 processors we are work with. There are two fundamental
obstacles to its use within the flight software development processes described in Section 2.5.1
though. Firstly is the C++ 11 requirement, which would not be trivial to remove, and secondly
it is a significant code base itself while also depending on the larger TFL code base. Because it
uses an interpreter paradigm a significant amount of code would need to be re-implemented to

flight standards regardless of the complexity of ML that was being used.

pTensor

Lead by Neil Tan pTensor was first released in July 2018, and is primarily aimed at the Advanced
RISC Machines (ARM) M-Bed range of micro-controllers, although the code it generates can

be deployed on a wider range of targets. Unlike TFLu p'Tensor uses a code generation paradigm,

64 Chapter 3. Industrial Problem & ML Solution

producing C++ model implementations which depend on a small runtime library. pTensor is

also designed to work with the TF framework, using TFL flatbuffer models as input.

pTensor is an ML deployment tool which generates highly efficient model code making use of
ARMs optimised CMSIS library of layer implementations [88]. The code generation approach
means that models depend on a smaller amount of code than TFL . However it still requires a
C++ compiler and makes use of dynamic memory allocation, for these reasons it is not suitable

for the flight software development process.

3.5 Results

The most important finding from this investigation is that standard ML models are capable of
estimating terrain navigability from the same DEM inputs as traditional algorithms. Figure 3.17
shows the histogram and confidence bands of estimates vs truth for model ’EncDec-D* trained
for 5k steps using the Mars Yard Stereo dataset. The model has converged well to the training
data with a small and relatively uniform error. Figure 3.18 shows the baseline cost-map used for

training and the estimated cost-map produced using the trained model.

Estimation Errors Confidence Bands
1.0 1.0r | —99.7% cB =
— 95% CB 4

08 0.8}
%) %)
S S
0.6 5 0.6}
() ()
- -
© ©
e =
i &

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
True Cost True Cost

Figure 3.17: 2D Histogram and confidence bands of estimates against training values for the

Encoder Decoder topology D trained for 5000 steps.

This model produces an 11 x 11 matrix of cost values on each inference pass, the boundaries of
these can just be made out on the estimated cost map but the smoothness of the expected cost

map reduces the significance of this. One of the penalties of estimating multiple cost values

3.5. Results 65

Estimated Cost Map Training Cost Map
00 100 200 300 400 00 100 200 300 400 1.0
100 | l . 100 I : s
200} y . 200 ’ s
’ # H10.7
— 300 1 =300 B o
E E {06 S
f= c c
S 400} 1 S 400 : =
~ 1o 5
o o =
> 500 { > 500 " T
600 E 600 -
700+ r E 700 — - .
800 L . . . = 800
X position (m) X position (m)

Figure 3.18: Cost map estimated using a trained Encoder Decoder model on the left in compari-

son with the ground truth cost map on the right.

at the same time is the requirement for a larger dense matrix of DEM values for the model to
function. This is why the ML estimated cost map covers a slightly smaller area than the original

training cost map, sparse DEM inputs around the border of this irregular map have been ignored.

The impact of this limitation increases as the output size and therefore input size of models
increases. Encoder Decoder models C and F both produce 41 x 41 matrices of cost cells, which
require a dense input matrix of 91 x 91 DEM cells. In practice the DEMs produced by rovers
include unknown areas due to occlusions by rocks and other obstacles, therefore the current
requirement for dense input matrices is problematic. Feeding sparse input data into an ML
model is not common, however some work has been done in this area. Liu et al. [93] proposed
a ’Partial Convolution® approach to the image in-painting problem which requires sparse input
images to be processed. If such a technique could be adapted for these cost-mapping models,
enabling them to operate on sparse inputs then these models would become more practical in a

real world system.

66 Chapter 3. Industrial Problem & ML Solution

3.5.1 Effects of Model Scale

Encoder Decoder model D has been shown to converge well to the training data in Figure 3.17,
our requirement however is to meet a 10% error threshold at 3 sigma. A range of model types
and sizes have been evaluated so that our later work measuring execution time is able to relate
changes in accuracy with computational cost. All of the models described in Section 3.3.1 were
trained for Sk steps with a batch size of 100, and their error measured using the Mars Yard

Stereo dataset. This was repeated for different scales of each model between 5% and 100%.

0.20 Error Vs Model Scale

%—x Cnn-A Mars Yard
0.18} | *x—x Cnn-B Mars Yard
»—x Cnn-C Mars Yard
*»—x Cnn-D Mars Yard
*x—x Cnn-E Mars Yard
- - Requirement

Error at 3 Sigma

0 20 20 60 80 100
Model Scale (%)

Figure 3.19: 3 sigma error results for all CNN models and scales. Encoder Decoder results are

shown in grey for comparison.

Erroryvs Model ‘Scale

0.20
»— EncDec-A Mars Yard
0.18} ~— EncDec-B Mars Yard
+~— EncDec-C Mars Yard
0.16} ~— EncDec-D Mars Yard
© ' +— EncDec-E Mars Yard
1S EncDec-F Mars Yard
'ug: 0.14¢ +— EncDec-X Mars Yard
™ - - Requirement
2 0.12¢
=
g
i 0.10
0.08+
0.06

0 20 20 60 80 100
Model Scale (%)

Figure 3.20: 3 sigma error results for all Encoder Decoder models and scales. CNN results are

shown in grey for comparison

3.5. Results 67

The 3 sigma error results for the five CNN models proposed are shown in Figure 3.19. Inter-
estingly the errors in the cost-map values produced is largely consistent between the models
themselves, this implies that the additional convolution layers present in CNN models A, B, and
C are not necessary for good convergence. Scaling the model however does have an effect of the
errors in their estimates. Model errors are relatively uniform between 100% and 20% of their

full defined size, however below 20% a cliff edge can be seen where errors start growing rapidly.

These results indicate that it is possible to use the smaller scales of the smallest models proposed
and still meet the cost-mapping accuracy requirements given. The execution time of these
models on the LEON3 processor is not currently known, however this finding allows a wide

range of effective ML models to be considered.

Error results for the seven proposed Encoder Decoder models are shown in Figure 3.20. These
models are not as tolerant to down-scaling as the CNN models but are still able meet the

requirement between 30% and 45% of their full size.

The key take away from these results is that existing ML techniques can be applied to the
cost-mapping task and produce estimates that are accurate enough to be used by the downstream
GNC processes on-board a planetary rover. Now that half of the question has been answered the

second half of making these models work on space qualified CPUs can be tackled.

3.5.2 Costmapping Performance Results

Results shown in Figures 3.19 & 3.20 at first glance would imply that all thirteen proposed
models are quite similar to each other. Our initial GPU timing results presented in this section
show that there is in fact a significant difference between the performances of these models.
With reference to the requirements defined in Section 3.2 the speed of these models is measured
in DEM cells per second. This metric normalises these measurements against the changes in the

number of cells estimated in a single inference pass.

Speed results of the thirteen proposed models shown in Figure 3.21 can be seen to have bunched
together into five distinct groups. The cause of these groupings can be understood when they are
compared to the number of cells each model estimates in a single inference operation, Table 3.1.

Models in each of the five groups all produce the same number of estimates at a time, indicating

68 Chapter 3. Industrial Problem & ML Solution

All Model GPU Performances

100.0 M
e—e Cnn-A
e—e Cnn-B
10.0 M e—e Cnn-C
;‘“ o—o Cnn-D
©n e—e Cnn-E
55 EncDec-A
L“i 1.oM x—x EncDec-B
; x—x EncDec-C
8 »—x EncDec-D
& 100.0 K} »—x EncDec-E
g »—x EncDec-F
o =—a EncDec-X
" 00 W
1.0K - -

0 20 40 60 80 100
Model Scale (%)

Figure 3.21: GPU performance measurements of all models collected on an Nvidia GTX-1070.

that this factor is the strongest contributor to the performance of these models. Therefore
even though CNN models can be scaled down further than the Encoder Decoder models, this
is insignificant when compared to their faster processing speed. The slowest of the Encoder
Decoders is more than an order of magnitude faster than the fastest CNN model, even though

this Encoder Decoder has lower estimation errors.

As mentioned before these performance measurements taken using a desktop GPU have little
relevance to the LEON3 processor required by our industrial use-case. But it is worth noting that
the highest performing Encode Decoder model X operates at between 5 and 10 million cells per
second, more than three orders of magnitude higher than our requirement of 2405. Qualitatively
this is in the right ball-park so that when it is implemented on the more constrained LEON CPU

this requirement will still be met.

Such qualitative statements are of little value however, and without a deployment method or
actual performance measurements on the LEON3 there is still uncertainty if this ML cost-

mapping technique is feasible at all.

3.5.3 Comparison of Model Accuracies on Different Terrains

Section 3.3.3 discussed concerns that the level of fine details and range of terrain feature types

contained in a DEM would have an effect on the ability of ML models to estimate cost-maps.

3.5. Results 69

This experiment seeks to answer this question by training a set of identical models on the four
terrain DEMs that are described in Section 3.3.3. These models were: Cnn-A, the largest of
the CNN models EncDec-A, the smallest of the Encoder Decoder models studied, and the
EncDec-D model a medium sized Encoder Decoder model. The results of this experiment are
shown in Figure 3.22 where the error produced by each model has been averaged over all its

scales.

Figure 3.22 shows there is a reasonably consistent relationship between estimation error and
the terrain dataset used, across all three models investigated. The Mars Yard Stereo dataset was
the estimated with the lowest errors, potentially because this map is smaller than the ERGO
maps and lower in detail than the Mars Yard Lidar map. The size of this map means it has a
smaller variety of feature types than the ERGO maps which may contribute to this difference.
The ERGO maps of the River Bed and Slope Hill have the next higher estimation errors. These
maps contain less fine detail that the Mars Yard Stereo map but are approximately three times
larger, and contain a wider variety of feature types. Two of the three models tested produced
their highest errors on the Mars Yard Lidar data, this map has significantly more fine details
than the other three, indicating as suspected that maps with finer details are more challenging
for an ML model to process into a cost-map.

Errors on all Data Sets

0.14
- [Mars Yard Stereo
0.12 [Mars Yard Lidar
[ERGO River Bed
L 010 —] == ERGO Slope Hill
o - ||
Z0.08 -
m
2 0.06
e
I}
0.04
0.02
0.00

Cnn-A EncDec-B EncDec-D

Figure 3.22: 3 sigma error averaged across all model scales, shown for each training dataset and

three model topologies.

These results imply two factors will be critical in the implementation of an ML cost mapping
system on board any planetary rover. Firstly the model will need to be trained using DEM

models generated using the same sensor configuration and processing pipeline as the final

70 Chapter 3. Industrial Problem & ML Solution

rover. This will improve the performance of the resulting model and more importantly mean the
measured accuracy of the model will be more representative. The second implication is that the
nature of the terrain itself has an effect on the accuracy of the model. Any model developed
for flight will need a significantly larger training set than any used during this work, which also
contains a wider range of terrain types. Even with a large and varied training set there will be a
risk of encountering unexpected Martian areography resulting in unexpected behaviour. This

risk will need to be closely scrutinised before this system could be deployed on a flight mission.

3.6 Summary

Two standard ML models, CNNs and Encoder-Decoders, have been shown to be capable of
generating navigation cost-maps. The accuracy of the maps produced when compared with
the baseline algorithm can be controlled by varying the size of models used. Two adapted
normalisation techniques have been shown to marginally improve the training of these models.
Overall it has been shown that it is possible to generate cost-mapping data using ML within the

10% error at three sigma defined in our requirements.

A crude execution time measurement has been used to determine the relative speeds of these
models. After repeated attempts to deploy models to the LEON3 processor using existing tools,
it was determined that none of these tools were suitable. TFL and MatLab ML toolbox were
large to be deployed on this processor, while Tensorflow XLA produced implementations at a
realistic scale tool-chain incompatibilities prevented it from working. Due to these challenges
none of the cost-mapping models have been executed on a LEON3 processor at this point, so

their performance is unknown.

In addition to the practical barriers to using these deployment tools with the LEON3 platform it
has been shown that they are incompatible with the software development and V&V process
used for flight software in the space industry. Therefore even if it had been possible to use them
for performance evaluation, new tools would still have been required before these ML solutions

could be flown.

Progress has been made against the four opportunities identified at the end of Chapter 2 as

shown in Table 3.4. The question of weather ML models are capable of producing cost-maps of

3.6. Summary 71

the required accuracy has been addressed. However the questions of performance and method

of integration into the flight software development process remain.

3.6.1 Future Work

Several specific opportunities to improve the ML terrain estimators presented in this chapter
have been identified. The models we evaluated can only operate on dense DEMs because there
is no mechanism for defining unknown map cells in the input. Sparse DEM are expected in
a practical implementation, especially if larger map areas are to be processed at once. Such
processing was identified as the most computationally efficient implementation of this approach.

The author feels this would be the most valuable next step in the ML aspect of this work.

Only one baseline terrain navigability algorithm has been used for training the models presented,
this is a limitation of our work. The contemporary equivalents to the GESTALT cost-mapping
algorithm are proprietary, neither of the algorithms used by Curiosity or Exomars have been
publish in any detail. A valuable future step would be getting access to more advance traversabil-
ity algorithms or enough output data and training these ML models on them. Some of these
algorithms use different input information, for example the Exomars geometric maps include
the minimum, mean, and maximum elevations within a cell as opposed to a single elevation.
Additional non-geometric information has also been proposed, visual texture for example [67].
ML would be expected to be capable of integrating these additional sources of information with

ease, but a thorough investigation is warranted.

The greatest weakness in our investigation so far is the lack of execution time measurements
on the target LEON3 processor. These radiation hardened CPUs are much less capable than
their terrestrial equivalents, and development tools are also more limited. The absence of
performance results on these targets casts a great deal of uncertainty on the feasibility of this
approach. The lack of an ML deployment system which is suitable for the flight software
development process is also a hindrance to the final roadmap we wish to present enabling the
adoption of this technology on future missions. It is for these reasons that the next step of our
work will address the challenge of automatically deploying ML models to LEON3 processors

and within the requirements of the flight software development process.

72

Chapter 3. Industrial Problem & ML Solution

Table 3.4: Opportunities at the end of the cost mapping investigation.

Challenge

Solution

Is it possible to generate planetary rover cost-

maps using ML?

e Encoder decoder models trained using super-

vised learning have been shown to be effective.

Are ML cost-mapping models feasible to use

on radiation hardened LEON3 computers?

e Promising indications based upon GPU
performance, but no accurate measurements

have been made on the LEON3 processor.

Does a deployment process exist to implement
this model within the flight software develop-

ment process?

e Existing automated tools reviewed, none
found to be suitable, hand coded implementa-

tion only option.

New Research Opportunities Identified in this Chapter

e A tool which can deploy ML models to the LEON family of processors and work within

the requirements of the flight software development process would aid the adoption of

ML solutions in the space industry.

e Study ML cost-mapping models capable of processing sparse input data into cost-maps.

e Train ML models on a range of map types and traversability algorithms to find how

accuracy and model size is affected.

Chapter 4

TFMin Tool

4.1 Introduction

Progress of ML research like other technical disciplines is defined by the co-development
of theoretical understanding and the tools necessary to gain that understanding. Chapters
2 & 3 identified a gap in the capabilities of ML deployment tools. These tools are unable
to deploy models to the current generation of radiation hardened processors, or within the
software development process used on high value space missions. This section will describe
the development of the TFMin tool indended to fill this gap and the research tasks it facilitated.
A detailed description of the tool which was ultimately developed is presented along with use

cases of the ML deployment research conducted.

Deployment of ML models onto low power embedded computers and micro-controllers is a
recent development in the time-scale of this work (2016 - 2020) with the first open source tools
supporting this development being released in mid 2018 [116][5]. Our research started before
these tools were made public so there was no alternative to developing our own tools. The
resulting TFMin tool has now been released open-source to complement the tools provided by
ARM and Google. These three tools each provide different sets of features supporting different

areas of research and engineering..

The following sections detail the requirements and architecture of the TFMin tool, its specific

features and the research drivers behind them. References are made to particular research

73

74 Chapter 4. TFMin Tool

insights enabled by the features of this tool. Finally the computational requirements of the
cost-mapping models proposed in Chapter 3 are analysed by deploying these models to an
emulated LEON3 processor. These results are compared to our initial relative performance
indications from Chapter 3, and the impact of these numbers on the practicality of on-board ML

cost-mapping discussed.

4.2 Motivation

Interest is growing in the use of neural networks and deep-learning for on-board processing
tasks in the space industry [27]. However development has lagged behind terrestrial applications
for several reasons: Space qualified computers have significantly less processing power than
their terrestrial counterparts. Reliability requirements are more stringent than the majority of
deep-learning applications, resulting in strict V&V processes. These V&V requirements slow
the adoption of new development tools and frameworks while they are evaluated. Finally the
long requirements, design and qualification cycles of most space missions mean that the latest

technology at the outset, will be obsolete by the time the mission flies.

We present an open source tool chain that automatically deploys trained inference models from
the TF framework to a wide range of hardware targets including the LEON family of radiation
hardened processors. The ANSI C code which is generated can be deployed to the widest
possible range of hardware targets, including DSPs, micro-controllers and CPUs. Critically the
code generation approach allows existing space industry V&V practices to be applied to the
prototype code produced, avoiding the need to strictly verify the TEMin tool itself. This has

already allowed this tool to be used in low TRL ML studies in the space sector.

4.3 Architecture

Fundamentally TFMin is a python library which provides the functionality to import and manip-
ulate ML models then generate the source code of an ANSI C implementation of inference. The
deployment process is comprised of three key steps shown in Figure 4.1. First models are im-

ported either from a Tensorflow flow graph or TFlite flatbuffer and converted to ¢ f_min.Graph

4.3. Architecture 75

object containing a framework agnostic internal representation, Section 4.3.2. This representa-
tion is generic so that importers from other ML frameworks could be added, however this was
not necessary during our work so is left as a task for the open-source community. The graph
translation pipeline is a sequence of translators used to optimise the model and prepare it for
deployment. These translators are functions which take an input graph and set of parameters, re-
turning a modified graph. They can be as simple as removing drop-out operations automatically

or as complex as quantisation. This step is described in more detail in Section 4.3.3.

/— Importers ﬂ
Tensorflow o flow - graph T
flow graph Importer
Graph Translation Pipeline
TFlite flatbuffer B = =
> L in ranslator
flatbuffer Importer Graph z [el =
e > Translator
i Can Be
iz 4 Extended ﬁ

/— Code Generation ﬂ

Weights | o X
Generation | \u:elgdl'lts
eader

TFMin
Graph

Model
— N al Model
Generation e

|1

* Model
Source

Set of
Operation
Kernels

. J

Figure 4.1: Data flow of ML model deployment using TFMin, showing the three top level

processes performed.

The final step generates C source code using a library of operation kernels. Each of these kernel
objects generates the C implementation of a class of operations. Intermediate tensors are stored
at pre-allocated locations a single contiguous memory region, the tensor arena, allowing models

to be deployed on systems that do not support dynamic memory allocation.

In addition to the standard deployment process described above, models can be deployed along-
side introspection code to analyse the generated implementation in more detail. These analyses

include per operation timing information and detailed memory access pattern visualisation and

76

Chapter 4. TFMin Tool

are described in Section 4.4.

4.3.1 Design Rquirements

From a functional perspective TFMin is primarily a tool to convert a high level representation of

a ML model into a pure C implementation of that model. However alongside this seemingly

simple task it provides a wide range of configuration options, choices of algorithms to use at

each stage, validation checks, and introspection tools. An open extensible framework enable

developers to create entirely new graph-translators 4.3.3 and op-kernels 4.3.6.

To provide a consistent and easy to use framework for researchers to design ML experiments, a

set of design philosophies was chosen to guide the development of TFMin. Several of these are

simply good coding practice but they are described here and justified in terms of their effect on

the project. These philosophies were combined with the requirements set out in Section 2.5.1,

to inform the analysis and design of this tool.

1. Simple task simple interface, always use as few API calls as as possible and keep them

simple. When writing the code for an experiment you want most of your code to describe

experiment, not many lines of boilerplate set-up and tear-down.

. Configuration settings are always exposed and controllable. If part of an algorithm can be

controlled in a meaningful way then these configuration settings can always be inspected

and changed by calling code.

. All errors are reported via exceptions, nothing is printed to stdout by the framework.

This produces the most meaningful error messages which can be handled by humans or

machines, and produces cleaner command line applications.

. Verify everything, this framework is intended to be extended by the user. As such

each object will contain a function to verify its own integrity. The framework includes
complex data structures such as tensor graphs and multidimensional indexing models. If
manipulated incorrectly these structures can easily enter invalid states leading to difficult
to trace bugs. These verification functions are a valuable debugging aid to find the root of

cause of these bugs.

4.3. Architecture 77

5. For maximum portability the generated code will have no dependencies beyond ANSI C
built-ins. To support research on as many target devices as possible the most established

and well supported language has been chosen with no external dependencies.

6. Dynamic memory allocation is not be used by the generated code. This is forbidden by
the coding standards used in flight software in the space industry. Additionally many

terrestrial micro-controller systems do not support this functionality.

7. The code generated is tailored to be optimised by the compiler. Compilers are very good
at what they do, TFMin doesn’t make any attempt to do their job for them. Higher level

optimisation is performed by TFMin, lower level optimisation is left to the compiler.

4.3.2 Graph Representation

Core to the design of TFMin is a generic internal representation of an ML models tensor graph.
This data structure includes a complete description of an inference model including; operations,
weights, topology, inputs, and outputs. A tf_min.Graph object is created using an importer
from either a Tensorflow session or TFL flatbuffer. Unlike Tensorflow sessions these Graph
objects are mutable and can be altered directly or passed through Graph-Translation objects.
Multiple Graph-Translation objects can be chained together in a manner analogous to compiler
optimisation steps. These translation pipelines allow great flexibility when optimising models
and controlling how models are deployed using TFMin. Researchers can configure existing
Graph-Translators and chain them together in different ways to deploy models or entirely new

Graph-Translators can be derived from existing ones.

Alongside information which describes a model, ¢ f_min.Graph objects also store two types of
information required for final deployment. A sequence of operations defines the execution order
of the model and pre-allocated offsets place each intermediate tensor buffer within the tensor
arena. Models do not include this information when they are initially imported but it is required
by the final code generation step, so must be generated during the graph translation pipeline
described in Section 4.3.3. Graph-Translators implementing a range of sequencing and memory

allocation algorithms are provided.

78 Chapter 4. TFMin Tool

Graph Object ‘ ‘ Tensor Object ‘
ops List of Operations tensor_type Enum
Un-ordered list of operations contained in INPUT, INTERMEDIATE,
this tensor graph. CONSTANT or QUTPUT
tensor List of Tensors meta_type Enum
Un-ordered list of tensors contained in this |3|NG‘|-E- SUPER or SUB |
tensor graph. d_type String
op_sequence List of Operations |Element data type of this tensor. |
Ordered list of operaticns containing exactly shape List of Int
th t as 'O tions® but i lid
exizi{i?;liid:f perations butin a val The size of each dimension of this tensor,
. length of this list defines its rank.

memory_map MemaoryMap

Object holding the data layout of this tensor.
‘ Operation Object ‘

values MNumpy.ndarray
op_type String Optional attribute holding the value of this
|Deﬁnes the type of this operation. | tensor if it is constant.
inputs List of Tensors memaory_offset Int
|Links to the input tensors of this operation. | Optional attribute holding the pre-allocated
outputs List of Tensors (offset within the tensor arena.

|Links to the output tensors of this operation. |

params Dictionary

Set of parameter names and their values
customising this operation.

Figure 4.2: Data structure of the three Core objects TFMin uses to represent ML models

internally. In the interests of clarity only high level attributes are shown.

4.3.3 Graph Translation Pipeline

A single Graph Translator is in essence a function which takes a Graph object as a parameter
and returns a new modified Graph object as a result. The graph translation pipeline is a sequence
of these translators and their associated parameters. A complete pipeline is a powerful way to
define how a model is optimised deployed to C code. Graph-Translators can be used to modify
a models graph itself, sequence operations, pre-allocate tensor buffers or output introspection

information without modifying the graph.

The TFMin API provides two methods to directly interact with Graph-Translators. Static
function calls are the easiest method when a graph is being manipulated directly from python
code. However Graph-Translator objects are implemented internally as functionoids [37] so
their configuration parameters are decoupled from the translation call itself. This allows Graph
Translator instances to be created, loaded, and stored as objects but also called as functions, both
these calling patters are shown in Listing 4.1. Some Graph-Translators contain other translators,
for example the operation-splitting memory optimiser uses a block-level memory optimiser

within its algorithm.

4.3. Architecture 79

Listing 4.1: Example GraphTranslator calling patterns.

class ExampleTranslator (GraphTranslator):
def __init__(self, settings):
defaults = {’setting_1": 5}
super (). __init__(settings , defaults)
self .translator_type = ’ExampleTranslator’
self.description = ”"Example null graph ” \
“translation object.”

def __call__(self, input_graph):
output_graph = input_graph.clone ()
return output_graph

Static calling pattern
new_graph = ExampleTranslator.call (old_graph,
params={’setting_1’: 10})

Functionoid calling pattern
fnoid_translator = ExampleTranslator({’ setting_1": 10})
new_graph = fnoid_translator (old_graph)

Graph translation pipelines are manipulated and executed using the Pipeline object. This object
allows the complete configuration of a pipeline and all Graph-Translators within it to be loaded
and saved to Extensible Mark-up Language (XML) files. This object makes it simple to control

and record the translations and their parameters which are applied when deploying models.

Using these features of the Graph Translation pipeline, the deployment of a ML inference model
can be easily defined and recorded using XML files. Listing 4.2 shows how memory allocation
performance was analysed while deploying models using the novel DMO algorithm proposed in
Section 5.4.2. When performing high level research using the built in functions of TFMin, most

work can be done by modifying these XML files.

Listing 4.2: XML TFMin configuration describing the deployment and introspection of a
model that was used to evaluate the operation splitting memory optimisation technique on
different models.

<tfmin>
<pipeline>
<RemoveldentityOps />

80 Chapter 4. TFMin Tool

<RemoveDropOuts />
<SequenceOps execution="greedy” />
<ExportGraph filename="sequenced_graph.svg” />
<OperationSplitting>
<block_allocator>
<HeapSmartOrder order="forwards” />
</block_allocator>
</ OperationSplitting>
<ExportGraph filename="op_split_graph.svg” />
<ExportMemoryLayout filename="memory_map.svg” />
</pipeline>
<code_gen name_prefix="test_model” output_base="test_" />
</tfmin>

4.3.4 Using Graph-Translators for Introspection

An additional use of the graph translation pipeline, is for introspection when analysing deploy-
ment experiments. Graph Translators are provided which instead of modifying the graph, export
information about the graph for visualisation or processing outside of TFMin. The Graph and
Memory Visualisers, generate vector images of the Graph structure and pre-allocated buffer
pattern respectively, Figure 4.3. To emphasise parts of models, these visualisers take advantage
of the highlight attribute contained in each tensor and operation object. The highlight attribute
can be either None or a Red Green Blue (RGB) tuple. Algorithms within Graph-Translation
objects can set these attributes allowing clear visualisation of their internal workings. By placing
these visualisers at points along a deployment pipeline, detailed behaviour of the deployment

can be observed.

4.3.5 Tensor Memory Model

The memory used to hold tensor buffers is managed differently depending on of the type of
tensor, input/output, constant weights, or intermediate value. Buffers used for input and output
tensors are allocated by the calling process, allowing their memory to be allocated optimally for
the application. This could include using specific Direct Memory Access (DMA) memory banks
for the input tensors or reusing the same output tensor buffer for example. The data layout of

these tensors is defined by the imported model, which is limited to row-major or column-major

4.3. Architecture 81

0 KB 4354 KB

..V2/Conv/Relu6_opr
pthwise/Relué_opr
usedBatchNorm_opi |

...usedBatchNorm_opi

.../expand/Relué_opr

...pthwise/Relué_opr
...usedBatchNorm_opi

...ed_conv_2/add_opr

..Jexpand/Relué_opr

..pthwise/Relu6_opr

...usedBatchNorm_opi

.../expand/Relué_opr [|

...pthwise/Relu6_opr | |

...usedBatchNorm_opi
...ed_conv_4/add_opr [

../expand/Relué_opr
..pthwise/Relu6_opr
...usedBatchNorm_opi _"I

...ed_conv_5/add_opr
..Jexpand/Relu6_opr

or | I P e
..usedBatchNorm_opi
../expand/Relu6_opr
..pthwise/Relu6_opr

...usedBatchNorm_opi 1l
ed_conv_7/add_opr

Jexpand/Relu6_opr
pthwise/Relu6_opr
use o)
ed_col opr il

(@) (b)

Figure 4.3: Example of (a) memory and (b) graph visualisations generated generated after
operation-splitting optimisation, see Section 5.4.1. Operation and Tensor highlights have been
added by the algorithm to clearly identify the parts of the model’s graph which were split into

parallel chains.

by the supported input formats.

Weight tensors are provided by the imported model and these constant values are currently
built into the compiled binary by TFMin. This is one area that could be extended to support
more weight storage options. Embedded systems could store this type of data in a memory
mapped Electronically Erasable Programmable Read Only Memory (EEPROM), while larger
computers could load them from a file system or network. Weight compression schemes [83]
[61] could also be supported by custom weight exporter objects. The values of weight tensors
cannot be changed during the deployment process however their data layout can be. A common
optimisation technique changes the layout of convolution filter weights so that they are read

from sequential memory addresses by the operation code [92].

Intermediate tensors are used to hold the value transferred between a models high level op-

erations, these tensors are often only required for a fraction of the whole inference process.

82 Chapter 4. TFMin Tool

0 kB 642‘8 kB

Operation Sequence

T

Figure 4.4: SqueezeNet intermediate buffer layout within a 6.3 MB tensor arena. Buffer

locations computed using a forwards pass of a heap algorithm.

TFMin stores these tensors in a single contiguous memory area known as the tensor arena, their
locations within this area are pre-computed during the deployment process. Figure 4.4 shows
the intermediate tensor locations for the SqueezeNet model pre-allocated using a heap approach,
the visualised scope of each buffer is used to reuse the memory of the tensor arena efficiently.
Computation of optimal intermediate tensor layouts within this tensor arena is a new area of
research, which TFMin has been designed specifically to support. This research has yielded two
new state of the art memory optimisation algorithms DMO and Operation-splitting described in

Chapter 5.

A requirement which was added to TFMin during our later research into memory optimisation,
sets it apart from both TFL and pTensor. The capability to store intermediate tensors using
non-contiguous in memory representations as well as dense row/column major representations.
This requirement was driven by research into the operation-splitting technique described in
Section 5.4.1. In this work sub tensors produced or consumed by layout operations such as split
or merge are able to use the memory space of the large tensor instead of a separate region in the
tensor arena. Figure 4.5 shows a simple split operation which requires output tensors occupy

their own areas of memory when dense memory addressing is used. Whereas if non-contiguous

4.3. Architecture 83

memory indexing is used, input tensor memory can be re-used without copying any data. In this

case the split operation disappears entirely.

Input Tensor
[1,6,6,8]

Output Tensors
[1,6,3,8]

Mon-contiguous Tensor Memory Dense Tensor Memory

Tensor Arena Address Tensor Arena Address

Input Tensor Input Tensor
Output Tensor A Output Tensar A
Output Tensor A Output Tensor A

Figure 4.5: Example of tensor-buffer reuse which is made possible by non-contiguous memory

addressing.

Row major, column major and non-contiguous layouts are in essence functions which convert a
multi-dimensional address into a flat one dimensional address. Equations 4.1 and 4.2 define these

functions for N dimensional tensors using row and column major layout schemes respectively.

Index =in_1+ Dn_1(in—2 + Dn—2(in—3 + Dn—3(...+ Dqip)...))) “4.1)

Index = 19 + Do(il + Dl(ig + Dg(. .o+ (DN_giN_l)) ..)) 4.2)

Where N is the rank of tensor being indexed, ig...iy—1 are the indices within each dimension,

and Dg...Dy_q are the sizes of the tensor in each dimension.

The indexing function for non-contiguous layouts is shown in Equation 4.3 where C' is a constant
defining the offset of the first element from the start of the tensors memory and Sy ... Sy_1 are

the index strides between adjacent slices of each dimension. Mathematically C' is not strictly

84 Chapter 4. TFMin Tool

required, however non-contiguous arrays can index backwards and it is good practice to avoid

negative indices.

Index = igSy + 1151 + 4253 + ... +in_1Sny_1 + C 4.3)

Expanding the row and column indexing Equations 4.1 and 4.2 gives Equations 4.4 and 4.5. It
can be seen that the non-contiguous indexing Equation 4.3 can generalise all indexing schemes
by defining the strides as the products of the relevant sets of dimensions. This reasoning is
behind the choice to describe all tensor layouts within TFMin with an object which describes
non-contiguous array indexing, this object contains two functions which detect the two special

cases of row and column major ordering.

Index =ig(Dy-Dy-...-Dn_1) 4+ ... +in—2(Dn—2) +in—1 “4.4)

Index = 19 + il(Do) + iQ(DQ . Dl) + ...+ iN—l(DO Dyl DN_Q) 4.5)

There are several drawbacks of non-contiguous array representations which is why they are not
used in high performance applications. They often force sequential read and write operations to
occur on non-sequential memory addresses which is detrimental to cache performance. They
also make the implementations of optimal tensor operations more complex to write. Both of
these drawbacks are mitigated in TFMin because it is a code generator, this gives it complete
control of how tensors are represented and the versions of operation kernels which generate the

code which implements each operation.

4.3.6 Operation Kernels

At the core of TFMin is the generation of tensor operations in C code, this functionality is
contained within a set of Operation-Kernel objects. Each tensor operation is supported by a
matching Operation-Kernel. During the final code generation step operations are processed

sequentially and appropriate Operation-Kernels found and invoked to produce the C source.

4.3. Architecture 85

Listing 4.3: TFMin generated implementation of two layer dense model.

void model(void *xtensor_arena ,
float xconst p_input_x_input_0 ,
float xp_Layer2_activation_0) {
/x MatMul op (Layerl/Wx_plus_b/MatMul) x/

{

const float xinput_.O0 = p_input_x_input_0;
const float xinput_1 (float x)Layerl_weights_Variable_0;
const float xinput_2 = (float x)Layerl_biases_Variable_0;
float xoutput_0 = (float x*)tensor_arena + O;
for (int b = 0; b < 1; ++b) {
for (int out.c = 0; out_c < 300; ++out_c) {
float value = 0.0f;
for (int d = 0; d < 784; ++d) {
float inputVal = input_ O[(b x 784) + d];
float weightVal = input_1[out_c + (300 *x d)];
value += inputVal *x weightVal;

}

// Add Bias

value += input_2[out_c];

// fused activation function
// Relu

if (value < 0.0f) value = 0.0f;
output_O[out_c + (300 * b)] =

}

value ;

¥
}
/x MatMul op (Layer2/Wx_plus_b/MatMul) x/

{

const float xinput_0

(float x)tensor_arena + O;
const float xinput_1 (float x)Layer2_weights_Variable_0;
const float xinput_2 (float x)Layer2 _biases_Variable_0;
float xoutput_.0 = p_Layer2_activation_0;
for (int b = 0; b < 1; ++b) {
for (int out.c = 0; out_c < 10; ++out_c) {
float value = 0.0f;
for (int d = 0; d < 300; ++d) {
float inputVal = input_O[(b x 300) + d];
float weightVal = input_1[out_.c + (10 % d)];
value += inputVal x weightVal;
}
// Add Bias
value += input_2[out_c];
// fused activation function
// None
output_O[out_c + (10 x b)] = value;

86 Chapter 4. TFMin Tool

Listing 4.3 shows the code produced for a simple two layer fully connected model. The sizes
and layouts of tensors are static, so their locations can be encoded within each operation. The
resulting model function is a set of code blocks for each operation which only interconnect
via the tensor arena and input/output buffers. These code blocks avoid conflicts between the
identifiers of different layers. An advantage of the code generation approach is that the sizes and
parameters of layers are compile-time constants, enabling further compiler optimisation. This
would not be possible if a library of tensor operations were being used. The downside of this
approach is that large models result in large binaries being generated. Investigating the trade-off

between binary size and execution speed is a potential future area of research.

The common Operation-Kernel interface allows kernels to define a set of tag strings describing
any special capabilities they have. For example the authors have developed two Operation-
Kernels optimised for the LEON3 using the MAC instruction supported by the processor. The
assembly statements generated by these kernels will not build on other targets, so they are tagged
for the "LEON3”. When a model is deployed the "LEON3” tag can be specified which will
select these custom Operation-Kernels where possible while falling back to the standard kernels

for most operations.

The set of Operation Kernels objects can be used for more than just their primary purpose
of generating code. They are a link between the theoretical operations within Graph objects
and their ultimate implementation on hardware. This link is exploited by the DMO memory
optimiser which overlaps the input and output buffers of operations. The extent by which these
buffers can be safely overlapped is defined by the final layer implementation deployed. This
memory optimiser uses the Operation Kernel system along with the mutable nature of python

objects to add functions into kernels which calculate the safe overlap for a given operation.

4.3.7 Memory Optimisation

Reducing the RAM required to perform ML inference on small hardware targets has been
the aim of much of the research performed using TFMin to date. As described earlier all

intermediate tensor values are stored in a contiguous memory area known as the tensor arena.

4.3. Architecture 87

Before the final code generation step the location and data-layout of all intermediate tensors
within the tensor arena must be defined. A set of Graph-Translators are provided by TFMin
which encapsulate the novel memory optimisation algorithms produced during my research as

well as pre-existing algorithms.

The simplest class of memory optimisers are block-level algorithms, such as the heap allocator
used to pre-allocate the tensors buffers for SqueezeNet shown in Figure 4.4. These optimisers
take a sequenced graph and use the known sizes and scopes of each intermediate buffer to place
them within the tensor arena. The locations of these tensor buffers are chosen to minimise
the total size of the tensor arena. At first glance this sounds like a simple task, but on closer

inspection it is NP-Hard [95].

There are similarities between this task and the well studied register allocation problem [87].
Both are concerned with the minimisation of intermediate storage required to evaluate a com-
putation graph. Registers however are fixed size atomic entities, whereas the tensors used in
ML graphs are variable sized objects which can be represented in different ways and divided
into parts. Within the register allocation problem the cost of re-computing a value is often less
than temporarily storing it in memory. This means that re-computation is common technique
used to make optimal use of available registers. However the cost of re-computing full tensors
is prohibitive on the low power CPUs this work focusses on. These differences mean that
the existing algorithms which solve the register allocation problem are not applicable to the

reduction of acram used for ML inference.

One of the mathematical tools used in the register allocation problem does find some applica-
tion to this problem though. The Strahler number [39] of a computation graph can be used to
determine the minimum number of registers needed to complete the computation without any
re-computations. However this is only applicable to models whose computation graphs take the
form of trees, which is rare for current state of the art models. In the memory optimisation task
the Strahler number of a tensor tree determines the minimum number of intermediate tensors
which are needed at any one time. However since intermediate tensors have different sizes,

reaching this number does not guarantee optimality

Looking closely at the SqueezeNet buffer layout shown in Figure 4.4 it can be seen that the heap

allocator has not produced an optimal layout. Figure 4.6 shows how this could be optimised

88 Chapter 4. TFMin Tool

further, heuristic algorithms are able to improve results but will always be limited by a lower-
bound limiting how small the tensor arena can be. For block level optimisers this lower bound
is the largest sum of buffer sizes whose scopes overlap. In the example shown in Figure 4.6 it
can be seen that this lower bound has been reached, all three tensors buffer which were shifted
left need to be in memory at the same time. So the smallest tensor arena size possible is the

combined size of these three buffers.

0‘ kB 642‘8 kB

{

Operation Sequence

Figure 4.6: SqueezeNet intermediate buffer layout, showing how the layout generated using a

heap algotithm shown in Figure4.4, can be further optimised to use less memory.

This limitation can be surpassed by the next two classes of memory optimiser. Graph-level
optimisers alter the tensor operation graph itself or the sequencing of operations in order to
improve the result produced by a block-level optimiser. A simple example would be a eager/lazy
sequencer which tests the peak memory in each case and chooses the best. A more complex

example would be the operation-splitting optimiser described in Section 5.4.1.

Finally memory-access-level optimisers analyse the precise memory access patterns of each
tensor operation attempting to overlap the buffers of the inputs and outputs of single operations.
DMO described in Section 5.4.2 is currently the only example of such an algorithm the author

is aware of. Chapter 5 discusses the details of these algorithms in more detail.

4.4. Analysing Deployed Models 89

4.4 Analysing Deployed Models

As would be expected of a research support tool TFMin can produce a wide range of observations
of both the generated inference model and the deployment process that led to them. These include
simple metrics such as the size of models weights, RAM requirement and per layer execution
time measurement. More complex introspections are available to observe the behaviour and
results of memory pre-allocation algorithms and detailed memory use of final deployed binaries.
A Verification tools is included which compares the output of a deployed model to the output of
its original implementation in Tensorflow. These tools and examples of the observations they

produce are described in the following sections.

4.4.1 Memory Requirements Analysis

When an inference model is deployed the size of the tensor arena is a single scalar, which is a
measure of the efficiency of its memory use. There is little analysis which can be done on this
single number, beyond comparing different optimisation algorithms. However to understand
the processes that led to a deployed model having a particular tensor arena size it is useful to
visualise the pattern in which intermediate tensor buffers have been allocated. This analysis can
be performed by inspecting the buffer pre-allocation pattern as it is generated and refined during

the deployment.

This introspection can be generated using the memory visualisation graph translator as described
in Section 4.3.3, the default behaviour of this visualiser highlights the buffers which directly
define the tensor arena size, Figure 4.7. This visualisation is particularly useful for complex
memory optimisers such as operation-splitting, Section 5.4.1, where block level optimisers are

repeatedly executed on modified graphs searching for the most optimal solution.

It is interesting to note that many times during our research into memory optimisation algorithms
when the resulting buffer allocation patterns have been observed, potential improvements have
been clearly visible. This is testament to both the mathematical complexity of the problem
and humans innate skill at solving packing problems. The pattern shown in Figure 4.7 can be
improved by swapping the order of buffers 1 and 2 in the memory dimension, this is one of

many optimisations which could be made in this case.

90 Chapter 4. TFMin Tool

0 KB l12544 KB

EEEnegNi 2%5?%%5 O e
e i
L

R g
=
el

...2lpreact] |"’o r
...v /conv / eTl:r r

o 3?%“9%% ﬁ;Ii —

o pr
: 5@ uﬁs;‘é%“'r%ﬁf I
33 T 1

Figure 4.7: Pre-allocation pattern for a deployment of the Inception Resnet V2 model. Buffers

which define the tensor arena size are highlighted in blue.

4.4.2 Detailed Memory Access Analysis

During our research into the memory use patterns of deployed ML models and available
optimisation techniques, the exact pattern of memory accesses issued by a compiled inference
model needed to be observed. After searching for any such tools none were found that could
extract the information needed. This section gives a technical overview of the Visual Memory
Tracer [24] tool that was built and how it is used by TFMin to perform introspection on compiled

ML inference operations.

Our goal was to determine which areas of memory were holding values used by the computation
and which were not as a model was executed. To gain this information is was necessary to
observe the pattern of load and store instructions issued by an executed model, then analyse
which regions of memory were in use as inference progressed. Memory access events needed to
be recorded in a theoretical 2D time/address space and aggregated to a lower resolution in both
dimensions. Even medium sized ML models will issue hundreds of millions of load and store

instruction.

It should be noted that this memory use pattern can also be found by analysing tensor operation

source code directly. This approach was used during later research into efficiently implementing

4.4. Analysing Deployed Models 91

automatic DMO in Section 5.4.3. However during earlier stages of this research the memory
use of models deployed using a range of tools was investigated, TFL s, pTensor, and TFMin. It
was simpler to use a single tool to analyse executed binaries than hand analyse a large number
of tensor operation implementations. There was also the risk of mistakes in manual analysis of
unfamiliar code impacting the validity of research conclusions. This risk does not exist when

directly observing the behaviour of a compiled binary.

Building a Memory Tracer Using Valgrind Lackey

Valgrind [111] is a powerful suite of debugging tools which aids the discovery memory leaks
and other memory related bugs, it contains a simple tool called ‘Lakey’ which prints the address
and type of every memory access operation issued by the binary on test to the standard out
stream. This output provides all the necessary information to produce the aggregated memory
trace required, it does however produce huge amounts of raw data. Initially a tool was written to
process this raw stream of memory events into a useful visualisation of memory use, this tool

later evolved into the stand-alone VMT tool.

The first version of this tool recorded the memory accesses for the whole duration of execution
but only the memory space used for tensor operations, the tensor arena. This requires the binary
on test to pass the address and size of the tensor arena to the memory tracer tool, while analysis
is in progress. A linux First In First Out (FIFO) is used to communicate between these two
processes. Three binaries are executed for each analysis performed using the Visual Memory
Tracer, the connections between them are shown in Figure 4.8. A client library is provided by
VMT to encapsulate the required communication between the binary on test and the tracer tool,

this handles management of the FIFO and provides a clean interface for the developer.

The raw output from the lakey tool describes every load, store, or modify instruction, it is possible
to decimate these events into fewer aggregated events. However the meaning of this aggregated
data needs to be carefully defined. This decimation groups all memory access instructions which
address a region of memory for a period of time into a single read/write/modify event. A read
event is defined as any set of memory accesses where an address is read from before that exact
address has been written to. A write event is defined as any set with at least one write or modify

access, if both these statements are true then the set is aggregated to a modify event.

92 Chapter 4. TFMin Tool

\Valgrind Debugger Legend
Inference Model Test Instrumentation
VMT Client

Binary on Test

Library

Files Produced

FIFC Std Out

—
Std Err Aggregated Trace Data
Visual Memory
Tracer
I‘Etd OutJ —» Vizualization of Trace
Output to
Console

Figure 4.8: Information flow diagram of a binary being traced by the Visual Memory Tracer.

The array of aggregated read/write/modify events recorded by the Visual Memory Tracer are
used to identify areas of time/memory space which are not used. Defined as areas which are
either not read from in the future or are written to in the future before being read later. This was
the critical information needed during our research because these unused areas indicate where

there is potential to use memory more efficiently, Figure 4.9.

It is important to note that this aggregated data will be meaningless if the pattern of memory
access being observed has details smaller than the resolution used. The ML models analysed
are made of tensor operations which access large buffers often taking millions of instructions
to execute. So as long as the resolution of the data in time and memory is high enough to
clearly represent the areas of time/memory space an operation occupies then the results will be

meaningful.

Figure 5.6,a in Section 5.4.2 shows a trace plot of inference performed with the MobileNet v1
model. Here the white (unused) and grey (used) areas of time/memory space clearly indicate
there is scope to used memory more efficiently. This research insight was the key which led
to the creation of the DMO technique which can be used to significantly reduce the memory

requirement of inference using ML.

4.4. Analysing Deployed Models 93

TFMin integration with the Visual Memory Tracer

The current version of the Visual Memory Tracer tool which I have made available on GitHub
supports signalling the start and end of events by the binary on test. TFMin can now automati-
cally add the VMT client library and code needed to trace any model using this tool, including
highlighting the scope of each operation in time and the location of pre-allocated buffers in
time/memory space. This feature allows the detailed observation of the memory use pattern of

deployed models as shown in Figure 4.9.

4.4.3 Analysing the Output of Generated Implementations

Alongside code generation, TFMin provides a set of tools to evaluate the performance of
generated model implementations. These tools use the capability to generate, build, execute, and
test ANSI C implementations encapsulated within the GraphEvaluator object. The capability
to feed test data through a deployed model using python calls can be used for a range of different
tests, analyses, and even model re-training. The simplest analysis builds and runs a model while
measuring the execution time of each layer. Full analyses run the deployed model feeding test
data through it and comparing the output to another version of the model, this can be either a

different TFMin implementation or from a different framework entirely such as Tensorflow.

Unit Testing

During the development of TFMin as with all good software it was necessary to build a suite
of tests to validate the code as it is built and maintained. These tests include unit-tests of the
OpKernels which generate ¢ implementations of individual layers. To validate a code generator
it is necessary to validate the generated code. This is performed by comparing the output of the

deployed model to the output of the same model executed in the Tensorflow framework.

In the case of floating point operations determining if these tests are passed or not is non-trivial
and upon closer inspection it is revealed that we are interested in two different types of failure.
The first type of failure is a simple bug in the implementation causing gross errors in the output.
The second type of failure is more subtle, changes in the numerical instability of layers causing

a model implementation to perform below the accuracy achieved during training.

94 Chapter 4. TFMin Tool

MobileNet — TFMin

TensorArena
\, 120 KBy 256 KBy 384 KBy 512 KBy 640 KBy 768 KBy

onv._1/layer_conv2d/Conv2D

60.0 M—

80.0 M—

100.0 M~~~ AN

120 n«{

140 M—

(eptimise/Eelus

160 M—

180 M—

200 m-l

220 M—

Instructions

240 M—

260 M

280 M~

300 M~

szomM—

340 M~

380 M| =

400 M—

420 M~

wouo N\

Figure 4.9: Full memory trace of a DMO optimised deployment of Mobile Net using TFMin.
High resolution images are produced by VMT to better capture the fine detail of the memory
trace. These do not work well in print, so zoomed areas are provided to reveal the details of the

tensor operations.

Unlike atomic scalar Floating Point Operation (FLOP)s, tensor operations are compound oper-
ations made up of many FLOPs and there are different mathematically valid orderings which
nonetheless produce different results due to floating point rounding errors. Implementations
using faster MAC instructions will be rounded differently to implementations using atomic
multiplication and addition instructions [151]. Dense layers require the summation of large
numbers of floating point values, the particular implementation of this summation can have

a significant effect on the numerical stability of its output. [68]. This second type of failure

4.4. Analysing Deployed Models 95

is characterised by the same model with the same weights and same input data producing

meaningfully different output when executed by two different implementations.

It is debatable if failures due to increased numerical stability should be unit-test failures or not,
given that machine learning is a branch of inexact computing. In the case of TFMin it was
decided that these problems are not checked during unit-testing, but would instead be addressed

using model re-training as described in Section 4.4.3.

Model Re-Training

It has been discussed that the low level implementation of floating point models can effect
the accuracy of inference. There are a wide range of potential causes of these differences.
The numerical instability of the algorithms used can alter the precision of layer outputs, any
change from the algorithm which was used during training can negatively effect inference
accuracy. Both increases or decreases in numerical stability can cause these problems, since it is
the difference in the algorithms used for training and inference which introduces the change.
Compilers and hardware can also introduce these problems even when layer code is identical.
Certain embedded Floating Point Unit (FPU)s do not adhere to the Institute of Electrical and
Electronics Engineers (IEEE) 754 standard, for example the LEON3 FPU does not support
sub-normal numbers instead rounding these values to zero. While compiler optimisations such
GNU Compiler Collection (GCC)s -Ofast enable un-safe floating point simplifications, allowing

the compiler to re-order FLOPS in ways which can alter numerical instability.

These causes all produce differences in the final output of a model, which will be larger the
more layers a model has due to accumulation of errors. Although it is theoretically possible to
produce an implementation with exactly the same numerical stability as another, often these

changes are caused by desirable optimisations.

It is proposed that a re-training step which uses the output of a deployed model could reverse
the reduction in model accuracy. Time has not permitted this technique to be invested during

this work, so it is recommended as a future area of study.

96 Chapter 4. TFMin Tool

Verifying the Correctness of Graph Translators

TFMin has been used to study two complex memory optimisation techniques, both Operation-
Splitting (Section 5.4.1) and DMO (Section 5.4.2) make low level changes to the way a model is
executed. In the case of both optimisers implementation bugs or flaws in the underlying theory

would result in inference implementations which do not correctly execute the model.

Verification that these algorithms were not mathematically altering the model, was performed
using TFMin to compare the results of the original and optimised models. In this case no
difference in numerical stability is expected since identical layer code and compilers were used,
so these models were expected to produce identical results. The DeploymentComparison
object performs this check using just three lines of code as shown in Listing 4.4. First the object
is instantiated with both input graphs, then each model is deployed and executed with identical
test data. The Results object produced includes the complete results of each deployment, but

in this case only the max _error() method is needed to check if they are equal.

Listing 4.4: Example verification which tests to graphs produce identical results.

test = DeploymentComparison(graph_a, graph_b, c_flags="-03")
results = test.execute(test_input_list)
if results.max_error() == 0:

print (’Graphs A and B produced identical results’)
else:

print (° Graphs A and B produced different results’)

Simple tests such as these are used in the unit-tests of all GraphT'ranslator objects as well as

during our research into the memory optimisation techniques described in Chapter 5.

4.5 Use Cases

The following three use cases describe how TEMin has facilitated our research during this PhD.

4.5. Use Cases 97

4.5.1 Layer Implementation Performance Analysis

During our early research deploying ML models onto the LEON3 processor, the first release of
TFMin was used to compare the performance of a range of models on the LEON3 processor and
a native Intel i7 processor. This version of TEMin produced C++ 11 code which depended on the
Eigen Linear Algebra library [57]. This work was presented at the 13" Adaptive Hardware and
Systems conference [22]. Five different ML terrain assessment models were analysed, Figure

4.10, in terms of their execution time on a 50 MHz LEON3 processor.

m@@@@E ®

3
3x3 3x3 3x3

32 64 292 292

A 6 16 2
m 3x3 g X 3 3x3 m e 3 8 313
X 6 x X 32
B 16 16 32 292 292 C 8 16 24 148 148

m@@ ® m@@E ®

3x3 3X3 3x3 3x3
3x3 3x3 X 3x3 X X

X 8 24 12 112 X 12 32 102 102
E 8

D ¢ ¢

Figure 4.10: The five terrain assessment models analysed in [22], convolution layers shown in

yellow and fully-connected layers shown in blue. Filter/weight sizes indicated under each layer.

TFMin facilitated this work by automating the deployment and performance analysis of models
from the same python code which was responsible for building and training the models. Allowing

more time to be spent tuning models and hyper-parameters.

4.5.2 Memory Optimisation

The analysis of novel memory optimisation techniques described in Chapter 5, required de-
ployment features not supported by other Edge ML frameworks. Operation-splitting required
that tensors support non-contiguous memory indexing while DMO required that the memory

pre-allocation step is aware of the exact implementations used to execute each layer of the model.

98 Chapter 4. TFMin Tool

Both techniques required that the locations of intermediate tensor buffers were pre-allocated

during deployment.

The Operation-splitting memory optimisation technique was implemented in TFMin by a custom
GraphTranslator object. This translator alters the tensor graph of the model being optimised,
Section 5.4.1. As well as requiring non-contiguous indexing the implementation and testing of

Operation-splitting made use of the self-validation features of the TFMin framework.

The Operation-splitting technique alters a graph in such a way that a second downstream
block level memory optimiser produces a better result than it would have done on the original
graph. Therefore to analyse the performance of Operation-splitting it needs to be performed in
combination with a range of conventional memory optimisers. Using TFMin it was possible to
evaluate its performance on 23 different models using four block level optimisers in a matter of

minutes.

Experiments demonstrating the effectiveness of DMO required less code than Operation-splitting
but affected more disparate parts of the TFMin code-base. DMO is essentially a block level
optimiser which is aware of the safe overlap between the input and output buffers of each opera-
tion. The size of this overlap depends on the operation type, parameters, and implementation
used to compute it. For this reason the overlap computation was added to selected Op-kernels
ensuring it was tightly coupled to the layer implementations themselves. Existing block level
optimisers available in TFMin were extended to use this safe overlap information to produce the

final DMO memory pre-allocations.

Unlike Operation-splitting DMO required a small extension to the architecture of TEMin, but it
was cleanly implemented in the framework. Built in analysis and verification tools were used
to confirm that the computed buffer overlaps were indeed safe. Introspection tools produced
memory use plots such as Figure 5.6 which visualised the denser and more efficient and dense

use of memory this technique achieves.

4.5.3 Computationl Requirements of Cost-Mapping Models

During the study of terrain assessment models proposed in Chapter 3 a crude and non-representative

performance metric was used. Now that a deployment tool is available which can deploy and

4.5. Use Cases 99

analyse these models on the LEON family of processors more precise and representative results
can be collected. This analysis was performed using a customised version of TFMin which is

able to cross compile and remotely execute models.

The deployment analysis tools described in Section 4.4 were extended by the development of a
custom Leon Runner object, which builds and executes models on emulated or actual LEON
processors. In our experiments models were built using the Gaisler LEON cross compiler and
executed using the GRMON debugger, which uploaded and executes binaries on a GR-CPCI-
GR740 Quad-Core LEON4FT [51] Development Board. Close integration allowed experiments
and analysis to be run directly from the python environment even though deployed models were

running on an external processor with a different architecture.

As well as the creation of a custom LeonRunner object a new Graphl'ranslator object was
required. As mentioned the LEON3 FPU does not support sub-normal values, it never produces
these values however if they are loaded to an FPU register an exception is thrown. To avoid this
error a SubN ormal Filter object was created which rounds sub-normal float weights to zero

or the smallest normal floating point value.

Our experimental use case demonstrates the utility of TFMin as a framework. Two new objects
were derived from existing TFMin objects which extended the functionality of TFMin to analyse
models on an external non-native target. It is worth noting that the byte order of the LEON3 is
different to our desktop Intel computer, the switch to big-endian storage is handles automatically
by the TFMin. This experimental set-up was used to produce the performance and accuracy
results presented in Section 4.5.3. This extension to TFMin tool is owned by Airbus and is

currently being developed into a commercial aerospace version of the tool.

Execution Time of Cost-Mapping Models

As expected inferences times on the LEON3 processor were significantly longer than those on a
desktop GPU platform. Execution times were in the region of one thousand times longer which
was not unexpected, however the relationship between model scale and execution time was also
different. The GPU execution times in Figure 4.11 have an approximately linear relationship
with model scale. There is also an offset of 2 milliseconds assumed to be an overhead of the

TF framework. Execution times of the bare-bones implementation on a LEON3 processor

100 Chapter 4. TFMin Tool

with FPU, and clocked at 200 MHz on the other hand are non-linear with no significant offset.
This is what would be expected of a more accurate execution time measurement. There is no
library start up overhead in the code generated by TFMin which is reflected in these timing
results. The execution time of models at different scales follows a similar curve to the number of
MAC operations in the model, Figure 4.12, which what would be expected of a single threaded
implementation.

‘ EncDec-A GPU Performance ‘ ‘EncDec-A‘ LEON Per‘formance‘

=
(o))

~
T
=
S
T

= =
o N
T T

Execution Time (Milli Seconds)
w
Execution Time (Seconds)
[o2]

0 20 40 60 80 100 0 20 20 60 80 100
Model Scale (%) Model Scale (%)

Figure 4.11: Inference execution time results of the EncDec-A model. Desktop GPU results
shown in milliseconds on the left and single core 200 MHz LEON3 results shown in seconds on

the right.

En;Dec-A MACs ‘EncDec-A‘ LEON Per‘formance‘

=
o

= = =
o N S
T T T

Execution Time (Seconds)
o]

0 20 20 60 80 100 0 20 20 60 80 100
Model Scale (%) Model Scale (%)

Figure 4.12: MAC operation count of the EncDec-A model compared to the execution time of

this model on a LEON3.

Using the TFMin tool inference execution time results were collected for all scales of the
cost-mapping models proposed in Chapter 3. These results were quicker to generate because the

bare-bones LEON3 is completely deterministic, therefore models only needed to be executed

4.5. Use Cases 101

once. Unlike the desktop environment where the median of a large number of executions were
taken to remove non-deterministic delays caused by the OS and other processes.

All Model GPU Performances All Model LEON Performances

100.0 M

10.0My M

1.0M

o—e Cnn-A
e—e Cnn-B
o—e Cnn-C
e—e Cnn-D
e—e Cnn-E
EncDec-A
»—x EncDec-B
»—x EncDec-C
»—x EncDec-D
»— EncDec-E
»—x EncDec-F
=& EncDec-X

100.0 K}

10.0 K¢

1.0 KL

100.0¢

100.0 K 100l

Model Speed (Cells>S™")
Model Speed (Cells>S™")

1.0¢

M 01

.0 K[) 20 40 60 80 100 0'OO 20 40 60 80 100

Model Scale (%) Model Scale (%)

10.0K

Figure 4.13: Inference execution time results of all cost-mapping models. Desktop GPU results

shown on the left and single core 200 MHz LEON3 results shown on the right.

Figure 4.13 compares the performance, measured in Cell.S~!, of all twelve proposed cost-
mapping models. The relative speeds of models were estimated to a certain degree by the GPU
timing results, but that was as far as their usefulness extended. When compared to the real
performance results on the LEON3 processor we see that the scale of the model actually has
far more impact than previously measured. We hypothesise that the cause of this difference is
the nature of the performance bottle neck of these two different computing systems. A single
core LEON3 implementation will be performance limited by either the FPU throughput or the
speed of accessing memory, both of which are linearly related to the model MAC count. The
Nvidia GTX-1070 GPU has 1920 Compute Unified Device Architecture (CUDA) cores so its
performance will not be bottle necked by the number of MAC operations but by the overheads
of setting up each tensor operation. Limitations of using a GPU implementation to time these

models were expected and motivated the development of the TEMin tool.

Now that the true impact of model scaling on execution is known, the benefit of reducing
the size of a cost-mapping model can be seen to have an effect of a comparable magnitude
to increasing the number of cells produced in a single pass. The performance improvement
between the Encoder-Decoder models F and X is approximately one order of magnitude, while
the performance improvement between a full scale model and a 5% scale model is approximately
three orders of magnitude across all models. This is an important finding because it implies that

if the estimation errors of smaller models can be reduced below the requirement threshold then

102 Chapter 4. TFMin Tool

a significant improvement in execution speed will result.

All Model Accuracies on Mars Yard All Model LEON Performances

0.20 1.0M
\ e—e Cnn-A
« \\ 100.0 K} e—e Cnn-B
\ e—e Cnn-C
0.15}-8 T 10.0kK| e~ Cnn-D
© Ky @ e—e Cnn-E
£ G} = 1.0 Kk EncDec-A
% e /\ é »—x EncDec-B
™o o a o o - 100.0L %—x EncDec-C
= 0.10 N AW :/\r.)\l;* oy g p g 9 00.0 *—x EncDec-D
s LA VAN SOV Sy s S NS W LS & 10.0L %= EncDec-E
] e A] o B | g : % EncDec-F
<] B—8 EncDec-X
0.05 s 1.0 " ReqA
0.1} - RegB
0'0%.0 0.2 0.4 0.6 0.8 1.0 0'00 20 40 60 80 100
Model Scale (%) Model Scale (%)

Figure 4.14: Accuracies of all models with the Encoder-Decoder model X highlighted shown in

comparison to the performance of all models on a single core 200 MHz LEON3.

For example if there was a hypothetical error requirement of 8% at 3 sigma instead of our
actual requirement of 10% at 3 sigma. Applying these to the highest performing model Encoder-
Decoder X, Figure 4.14, results in a model scale of 0.65 satisfying our actual requirement,
and a scale of 0.35 satisfying the hypothetical requirement. The performance of EncDec-X at
these scales is 1783 and 7984 cells per second respectively, the latter having 348% increase
over the former. More critically it is the difference between meeting the 2405 cells per second

requirement or not.

Memory Requirements of Cost-Mapping Models

Alongside the execution time measurements discussed in Section 4.5.3 TFMin also produced
precise RAM requirements for each model. TFMin stores all intermediate tensor buffers in a
single pre-allocated memory space, therefore the memory requirement for a model is constant
and known before it is compiled. Table 4.1 shows this RAM requirement alongside the weights

storage requirement for each of the models proposed in Chapter 3.

It can be seen that the larger more efficient models require significantly more memory for both
weights storage and to execute inference. The challenge presented by the weights of ML models
has been a focus for the research community for some time. Model quantisation techniques are
well established and benefit execution time, RAM requirement as well as the storage required

for weights. Model pruning techniques identify and remove weights which do not contribute

4.6. Summary 103

meaningfully to output estimates, such as AutoML for Model Compression (AMC) proposed
by Han et. al. [65]. Low-rank approximation is another family of techniques which attempt to
compress a models weights by exploiting redundancy across dimensions, such as Jaderberg et.al.
[79]. Techniques such as these as well as methods to reduce the amount of memory required by
intermediate buffers will be especially beneficial to the larger and more efficient cost-mapping

models, proposed.

Table 4.1: Memory requirements of proposed cost-mapping models.

Model Weights Storage | RAM Required
Cnn-A 1120 KB 294 KB
Cnn-B 6350 KB 294 KB
Cnn-C 1631 KB 204 KB
Cnn-D 7910 KB 74 KB
Cnn-E 263 KB 93 KB
EncDec-A 9938 KB 428 KB
EncDec-B 13 MB 587 KB
EncDec-C 17 MB 979 KB
EncDec-D 3150 KB 428 KB
EncDec-E 5715 KB 587 KB
EncDec-F 9292 KB 979 KB
EncDec-X 24 MB 1462 KB

4.6 Summary

A new tool has been demonstrated which enables researchers and developers to easily manipulate
and deploy ML models on a wide range of targets. Ranging from industry standard radiation
hardened processors used on deep-space missions to low cost micro-controllers used in terrestrial

IoT applications.

Initially being developed to automatically deploy ML models to the LEON3 processor when no
other options were available, it now stands as one of three powerful open-source frameworks
made available by Google [116], ARM [5], and Surrey Space Centre (SSC) & Airbus [23].
TFMin has been used to deploy ML models to the LEON3 & LEON4 radiation hardened

104 Chapter 4. TFMin Tool

processors, ARM Cortex M series micro-controllers as well as desktop platforms. The ANSI C
code generated is the language most widely supported by embedded CPU & DSP targets, since
TFMin code requires no support libraries it generates the most portable implementations of all

Edge ML frameworks.

Alongside this fundamental capability to deploy ML models TFMin provides an open extensible
framework designed to facilitate experimentation into the science of ML inference on low
power embedded devices. Powerful introspection functions are provided along with validation
and verification tools supporting the development of graph mutation algorithms, memory
pre-allocation algorithms, and other as yet unknown techniques. It has supported published
research into the use of ML for terrain assessment on-board planetary rovers and novel memory

optimisation techniques which could be applied to inference in any application domain.

This tool has been instrumental in facilitating my our research and is currently being used by
Airbus to investigate deep-learning on-board future spacecraft. It is hoped that the open source
release of this tool [23] will broaden its user base and impact within the ML research community.
Alongside the open-source version of TEMin Airbus have ownership of the LEON3 & LEON4
features built during my research and are looking to commercially develop this product to

support on-board ML development in the space sector.

Opportunities and Progress

New Research Opportunities Identified in this Chapter

Development and verification of ML layer implementations optimised for the LEON

family of radiation hardned CPUs.

Investigate opportunities to reduce memory footprint of deployed models.

Investigation into the effects of model binary size bloat on execution time.

Investigate the effects of operation numerical stability on model accuracy.

4.6. Summary

105

Table 4.2: Opportunities at the end of the cost mapping investigation.

Challenge

Solution

Is it possible to generate planetary rover cost-

maps using ML?

e Encoder decoder models trained using super-

vised learning have been shown to be effective.

Are ML cost-mapping models feasible to use

on radiation hardened LEON3 computers?

e Execution time has been quantified on repre-
sentative hardware, and found to meet the 20

second requirement from Airbus.

e The RAM requirements of higher perform-
ing models are problematic for on-board soft-

ware.

Does a deployment process exist to implement
this model within the flight software develop-

ment process?

e The TFMin tool has been developed and
released which generates prototype ANSI C
code suitable for the flight software develop-

ment process.

106 Chapter 4. TFMin Tool

Chapter 5

Memory Optimisation

5.1 Introduction

Limited processing power on smaller terrestrial CPUs is a hindrance when running ML models,
but if longer execution time is acceptable then inference can still be performed. The amount of
RAM however places a hard limit on the size of models which can be executed. If intermediate
tensor buffers do not fit in the memory available on a target, there is no straightforward
method to be able to execute the model. Meanwhile the memory constraints on radiation
hardened computers used in space are also tight, on-board functionality must be maximised

while maintaining strict resource margins.

Taking a small optimised model as an example (MobileNet v1.0 0.25 128 quantised to 8 bits [72])
when inference is being performed with this model the second 2D convolution operation requires
32 KB input and 64 KB output buffers. This operation defines the peak RAM requirement for
this model at 96 KB as can be seen in the intermediate buffer allocation pattern shown in Figure
5.1. Figures of this type will be used several times in this chapter, they visualise intermediate
tensor buffers in both memory location and scope, where location within memory is shown on
the x-axis and scope (first use to final use) is shown on the y-axis. Both TFMin [22] and TFL
[116] use a monolithic fixed size memory region known as the tensor arena to hold intermediate
buffers. At the start of this work both TFMin and TFLu used a heap allocation strategy to place
tensor buffers in memory, TFMin performed this at compile time whereas TFL . performed this

at runtime.

107

108 Chapter 5. Memory Optimisation

Existing and proposed memory optimisation strategies for edge ML implementations are dis-
cussed in section 5.3 & 5.4, with particular reference to their novelty or similarity to techniques
from other disciplines. Model compression techniques are described and their effectiveness
at reducing RAM use discussed. It is shown that these techniques are complimentary, and
indeed must be used together to achieve state-of-the-art reductions in RAM use. Existing work
discussing the effect of different graph-sequencing algorithms on memory use is reviewed,
and the potential memory savings analysed. In memory tensor representation approaches are
discussed and their effect on the implementation of layout operations, this architectural decision

is shown to significantly affect peak memory requirement.

Two novel techniques are presented that can reduce the amount of RAM required to perform
inference, operation splitting, and DMO. Operation splitting is a graph level algorithm which
breaks chains of large tensor operations into multiple parallel chains. These parallel chains can
be executed in series using less RAM at the cost of a small increase in execution time. DMO
works by determining a safe overlap between the input and output buffers of an operation, and
uses this information to pre-allocate intermediate buffers more densely than current methods.

Unlike operation splitting DMO has no execution time penalty.

The following sections discuss Operation Splitting and DMO in detail, including their theoretical
basis and practical application. Experiments are conducted using a set of well known DL
models comparing the memory requirements of the optimised models to existing state of the art
implementations. It is shown that Operation Splitting can be used to reduce the peak memory
requirement of MobileNet v2 by 73% while DMO can be used to reduce the peak memory
requrement of MobileNet vl by 33%. These two new memory optimisation techniques are
applied to the twelve cost-mapping models proposed in Chapter 3, the memory savings and their

impact is discussed.

The work described in this chapter has been released as a pre-print on the arXiv service:

e Blacker, P, Bridges, C.P. and Hadfield, S., 2020. Diagonal Memory Optimisation for

Machine Learning on Micro-controllers. arXiv preprint arXiv:2010.01668.

5.2. Problem Definition 109

MobileNet v1 Intermediate Buffers

Memory Offset (KB)
0 16 32 48 64 80 96
1 1 1

1 1 1 L

«— Execution Time

Figure 5.1: Intermediate tensor buffer locations for MobileNet v1 0.25 128, 8 bit quantised.
Location within the tensor arena is shown on the x-axis while the scope of each buffer from first

to last use is shown on the y-axis.

5.2 Problem Definition

The majority of research into the optimisation of ML inference has been focussed on speeding
up execution and reducing model size, little work has been done solely to reduce the amount of
RAM required for inference. The reason here is simple in almost all inference applications to
date RAM requirements have not been a bottle-neck therefore using less memory for inference
is of no benefit. However when performing inference using radiation hardened CPUs used on
deep space missions, it is critical to optimise both time and memory use. Research in this area
is also of benefit to the wider ML community which has recently started deploying models
onto micro-controller scale targets. The common challenges faced when performing inference
on terrestrial micro-controllers and radiation hardened processed increases the impact of this

research which is motivated primarily by space applications.

110 Chapter 5. Memory Optimisation

Although model compression techniques are not primarily motivated by memory optimisation
in many cases they achieve signiticant reductions in RAM use as a side effect. Their primary
purposes are to reduce the amount of data needed to store or transmit models and to speed up
inference. A common side-effect however is a reduction in the RAM required for inference. The
clearest example of this is quantisation [164], which reduces the precision with which weights

are stored and computations performed.

Training is most commonly performed using 32 bit floating point data, allowing for precise
calculation of gradients for back propagation and allowing a wide range of input and training
data to be used. Once a model has been trained the precision of the weights can be reduced
with a small and acceptable reduction in accuracy. Weights as well as intermediate values are
commonly reduced to 8 bits using predefined fixed point representation. This has the effect
of dividing the model size by four as well as reducing the RAM requirement by four. Binary
networks [75] take this concept to the extreme with a single bit representing each weight and

intermediate value, for a further reduction in model size and memory use.

If the quantity of weights and intermediate values is constant reducing the size of the data type
used to represent them has a predictable and linear effect on the amount of RAM required.
The effect of weight pruning, compression, and low-rank approximation is more complex to
define. Weight pruning attempts to ignore weights which do not contribute meaningfully to the
output of the model, allowing a more compressed representation of the model. The effect of this
technique on the RAM required for inference depends on the implementation used. If weights
are removed in such a way that the tensor sizes used for fully-connected or convolution layers
are reduced then a reduction in RAM will be realised. However the original tensor sizes are used
with sparse representation and operations then any reduction in RAM requirement although

possible, becomes difficult to predict.

Weight compression seeks to reduce the memory required to store a model using both lossy
and lossless data compression methods [140]. This approach can actually increase RAM use if
additional storage is needed to store weights after de-compression. Since the size and precision

of the tensor calculation is not altered no direct reduction in RAM use is realised.

Low-rank approximation extends the concept of weight compression into the layer operation

itself, attempting to simply a convolution calculation while also reducing the storage needed for

5.2. Problem Definition 111

its weights [148]. This technique does not reduce the storage needed for intermediate values,

although if weights are stored in RAM a reduction could be possible.

These model compression techniques share a common feature, they all alter the computation
performed by the model in some way. Quantisation affects the precision and numerical stability
of a model, while pruning, compression and low-rank approximation all subtly alter model
weights. It is important observe that this is different to the memory optimisation algorithms
presented in this chapter which do not alter the computation, down to the level numerical stability.
It is therefore possible to use them in a similar manner to safe compiler optimisations, applying
them automatically to models during deployment. Model compression techniques on the other
hand require careful hand tuning and verification to ensure model accuracy does not degrade
unacceptably. The two classes of technique are fully complimentary, the model compression
techniques discussed can be applied side-by-side with either DMO or Operation-Splitting, to

minimise the RAM required to perform inference.

5.2.1 Effects on Power and Latency

Research described in this chapter focusses on the amount of RAM which is required to perform
inference using ML models. However the techniques presented have potential side effects on
the energy use and latency of an implementation as well. A short discussion of these effects is
presented here, although a more detailed study is warranted. This is especially true for EdgeML

applications which are highly energy sensitive.

The radiation hardened computers used on deep space missions are not as energy optimised as
the latest terrestrial EdgeML micro-controllers. In fact their memory has an additional overhead,
periodic memory cleaning to fix radiation induced single bit errors using error correcting [25].
Energy use of memory is usually split into three contributors, background power, active power,
and refresh power [32], cleaning of error correcting memory is an additional drain on radiation

hardened computers.

Of the two memory optimisation techniques presented DMO has no impact on the number of
load and store instructions issued, while operation-splitting causes a increase of less than 1
percent on all models tested. On radiation hardened computers they will have a minimal or no

effect on the energy consumed during an inference operation. There is one possible exception to

112 Chapter 5. Memory Optimisation

this conclusion, the case when memory optimisation allows a smaller lower power RAM chip
to use used. This is unlikely in all but the most rigorously optimised applications but when it

occurs the improvement would be significant.

The effect of the DMO and Operation-Splitting techniques on energy use of terrestrial EdgeML
micro-controllers is more complex to determine, given the more elaborate energy saving methods
used in these devices. Restricting SDRAM refresh operations to memory addresses which are
in use as opposed to whole banks would be a possibility, the complexity would be non-trivial
although savings could be made. There remains valuable work to be done evaluating the memory

efficiency of EdgeML implementations and identifying potential improvements.

5.3 Existing Approach to Reducing Peak Memory Use

Machine learning models are in essence graph functions comprised of tensor operations. On
single core CPU targets these operations are executed sequentially to perform inference and
sufficient RAM must be available to store the intermediate values needed during this process.
Figure 5.1 shows the intermediate buffer locations and scopes for a MobileNet, allocated using a
heap approach. In this case the peak memory requirement is defined by the third and forth buffers
which are needed concurrently taking a total of 96 KB. Looking at these buffer allocations it
does not immediately seem possible to reduce this memory requirement further, however upon

deeper inspection methods to achieve this can be found.

5.3.1 Tensor Buffer Reuse

Tensor layout operations which re-arrange elements such as concatenate and pack are common
in ML models and in some cases, Squeezenet [78], define a model’s peak memory requirement.
These operations do not compute new values, instead they re-project existing values into new
shapes. If existing in-memory representations can be re-used then elements do not need to be
copied or new buffers allocated. However this technique is only possible if sparse in-memory
representation are supported. TFL only supports dense tensor representations meaning, for
example, a split operation on any dimension above dimension zero will require new intermediate

tensors to be allocated and elements copied into the new buffers, Section 4.3.5. TFMin on the

5.3. Existing Approach to Reducing Peak Memory Use 113

o

"HP

6428 KB

0 conv_2d
1 max_pool_2d

2 conv_2d

3 conv_2d

4 conv_2d

5 concatenation
6 conv_2d

7 conv_2d

8 conv_2d

9 concatenation
10 conv_2d

11 conv_2d

12 conv_2d

13 concatenation
14 max_pool_2d
15 conv_2d

l l 16 conv_2d

[2D Convolution (1x1)] (2D Convolution (3x3)] 17 conv_2d

_—

Input Tensor
[1,55,55,128]
1512 KB

18 concatenation
19 conv_2d
20 conv_2d
[1,55,55,128] [1,55,55,128] 21 conv_2d

1512 KB 1512 KB 22 concatenation
23 conv_2d

24 conv_2d
25 conv_2d

26 concatenation
27 conv_2d

28 conv_2d

29 conv_2d

30 concatenation
31 max_pool_2d

32 conv_2d

33 conv_2d

34 conv_2d

35 concatenation
36 conv_2d

37 average_pool_2d
38 reshape

39 softmax

Output Tensor
[1,55,55,256]
3025 KB

(a) (b)

Figure 5.2: a, Sub-graph showing the 3rd fire module of the Squeezenet model. b, Intermediate
buffer allocations of this model. It can be seen that the buffers of 3rd fire module (highlighted in

blue) define the 6428 KB peak memory requirement of this model.

other hand supports sparse tensor representations so the output tensors of a split operation can
be mapped onto the input buffer. If memory buffers are pre-allocated offline when a model
is deployed this technique can also be used for concatenation operations. Instead of merging
a set of smaller sub-tensors into a final large super-tensor, the operations which produce the
sub-tensors write elements directly into the final merged tensor buffer. Taking advantage of
sparse tensor representation in this way not only means that memory can be saved but also

unnecessary data copying is avoided reducing execution time.

One of the reasons why TFL does not support sparse representations of tensors is the negative
effect this can have on performance in some cases. If the innermost dimension is sparse (has a
step greater than one element) then cache performance is negatively impacted and the use of
vectorised load and store operations is no longer possible. However if higher dimensions are
sparse there are no negative effects on performance since the offsets between slices is already
greater than one element. These performance penalties coupled with the additional complexity
of the tensor operations themselves meant that the architects of TFL chose dense representations.

It is the authors view that in the context of aggressive memory optimisation then support for

114 Chapter 5. Memory Optimisation

0KB 5838 KB

0 conv_2d
1 max_pool_2d
2 conv_2d

3 conv_2d
4 conv_2d
5 conv_2d

Input Tensor
[1,55,55,128]
1512 KB

6 conv_2d
7 conv_2d
8 conv_2d
9 conv_2d ‘

10 conv_2d

11 max_pool_2d
12 conv_2d

13 conv_2d

14 conv_2d

15 conv_2d
16 conv_2d ‘

[1,55,55,32]
378 KB

l l 17 conv_2d L

18 conv_2d

[2D Convolution (1x1)) [2D Convolution (3x3)] AT
20 conv_2d
‘ | 21 conv_2d

22 conv_2d
Mapped Tensors 23 conv_2d Ll
Output Tensor [1,55,55,128] 24 max_pool_2d

[1, 55, 55,256] 1. 55, 55, 128 25 conv_2d
3025 KB th 3025 KB ! 26 conv_2d

27 conv_2d
28 conv_2d
29 average_pool_2d
30 reshape
31 softmax

Figure 5.3: a, 3rd fire module of Squeezenet where the 2D convolution operations write directly
into the super-tensor. b, Intermediate buffer allocations of this model. Buffers of the 3rd fire
module are highlighted in blue. It can be seen that the optimised fire module no longer defines
peak memory requirement of the model, it is now set by the the first max-pooling operation at

5838 KB.

sparse representations becomes preferable due to the significant saving it can produce in certain

networks.

Using Squeezenet [78] as an example it can be seen in Figure 5.2.b that the 3rd fire module
defines the peak memory requirement for inference using this model. The output tensors of the
2nd two convolution operations within this fire module can be mapped onto the output tensor of
the concatenate, removing the need for the two of the intermediate tensors and the subsequent
concatenate operation. It can be seen in Figure 5.3 that this modification to the fire modules
reduces the peak memory requirement from 6428 KB to 5838 KB. The heap allocation strategy
is producing a non-optimal layout of the fire modules buffers, however in this case since they are

smaller than the first max pooling operation this does not affect the peak memory requirement.

The ability to remove layout operations via tensor mapping is dependant upon the architectural
decision to support sparse in-memory tensors, taken when the inference system is specified.
The decision to use this technique or not will always be a trade-off between the increased code

complexity and runtime of models verses the value of any memory saving it produces.

5.4. Novel Techniques for Memory Optimisation 115

Effects on Execution Time

As has been discussed, mapping tensors onto sparse in-memory representations can in some cases
prevent optimised layer implementations being used. We argue that although it is theoretically
possible, the cases are very specific and unlikely to occur in real-world models. To maximise
performance TFL and TFMin both use a dimension ordering of batch, height, width, channels,
to ensure that the inner loops of the majority of operations can work on adjacent values in
memory. If sparse tensors are used but elements along the innermost dimension are kept in

adjacent memory addresses then performance will not be affected.

In the Squeezenet example used, intermediate tensors are concatenated along the innermost
dimension, so values written by the inner loop of the 2D convolution operation will occupy
adjacent memory addresses even when written directly into the super-tensor. In this case there is
no performance penalty for using sparse in-memory representation. The authors have performed
the same check on all six of the network topologies evaluated in Section 5.5 and found that none
of their layout operations could result in sparse inner dimensions if this type of optimisation is

used.

5.4 Novel Techniques for Memory Optimisation

5.4.1 Operation Splitting

Chains of filter based operations (convolution, pooling, etc.) which require large intermediate
buffers can be split into multiple narrower chains and executed sequentially. Modifying tensor
graphs in this way means that fewer intermediate values need to be stored concurrently. Which
can reduce the peak memory requirement of inference at the cost of some elements being
computed more than once. This memory optimisation technique requires sparse in-memory
tensor representation as described in Section 4.3.5, if only dense tensors are supported then the

initial split and final merge operations will use more memory than is saved.

Demonstrating this technique using MobileNet v2 1.0 224, it can be seen that the second and
third operations (a 2D convolution & depthwise convolution) between them process a 392 KB

tensor into a 588 KB tensor. However the intermediate tensor between these two operations

116

Chapter 5. Memory Optimisation

RN\ Overlapping Input Tensor Slices
Input Tensor H gg Hg g%
[1,112,112,8] 1Y23Y112’8
Input Tensor 392 KB { 1: 23: 112: 8 %
[1,112,112, 8] | [1,24,112,8]
392 KB ‘ ‘

2D Convolution

[1,23,112,48]

23 KB
Depthwise
Convolution

[1,23,112,48]
21 KB

2D Convolution

2D Convolution

2D Convolution

[1,23,112,48]

Intermediate Tensor _ 21KB
[1,112,112,48] gep‘hW'_Se
onvolution

2.3 MB

2D Convolution

[1,23,112,48]
23 KB

Depthwise
Convolution

[1,24,112,48]

23 KB
Depthwise
Convolution

Depthwise
Convolution

Depthwise Convolution

Output Tensor
" 22555548 | l l Mapped Output Tensors
Output Tensor [1,11,56,48]
[1,56,56,48] [1,11,56,48]
588 KB [1, 11,56, 48]
[1,11,56,48]
[1,12,56,48]

Figure 5.4: a, Subset of MobileNet showing the 2nd and 3rd operations before optimisation. b,
Equivalent subset of the optimised graph, which computes the output tensor using five parallel
pairs of operations. Note that there is a necessary overlap between the three intermediate tensors
and input tensor slices because of the overlapping receptive fields of the depth-wise convolution

operation.

takes 2.3 MB increasing the peak memory requirement of this model to 3.3 MB, Figure 5.5. Due
to the small kernel sizes used in this model the receptive field of each element in the final 588
KB tensor is a 3 X 3 X depth patch of the 2.3 MB intermediate tensor. If the two operations are
split into five pairs of operations, each pair computing approximately a fifth of the final output
tensor then five consecutive intermediate tensors are needed of at most 819 KB Figure 5.4. This
reduces the peak memory requirement of this part of the model to 1.6 MB, however due to
the spatial overlap of the smaller intermediate tensors 10752 elements need to be computed
twice. The allocation buffer locations before and after this alteration to the graph are shown in
Figure 5.5. The longer scope of input and output tensors means that this approach can not be
combined with conventional DMO described in Section 5.4.2 however the first input and final

output tensors of the split operations can be potentially be overlapped.

5.4. Novel Techniques for Memory Optimisation 117

0 %(B 333? KB 0 }(B 156% KB

&_ 1 '
=
—

<« Operation Executed
Operation Executed

:

(a) (b)

Figure 5.5: a, Intermediate buffer allocations of a full sized MobileNet V2 implementation. b,
Intermediate buffer allocations of the same model in which the second and third operations have
been split into five parallel branches. Buffers that have been effected by this optimisation are

highlighted in blue.

The amount of memory saved and the number of element re-computations required when using
this technique is formalised in Equations (5.1), (5.3) & (5.4). It can be seen that memory is
saving is only possible if the intermediate tensor is larger than the input and output tensors, and
the memory saving is greater for larger intermediate tensors. The test defined in boolean Equation
(5.5) can be used to determine is operation splitting is possible for any pair of operations and if

it yields any saving in memory.

Saving = sizegiype(ins + outs + ints, — ints, — max(ing, outs)) 5.1

recs = (filters,e — 1) dilation_ratio + 1 (5.2)

_ (TI(dimsy,) dim, — 1 dim,
Max[nts(N)—<m maz | 2 N ,2 ~ Rpoq | +recs—2 (5.3)

118 Chapter 5. Memory Optimisation

Recomputations = (N — 1) M (recs — stride) (5.4)
splitdim,,

SplitPossible = (opy filter based) A (ops filter based) A (IntSize(2) < ints,) (5.5)

Where sizeggype is the size of a tensor element in bytes, in is the size of the input tensor in bytes,
out is the size of the output tensor in bytes, ints, is the size of the original intermediate tensor
in bytes, dimsy, is the set of dimension sizes of the original intermediate tensor, splitdim,, is
the size of the split-dimension of the original intermediate tensor, recs is the size of the receptive

field of the second operation in the split dimension, and N is the number of splits.

Using Equations (5.3) & (5.4) it is possible to build and algorithm that can analyse tensor graphs
identifying potential memory savings and their cost in repeated element computations. Reducing
peak memory requirements using operation splitting is a trade off between memory saving and
execution time, therefore there is no single result of this optimisation technique. Rather a set of
optimisation levels is determined including the memory saved and number of tensor elements
which need to be recomputed. Developers can then choose which of these optimisation levels
is most appropriate to their application. The algorithm described below produces this set of

optimisation levels for any tensor graph.

Algorithm to Analyse Op-splitting Optimisation

This algorithm starts with the original input graph then iteratively attempts attempts to optimise
it, initially the set of optimisation levels is the singleton set containing the non-optimised model.
Each iteration which finds a more optimal model, adds an element to the set of optimisation

levels and the algorithm continues iterating.

In order to determine if it is possible to optimise the model further the set of operations which
define the peak memory requirement is found. In the initial MobileNet graph shown in Figure
5.5.a showing buffer allocations it can be seen that this operation is the 2nd 2D convolution.
Whereas for the optimised graph who’s buffer allocations are shown in Figure 5.5.b this operation

is the 1st 2D convolution. It should be noted that in both these cases a single operation defines

5.4. Novel Techniques for Memory Optimisation

119

Algorithm 1: Pseudo code of operation splitting analysis

lastPeakMem < pre_allocate_graph_get_peak_mem/(initial Graph)
recomputations < 0
setO fOptLevels «+ [(initial Graph, last PeakMem, 0)]
optimisedGraph < initial Graph
repeat
setO f PeakMemOps < find_peak_mem_ops(optimisedGraph)
for peakOp in setO fPeakMemOps do
if Operation already split then
increase number of splits by one
recomputations+ = increased recomputations from split
else
followingOp < get_following_op(peakOp)
if Split Possible(peakOp, followingOp) [Eq (5.5)] then
Split operation pair into two branches.
recomputations+ = additional recomputations [Eq (5.4)]
end if
end if

end for

newPeakMem <+ pre_allocate_graph_get_peak_mem(optimisedGraph)

optimsed < (newPeakMem < lastPeakMem)
lastPeakMem < newPeakMem

if optimised then

setO fOptLevels.add((optimisedGraph, new PeakMem, recomputations))

end if
until last PeakMem = newPeakMem

120 Chapter 5. Memory Optimisation

the peak memory requirement, although it is possible for multiple operations to define equal

peak memory requirements in different parts of the graph.

Each operation which defines the peak memory requirement is checked, to find if splitting it
and the following operation would reduce memory use. The reason for including the following
operation is that the memory saving is caused by reducing the size of the intermediate tensor
which passes data between these two operations, so both operations need to be split. There
are two possibilities here, either these operations have already been split during a previous
optimisation step, or they are original operations. In the first case where they have already been
split then the algorithm increases the number of splits to further reduce the size of intermediate
tensors. In the second case where the operations have not yet been split then the test defined in
Equation (5.5) is used to determine if operation splitting is possible. If it is found to be possible

then these operations are split into two parallel branches.

If it has been found that all operations in the set of operations defining the peak memory
requirement can be split and that splitting them reduces the peak memory requirement then the
savings and cost of this level is added to the set of optimisation levels and this optimisation

process repeats again. The pseudo code of this algorithm is formalised in Algorithm 1.

Results of optimising Mobilenet v2 are shown in table 5.1, listing four possible optimisation
levels. The first level produces a RAM reduction of 1.2 MB at a cost of recomputing 5376
elements of the 2nd convolution operation, while the most optimal level produces a reduction of
1.7 MB at the cost of recomputing 21504 elements. There are diminishing returns as the number
of splits increases, due to the inverse relationship between the size of split tensors and the number
of splits. To put these element re-computations into the context, the original network requires
the computation of 2.94 million elements, so these optimisation levels represent increases of

0.18% and 0.73% respectively.

Operation-splitting can significantly reduce the peak memory required for inference of certain
ML models, at the cost of a small increase in execution time. A formal analysis has been
presented with an algorithm to determine potential memory savings and their costs. Allowing
memory to be traded off against execution time, finding the optimal solution for a given

application. The results of this technique on the full set of test models is shown in Section 5.5.

5.4. Novel Techniques for Memory Optimisation 121

Table 5.1: Possible operation splitting optimisations found using algorithm.

Optimisation Level Peak Memory | Memory Saved | Elements Recomputed
original graph 3332 KB 0 KB 0
[2:conv, 3:dw_conv split 2] 2177 KB 1155 KB 5376
[2:conv, 3:dw_conv split 3] 1799 KB 1533 KB 10752
[2:conv, 3:dw_conv split 4] 1589 KB 1743 KB 17498
[2:conv, 3:dw_conv split 5] 1568 KB 1764 KB 21504

5.4.2 Diagonal Memory Optimisation

The opportunity to reduce memory use that is leveraged by DMO was discovered while analysing
the detailed memory use patterns of implemented ML models. A customised version of the
Valgrind debugging tool [111] was developed which can observe memory read and write
operations within the tensor arena while a model is being executed. This analysis determines
areas of memory which are holding values which are later read and used for calculations, and
redundant areas of memory where the value is never read. Figure 5.6.a shows a memory trace
produced by this tool of the same MobileNet implementation described in Figure 5.1. Exposing
the internal workings of each operation in this way an opportunity can be clearly seen to reduce

the peak memory requirement by overlapping the input and output buffers of each operation.

DMO can significantly reduce the peak memory demands of machine learning models but is only
possible if the underlying layer implementations are known and methods exist to determine the
safe overlap offset of a specific operation instance. This requires an architectural change from
pre-allocation schemes currently used by TFLy and uTensor from ARM [5], where intermediate
buffers are allocated without any knowledge of the layer implementations which will eventually
use them. The task of computing the safe buffer overlap (O;) for any operation implementation
is investigated in Section 5.4.3 and three different methods presented. Diagonal memory
optimisation with performance optimised layer implementations is the discussed with reference

to vectorisation and multi-threading.

Calculating the safe input/output buffer overlap for tensor operations is not a task that has been

122 Chapter 5. Memory Optimisation

MobileNet vl Memory Access Patterns, Original & Optimised

Memory Offset (KB) Memory Offset (KB)
0 16 32 48 64 80 96 0 16 32 48
1 1 1 1 1 1 1 1 1 1
Q [}
£ £
= =
o — =
.8 B 8
= =]
3 3
4 %
SN m
l \\ l
\
-
\\
|
\\
_—— N
A R \\ \;\\\\\
Aoy \]
A ‘\
(a) (b)

Figure 5.6: Intermediate buffer memory access pattern for the example model (MobileNet v1
0.25 128 quantised). In use areas shown in grey, load, store, and update events in red, blue, and
green respectively. Plot a shows the memory access pattern when the original heap allocation
strategy is used to allocate intermediate buffers, large areas of unused memory can be see which
could be used to reduce the size of the tensor arena. Plot b shows the memory access pattern of
the same model with intermediate buffers allocated using diagonal memory optimisation, in-use

memory is packed more densely allowing the size of the tensor area to be reduced.

described in literature before. Yet it is an essential capability of tools that can automatically
leverage this optimisation strategy. This work investigates three approaches to the calculation of
O, and presents a set of analytical solutions for common tensor operations. These solutions are
evaluated by generating buffer pre-allocation patterns for eleven notable ML models, memory
reductions of up-to 49% were achieved. Figure 5.6 illustrates how DMO reduces the amount of

memory MobileNet v1 requires by packing in-use areas of memory together more densely than

5.4. Novel Techniques for Memory Optimisation 123

is possible using block level optimisers.

Models implemented using optimised buffer allocation patterns generated by DMO have been
shown to be mathematically correct using the verification functions of TFMin described in
Section 4.4.3. Original and optimised graphs were executed side-by-side and their outputs

shown to be identical.

The DMO technique proposed here works at a lower level than the graph based approaches
described in sections 5.3 & 5.4.1 and is complimentary to the graph serialization and operation
removal techniques. The observation that the input and output buffers of many tensor operation
can be safely overlapped is utilised in cases where the input to an operation is not needed by any
later operations. Therefore the input buffer can be safely overwritten during the computation of

the operation’s output.

A heap based allocation approach was used to place intermediate tensor into the tensor arena
in reverse execution order. Reverse ordering was used because diagonal memory optimisation
allows the start of the input buffer to overlap with the end of the output buffer, therefore
allocating the input buffer after the output buffer means the heap strategy can overlap the buffers
efficiently in most cases. The result of the DMO approach with buffer overlapping can be seen

in Figure 5.6.

5.4.3 Calculating the Safe Buffer Overlap

To understand the definition of the safe buffer overlap three methods to determine O are
presented. Our initial work debugging compiled networks is described first, followed by a
more efficient algorithmic approach. Ultimately a method to derive analytical lower bounds of
Os is presented along with a discussion of their precision. Finally the effect of performance

optimisation techniques on the utility of buffer overlapping is discussed.

Definition of the Safe Buffer Overlap

It can be intuitively seen in Figure 5.7 that the input and output buffers of three of the four tensor

operations can be overlapped a certain amount without any values in memory being clobbered.

124 Chapter 5. Memory Optimisation

Relu Memory Trace Matrix Multiplication Memory Trace
Memory Offset Memory Offset
Qo Q
£ E =
= =
= =] =
g g
E =
]]
= x
o 43
l l —
(a) = (®)
Output Buffer Input Buffer Output Buffer Input Buffer
3x3 Depthwise Convolution Memory Trace 5x5 2D Convolution Memory Trace
Memory Offset Memory Offset
2 E
= =
5 g
> X
i 53]
! l
© (d
Output Buffer Input Buffer Output Buffer Input Buffer

Figure 5.7: Memory traces of four common ML tensor operations. (a) Rectified Linear Unit, (b)
Matrix Multiplication, (c) Depthwise Convolution, (d) 2D Convolution. These traces only show

intermediate input & output tensor buffers, ignoring the filter and weight buffers.

The type of operation, algorithm used to compute the result, size inputs, and parameters all

determine its pattern of memory access and therefore the exact size of this safe overlap.

Element-wise unary and binary operations such as the Relu shown in Figure 5.7 a, have perfectly
diagonal input and output patterns representing the ideal case where Oy is the size of the output
buffer. It is interesting to note here, that in-place buffer re-use is actually a special case of
diagonal memory optimisation. The matrix multiplication operation shown in Figure 5.7 b
represents the other extreme, the whole range of its output buffer is repeatedly updated until
the final slice is processed. In this case the input and output buffers can not be overlapped at
all. Depth-wise convolution and 2D convolution operations shown in Figures 5.7 ¢ & d fall

somewhere between these two extremes.

By convention algorithms progress from lower indices to higher indices, for simplicity this work
assumes that algorithms will always be processed in this direction. Although it is theoretically
possible to make use of algorithms which can process in either direction, this work has not

investigated this option. Safe buffer overlap O, is formally defined as the maximum number

5.4. Novel Techniques for Memory Optimisation 125

Safe Overlap O,
Input Buffer
Output Buffer
AN\
N\
. N\ A
NN N
N\ \\\ AN In use memory
\
N NN areas and
Wi N &\\ . load/store events
N AL N 3
T TR e N\
) \\s\\ N\ over time
A \
A
N\

Figure 5.8: Definition of the safe buffer overlap (O;) metric, defined as the maximum overlap
where no in-use areas of memory are clobbered. In use memory shown in grey, write operations

in red, and read operations in blue.

of bytes that the start of the input buffer can be overlapped with the end of the output buffer
without clobbering any values in memory, as shown in Figure 5.8. The memory saved for each
operation is equal to the buffer overlap Oy itself. The process of determining O, and using the
safe overlap when allocating intermediate buffers is the central new concept of diagonal memory

optimisation.

Bottom up Method

Bottom up approaches such as the Valgrind [111] method described in Section 5.4.2 observe the
load and store operations of a compiled operation while it is executed. The difference between
this and a conventional memory trace is a mechanism to isolate the memory operations of the
layer implementation from the rest of the compiled binary. The authors developed a tool (VMT
Section 4.4.2) which in combination with Valgrind is able to record memory traces of specific
memory ranges within a test binary. This tool was used to record the memory access patterns of
single layer operations and whole ML models, identifying the original opportunity for memory

optimisation of MobileNet shown in Figure 5.6.

The raw output of this introspection method is a set of memory events at 2D locations in time
and buffer-offset, measured in instructions and bytes respectively. This type of raw output was

used to produce the plots shown in Figure 5.7 showing the memory access patterns of four types

126 Chapter 5. Memory Optimisation

of operation. It is important to note that memory offset of these events is not recorded as a
raw memory address but as a byte offset from the known start of the tensor buffer. Because
these events contain buffer offsets they can be processed to find the maximum safe overlap O,

between the input and output buffers of the operation being analysed.

To calculate O first all the memory events need to be in a single list sorted in ascending order of
instruction. Then two corresponding lists (minRead & maxW rite) with one-to-one mapping
to the event list are populated. The min Read list contains the lowest read address of this and
all following events and the maxW rite list contains the highest write address of this and all
preceding events. The values of both these lists can be populated with forwards and backwards

pass. The value of O, is then be computed using Equation (5.6).

Os = outputs + miIn (minRead[i]| — maxWriteli]) (5.6)
S

Where output, is the size of the output buffer in bytes and I is the set of indices to the minRead

and maxW rite lists.

The advantage of the bottom-up method is that layer implementations can be a black-boxes,
even implementations in compiled libraries can be analysed meaning this approach can be
used with many existing operations. There is however a requirement that memory read/write
behaviour must be deterministic, which excludes multi-threaded implementations due to the
non-deterministic nature of thread synchronisation. This limitation applies to diagonal memory
optimisation itself which is discussed further in Section 5.4.3. A drawback of this method is its
high computational cost and complexity of the process. Building dedicated test binaries and
debugging layer implementations is a complex approach, the algorithmic and analytic methods
described offer faster and more portable approaches to find O, but require access to original

source code.

Algorithmic Method

The algorithmic method requires the development of a new algorithm to compute Oy based

upon the original layer implementation. This new algorithm removes the calculation of tensor

5.4. Novel Techniques for Memory Optimisation 127

values leaving only the calculation of buffer offsets where these values would have been read

from and written to.

The original implementation is analysed so that the number of write or update operations (Steps)
on the output buffer can be determined. A new algorithm is then written which produces two
arrays minR & maxW each Steps long. Where each element of min R contains the minimum
read offset of that step and all future steps, while each element of maxW contains the maximum
write offset of this step and all previous steps. Oy can then be calculated using Equation 5.7
where Oy, is the output buffer size and minD is the minimum of minR — maxzW across the
arrays. This conceptual structure of the algorithmic method defines the requirements for it to be

applied to any deterministic tensor operation.

and is enough for a developer to write a new algorithm to compute for Oy for any existing

deterministic algorithm.

Os = Oy + minD 5.7)

A practical demonstration of this method is presented using pseudo code of the depthwise 2D
convolution reference implementation Appendix B.1 from TFL shown in Algorithm 2. Bias and

activation functions have been omitted for clarity since they have no effect on the computation

of Og.

In this case a single output element is computed within each iteration of the 5"

nested loop,
therefore the min R & maxW arrays need to be batches x outputH x outputW X inputD x
filterC elements long. The value of minR can be found for each iteration as the minimum
of all values computed within the filterY & filter X loops, as long as a final reverse pass is
performed to enforce the *minimum of all future iterations’ requirement. The value of mazW

for an iteration is the highest value of O, computed so far through the loops. These modifications

are shown in Algorithm 3.

An implementation of the pseudo code above can be used to calculate the value of O, for
any instance of the reference depthwise 2D convolution operation directly without the need to
inspect the behaviour of a compiled layer. The pattern of code changes in the demonstration

above can be applied to any single-threaded tensor operation, converting it into an algorithm

128 Chapter 5. Memory Optimisation

Algorithm 2: Depthwise 2D Convolution - Pseudo Code

for b = 0 to batches do

for outY = 0 to output H do

for outX = 0 fo outputW do

for ic = 0 to inputD do

for m = 0 to filterC do

total < 0 for filterY = 0 to filter H do
for filter X = 0 to filterW do

if input element in input tensor then
F, « [calc filter offset] I, < [calc input offset]

total < total + (filter[F,] x input[l,))

end

end

end

O, < [calc output offset] output|O,] «+ total

end

end

end

end

end

5.4. Novel Techniques for Memory Optimisation 129

Algorithm 3: Computation of O, - Pseudo Code
Steps < batches - output H - outputW - inputD - filterC minR = array(iCount)

mazW = array(iCount) mazF, = 0 it = 0 for b = 0 to batches do
for outY = 0 to output H do

for out X = 0 to outputW do

for ic = 0 to inputD do

for m = 0 to filterC do

minR, < +inf for filterY = 0to filter H do

for filterX = 0to filterW do

if input element in input tensor then
1, < [calc input offset]

minR, < min(minR,, I,)

end

end

end

minR[it] < minR, O, < [calc output offset]

maxW it] < maz(mazF,, O,) it < it + 1

end

end

end

end
end

minR, < +inf minD < 0 for i = Steps to 0 do
minR[i] - min(minR[i], minR,)

minD <« min((minR[i] — mazWi]), minD)
end

Os = outputBufSize + minD

130 Chapter 5. Memory Optimisation

for the direct computation of O;. In this specific example further inspection of the source code
reveals that the values of minR, and O, calculated by the first set of loops will always be
monotonic with respect to it. Therefore in this case the code could be simplified to a single set

nested of loops.

The algorithmic method is faster and more convenient than the bottom-up method, however it still
requires a set of large nested loops to be executed. Since Oj is generated by complex algorithms
it is difficult to generalise the solutions between different types of layer implementation. These

shortcomings are addressed using by analytical method described in the following section.

Analyical Method

Using the Analytic approach an equation is derived for a specific layer implementation which
directly calculates O, for any instance of that layer. This approach requires the least computation
time and more importantly is the least error-prone when translating between programming
languages. We describe the approach taken to derive these analytical solutions for several
common ML layer implementations. These equations were then used to generate optimised

buffer pre-allocations of the eleven test models shown in Section 5.5.

It is important to note that useful solutions for the safe buffer overlap function, do not need to
be exact, lower bound estimators will not break the operation while still reducing memory use.
Meaning that analytical solutions can simplify certain details for convenience and still be of use.
Similarly to the algorithmic method the analytical method requires a developer to analyse each
new operation and to derive suitable equations, so that a memory optimisation algorithm can

then allocate buffers both efficiently and safely.

The first stage of this analysis is to distil the memory access behaviour of an operation into two
functions minR(i) and maxW (i) where i is equivalent to Steps as defined in the algorithmic
method. These two function minR(i) and maxW (i) have the same meaning as the arrays
defined in the algorithmic method, this approach however derives equations for them. Figure 5.10
shows an example of the derived monotonic minR(7) function for depthwise 2D convolution, it

can be seen than all read operations, shown in blue, are bounded by the function shown in green.

Using these two functions Oy can then be found using Equation (5.8) where i, is the total

number of iterations, O By is the size of the output buffer, and 7 is the tensor element size

5.4. Novel Techniques for Memory Optimisation 131

| Input Buffer Offset J
T T
Q\\\\

o 5\\ AN \\\

S N \§ \\\\ \\\\

= \ \

< b\ R

5 \\\\\\\\\ \\\

= ‘ N\ A

! A NN

| \\%\\\\

Figure 5.9: Memory read pattern example from a depthwise 2D convolution. Points highlighted

define a linear boundary containing all read operations.

in bytes. Strictly this is enough information for a developer to be able to derive an analytic
solution for Oy for any algorithm. However for clarity the derivation of the Oy equation for a
reference depthwise 2D convolution is shown to illustrate how this can be applied to typical

layer implementations used in ML models.

Os = OBs + min{minR(i) — maxW (i) : i € ZN0 =i > i.}Ts (5.8)

The approach to solving O, here is the similar to the algorithmic method, except given analytic
solutions for both min R (i) and maxW (i) then Equation 5.8 can be simplified to an analytic
solution. Using these analytic solutions O, can be computed directly without needing to loop

through a large simulated tensor operation, potentially taking millions of iterations.

Taking the algorithmic solution for Oy of the reference DepthwiseConv2D operation used
above we can study it and derive a purely analytical solution for the lower bound of minR(3).
Figure 5.9 shows the pattern of memory reads for an instance of this layer operation, the reads
highlighted with red circles define a linear function bounding all reads of this algorithm. Firstly
the location of the highlighted operations within the loops of the algorithm must be determined.

Secondly equations for the iteration and read offset locations of these points must be derived.

By studying the pseudo code in Algorithm 2 it can be found that the exact read operations for
this operation highlighted in Figure 5.9 occur during every iteration of the outY loop and the
final combined iteration of the out X, ¢c and m loops. Knowing this we determine that each of

the highlighted reads occurs where outY = N, outX = outputW —1,ic = inputD —1,m =

132 Chapter 5. Memory Optimisation

filterC' — 1. Next we determine that the minimum read within this iteration will always occur
when filterY = 0, filter X = 0. Using this information, pseudo code, and the helper functions
shown in the original C++ code [Appendix B.1] two Equations (5.9) & (5.10) for the values of
the output offset o and iteration [in terms of [V and the layer parameters can be found. These
equations are derived by merging the code of the layer function itself with the helper functions

Of fset and Compute Padding and simplifying.

i = (N - 0u04K,) — 1 (5.9)
0 = Offset(N . Sw — Pw, (Ow — 1)Sh — Ph,Id — 1) (510)
Where:
Of fset(r,c,d) = (r- Ly + ¢)Iy + d) (5.11)
P, = \‘Ohsh—sh—l—Kh;)h—Dh—Ih—i-lJ (5.12)

(5.13)

o {Owsw—SerKwa—Dw—IerlJ
v 2

Where I, & I, are input shape, O,, & Oy, are output shape, K,,, K; & K, are kernel size, .9y,

& Sy, are stride steps, D,, & Dj, are dilation ratios.

The equations for these points (5.9) & (5.10) can then be used to define a linear function (ax + b)
which bounds all read operations of this layer implementation. Simplifying these gives the

Equations (5.14) & (5.15) for a & b respectively.

- ShIw
B OuK.

(5.14)

b= (Owa — Py, — Sply, — Sy — Py + 1)Id (5.15)

Truncating this linear function at zero gives Equation 5.16 defining a lower bound approximation

of the ideal minR(7) as shown in Figure 5.10.

5.4. Novel Techniques for Memory Optimisation 133

‘ Input Buffer Offset ‘
I I
5\\
AN
\ N N : N
NN N
=} N
. — N\ ANN Q
g \‘\i\\\\i\ Ny
N\
g N\ AN N
NN AN
N\
N

Figure 5.10: minR(i) bounding function for the depthwise 2D convolution implementation. It

can be seen that all read operations (in blue) lie above the monotonic function (green).

Input

Output

Case A Case B

Figure 5.11: The two possible definitions of the analytical minimum bound, depending on the

relative gradient of the minR & maxW functions.

minR(i) = max(0,a i+ b) (5.16)

The function maxW (7) is trivial in the case of this operation, since each iteration calculates
a single element of the output tensor and the loops are nested in increasing dimension order,

therefore.

maxW (i) =1 (5.17)

Equations (5.8), (5.16) & (5.17) can be combined into a single Equation (5.18) by observing
that O, is defined by the min R & maxW functions in only two possible ways, as shown in
Figure 5.11. If the gradient of max W is lower than that of min R then it is defined as in case
A otherwise it is defined as in case B. These two cases result in the two terms of the min
function in the simplified analytical solution for O4 shown in Equation (5.18). This part of the
analytical solution can be used to describe O, for a wide range of tensor operations, including
2D convolution, all pooling operations, the depthwise 3D convolution described here and more.
The only variation of this form are the equations for a and b which define the truncated linear

bound of their read offsets.

134 Chapter 5. Memory Optimisation

b
OS:OBS+min{,az'c+b—ic}Ts (5.18)
a

Using this same process the minimum bound linear functions of several common ML reference
operations have been derived. Combining these with Equation (5.18) produces their respective

analytical solutions for O.

Reference 2D Convolution Operation:

a= So'%d (5.19)
b= (0wSw— Prnly — Sply — Sy — Py)lg+ 1 (5.20)
Reference Pooling Operations (all types):
a= Sgi“’ (5.21)
b= (OwSw — Prly — Splyw — Suw — Pu)Ig+1 (5.22)

Precision of the Analyical Method

Since the analytical solutions presented in Section 5.4.3 are lower bounds as opposed to the
exact values computed by the algorithmic method in Section 5.4.3, it is important to quantify
the difference between the two. Using MobileNet v2 1.0 224 as an example when DMO is used,
its peak memory requirement is defined by the second depthwise 2D convolution operation

described in Table 5.2.

Computing the O; of this operation using the algorithmic method gives a result of 1,204,224
bytes, while computing it using the analytic solution presented in Equations (5.14) (5.15) &
(5.18) gives a result of 1,193,376 bytes. In this case the exact value has been underestimated
by 10,848 bytes or 0.18% of the models optimised memory requirement of 4.6 MB, this is

considered to be an acceptable approximation. Table 5.3 shows this same measurement for

5.4. Novel Techniques for Memory Optimisation 135

Table 5.2: Specification of 2nd Depthwise 2D Convolution in MobileNet

Setting Value

input shape (w, h, c) 112, 112, 96

filter shape (w, h, in_c, out_c) 3,3,96, 1

output shape (w, h, ¢) 56, 56, 96
stride (w, h) 2,2
dilation (w, h) 1,1

Table 5.3: Estimation Error of Safe Overlap (O;)

Safe Offset (O,)
Model Error

Exact Estimate

mobilenet v1 1.0 224 || 1204224 | 1193376 | 0.18%
mobilenet v2 1.0 224 || 1605632 | 1598400 | 0.15%

Inception ResNet v2 || 2746884 | 2746884 | 0%

three networks, comparing the exact algorithmic result with the lower bound from the analytical

method. The underestimation of O ranges from 0% to 0.18%.

Performance Optimised Layer Implementations

The reference depthwise 2D convolution used to illustrate the computation of Oj is not the
most computationally efficient implementation. This implementation is commonly used for
smaller models on embedded ML applications however more efficient versions are increasingly
being used that are optimised for specific processor families, such as cmsis-nn from ARM
[88]. It is important to determine if safe buffer overlapping is possible when using these faster
implementations, and to discover if the process described above to derive the analytical solution

to O is still valid.

136 Chapter 5. Memory Optimisation

Multi-Threaded Convolution Memory Trace
Memory Offset

AR S N5 §
NN
S
N

AN\WL2WY)
\\\\

RN

Al - 3 NN

Output Buffer Input Buffer

AR Y

<— Execution Time

Figure 5.12: Memory trace of a 5 x 5 2D Convolution operation being executed using four

threads.

Two optimisation approaches commonly used in embedded ML applications are vectorisation
and multi-threading. Vectorisation takes advantage of Single Instruction Multiple Data (SIMD)
operations to accelerate batches of identical arithmetic operations and reduces loop overheads.
While multi-threading can be used when computations as opposed to memory access are the
performance bottle-neck. These two approaches are not mutually exclusive and are often used

together.

Vectorisation compliments diagonal memory optimisation because multiple elements are pro-
cessed in longer words, therefore some reads occur earlier and some writes occur later. However
it is always possible that trailing elements may need to be computed individually, for this reason
the value of Oj for vectorised optimisation is the same as for the reference operations already

described.

Multi-threading as it is usually implemented reduces the utility of using diagonal memory
optimisation. Threads are generally each given a different contiguous region of the output buffer
to compute, resulting in a memory access pattern similar as shown in Figure 5.12. It must be
noted that the Valgrind tool used to generate this trace interleaves threads on a single core so
does not precisely reproduce true multi-threaded behaviour. However two important features
can be seen, firstly four different regions of the output buffer are being computed at similar times
and secondly the read/write pattern has become non-deterministic. It is possible to overcome
these problems by interleaving the elements each thread computes and ensuring that threads
are synchronised to within a maximum offset. It is therefore theoretically possible to write
buffer-overlap safe multi-threaded layer implementations, however more work is needed to

demonstrate the practicality and reliability of the technique in this case.

5.5. Results 137

5.5 Results

Eleven well known, published ML models were analysed along with the twelve cost-map
estimation models proposed in Chapter 3. The published models were chosen a with particular
emphasis on smaller models which have been developed for mobile applications. Models
were sourced from the public repositories Keras Application [137] and TensorFlow models [8].
Eighteen purely sequential models were analysed, the variants of both MobileNet v1 and v2
as well as all of our proposed cost-mapping models. The sequential nature of these models
makes them more amenable to optimisation than the more densely connected networks which
have been analysed. Inception v4, Inception ResNet, Nasnet Mobile, DenseNet and ResNet
50 are all densely connected networks, as will be shown this makes the savings of DMO and

operation-splitting harder to predict than for sequential models.

A modified heap allocation algorithm was used to locate the tensors buffers for each test and
thereby find the peak memory requirement for each combination of model and optimisation
strategy. This algorithm uses conventional heap allocation to to place tensor buffers in memory,
but chooses a specific order in which to allocate buffers which has been found to reduce the
peak memory requirement. The next buffer to allocate is chosen using two steps. First the set of
un-allocated tensors which have scopes overlapping with allocated buffers is found. Out of this
set the buffer is chosen which can be packed into the lowest address space. This algorithm is
initiated by allocating a single input or output buffer at offset zero, to perform a forwards or

backwards allocation respectively.

The Operation splitting method produces a set of optimised graphs with a range of performance
penalties. The results shown here represented the optimised graph with the smallest peak
memory requirement for each model analysed. Element re-computations are also shown to put

the performance penalty of this method in context.

5.5.1 Sequential Published Models

DMO produces nearly identical memory savings for all of the MobileNet v1 variants analysed
in this work. In the case of these models the original peak memory requirement is defined

by the second convolution operation which produces an output tensor two times larger than

138 Chapter 5. Memory Optimisation

its input tensor. DMO allows these input and output tensors to overlap almost completely,
reducing the peak memory requirement by a third. The small variation in the exact saving is
caused by the amount the buffers cannot be completely overlapped due to the kernel size of the
convolution. The ratio of this kernel size and the tensor buffer size varies depending on the size
of the MobileNet variant in question, explaining this small difference. The pattern of tensor
buffer allocations with and without DMO for MobileNet v1 can be seen in Figure 5.6.

pee s [pisere

J

Figure 5.13: a, Original buffer allocation pattern of MobileNet v1 2.0 224. b, Optimised buffer

allocation pattern after operation-splitting has been applied to the graph.

DMO when applied to the variants of MobileNet v2 produces a lower memory saving of 20%.
In the case of these networks the peak memory requirement of the original graph is defined by
the second depth-wise convolution operation which has an input tensor four times larger than its
output tensor. Again DMO can almost completely overlap these two buffers, but because there
is a greater disparity in their sizes this results in a lower memory saving than the MobileNet v1
variants. This allows us to make an important observation, that the memory saving of DMO will
be greatest if the peak memory of a model is defined by two equal sized tensors. As the size
disparity of the two tensors increases then the memory saved by DMO will reduce. Close to
ideal DMO savings of up-to 49.2% were observed in the encoder-decoder cost-mapping models

shown in Table 5.6.

When operation-splitting is used to optimise the memory use of the MobileNet v1 variants
analysed we again see a memory saving of 33% in most cases, although the reasons behind this
figure are different to those for DMO. The peak memory requirement of the original model is

defined by the second convolution operation, operation-splitting splits this operation and its

5.5. Results

139

2040 kB

S

[|
1

?

Figure 5.14: a, Original buffer allocation pattern of MobileNet v2 0.35 224. b, Optimised buffer

allocation pattern after operation-splitting has been applied to the graph.

following depth-wise convolution into five parallel paths. This reduces the memory requirement

of this part of the network so it is equal to the memory requirement of the following convolution

operation. However this following convolution operation has equally sized input and output

tensors so it cannot be optimised using operation splitting. The buffer allocation pattern for

MobileNet v1 1.0 224 before and after operation-splitting is shown in Figure 5.13.

Table 5.4: Reduction in memory requirements of sequential published models

Model Original DMO Op Splitting
PMR (KB) | PMR (KB) | Saving | PMR (KB) \ Saving \ Recomp

MobileNet v1 1.0 224 4704 3136 33.3% 3136 333% | 5 x 10° (0.57%)
MobileNet v1 1.0 224 (8 bit) 1176 784 33.3% 784 333% | 5 x 10° (0.57%)

MobileNet v1 0.25 224 1176 786 33.2% 980 16.7% | 1.4 x 10° (0.25%)
MobileNet v1 0.25 128 (8 bit) 96 64 33.1% 64 333% | 4.2 x 10° (0.99%)

MobileNet v2 0.35 224 2940 2352 20% 1568 46.7% | 3 x 10° (0.73%)

MobileNet v2 1.0 224 5880 4704 20% 3528 40% | 6.9 x 10° (0.47%)

Operation-splitting is more effective on MobileNet v2 variants than it is on v1 variants. Here the

140 Chapter 5. Memory Optimisation

peak memory requirement of MobileNet v2 0.35 224 is reduced by 46.7% and MobileNet v2
1.0 224 is reduced by 40%. The second convolution operation which defined the peak memory
and the following depth-wise have been split into five chains. Reducing the memory required
by these operations so it is lower than the memory required by the proceeding depth-wise
convolution. Again this proceeding depth-wise operation has equal input and output tensors
so cannot be optimised using operation splitting. The original and optimised buffer allocation
patterns can be seen in Figure 5.14. This allows us to make a second important observation, that
the memory saving of operation-splitting will be greater when input and output tensor sizes have

a large disparity, and that no saving is possible if the input and output tensors are the same size.

We have shown that DMO produces its greatest savings when an operation has equally sized input
and output tensors, and that operation-splitting produces its greatest savings when operations
have very different sized input and output tensors, meaning these two methods are complimentary
to each other. There are models which neither of these methods can optimise, but in some cases

a poor result from one method will result in the best result of the other.

5.5.2 Connected Published Models

The densely connected models analysed showed lower memory savings in general than sequential
models. Many of the operations within these models produce tensors which are used by more
than one subsequent operation, the requirement for these tensor values to be held in memory for
longer reduces opportunities to use DMO which clobbers the values of the input buffers. The
connected nature of the models does not fundamentally affect operation-splitting in the same
way as DMO but the savings can be expected to be lower. The peak memory requirement of
connected networks is generally defined by a larger number buffers than sequential models. This
means that if the size of a single buffer is reduced (which is what operation-splitting effectively

achieves) this will have a lower impact on the overall peak memory requirement of the model.

In the worst cases ResNet 50 and the largest model analysed, Nasnet Mobile, their memory
requirements could not be optimised at all using either DMO or operation splitting. Of the
connected models analysed the greatest memory saving was observed for Inception ResNet,
34.5% saved using DMO and 19.3% saved using operation-splitting. However this saving

was realised in the early input stage of the model which is sequential. The same is true of

5.5. Results 141

=
Al
Al
i

Figure 5.15: a, Inception v4 original buffer allocation pattern (only the first third of the model is
shown for clarity). b, Buffer allocation pattern produced using operation-splitting, split tensors
shown in yellow, final output of split block shown in green. Note that in this operation-splitting

optimisation the input buffer is the start of the split, so is not shown in this figure.

Table 5.5: Reduction in memory requirements of connected published models

Model Original DMO Op Splitting
PMR (KB) | PMR (KB) | Saving | PMR (KB) \ Saving \ Recomp
Inception v4 [136] 10879 10079 7.35% 8894 18.2% 2.7 x 107 (0.11%)
Inception ResNet v2 [136] 8399 5504 34.5% 6778 193% | 2.8 x 10° (0.0007%)
Nasnet Mobile [165] 4540 4540 None 4541 None -
DenseNet 121 [77] 8624 8232 4.55% 8624 None -
ResNet 50 v2 [136] 10976 10976 None 10978 None -

Inception v4, where it’s greatest memory saving is achieved using operation splitting on the

initial sequential stage of the model as shown in figure 5.15.

The 4.55% memory saving for DenseNet produced by DMO is an anomaly. In this instance
the saving is not produced directly by diagonal optimisation but by a more optimal layout of
non-overlapped buffers produced by the heap allocation strategy. In this case DMO has altered
the order that these non-overlapped buffers are allocated so they take up less memory, see
Figure 5.16. The modified heap allocation strategy used is a heuristic with no guarantee of
optimality due to the NP-hard nature of the buffer allocation problem. It is possible that a more
effective heap allocation strategy could produce a buffer pre-allocation pattern with this same

peak memory requirement without the use of DMO.

142 Chapter 5. Memory Optimisation

pe2axe p32xs

Figure 5.16: a, DenseNet original buffer allocation pattern (only the first fifth of the model is
shown for clarity). b, Buffer allocation pattern optimised using DMO, Peak memory defining
buffers are shown in blue. It can be seen that none of the peak memory defining buffers of the

optimised pattern use DMO to overlap.

5.5.3 Cost-Mapping Models

The memory requirements of our proposed cost-mapping models were analysed when TFMin
was first developed, and were discussed in Section 4.5.3. Both memory optimisation algorithms
proposed in this chapter have been applied to these twelve models. The optimised memory
pre-allocation patterns are approximately 50% smaller in the majority of cases, with a few

models which are optimised significantly more or less.

0KB ‘979 KB 0KB ‘]AGZ KB

Layer/convolution Layer/convolution
..ConvLayer/pooling .ConvLayer/pooling
_.yer_l/convolution .yer_1/convolution

nvLayer_1/pooling nvLayer_1/pooling

.yer_2/convolution yer_2/convolution
..nvLayer_2/pooling .nvLayer_2/pooling
.yer_3/convolution .yer_3/convolution
nvLayer 3/pooling nvLayer_3/pooling
..yer_4/convolution yer_4/convolution
..nvLayer_4/pooling .Wx_plus_b/MatMul
-Wx_plus_b/MatMul .Wx_plus_b/MatMul

/Wx_plus_b/MatMul Layer/convolution
.Layer/convolution yer_l/convolution
.yer_l/convolution .yer_2/convolution

.yer_2/convolution

A) B)

Figure 5.17: Original buffer pre-allocation patterns of: a, Model EncDec-F. b, Model EncDec-X.

Intermediate buffers defining the peak memory requirement are highlighted in blue.

The Encoder-Decoder models all require more memory for inference than the smaller CNN

models, which makes the optimisation of their memory use all the more important. We can see

5.5. Results 143

from Table 5.6 that Encoder-Decoder models A-F are all optimised best using DMO resulting
in almost a 50% saving. This is close to the maximum theoretical saving of this technique and is
due to two equal sized tensors being produced by the first convolution and max-pooling layers,

Figure 5.17.a.

Encoder-Decoder model X however does not have these equal sized large tensors so DMO is
less effective saving only 19.8%. The peak memory requirement of this model is defined by
output of the first convolution layer and the smaller output of the following max-pooling, Figure
5.17.b. This is a case which is particularly well suited to the operation-splitting technique, and

this algorithm produces the greatest relative reduction in memory use of 61.6%.

Figure 5.18: Initial section of the tensor graph of Encoder Decoder model X after modification
by the operation-splitting memory optimiser. Showing the first two operations split into five

parallel chains.

There is another benefit of using the operation-splitting optimiser on Encoder-Decoder model X.
It is usual for models which are optimised using operation splitting for a small number of tensor
elements to need recomputing, slightly slowing the inference process down. However this model
does not require any of these re-computations even though it has been significantly optimised.
The reason for this can be seen in the modified tensor graph produced by this optimiser shown
in Figure 5.18. The first convolution and max-pooling operations have been split into 5 parallel
chains, the elements of the second operation (max-pooling) have receptive fields which do not

overlap. It has a kernel size of 2 X 2 and a stride of 2 x 2. This means that the outputs of the first

144 Chapter 5. Memory Optimisation

split-operation (convolution) do not need to overlap, therefore no re-computations are necessary.

Overall the two memory optimisation models have significantly reduced the RAM required for
inference for all the Encoder-Decoder models. The complimentary nature of these algorithms
whereby models which are not optimised well by one are optimised well by the other, has been

clearly demonstrated.

Table 5.6: Reduction in required memory for inference of proposed cost-mapping models

Model Original DMO Op Splitting
PMR (KB) | PMR (KB) | Saving | PMR (KB) \ Saving \ Recomp
Cnn-A 294 151 48.5% 276 6.1% | 784 (0.48%)
Cnn-B 294 151 48.5% 276 6.1% | 784 (0.46%)
Cnn-C 204 139 31.8% 147 28.0% 0 (0%)
Cnn-D 74 38 47.8% 69 6.1% | 196 (0.41%)
Cnn-E 93 75 19.3% 41 56.3% 0 (0%)
EncDec-A 428 219 48.8% 406 5.0% | 944 (0.39%)
EncDec-B 587 299 49.0% 561 43% | 1104 (0.32%)
EncDec-C 979 497 49.2% 946 3.4% | 1424 (0.24%)
EncDec-D 428 219 48.8% 406 50% | 944 (0.39%)
EncDec-E 587 299 49.0% 561 43% | 1104 (0.32%)
EncDec-F 979 497 49.2% 946 3.4% | 1424 (0.24%)
EncDec-X 1462 1173 19.8% 561 61.6% 0 (0%)

5.6 Summary

Two novel methods to reduce the amount of RAM needed to perform inference using ML models
have been presented. This reduction in the amount of volatile memory required is especially
important in applications with limited computing resources, such as edge ML and on-board

spacecraft.

The method of diagonal memory optimisation has been described and several methods presented
to compute the critical buffer overlap O metric required to use this technique. Including a
formal analytic solution which can quickly compute a lower bound for Og. The technique of
operation splitting has been described in detail and an algorithm presented which automatically
applies it to any ML model. Both of these algorithms are available in the open-source TFMin

software tool produced during this work [23].

5.6. Summary 145

Memory savings of up to 61.6% have been demonstrated on a range of ML models, the RAM
required to perform inference using the smallest possible implementation of MobileNet has
been reduced even further from 96 KB down to 64 KB. Both diagonal memory optimisation
and operation-splitting will enable more efficient implementations of ML models in a range of
application. In Edge ML applications larger models can be executed on micro-controller targets
than currently possible, enabling smarter devices and or savings in power and cost. In space
applications the RAM resources required by on-board ML processes has been reduced, easing

the adoption of these solutions.

It is important to note that the required memory figures shown in Tables 5.4, 5.5, and 5.6 only
include intermediate tensor values and not the weights of the model itself. In all models analysed
the model weights require significantly more storage than the intermediate values themselves,
MobileNet v1 0.25 224 for example has an optimised memory requirement of 786 KB but
approximately 2.5 MB of weights. This would make it seem as though DMO is not much use in
the real world, except that micro-controllers almost universally have much more non-volatile
flash memory than volatile Static Random Access Memory (SRAM) [135]. The STM32F103xF
from ST Microelectronics [132] is a commonly used ARM Cortex M3 micro-controller with 768
KB or 1 MB of program storage and 96 KB of SRAM. Using diagonal memory optimisation it
becomes possible to execute the smallest MobileNet (v1 0.25 128 8bit) on this chip, however the
weights of this model take 623 KB, 60.8% of the micro-controllers program memory. Similarly
the Atmel AT32UC3C [6] used by the on-board computer of the ESAs ESEO mission [16] has

at least four times more flash memory than SRAM across all its variants.

In early 2018 we started work building an automatic ML deployment tool because there were
no open-source (or closed-source) tools we were aware of to perform this task. Concluding this
work in 2020 there are now two other established tools, TFLy [116] from Google and g Tensor
[5] from ARM. TFLp places intermediate tensor buffers into a dedicated contiguous memory
space in two possible ways, either pre-allocated or allocated on the fly. The core tool does not
yet provide any pre-allocation algorithms since this is still an experimental feature. pTensor uses
the platform ‘malloc’ to allocate intermediate tensors, so does not support buffer pre-allocation

at this time.

Compared to these two tools TFMin has the most advanced memory optimisation capabilities,

146 Chapter 5. Memory Optimisation

and is able to deploy models onto smaller micro-controller targets. This is due in part to
the memory optimisation techniques described in this chapter but also because it requires no

run-time libraries to operate.

5.6. Summary

147

Opportunities and Progress

Table 5.7: Opportunities at the end of the cost mapping investigation.

Challenge

Solution

Is it possible to generate planetary rover cost-

maps using ML?

e Encoder decoder models trained using super-

vised learning have been shown to be effective.

Are ML cost-mapping models feasible to use

on radiation hardened LEON3 computers?

o Execution time has been quantified on repre-
sentative hardware, and found to meet the 20

second requirement from Airbus.

e Two novel memory optimisation techniques
have been presented reducing the RAM re-
quirement of cost-mapping models by up-to

61%.

Does a deployment process exist to implement
this model within the flight software develop-

ment process?

e The TFMin tool has been developed and
released which generates prototype ANSI C
code suitable for the flight software develop-

ment process.

New Research Opportunities Identified in this Chapter

o Study the use of both DMO and Operation-Splitting concurrently to further reduce RAM

needed by inference.

148 Chapter 5. Memory Optimisation

Chapter 6

Conclusion and Future Work

The rate at which orbital and surface missions are being launched to Mars has been gradually
increasing in recent times. The most recent launch window in 2020 saw three nations dispatch
robotic explorers, including the UAE’s first Mars probe and two missions including rovers
from China and the United States. Each of these surface missions present opportunities to
trial and demonstrate increased levels of autonomy and novel technologies. The goal of this
research was to demonstrate a novel cost-mapping algorithm, reducing the execution time of
GNC processes on-board planetary rovers. Not only was this goal achieved, but an ML model
generation process demonstrated which can trade off mapping accuracy for speed. This allows
greater operational control of the GNC process, where the mapping process can be sped up
when it is less critical. All This increase in speed translates into faster traverse times and lower
demands on DSN capacity, ultimately resulting in greater mission capability. The specific rover
mission this work targets is the proposed late 2020s Mars SFR currently under development by

a consortium led by Airbus.

Work presented in this thesis has identified an opportunity to improve the performance of
the autonomous GNC systems used on-board Mars rovers using the novel adoption of ML
techniques. Novel ML cost-mapping models have been shown to produce equivalent quality
maps while out performing existing state of the art algorithms used by the MER rovers. These
performance gains have been verified on the LEON3 radiation hardened processor. Two novel
memory optimisation algorithms have been presented which are able to significantly reduce

the amount of RAM required to perform inference on CPU based targets. This approach has

149

150 Chapter 6. Conclusion and Future Work

the potential to improve the computational efficiency of autonomous rover GNC systems and
thereby their traverse speeds and mission values. These algorithms not only impact the use
of ML in space but are also relevant to the emerging field of ‘Edge ML’ on earth using small

embedded micro-controllers.

This work will encourage and facilitate the use of on-board ML solutions on a wide variety of
space missions, not only planetary rovers. This wider impact is expected to result from adoption
of the TFMin deployment tool, enabling ML models to be analysed and deployed on flight
processors. Allowing development to be conducted using a framework which has a realistic

route for models to be deployed within flight software.

Chapter 3 described our investigation into ML cost-mapping models, and their use within the
GNC system of planetary rovers. A range of CNN and Encoder-Decoder models (Table 3.1)
were shown to be capable of performing this task, and their relative computational efficiency
measured (Figure 3.21). It was found that computational efficiency was correlated to the number
of cost-map cells estimated in a single pass. This finding influences the following work on
model implementation, since it implies the largest model possible should be implemented to
maximise efficiency. As well as meeting the original goal of this chapter, areas for future study
were identified. Sparse cost-mapping models have the potential to improve the performance and

suitability of these ML solutions for planetary rovers.

Chapter 4 presented a new software tool developed to facilitate the research presented in this
thesis. The first published implementation of two state of the art memory optimisation algo-
rithms is included to accelerate their adoption. This tool has been released to the community
and is currently used by groups at Airbus studying on-board ML. TFMin started life as a tool
developed to produce accurate timing results for ML models on the LEON family of radiation
hardened space processors. During the course of this research and several design iterations this
tool matured to include a wide range of functionality. Initial versions produced C++ 11 code
with external dependencies while later versions moved to ANSI C with no dependencies. It
is currently the only automated ML deployment tool which can target any ANSI C supported
micro-controller or DSP. An open extensible framework is provided so users to customise the
implementations generated for each layers, allowing optimised results for particular targets

(Section 4.3.6. Airbus has expressed a desire to develop a commercial extension to this tool

151

including optimised LEON3/LEON4 layers which have been verified to ECSS standards.

Chapter 5 describes two novel algorithms performing a task which has to date had virtually no
attention, the optimisation of RAM use by ML inference models. Until recently the amount of
RAM required for inference has not been a limiting factor, however recent work implementing
ML models on low power radiation hardened processors and terrestrial micro-controllers have
hit these limits. The complimentary DMO (Section 5.4.2 and Operation-Splitting (Section 5.4.1)
algorithms have been shown to reduce the RAM requirement of inference by up-to 46.7% in
the case of MobileNet v2 (Table 5.4). These two algorithms represent the first aggressively
optimised solutions to this problem, previous work has simply used general memory allocation
techniques, not well suited to this task. These algorithms have been applied to the proposed
cost-mapping ML models presented in Chapter 3, resulting in the memory requirement of the

most efficient model (EncDec-X) being reduced by 61% (Table 5.6).

Table 6.1: Opportunities and proposed solutions presented in this thesis.

Challenge Solution

Is it possible to generate planetary rover cost- | ® Encoder decoder models trained using super-

maps using ML? vised learning have been shown to be effective.

Are ML cost-mapping models feasible to use | ® Execution time has been quantified on repre-
on radiation hardened LEON3 computers? sentative hardware, and found to meet the 20

second requirement from Airbus.

e Two novel memory optimisation techniques
have been presented reducing the RAM re-
quirement of cost-mapping models by up-to

61%.

Does a deployment process exist to implement | e The TFMin tool has been developed and
this model within the flight software develop- | released which generates prototype ANSI C
ment process? code suitable for the flight software develop-

ment process.

152 Chapter 6. Conclusion and Future Work

6.1 Future Work

Chapter 3 presented a viable ML solution to the cost-mapping problem, however there are
opportunities to increase its efficiency and practicality for an actual rover platform. The
presented cost-map estimation models, all require dense input maps without unknown areas.
This is a significant limitation given that maps generation on-board rovers are sparse and
irregular due to limited depth perception and occlusions of their sensors. A valuable future
investigation would develop ML cost-mapping models which process sparse input maps and
generate cost-maps along with respective confidence levels. Such models could then be directly

used within existing rover GNC stacks and trialled in simulations and on field trials.

The use of 2D scalar elevation maps without additional layers of information is a limitation
the work presented. With access to more advanced baseline algorithms and terrain datasets,
models could be developed incorporating a wider range of sensor data. The visual texture of
terrain could be used alongside its geometrical shape for example. The biggest limitation of
the ML cost-mapping technique described in this work is the need for an existing algorithm for
supervised learning. This not only limits the ML solution to imitating this algorithm but also
requires this algorithm to exist. A more ambitious study could use Reinforcement Learning and
a high fidelity rover simulation to train a cost-mapping model from experience. This technique
would remove the need for a baseline algorithm and potentially produce cost-maps which more

accurately matched reality than traditional approaches.

The TFMin tool presented in Chapter 4 provides a useful framework for developing customised
ML deployment systems. The open source version includes reference Op-Kernels which
implement the most common ML operations, however more efficient algorithms do exist.
Alongside the commercial development being considered by Airbus, the open source CMSIS
NN library released by ARM includes a set of Neural Network (NN) layer implementations
optimised for M series embedded processors. Adding this library to TFMin would result in far
more optimal code for these targets. This would benefit terrestrial ‘Edge-ML’ application as
well as lower cost space missions which use radiation tolerant ARM M series processors from

Vorago Technologies [138], Microchip [108] and others.

A second limitation of this tool is its dependence upon the Tensorflow library, the only importers

currently available are from TF sessions and exported TFL flatbuffers. Much cutting edge ML

6.1. Future Work 153

research today is being done using simpler higher level frameworks such as PyTorch, which
cannot be imported into TFMin at this time. The Open Neural Network Exchange (ONNX)
standard was developed to provide a shared standard for communicating ML. models between
systems and has achieved widespread support among the frameworks used for research today.
Adding an ONNX front end to TFMin would vastly increase its potential user base and impact

within the ML community.

Chapter 5 presented the DMO and Operation-splitting memory optimisation algorithms which
reduce the memory requirement of inference models. As discussed in Section 5.4.3 this
algorithm is not compatible with multi-threaded execution in its current form. Given that all
but the smallest micro-controllers contain more than a single core these days, addressing this

limitation would allow this algorithm to be applied in a wide range of deployments.

154 Chapter 6. Conclusion and Future Work

Appendix A

Detailed Cost-Mapping Model

Descriptions

A.1 Cnn-A Model

’ Layer ‘ Output Size ‘ Data Type ‘ Details
’ Input ‘ [1,2601] ‘ float 32 ‘
Reshape [1, 51,51, 1] float 32
Conv2D [1,49, 49, 7] float 32 Filter shape [3, 3, 1]

Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1, 48, 48, 7] float 32 Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D [1, 46, 46, 7] float 32 Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1,23,23,7] float 32 Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

155

156

Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D

(1,21,21,13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 20, 20, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,18, 18, 13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,9,9,13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,7,7,26]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 3,3, 26]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape

[1,234]

float 32

MatMul

[1,117]

float 32

Weights [234, 117]
Activation fn: Leaky Relu
Bias added.

MatMul

[1,117]

float 32

Weights [117, 117]
Activation fn: Leaky Relu
Bias added.

MatMul

(1, 1]

float 32

Weights [117, 1]
Bias added.

Squeeze

(1]

float 32

Output

(1]

float 32

Table A.1: Detailed description of Cnn-A model.

A.2. Cnn-B Model

157

A.2 Cnn-B Model

Layer |

Output Size

‘ Data Type ‘

Details

o |

[1,2601]

‘ float 32

|

Reshape

[1,51,51,1]

float 32

Conv2D

[1,49, 49, 7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 48,48, 7]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 46, 46, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,23,23,7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,21,21, 13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 20, 20, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 18, 18, 26]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,9,9, 26]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape

[1,2106]

float 32

158 Appendix A. Detailed Cost-Mapping Model Descriptions

MatMul [1, 117] float 32 Weights [2106, 117]
Activation fn: Leaky Relu
Bias added.

MatMul [1, 117] float 32 Weights [117, 117]

Activation fn: Leaky Relu

Bias added.
MatMul [1,1] float 32 Weights [117, 1]
Bias added.
Squeeze [1] float 32
Output [1] float 32

Table A.2: Detailed description of Cnn-B model.

A.3. Cnn-C Model

159

A.3 Cnn-C Model

Layer |

Output Size

‘ Data Type ‘

Details

o |

[1,2601]

‘ float 32

|

Reshape

[1,51,51,1]

float 32

Conv2D

[1, 49, 49, 3]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 48,48, 3]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 46, 46, 7]

float 32

Filter shape [3, 3, 3]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,23,23,7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,21,21, 10]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 20, 20, 10]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 18,18, 13]

float 32

Filter shape [3, 3, 10]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,9,9,13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape

[1, 1053]

float 32

160 Appendix A. Detailed Cost-Mapping Model Descriptions

MatMul [1,59] float 32 Weights [1053, 59]
Activation fn: Leaky Relu
Bias added.

MatMul [1,59] float 32 Weights [59, 59]
Activation fn: Leaky Relu
Bias added.

MatMul [1,1] float 32 Weights [59, 1]
Bias added.

Squeeze [1] float 32

Output [1] float 32

Table A.3: Detailed description of Cnn-C model.

A.4. Cnn-D Model

161

A.4 Cnn-D Model

Layer |

Output Size

Data Type ‘

Details

o |

[1,2601]

float 32

|

Reshape

[1,51,51,1]

float 32

Conv2D

[1, 49, 49, 2]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 48,48, 2]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 46, 46, 2]

float 32

Filter shape [3, 3, 2]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,23,23,2]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,21, 21, 3]

float 32

Filter shape [3, 3, 2]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 20, 20, 3]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 18,18, 10]

float 32

Filter shape [3, 3, 3]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,9,9,10]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape

[1,810]

float 32

162 Appendix A. Detailed Cost-Mapping Model Descriptions

MatMul [1,300] float 32 Weights [810, 300]

Activation fn: Leaky Relu

Bias added.

MatMul [1, 300] float 32 Weights [300, 300]
Activation fn: Leaky Relu
Bias added.

MatMul [1,1] float 32 Weights [300, 1]
Bias added.

Squeeze [1] float 32

Output [1] float 32

Table A.4: Detailed description of Cnn-D model.

A.5. Cnn-E Model

163

A.5 Cnn-E Model

’ Layer

Output Size

Data Type ‘

Details

’ Input

[1,2601]

float 32

|

Reshape

[1,51,51,1]

float 32

Conv2D

[1, 49, 49, 3]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 24,24, 3]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,22,22,5]

float 32

Filter shape [3, 3, 3]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

(1,11, 11, 5]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

(1,9,9,13]

float 32

Filter shape [3, 3, 5]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,4,4,13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape

[1,208]

float 32

MatMul

[1,41]

float 32

Weights [208, 41]
Activation fn: Leaky Relu
Bias added.

MatMul

[1,41]

float 32

Weights [41, 41]
Activation fn: Leaky Relu
Bias added.

MatMul

(L 1]

float 32

Weights [41, 1]
Bias added.

164 Appendix A. Detailed Cost-Mapping Model Descriptions

’ Squeeze ‘ [1] ‘ float 32 ‘ ‘

’ Output ‘ [1] ‘ float 32 ‘ ‘

Table A.5: Detailed description of Cnn-E model.

A.6. EncDec-A Model

165

A.6 EncDec-A Model

’ Layer

Output Size

Data Type ‘

Details

’ Input

[1,3721]

float 32

|

Reshape

[1,61,61,1]

float 32

Conv2D

[1,59, 59, 7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 58,58, 7]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 56, 56, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 28,28, 7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 26, 26, 13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 25,25, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,23,23,13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,11, 11, 13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

166 Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D [1,9,9, 26] float 32 Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1, 4, 4, 26] float 32 Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape [1, 416] float 32

MatMul [1,461] float 32 Weights [416, 461]
Activation fn: Leaky Relu
Bias added.

MatMul [1,468] float 32 Weights [461, 468]
Activation fn: Leaky Relu
Bias added.

Reshape [1,6, 6, 13] float 32

TransposedConv2D [1, 11,11, 1] float 32 Filter shape [6, 6, 13]
Padding: SAME
Stride: [2 2]
Bias added.

Output [1, 11,11, 1] float 32

Table A.6: Detailed description of EncDec-A model.

A.7. EncDec-B Model

167

A.7 EncDec-B Model

’ Layer

Output Size

Data Type ‘

Details

’ Input

[1,5041]

float 32

|

Reshape

[1,71,71, 1]

float 32

Conv2D

[1, 69, 69, 7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 68, 68, 7]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 66, 66, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,33,33,7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,31,31, 13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 30, 30, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 28,28, 13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 14, 14, 13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

168 Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D [1,12, 12, 26] float 32 Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1, 6,6, 26] float 32 Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape [1,936] float 32

MatMul [1,403] float 32 Weights [936, 403]
Activation fn: Leaky Relu
Bias added.

MatMul [1,396] float 32 Weights [403, 396]
Activation fn: Leaky Relu
Bias added.

Reshape [1,6,6,11] float 32
TransposedConv2D [1, 11,11, 13] float 32 Filter shape [6, 6, 11]
Padding: SAME
Stride: [2 2]

Activation fn: Leaky Relu
Bias added.

TransposedConv2D [1,21,21,1] float 32 Filter shape [11, 11, 13]
Padding: SAME
Stride: [2 2]

Bias added.

Output 1,21, 21, 1] float 32
Table A.7: Detailed description of EncDec-B model.

A.8. EncDec-C Model

169

A.8 EncDec-C Model

’ Layer

Output Size

Data Type ‘

Details

’ Input

[1,8281]

float 32

|

Reshape

[1,91,91,1]

float 32

Conv2D

[1, 89, 89, 7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 88, 88, 7]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 86, 86, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,43,43,7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,41,41,13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 40, 40, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 38, 38, 13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 19, 19, 13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

170 Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D 1,17, 17, 26] float 32 Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1, 8, 8, 26] float 32 Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape [1, 1664] float 32
MatMul [1, 346] float 32 Weights [1664, 346]

Activation fn: Leaky Relu
Bias added.
MatMul [1,360] float 32 Weights [346, 360]

Activation fn: Leaky Relu
Bias added.

Reshape [1, 6, 6, 10] float 32

TransposedConv2D [1, 11,11, 13] float 32 Filter shape [6, 6, 10]
Padding: SAME

Stride: [2 2]

Activation fn: Leaky Relu
Bias added.

TransposedConv2D [1,21,21,7] float 32 Filter shape [11, 11, 13]
Padding: SAME

Stride: [2 2]

Activation fn: Leaky Relu
Bias added.

TransposedConv2D [1,41, 41, 1] float 32 Filter shape [21, 21, 7]
Padding: SAME
Stride: [2 2]

Bias added.

Output [1,41,41,1] float 32

Table A.8: Detailed description of EncDec-C model.

A.9. EncDec-D Model

171

A.9 EncDec-D Model

’ Layer

Output Size

Data Type ‘

Details

’ Input

[1,3721]

float 32

|

Reshape

[1,61,61,1]

float 32

Conv2D

[1,59, 59, 7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 58,58, 7]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 56, 56, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 28,28, 7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 26, 26, 13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 25,25, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,23,23,13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,11, 11, 13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

172 Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D [1,9,9, 26] float 32 Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1, 4, 4, 26] float 32 Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape [1, 416] float 32

MatMul [1,202] float 32 Weights [416, 202]
Activation fn: Leaky Relu
Bias added.

MatMul [1, 216] float 32 Weights [202, 216]
Activation fn: Leaky Relu
Bias added.

Reshape 1,6, 6, 6] float 32

TransposedConv2D [1, 11,11, 1] float 32 Filter shape [6, 6, 6]
Padding: SAME
Stride: [2 2]
Bias added.

Output [1, 11,11, 1] float 32

Table A.9: Detailed description of EncDec-D model.

A.10. EncDec-E Model

173

A.10 EncDec-E Model

’ Layer

Output Size

Data Type ‘

Details

’ Input

[1,5041]

float 32

|

Reshape

[1,71,71, 1]

float 32

Conv2D

[1, 69, 69, 7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 68, 68, 7]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 66, 66, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,33,33,7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,31,31, 13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 30, 30, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 28,28, 13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 14, 14, 13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

174 Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D [1,12, 12, 26] float 32 Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1, 6,6, 26] float 32 Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape [1,936] float 32

MatMul [1,202] float 32 Weights [936, 202]
Activation fn: Leaky Relu
Bias added.

MatMul [1, 216] float 32 Weights [202, 216]
Activation fn: Leaky Relu
Bias added.

Reshape 1,6, 6, 6] float 32
TransposedConv2D [1, 11,11, 13] float 32 Filter shape [6, 6, 6]
Padding: SAME
Stride: [2 2]

Activation fn: Leaky Relu
Bias added.

TransposedConv2D [1,21,21,1] float 32 Filter shape [11, 11, 13]
Padding: SAME
Stride: [2 2]

Bias added.

Output 1,21, 21, 1] float 32
Table A.10: Detailed description of EncDec-E model.

A.11. EncDec-F Model

175

A.11 EncDec-F Model

’ Layer

Output Size

Data Type ‘

Details

’ Input

[1,8281]

float 32

|

Reshape

[1,91,91,1]

float 32

Conv2D

[1, 89, 89, 7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 88, 88, 7]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 86, 86, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,43,43,7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,41,41, 13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 40, 40, 13]

float 32

Stride: [1 1]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 38, 38, 13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,19, 19, 13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

176 Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D 1,17, 17, 26] float 32 Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool [1, 8, 8, 26] float 32 Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Reshape [1, 1664] float 32
MatMul [1,202] float 32 Weights [1664, 202]

Activation fn: Leaky Relu
Bias added.

MatMul [1, 216] float 32 Weights [202, 216]
Activation fn: Leaky Relu
Bias added.

Reshape 1,6, 6, 6] float 32

TransposedConv2D [1, 11,11, 13] float 32 Filter shape [6, 6, 6]
Padding: SAME

Stride: [2 2]

Activation fn: Leaky Relu
Bias added.

TransposedConv2D [1,21,21,7] float 32 Filter shape [11, 11, 13]
Padding: SAME

Stride: [2 2]

Activation fn: Leaky Relu
Bias added.

TransposedConv2D [1,41, 41, 1] float 32 Filter shape [21, 21, 7]
Padding: SAME
Stride: [2 2]

Bias added.

Output [1,41,41,1] float 32

Table A.11: Detailed description of EncDec-F model.

A.12. EncDec-X Model

177

A.12 EncDec-X Model

’ Layer

Output Size

‘ Data Type ‘

Details

’ Input

[1,19321]

‘ float 32

|

Reshape

[1, 139,139, 1]

float 32

Conv2D

[1,137,137,7]

float 32

Filter shape [3, 3, 1]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 68, 68, 7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1, 66, 66, 7]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,33,33,7]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,31,31, 13]

float 32

Filter shape [3, 3, 7]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1, 15, 15, 13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

Conv2D

[1,13,13,13]

float 32

Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

MaxPool

[1,6,6,13]

float 32

Stride: [2 2]
Padding: VALID
Kernel size: [2 2]

178 Appendix A. Detailed Cost-Mapping Model Descriptions

Conv2D [1,4,4,26] float 32 Filter shape [3, 3, 13]
Padding: VALID

Stride: [1 1]

Activation fn: Leaky Relu
Bias added.

Reshape [1, 416] float 32

MatMul [1,807] float 32 Weights [416, 807]
Activation fn: Leaky Relu
Bias added.

MatMul [1, 864] float 32 Weights [807, 864]
Activation fn: Leaky Relu
Bias added.

Reshape 1,12, 12, 6] float 32
TransposedConv2D [1, 23,23, 13] float 32 Filter shape [12, 12, 6]
Padding: SAME
Stride: [2 2]

Activation fn: Leaky Relu
Bias added.
TransposedConv2D [1, 45, 45, 13] float 32 Filter shape [23, 23, 13]
Padding: SAME

Stride: [2 2]

Activation fn: Leaky Relu
Bias added.

TransposedConv2D [1, 89, 89, 1] float 32 Filter shape [45, 45, 13]
Padding: SAME
Stride: [2 2]

Bias added.

Output [1, 89, 89, 1] float 32
Table A.12: Detailed description of EncDec-X model.

Appendix B

Memory Optimisation Appendix

B.1 Tensorflow Lite Reference Operations

The following code has been taken from the open-source Tensorflow tool, they are from
commit hash aOc6417 of version 2.1.0. The core DepthwiseConv function is taken from
[lite/kernels/internal/reference/depthwiseconv_float.h]. Supporting structure DepthwiseP-
arams and helper functions MatchingDim, ComputePadding and Offset are taken from

[lite/kernels/internal/types.h] and [lite/kernels/padding.h].

This code can be used to analyse the complete thread of execution that is performed by this

operation.

struct DepthwiseParams {
PaddingType padding_type;
PaddingValues padding_values;
intl6 stride_width;
intl6 stride_height;
intl6 dilation_width_factor;
intl6 dilation_height_factor;
intl6 depth_multiplier;

int32 input_offset;
int32 weights_offset;
int32 output_offset;
int32 output_multiplier;
int output_shift;

int32 quantized_activation_min;

179

https://github.com/tensorflow/tensorflow/commit/a0c64176787c0f6f30390c0a0e54108ba4edbbb2

180

Appendix B. Memory Optimisation Appendix

int32 quantized_activation_max;

float float_activation_min;
float float_activation_max ;

b

inline int MatchingDim(const RuntimeShape& shapel , int indexl ,
const RuntimeShape& shape2, int index2) {
TFLITE_DCHECK_EQ (shapel .Dims(index1), shape2.Dims(index2));
return shapel .Dims(index1);
}

inline int ComputePadding(int stride , int dilation_rate , int in_size ,

int filter_size , int out_size) {

int effective_filter_size = (filter_size — 1) *x dilation_rate + 1;
int padding = ((out_size — 1) * stride +

effective_filter_size — in_size) / 2;

return padding > 0 ? padding : O;

}

inline int Offset(const RuntimeShape& shape, int i0, int il, int i2,

TFLITE_.DCHECK_EQ(shape . DimensionsCount (), 4);

int i3) {

const intx dims_data = reinterpret_cast<const intx>(shape.DimsDataUpTo4D ());

TFLITE_DCHECK (i0 >= 0 && i0 < dims_data[0]);
TFLITE.DCHECK (il >= 0 &% il < dims_data[1]);
TFLITE.DCHECK (i2 >= 0 && i2 < dims_data[2]);
TFLITE_LDCHECK (i3 >= 0 && i3 < dims_data[3]);

return ((i0 % dims_data[l] + il) *x dims_data[2] + i2) % dims_data[3] + i3;

}

inline void DepthwiseConv (
const DepthwiseParams& params, const RuntimeShape& input_shape ,
const floatx input_data, const RuntimeShape& filter_shape ,
const floatx filter_data , const RuntimeShape& bias_shape,
const floatx bias_data, const RuntimeShape& output_shape,
floatx output_data) {
const int stride_width = params.stride_width;
const int stride_height = params. stride_height;
const int dilation_width_factor = params.dilation_width_factor;

const int dilation_height_factor = params. dilation_height_factor;

const int pad_width = params.padding_values.width;

const int pad_height = params.padding_values.height;

const int depth_multiplier = params.depth_multiplier;

const float output_activation_min = params.float_activation_min;
const float output_activation.max = params.float_activation_max;
TFLITE_.DCHECK_EQ (input_shape .DimensionsCount (), 4);
TFLITE_.DCHECK_EQ(filter _shape . DimensionsCount (), 4);
TFLITE_DCHECK_EQ (output_shape .DimensionsCount (), 4);

const int batches = MatchingDim(input_shape , 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape , 3, output_shape,

const int input_height = input_shape.Dims(1);

3);

B.1. Tensorflow Lite Reference Operations 181

const int input_width = input_shape.Dims(2);

const int input_depth = input_shape.Dims(3);

const int filter_height = filter_shape .Dims(1);

const int filter_width = filter_shape .Dims(2);

const int output_height = output_shape.Dims(1);

const int output_width = output_shape.Dims(2);
TFLITE_.DCHECK_EQ(output_depth , input_depth % depth_multiplier);
TFLITE_.DCHECK_EQ(bias_shape . FlatSize (), output_depth);

for (int b = 0; b < batches; ++b) {
for (int out.y = 0; out.y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int ic = 0; ic < input_depth; ++ic) {
for (int m = 0; m < depth_multiplier; m++) {
const int oc = m + ic % depth_multiplier;
const int in_x_origin = (out_.x * stride_width) — pad_width;
const int in_y_origin = (out_.y * stride_height) — pad_height;
float total = 0.f;
for (int filter_y = 0; filter_.y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_.x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_.y =
in_y_origin + dilation_height_factor * filter_y;

if ((in_x >= 0) && (in_x < input_width) && (in_.y >= 0) &&
(in_y < input_height)) {
float input_value =
input_data [Offset(input_shape, b, in.y, in_x, ic)];
float filter_value = filter_data[Offset(
filter_shape , 0, filter_.y , filter_x , oc)];
total += (input_value x filter_value);

}
}
}

float bias_value = 0.0f;
if (bias_data) {
bias_value = bias_data[oc];
}
output_data[Offset(output_shape, b, out.y, out_-x, oc)] =
ActivationFunctionWithMinMax (total + bias_value ,

output_activation_min ,
output_activation_max);

182 Appendix B. Memory Optimisation Appendix

Bibliography

[1]

[8]

[9]

[10]

[11]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Gaisler Aeroflex. Dual-core leon3-ft sparc v8 processor. http://www.gaisler.
com/doc/gr712rc—datasheet .pdf.

Jorg Albertz. Albrecht meydenbauer-pioneer of photogrammetric documentation of the
cultural heritage. International Archives of Photogrammetry Remote Sensing and Spatial
Information Sciences, 34(5/C7):19-25, 2002.

Andrew CM Allen, Christopher Langley, Raja Mukherji, Allen B Taylor, Manickam
Umasuthan, and Timothy D Barfoot. Rendezvous lidar sensor system for terminal
rendezvous, capture, and berthing to the international space station. In Sensors and
Systems for Space Applications II, volume 6958, page 69580S. International Society for
Optics and Photonics, 2008.

ARM. utensor - test release. https://github.com/uTensor/uTensor.

Ateml. 32-bit avr microcontroller. http://wwl.microchip.com/downloads/
en/DeviceDoc/doc32117.pdf.

Atmel. Rad-hard 32 bit sparc v8 processor at697f. http://www.atmel.com/
Images/doc7703.pdf.

TensorFlow Authors. Tensorflow models. https://github.com/tensorflow/
models.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pattern
analysis and machine intelligence, 39(12):2481-2495, 2017.

Ting Bai, Deren Li, Kaimin Sun, Yepei Chen, and Wenzhuo Li. Cloud detection for
high-resolution satellite imagery using machine learning and multi-feature fusion. Remote
Sensing, 8(9):715, 2016.

183

http://www.gaisler.com/doc/gr712rc-datasheet.pdf
http://www.gaisler.com/doc/gr712rc-datasheet.pdf
https://github.com/uTensor/uTensor
http://ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc32117.pdf
http://www.atmel.com/Images/doc7703.pdf
http://www.atmel.com/Images/doc7703.pdf
https://github.com/tensorflow/models
https://github.com/tensorflow/models

184 BIBLIOGRAPHY

[12] Max Bajracharya, Mark W Maimone, and Daniel Helmick. Autonomy for mars rovers:
Past, present, and future. Computer, 41(12):44-50, 2008.

[13] AJ Bakambu, M Nimelman, R Mukherji, and JW Tripp. Compact fast scanning lidar for
planetary rover navigation. In Proceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space (I-SAIRAS), Turin, Italy, pages 4-6, 2012.

[14] David Ball, Ben Upcroft, Gordon Wyeth, Peter Corke, Andrew English, Patrick Ross, Tim
Patten, Robert Fitch, Salah Sukkarieh, and Andrew Bate. Vision-based obstacle detection
and navigation for an agricultural robot. Journal of field robotics, 33(8):1107-1130,
2016.

[15] Shane Barratt. Interpnet: Neural introspection for interpretable deep learning. arXiv
preprint arXiv:1710.09511, 2017.

[16] P Bartram, CP Bridges, D Bowman, and G Shirville. Software defined radio baseband
processing for esa eseo mission. In 2017 IEEE Aerospace Conference, pages 1-9. IEEE,
2017.

[17] Eric R Benton and EV Benton. Space radiation dosimetry in low-earth orbit and beyond.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms, 184(1-2):255-294, 2001.

[18] Richard W Berger, Devin Bayles, Ronald Brown, Scott Doyle, Abbas Kazemzadeh, Ken
Knowles, D Moser, J Rodgers, B Saari, D Stanley, et al. The rad750/sup tm/-a radiation
hardened powerpc/sup tm/processor for high performance spaceborne applications. In
2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), volume 5, pages
2263-2272. IEEE, 2001.

[19] Jo Bermyn. Proba-project for on-board autonomy. Air & Space Europe, 2(1):70-76,
2000.

[20] Kevin Berry, Brian Sutter, Alex May, Ken Williams, Brent W Barbee, Mark Beckman,
and Bobby Williams. Osiris-rex touch-and-go (tag) mission design and analysis. 2013.

[21] Jeftrey J Biesiadecki and Mark W Maimone. The mars exploration rover surface mobility
flight software driving ambition. In 2006 IEEE Aerospace Conference, pages 15—pp.
IEEE, 2006.

[22] P Blacker, CP Bridges, and S Hadfield. Rapid prototyping of deep learning models on
radiation hardened cpus. In 2019 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), pages 25-32. IEEE, 2019.

[23] Pete Blacker. Github repository of the tfmin code generation tool. https://github.
com/PeteBlackerThe3rd/TFMin.

[24] Pete Blacker. Visual memory tracer. https://github.com/
PeteBlackerThe3rd/VisualMemoryTracer.

[25] Harold Borkan. Radiation hardening of cmos technologies-an overview. IEEE Transac-
tions on Nuclear Science, 24(6):2043-2046, 1977.

https://github.com/PeteBlackerThe3rd/TFMin
https://github.com/PeteBlackerThe3rd/TFMin
https://github.com/PeteBlackerThe3rd/VisualMemoryTracer
https://github.com/PeteBlackerThe3rd/VisualMemoryTracer

BIBLIOGRAPHY 185

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

John L Callas, Matthew P Golombek, and Abigail A Fraeman. Mars exploration rover
opportunity end of mission report. Technical report, Pasadena, CA: Jet Propulsion
Laboratory, National Aeronautics and Space , 2019.

Tanner Campbell. A deep learning approach to autonomous relative terrain navigation.
2017.

Joseph Carsten, Arturo Rankin, Dave Ferguson, and Anthony Stentz. Global path
planning on board the mars exploration rovers. In 2007 IEEE Aerospace Conference,
pages 1-11. IEEE, 2007.

Rebecca Castano, Kiri L Wagstaff, Steve Chien, Timothy M Stough, and Benyang Tang.
On-board analysis of uncalibrated data for a spacecraft at mars. In Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 922-930, 2007.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision (ECCV), pages 801-818,
2018.

Xieyuanli Chen, Hui Zhang, Huimin Lu, Junhao Xiao, Qihang Qiu, and Yi Li. Robust
slam system based on monocular vision and lidar for robotic urban search and rescue. In
2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR),
pages 41-47. IEEE, 2017.

Wei-Kai Cheng, Po-Yuan Shen, and Xin-Lun Li. Retention-aware dram auto-refresh
scheme for energy and performance efficiency. Micromachines, 10(9):590, 2019.

Steve Chien, Richard Doyle, Ashley Gerard Davies, Ari Jonsson, and Ralph Lorenz. The
future of ai in space. IEEE Intelligent Systems, 21(4):64-69, 2006.

Valérie Ciarletti, Stephen Clifford, Dirk Plettemeier, Alice Le Gall, Yann Hervé, Sophie
Dorizon, Cathy Quantin-Nataf, Wolf-Stefan Benedix, Susanne Schwenzer, Elena Pet-
tinelli, et al. The wisdom radar: unveiling the subsurface beneath the exomars rover and
identifying the best locations for drilling. Astrobiology, 17(6-7):565-584, 2017.

Dan Ciregan, Ueli Meier, and Jiirgen Schmidhuber. Multi-column deep neural networks
for image classification. In 2012 IEEE conference on computer vision and pattern
recognition, pages 3642-3649. IEEE, 2012.

AJ Coates, Ralf Jaumann, AD Griffiths, CE Leff, Nicole Schmitz, J-L Josset, Gerhard
Paar, Matthew Gunn, Ernst Hauber, Claire Rachel Cousins, et al. The pancam instrument
for the exomars rover. Astrobiology, 17(6-7):511-541, 2017.

Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona
Hayes, and Paul Jeremaes. Object-oriented development: the fusion method. Prentice-
Hall, Inc., 1994.

Torch Contributors. Torchscript. https://pytorch.org/docs/stable/jit.
html.

https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html

186

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Luc Devroye and Paul Kruszewski. A note on the horton-strahler number for random
trees. Information processing letters, 52(3):155-159, 1994,

PE Dodd, MR Shaneyfelt, JR Schwank, and JA Felix. Current and future challenges in
radiation effects on cmos electronics. IEEE Transactions on Nuclear Science, 57(4):1747—
1763, 2010.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning
for multiple language translation. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 1723-1732, 2015.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir
Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning
optical flow with convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pages 2758-2766, 2015.

Paul Drews, Grady Williams, Brian Goldfain, Evangelos A Theodorou, and James M
Rehg. . IEEE Robotics and Automation Letters, 4(2):1564-1571, 2019.

Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46-57, 1989.

Elisabete Fernandes, Pedro Costa, José Lima, and Germano Veiga. Towards an orientation
enhanced astar algorithm for robotic navigation. In 2015 IEEE International Conference
on Industrial Technology (ICIT), pages 3320-3325. IEEE, 2015.

Paolo Ferri and E Sorensen. Automated mission operations for rosetta. In Proceeding
of the Fifth International Symposium on Space Mission Operations and Ground Data
System: SpaceOps, volume 98. Citeseer, 1998.

David Fofi, Tadeusz Sliwa, and Yvon Voisin. A comparative survey on invisible structured
light. In Machine vision applications in industrial inspection XII, volume 5303, pages
90-98. International Society for Optics and Photonics, 2004.

The European Cooperation for Space Standardization. ECSS-E-ST-40C Software Engi-
neering. ESA, 2009.

The European Cooperation for Space Standardization. ECSS-Q-ST-80C Software Product
Assurance. ESA, 2009.

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao.
Deep ordinal regression network for monocular depth estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2002-2011, 2018.

Cobham Gaisler. Gr-cpci-gr740 quad-core leon4ft development board. https://www.
gaisler.com/index.php/products/boards/gr—-cpci—-gr740.

Cobham Gaisler. Gr740 quad-processor leon4ft system-on-chip overview. http://
gaisler.com/doc/gr740/GR740-OVERVIEW. pdf.

https://www.gaisler.com/index.php/products/boards/gr-cpci-gr740
https://www.gaisler.com/index.php/products/boards/gr-cpci-gr740
http://gaisler.com/doc/gr740/GR740-OVERVIEW.pdf
http://gaisler.com/doc/gr740/GR740-OVERVIEW.pdf

BIBLIOGRAPHY 187

[53] Jiri Gaisler and Konrad Eisele. Bcc-bare-c cross-compiler users manual. Aeroflex Gaisler
AB, 2012.

[54] David Gallup, Jan-Michael Frahm, Philippos Mordohai, and Marc Pollefeys. Variable
baseline/resolution stereo. In 2008 IEEE conference on computer vision and pattern
recognition, pages 1-8. IEEE, 2008.

[55] Alan D George and Christopher M Wilson. Onboard processing with hybrid and re-
configurable computing on small satellites. Proceedings of the IEEE, 106(3):458—470,
2018.

[56] Spyros Gidaris and Nikos Komodakis. Detect, replace, refine: Deep structured prediction
for pixel wise labeling. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5248-5257, 2017.

[57] Gaél Guennebaud, Benoit Jacob, et al. Eigen. URI: http://eigen. tuxfamily. org, 2010.
[58] Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

[59] N Haddad, R Brown, T Cronauer, and H Phan. Radiation hardened cots-based 32-bit
microprocessor. In 1999 Fifth European Conference on Radiation and Its Effects on
Components and Systems. RADECS 99 (Cat. No. 99TH8471), pages 593-597. 1EEE,
1999.

[60] Rostam Affendi Hamzah and Haidi Ibrahim. Literature survey on stereo vision disparity
map algorithms. Journal of Sensors, 2016, 2016.

[61] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: efficient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News, 44(3):243-254, 2016.

[62] Brian D Harrington and Chris Voorhees. The challenges of designing the rocker-bogie
suspension for the mars exploration rover. 2004.

[63] Richard D Harris, Steven S McClure, Bernard G Rax, Robin W Evans, and Insoo Jun.
Comparison of tid effects in space-like variable dose rates and constant dose rates. /[EEE
Transactions on Nuclear Science, 55(6):3088-3095, 2008.

[64] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100-107, 1968.

[65] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 784—-800, 2018.

[66] James R Heirtzler. The future of the south atlantic anomaly and implications for radiation
damage in space. Journal of Atmospheric and Solar-Terrestrial Physics, 64(16):1701—
1708, 2002.

[67] Daniel Helmick, Anelia Angelova, and Larry Matthies. Terrain adaptive navigation for
planetary rovers. Journal of Field Robotics, 26(4):391-410, 2009.

188 BIBLIOGRAPHY

[68] Nicholas J Higham. The accuracy of floating point summation. SIAM Journal on Scientific
Computing, 14(4):783-799, 1993.

[69] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: up and running: dive into
the future of infrastructure. > O’Reilly Media, Inc.”, 2017.

[70] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504-507, 2006.

[71] Gerard J Holzmann. The power of 10: Rules for developing safety-critical code. Com-
puter, 39(6):95-99, 2006.

[72] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[73] Thomas M Howard, Arin Morfopoulos, Jack Morrison, Yoshiaki Kuwata, Carlos Vil-
lalpando, Larry Matthies, and Michael McHenry. Enabling continuous planetary rover
navigation through fpga stereo and visual odometry. In 2012 IEEE Aerospace Conference,
pages 1-9. IEEE, 2012.

[74] Renyu Hu, A Anthony Bloom, Peter Gao, Charles E Miller, and Yuk L Yung. Hypotheses
for near-surface exchange of methane on mars. Astrobiology, 16(7):539-550, 2016.

[75] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In Proceedings of the 30th international conference on neural
information processing systems, pages 4114—4122. Citeseer, 2016.

[76] Karl lagnemma, Shinwoo Kang, Hassan Shibly, and Steven Dubowsky. Online terrain
parameter estimation for wheeled mobile robots with application to planetary rovers.
IEEE transactions on robotics, 20(5):921-927, 2004.

[77] Forrest landola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and
Kurt Keutzer. Densenet: Implementing efficient convnet descriptor pyramids. arXiv
preprint arXiv:1404.1869, 2014.

[78] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and;
0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[79] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

[80] Manpreet Kaur Jaswal, Debjyoti Mallik, and Manjit Kaur. Radiation hardened seu
tolerant reed solomon encoder and decoder. In 2016 3rd International Conference on
Signal Processing and Integrated Networks (SPIN), pages 417-420. IEEE, 2016.

[81] IP Karachevtseva, AA Kokhanov, NA Kozlova, and Zh F Rodionova. Cartography of the
soviet lunokhods routes on the moon. In Planetary Cartography and GIS, pages 263-278.
Springer, 2019.

BIBLIOGRAPHY 189

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

P Kidwell. Journey to the moon: the history of the apollo guidance computer. /EEE
Annals of the History of Computing, 21(1):78-79, 1999.

Jong Hwan Ko, Duckhwan Kim, Taesik Na, Jacha Kung, and Saibal Mukhopadhyay.
Adaptive weight compression for memory-efficient neural networks. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017, pages 199-204. IEEE,
2017.

Kurt Konolige, Motilal Agrawal, Robert C Bolles, Cregg Cowan, Martin Fischler, and
Brian Gerkey. Outdoor mapping and navigation using stereo vision. In Experimental
Robotics, pages 179-190. Springer, 2008.

Oleg Korablev, Ann Carine Vandaele, Franck Montmessin, Anna A Fedorova, Alexander
Trokhimovskiy, Francgois Forget, Franck Lefévre, Frank Daerden, Ian R Thomas, Loic
Trompet, et al. No detection of methane on mars from early exomars trace gas orbiter
observations. Nature, 568(7753):517-520, 2019.

Daniel G Kubitschek, Nickolaos Mastrodemos, Robert A Werner, Brian M Kennedy,
Stephen P Synnott, George W Null, Shyam Bhaskaran, Joseph E Riedel, and Andrew T
Vaughan. Deep impact autonomous navigation: the trials of targeting the unknown. 2006.

Fadi J Kurdahi and Alice C Parker. Real: A program for register allocation. In Proceedings
of the 24th ACM/IEEE Design Automation Conference, pages 210-215, 1987.

Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.

David J Lary, Gebreab K Zewdie, Xun Liu, Daji Wu, Estelle Levetin, Rebecca J Allee,
Nabin Malakar, Annette Walker, Hamse Mussa, Antonio Mannino, et al. Machine learning

applications for earth observation. Earth observation open science and innovation, 165,
2018.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime optimization, page 75. IEEE
Computer Society, 2004.

Alexander Lavin. Optimized mission planning for planetary exploration rovers. arXiv
preprint arXiv:1511.00195, 2015.

Chao Li, Yi Yang, Min Feng, Srimat Chakradhar, and Huiyang Zhou. Optimizing memory
efficiency for deep convolutional neural networks on gpus. In SC’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 633-644. IEEE, 2016.

Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan
Catanzaro. Image inpainting for irregular holes using partial convolutions. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 85-100, 2018.

Shusen Liu, Bhavya Kailkhura, Donald Loveland, and Yong Han. Generative counter-
factual introspection for explainable deep learning. arXiv preprint arXiv:1907.03077,
2019.

190

BIBLIOGRAPHY

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]
[103]

[104]

[105]

[106]

Andrea Lodi, Silvano Martello, and Daniele Vigo. Approximation algorithms for the ori-
ented two-dimensional bin packing problem. European Journal of Operational Research,
112(1):158-166, 1999.

David A Lorenz, Ryan Olds, Alexander May, Courtney Mario, Mark E Perry, Eric E
Palmer, and Michael Daly. Lessons learned from osiris-rex autonomous navigation using
natural feature tracking. In 2017 IEEE Aerospace Conference, pages 1-12. IEEE, 2017.

David V Lu, Dave Hershberger, and William D Smart. Layered costmaps for context-
sensitive navigation. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 709-715. IEEE, 2014.

Mark Maimone, Yang Cheng, and Larry Matthies. Two years of visual odometry on the
mars exploration rovers. Journal of Field Robotics, 24(3):169—-186, 2007.

J Maki, D Thiessen, A Pourangi, P Kobzeff, T Litwin, L Scherr, S Elliott, A Dingizian,
and M Maimone. The mars science laboratory engineering cameras. Space science
reviews, 170(1-4):77-93, 2012.

Michal C Malin, Michael A Ravine, Michael A Caplinger, F Tony Ghaemi, Jacob A
Schaffner, Justin N Maki, James F Bell III, James F Cameron, William E Dietrich,
Kenneth S Edgett, et al. The mars science laboratory (msl) mast cameras and descent
imager: investigation and instrument descriptions. Earth and Space Science, 4(8):506—
539, 2017.

Jacob Manning, David Langerman, Barath Ramesh, Evan Gretok, Christopher Wilson,
Alan George, James MacKinnon, and Gary Crum. Machine-learning space applications
on smallsat platforms with tensorflow. In Proceedings of the 32nd Annual AIAA/USU
Conference on Small Satellites, Logan, UT, USA, pages 4-9, 2018.

J Matijevic. Sojourner the mars pathfinder microrover flight experiment. 1997.

S Maurice, RC Wiens, M Saccoccio, B Barraclough, O Gasnault, O Forni, N Mangold,
David Baratoux, S Bender, G Berger, et al. The chemcam instrument suite on the mars
science laboratory (msl) rover: Science objectives and mast unit description. Space
science reviews, 170(1-4):95-166, 2012.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey
Dosovitskiy, and Thomas Brox. A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4040-4048, 2016.

TH McConnochie, JF Bell III, D Savransky, G Mehall, M Caplinger, PR Christensen,
L Cherednik, K Bender, and A Dombovari. Calibration and in-flight performance of the
mars odyssey thermal emission imaging system visible imaging subsystem (themis vis).
Journal of Geophysical Research: Planets, 111(E6), 2006.

Kevin McManamon, Richard Lancaster, and Nuno Silva. Exomars rover vehicle per-
ception system architecture and test results. In Proceedings of the 12th Symposium on
Advanced Space Technologies in Robotics and Automation, Noordwijk, The Netherlands,
pages 15-17, 2013.

BIBLIOGRAPHY 191

[107] Stéphane Michaud, Andreas Gibbesch, Thomas Thiier, Ambroise Krebs, Christopher
Lee, B Despont, Bernd Schéfer, and Richard Slade. Development of the exomars chassis
and locomotion subsystem. In Proc. of The 9th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (iSAIRAS). Eidgendssische Technische
Hochschule Ziirich, Autonomous Systems Lab, 2008.

[108] Microchip. Microchip space solutions. file:///home/user/Downloads/
Space_Solutions_Brochure.pdf.

[109] Gareth Llewellyn Keith Morgan, Jian Guo Liu, and Hongshi Yan. Precise subpixel dis-
parity measurement from very narrow baseline stereo. IEEE Transactions on Geoscience
and Remote Sensing, 48(9):3424-3433, 2010.

[110] Shiva Nejati, Stefano Di Alesio, Mehrdad Sabetzadeh, and Lionel Briand. Modeling and
analysis of cpu usage in safety-critical embedded systems to support stress testing. In
International Conference on Model Driven Engineering Languages and Systems, pages
759-775. Springer, 2012.

[111] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In ACM Sigplan notices, volume 42, pages 89—100. ACM, 2007.

[112] Martha V O’Bryan, Kenneth A LaBel, Ray L Ladbury, Christian Poivey, JW Howard,
Robert A Reed, Scott D Kniffin, Stephen P Buchner, John P Bings, Jeff L Titus, et al. Cur-
rent single event effects and radiation damage results for candidate spacecraft electronics.
In IEEE Radiation Effects Data Workshop, pages 82—105. IEEE, 2002.

[113] Angus Pacala, Tianyue Yu, and Louay Eldada. Cost-effective lidar sensor for multi-signal
detection, weak signal detection and signal disambiguation and method of using same,
July 31 2014. US Patent App. 14/165,566.

[114] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in neural
information processing systems, pages 80268037, 2019.

[115] Mukund R Patel. Spacecraft power systems. CRC press, 2004.
[116] Daniel S Pete W. TinyML. O’Reilly, 2019.

[117] Mihail Pivtoraiko, Thomas M Howard, I Nesnas, and Alonzo Kelly. Field experiments
in rover navigation via model-based trajectory generation and nonholonomic motion
planning in state lattices. In Proceedings of the 9th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space, pages 25-29, 2008.

[118] Vaughan Pratt. Anatomy of the pentium bug. In Colloquium on Trees in Algebra and
Programming, pages 97-107. Springer, 1995.

[119] Arturo Rankin, Mark Maimone, Jeffrey Biesiadecki, Nikunj Patel, Dan Levine, and
Olivier Toupet. Driving curiosity: Mars rover mobility trends during the first seven years.
In 2020 IEEE Aerospace Conference, pages 1-19. IEEE, 2020.

file:///home/user/Downloads/Space_Solutions_Brochure.pdf
file:///home/user/Downloads/Space_Solutions_Brochure.pdf

192 BIBLIOGRAPHY

[120] Patrick Ross, Andrew English, David Ball, Ben Upcroft, and Peter Corke. Online novelty-
based visual obstacle detection for field robotics. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 3935-3940. IEEE, 2015.

[121] Stephane Ruel, Tim Luu, and Andrew Berube. Space shuttle testing of the tridar 3d
rendezvous and docking sensor. Journal of Field robotics, 29(4):535-553, 2012.

[122] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in neural information processing
systems, pages 901-909, 2016.

[123] Arash Sangari and William Sethares. Convergence analysis of two loss functions in
soft-max regression. IEEE Transactions on Signal Processing, 64(5):1280-1288, 2015.

[124] PS Schenker, LF Sword, J Ganino, B Bickler, GS Hickey, and DK Brown. Lightweight
rovers for mars science exploration aqd sample return.

[125] Kimberly J Shillcutt. Solar based navigation for robotic explorers. Carnegie Mellon
University, 2000.

[126] Alex Shum. Optimal direction-dependent path planning for autonomous vehicles. 2014.

[127] Alex Shum, Kirsten Morris, and Amir Khajepour. Direction-dependent optimal path
planning for autonomous vehicles. Robotics and Autonomous Systems, 70:202-214,
2015.

[128] Mel Siegel. The sense-think-act paradigm revisited. In Ist International Workshop on
Robotic Sensing, 2003. ROSE’03., pages 5—pp. IEEE, 2003.

[129] Nuno Silva, Richard Lancaster, and Jim Clemmet. Exomars rover vehicle mobility
functional architecture and key design drivers. In 12th Symp. on Advanced Space
Technologies in Robotics and Automation (ASTRA), 2013.

[130] Doug Sinclair and Jonathan Dyer. Radiation effects and cots parts in smallsats. 2013.

[131] Alberto Stabile, Valentino Liberali, and Cristiano Calligaro. Design of a rad-hard library
of digital cells for space applications. In 2008 15th IEEE International Conference on
Electronics, Circuits and Systems, pages 149-152. IEEE, 2008.

[132] STMicroelectronics. Arm-based 32-bit mcu with 768 kb to 1 mb flash. https://www.
st.com/resource/en/datasheet/cd00253742.pdf.

[133] BAE Systems. Bae systems current processors and single board comput-
ers. https://www.baesystems.com/en-us/download-en-us/
20190124214317/1434554723043.pdf.

[134] BAE Systems. Rad5545 multi-core system-on-chip power architecture processor.
http://www.baesystems.com/en/download-en/20170525130030/
1434571328901 .pdf.

[135] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295-2329,
2017.

https://www.st.com/resource/en/datasheet/cd00253742.pdf
https://www.st.com/resource/en/datasheet/cd00253742.pdf
https://www.baesystems.com/en-us/download-en-us/20190124214317/1434554723043.pdf
https://www.baesystems.com/en-us/download-en-us/20190124214317/1434554723043.pdf
http://www.baesystems.com/en/download-en/20170525130030/1434571328901.pdf
http://www.baesystems.com/en/download-en/20170525130030/1434571328901.pdf

BIBLIOGRAPHY 193

[136] Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-
v4, inception-resnet and the impact of residual connections on learning. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[137] Keras team. Keras applications. https://github.com/keras-team/
keras—applications.

[138] Vorago Technologies. Vorago producs. https://www.voragotech.com/
vorago—-products.

[139] Paul Tompkins, Anthony Stentz, and David Wettergreen. Mission-level path planning and
re-planning for rover exploration. Robotics and Autonomous Systems, 54(2):174—183,
2006.

[140] Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network
compression. arXiv preprint arXiv:1702.04008, 2017.

[141] Jorge Vago, Olivier Witasse, Pietro Baglioni, Albert Haldemann, Giacinto Gianfiglio,
Thierry Blancquaert, Don McCoy, R ExoMars de Groot, et al. Esas next step in mars
exploration. ESA Bulletin Magazine, 155:12-23, 2013.

[142] Jorge L Vago, Frances Westall, Andrew J Coates, Ralf Jaumann, Oleg Korablev, Valérie
Ciarletti, Igor Mitrofanov, Jean-Luc Josset, Maria Cristina De Sanctis, Jean-Pierre Bib-
ring, et al. Habitability on early mars and the search for biosignatures with the exomars
rover. Astrobiology, 17(6-7):471-510, 2017.

[143] Asad Vakil, Jenny Liu, Peter Zulch, Erik Blasch, Robert Ewing, and Jia Li. Feature level
sensor fusion for passive rf and eo information integration. In 2020 IEEE Aerospace
Conference, pages 1-9. IEEE, 2020.

[144] Todd L Veldhuizen. Five compilation models for c++ templates. In First Workshop on
C++ Template Programming. Citeseer, 2000.

[145] Stylianos I Venieris and Christos-Savvas Bouganis. fpgaconvnet: A framework for
mapping convolutional neural networks on fpgas. In 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 40—47.
IEEE, 2016.

[146] Tanya Vladimirova, Xiaofeng Wu, and Christopher P Bridges. Development of a satellite
sensor network for future space missions. In 2008 IEEE Aerospace Conference, pages
1-10. IEEE, 2008.

[147] Dolores R. Wallace and Roger U. Fujii. Software verification and validation: an overview.
leee Software, 6(3):10-17, 1989.

[148] Shiping Wang and Han Wang. Unsupervised feature selection via low-rank approximation
and structure learning. Knowledge-Based Systems, 124:70-79, 2017.

[149] Christopher R Webster, Paul R Mahaffy, Sushil K Atreya, Gregory J Flesch, Michael A
Mischna, Pierre-Yves Meslin, Kenneth A Farley, Pamela G Conrad, Lance E Christensen,
Alexander A Pavlov, et al. Mars methane detection and variability at gale crater. Science,
347(6220):415-417, 2015.

https://github.com/keras-team/keras-applications
https://github.com/keras-team/keras-applications
https://www.voragotech.com/vorago-products
https://www.voragotech.com/vorago-products

194

BIBLIOGRAPHY

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

Minghan Wei and Volkan Isler. Building energy-cost maps from aerial images and ground
robot measurements with semi-supervised deep learning. IEEE Robotics and Automation
Letters, 5(4):5136-5142, 2020.

Nathan Whitehead and Alex Fit-Florea. Precision & performance: Floating point and
ieee 754 compliance for nvidia gpus. rn (A+ B), 21(1):18749-19424, 2011.

B Williams, P Antreasian, E Carranza, C Jackman, J Leonard, D Nelson, B Page,
D Stanbridge, D Wibben, K Williams, et al. Osiris-rex flight dynamics and navigation
design. Space Science Reviews, 214(4):69, 2018.

Matthias Winter, C Barcaly, Vasco Pereira, Richard Lancaster, Marcel Caceres, NB Mc-
Manamon, N Silva, D Lachat, and M Campana. Exomars rover vehicle: detailed
description of the gnc system. ASTRA, 2015.

Matthias Winter, Sergio Rubio, Richard Lancaster, Chris Barclay, Nuno Silva, Ben Nye,
and Leonardo Bora. Detailed description of the high-level autonomy functionalities
developed for the exomars rover. In Proceedings of the 14th Symposium on Advanced
Space Technologies in Robotics and Automation, Leiden, pages 20-22, 2017.

Markus Wulfmeier, Dushyant Rao, and Ingmar Posner. Incorporating human domain
knowledge into large scale cost function learning. arXiv preprint arXiv:1612.04318,
2016.

Markus Wulfmeier, Dushyant Rao, Dominic Zeng Wang, Peter Ondruska, and Ingmar
Posner. Large-scale cost function learning for path planning using deep inverse rein-
forcement learning. The International Journal of Robotics Research, 36(10):1073-1087,
2017.

Xilinx. Zyng-7000 soc product advantages. https://www.xilinx.com/
products/silicon-devices/soc/zyng—-7000.html.

Guanjun Xu and Zhaohui Song. Effects of solar scintillation on deep space communica-
tions: challenges and prediction techniques. IEEE Wireless Communications, 26(2):10-
16, 2019.

Tomohiro Yamaguchi, Takanao Saiki, Satoshi Tanaka, Yuto Takei, Tatsuaki Okada,
Tadateru Takahashi, and Yuichi Tsuda. Hayabusa2-ryugu proximity operation planning
and landing site selection. Acta Astronautica, 151:217-227, 2018.

Congrui Yi and Jian Huang. Semismooth newton coordinate descent algorithm for elastic-
net penalized huber loss regression and quantile regression. Journal of Computational
and Graphical Statistics, 26(3):547-557, 2017.

Jure Zbontar and Yann LeCun. Computing the stereo matching cost with a convolutional
neural network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1592-1599, 2015.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimiz-
ing fpga-based accelerator design for deep convolutional neural networks. In Proceedings
of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays,
pages 161-170, 2015.

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

BIBLIOGRAPHY 195

[163] Kun Zhou, Xiangxi Meng, and Bo Cheng. Review of stereo matching algorithms based
on deep learning. Computational Intelligence and Neuroscience, 2020, 2020.

[164] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization.
arXiv preprint arXiv:1612.01064, 2016.

[165] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697-8710, 2018.

	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Research Motivation
	Research Scope
	PhD Aims and Objectives
	Research Contributions
	Publications and Releases
	Overview of Thesis

	Literature Review
	Introduction
	GNC Architectures
	Limitations of Telecommand
	JPL Rover GNC Architectures
	Archiecture of the Exomars Rosalind Franklin Rover

	Rover Nagivation Sensors
	Steroposis
	Lidar Sensing

	Navigation Cost-map Generation
	Cost-map Generation Techniques

	Machine Learning Onboard Spacecraft
	Software Development and Validation & Verification
	Computational Power Limitations
	Deployment Tools

	Gaps in Knowledge

	Industrial Problem & ML Solution
	Introduction
	Industrial Problem Definition
	Existing Techniques

	ML Model Analysis
	ML Models Evaluated
	Model Evalulation
	Datasets
	Pre-processing and Data Augmentation
	Absolute Elevation Invariance
	hlModel Training
	Initial Inference Timing

	Inference Feasablilty on LEON Processors
	LEON Deployment Using Existing Tools
	Tools Released During this Work

	Results
	Effects of Model Scale
	Costmapping Performance Results
	Comparison of Model Accuracies on Different Terrains

	Summary
	Future Work

	TFMin Tool
	Introduction
	Motivation
	Architecture
	Design Rquirements
	Graph Representation
	Graph Translation Pipeline
	Using Graph-Translators for Introspection
	Tensor Memory Model
	Operation Kernels
	Memory Optimisation

	Analysing Deployed Models
	Memory Requirements Analysis
	Detailed Memory Access Analysis
	Analysing the Output of Generated Implementations

	Use Cases
	Layer Implementation Performance Analysis
	Memory Optimisation
	Computationl Requirements of Cost-Mapping Models

	Summary

	Memory Optimisation
	Introduction
	Problem Definition
	hlEffects on Power and Latency

	Existing Approach to Reducing Peak Memory Use
	Tensor Buffer Reuse

	Novel Techniques for Memory Optimisation
	Operation Splitting
	Diagonal Memory Optimisation
	Calculating the Safe Buffer Overlap

	Results
	Sequential Published Models
	Connected Published Models
	Cost-Mapping Models

	Summary

	Conclusion and Future Work
	Future Work

	Detailed Cost-Mapping Model Descriptions
	Cnn-A Model
	Cnn-B Model
	Cnn-C Model
	Cnn-D Model
	Cnn-E Model
	EncDec-A Model
	EncDec-B Model
	EncDec-C Model
	EncDec-D Model
	EncDec-E Model
	EncDec-F Model
	EncDec-X Model

	Memory Optimisation Appendix
	Tensorflow Lite Reference Operations

	Bibliography

