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Abstract

Feature representations are the backbone of computer vision. They allow us to summarize the
overwhelming amount of visual information and distil it into its core components. Traditionally,
features were hand-crafted to encode patterns that the researcher believed would be useful when
solving a given task. Nowadays, with the advent of deep learning, the features have become part
of the learning process. Unfortunately, most deep learning frameworks assume these features
will be implicitly learnt as a by-product of the training process, resulting in features that only
solve one task and cannot be easily reused. This slows down the development of solutions to
new problems, as features must be re-learnt from scratch.

This thesis revisits the idea of dedicated feature learning as its own independent task in the
age of deep learning. The aim is to learn representations containing useful properties that are
effective across a range of different tasks. We achieve this by bridging the gap between explicit
features used for geometric correspondence estimation and the implicit features used in deep
learning frameworks for depth estimation, semantic segmentation, visual localization and more.

In the field of correspondence estimation, learned feature descriptors have recently started
outperforming their hand-crafted counterparts. We make the observation that these approaches
are simply learning a generic embedding that captures the (dis)similarity between different
points. We argue that this goal is also shared by the implicit feature learning step of nearly all
computer vision algorithms. The first contribution of this thesis proposes a generic dense feature
learning approach based on this observation. We further show how the selection of negatives
used to train the network affects the properties of the learnt features and downstream tasks. To
this end, we introduce the concept of spatial negative mining, where negative samples are drawn
based on their geometric relationship to the original positive correspondence.

As with other feature learning approaches, our first contribution requires pixel-wise ground truth
correspondences—obtained via LiDAR or SfM data—during training. Obtaining this data can be
challenging, especially if the images come from complex cross-seasonal environments with wide
temporal or spatial baselines. The second and third contributions aim to learn features robust
to the drastic changes in appearance caused by challenging weather and seasonal conditions.
To achieve this we developed two self-supervised techniques that do not require ground truth
annotations, but still show the network real-world data. The first achieves this by replacing strong
spatial constraints with a global statistical criterion. This assumes each feature descriptor should
only match well with a single feature in the other image. The third contribution re-incorporates
within-season spatial constraints by simultaneously learning dense monocular depth, visual
odometry and dense feature descriptors in a self-supervised manner.

Whilst the features presented above are generic, they typically need to be finetuned on a task to
maximize their performance. Unfortunately, this process removes their generality. To solve this
we turn to multi-task learning, where the objective is to learn features that perform well on the
given set of training tasks. The final contribution of this thesis shows how spatial attention allows
us to learn a generic feature space from which multiple downstream tasks can select pertinent
features. This allows us to effectively exploit the relationships between multiple tasks and easily
adapt to new ones, resulting in better performance and a significantly reduced resource usage.
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Chapter 1

Introduction

Computer vision is the process by which computers can see and understand the world surround-

ing them. It allows agents to make informed decisions about how to interact with the world and

the consequences of their actions. But how can a computer convert an image, containing millions

of measurements of reflected light intensity at different wavelengths, into useful information?

Traditionally, researchers developed hand-crafted heuristics to detect patterns in the image.

For instance, SIFT [101] characterized each image patch based on its texture by analysing

the distribution of spatial image gradients within it. To perform image classification, the

features detected across the whole dataset were used to create a codebook or Bag-of-Visual-

Words [170]. Based on the distribution of “words” within an image, it was then possible

to train a linear classifier to distinguish the different classes and objects from one another.

Unfortunately, the process of determining what features are relevant to each task is challenging

and requires expert knowledge for each research area. Since the paradigm shift introduced

by deep learning [151, 91, 84] the features have become part of the learning process. Given

the network predictions and ground truth image labels, the error signal is propagated across

all network layers and used to simultaneously update the parameters of both the convolutions

generating the features and the linear layers classifying them. This is known as end-to-end

training, which results in representations which would never have been developed heuristically,

but provide much better performance and generalization capabilities.

Figure 1.1 helps to illustrate the various roles that features can have within a learning pipeline.

Explicit features are those that can be directly applied to solve a target task. In the hand-crafted

1
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Bag of Words Vector Trained Classifier

DOG

CAT

HORSE

DUCK

GLOBAL - EXPLICIT

SIFT Description

LOCAL - IMPLICIT

(a) Hand-crafted Pipeline

DOG

CAT

HORSE

DUCK

GLOBAL - EXPLICIT

ReLU

BatchNorm

Conv

LOCAL - IMPLICIT

(b) Deep Pipeline

Figure 1.1: Hand-crafted vs. Deep Pipelines. Previously, researchers had to decide what features to include in the

pipeline based on the target task. With deep learning, features have become part of the learning process. We also

make a distinction between features explicitly used to accomplish a tasks vs. those used to generate other features.

pipeline previously described, this would correspond to the resulting distribution of visual words

for each image. In deep learning architectures, explicit features tend to appear at the final layer

of the network and conceptually represent the highest level of distillation of the information from

the original image. On the other hand, implicit features are used only by the following stages in

the pipeline to generate new features. Once again, in the previous hand-crafted example this role

falls to the SIFT features, which are used to generate the codebook and final word distributions,

without directly being used by the classifier. It is worth noting that the same features can
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have different roles depending on the target task and the given pipeline. For instance, SIFT

features were used as implicit features in the image classification pipeline, but they can also

be used as explicit features in tasks such as geometric correspondence estimation. Meanwhile,

implicit features are more common in deep learning architectures, which rely on hierarchically

aggregating previous layers and focus on learning features that perform well on only one task.

The explicit features in both traditional and deep pipelines can be further grouped based

on the regions of the image they describe. Global features, such as those in Bag-of-Visual-

Words, aim to summarize the whole image as a single feature vector. As such, they focus

on describing the overall structure and content of the image. This is useful in coarse tasks

such as image classification [84, 177, 29], landmark detection [131, 195], sketch-based image

retrieval [140, 153] and coarse visual localization [5, 7, 155]. Local features, such as SIFT,

instead target only a small patch within the image, providing additional information about the

texture and local structure. These features are therefore more suited to fine-grained and dense

prediction tasks, including object detection [144, 68, 20], semantic segmentation [100, 178],

depth estimation [56, 62] and geometric correspondence estimation [120, 181, 41]. The methods

presented in this thesis will focus exclusively on local features, as most real-world problems

require the high level of detail provided by these features.

One final distinction can be made within local feature representations based on the nature of

the task they are performing. Tasks such as geometric correspondence estimation are relational

tasks. The objective is to capture relationships of similarity and dissimilarity between regions

in different images. As such, a feature embedding space for this task cannot be identified as

discriminative or accurate based on the encoding of a single point. It is only when we attempt

to match features across different images that we can evaluate them. We therefore refer to

these as metric features [32, 162, 127], useful in tasks such as disparity estimation [81, 24],

optical flow [54, 78], Structure from Motion (SfM) [161, 97] or Simultaneous Localization and

Mapping (SLAM) [126, 49, 215]. On the other hand, most computer vision tasks rely solely on

the predictions made for a single image. For example, when evaluating a semantic segmentation

model, the accuracy of one image does not influence the predictions or accuracy of the remaining

images in the dataset. These are therefore absolute tasks, which make use of non-metric features.

In other words, metric feature spaces are generally smooth and should encode a concept of

locality and neighbourhood to support the computation of similarity metrics.
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The difficulty of metric tasks is determined by the visual similarity between (non-)corresponding

patches, as shown in Figure 1.2. If two images were taken only a few seconds apart or from very

close viewpoints, the appearance of matching points will likely not change much. This is known

as narrow baseline matching [40, 54, 78]. Knowing additional geometric constraints, such as the

relative location of the cameras, can further eliminate a large number of points from the search

space [81, 24]. On the other hand, large changes in viewpoint lead to appearance changes due

to perspective transformations, scale changes and occlusions, while temporal changes (winter,

night-time) cause drastic changes due to illumination conditions. This is know as wide baseline

matching [161, 126, 155]. As humans, we are able to easily determine correspondences in these

cases, since we have an intrinsic understanding of light and perspective and how it affects the

world around us. However, it is very challenging to train a computer vision system to also

encode this knowledge.

1.1 Motivation & Objectives

Metric and non-metric features have traditionally been framed as separate research problems.

However, it is logical to theorize that metric features, which are required to be invariant to

viewpoint and illumination changes, could also be applied to other tasks that are nowadays

tackled by non-metric features within a deep neural network. Furthermore, since they are trained

for general correspondence estimation, they should be able to generalize to a wider range of

tasks more easily than single-task non-metric features.

One of the main challenges regarding the training of metric features is the data requirements.

Supervised approaches rely on ground truth pixel-wise correspondences, typically obtained via

Light Detection And Ranging (LiDAR) sensing or SfM reconstructions. These methods are not

always feasible, since they can be expensive or computationally demanding. Furthermore, in

the case of data taken with a wide temporal baseline, it is not always possible to align the data

correctly due to sensor drift and inaccuracies. If the data collected is not accurate, the system

will be trained to predict incorrect correspondences, reducing the accuracy and robustness of the

resulting features.
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Figure 1.2: Challenges in Correspondence Estimation. The top row illustrates the case where images have

a narrow baseline and therefore small changes in appearance. The middle row shows an increasing baseline in

viewpoint, where corresponding patches are related by an affine transform. The bottom row shows a wide temporal

baseline, resulting in large appearance changes due to illumination.
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Meanwhile, self-supervised methods have relied on homographic and photometric augmenta-

tions. Whilst this overcomes the need for accurate ground truth data, it comes at the cost of not

showing the networks real-world variation for viewpoint and lighting changes. Such approaches

can also consist of multiple training and refining cycles, increasing overall training time.

The challenges described above pave the path for the overall aims of this thesis. Namely, these

objectives can be summarized as:

1. To explore deep neural network solutions to dense metric feature learning and correspon-

dence estimation.

2. To reduce the amount of labels required to train these representations whilst still showing

real-world variation.

3. To explore the application of dense metric feature descriptors to a wide range of tradition-

ally descriptive computer vision tasks.

4. To explore the simultaneous optimization of multiple tasks based on shared feature spaces.

1.2 Contributions

Chapter 3 introduces Scale-Adaptive Neural Dense (SAND) features [172], targeting objec-

tives 1 & 3. When training dense feature descriptors, the set of positive examples is fixed, since

each point has only one true correspondence. Meanwhile, there is a much larger pool of negative

examples to choose from. We explore how the feature learning process and the downstream

tasks are influenced by the selection of negative examples. By constraining the selection of

negatives to a limited area around the original correspondence we are capable of training feature

spaces more suitable for correspondence estimation as well as each of the target tasks. We

therefore evaluate SAND on a variety of tasks: semantic segmentation, disparity estimation,

visual localization and SLAM. In this case, semantic segmentation depends on the overall

structure in order to classify each pixel. On the other hand, stereo disparity estimation may

instead benefit from a higher discriminative power at a low level, focusing on the fine-grained

structure and object boundaries.
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Chapter 4 presents Déjà-Vu features [173]. As previously discussed, seasonal robustness is

crucial for real-world feature learning. However, since most available training data consists

of daytime conditions, previous approaches have instead relied on augmentations to introduce

temporal variability. Even if seasonal data exists, it is typically not aligned well enough

to provide pixel-perfect correspondences. We instead propose a weakly-supervised method

for training seasonal features requiring only rough alignment and positioning, addressing

objectives 1 & 2. This is based on the assumption that in each pair of images, each feature in

the first image must match well with only one other feature in the second image. We introduce

this constraint into a triplet loss framework, where positive images are drawn from the same

location at a different season, whereas negatives are drawn from any location and any season.

Despite having only image-level matching labels, we show that it its possible to train dense

feature representations that can still be used for pixel-wise matching.

Chapter 5 presents Depth & Feature Network (DeFeat-Net) [174], a framework for simulta-

neously learning dense features, monocular depth and Visual Odometry (VO). This targets

objectives 1, 2 & 4. Recently there has been an increased interest in monocular depth estimation.

This is an inherently ill-posed problem, since it is geometrically impossible to distinguish

between the scale and depth of an object given a single viewpoint. To humans this seems

like a trivial task since we have priors on the size of certain objects and parallax from motion

and stereo vision. Therefore, in order for a computer vision system to estimate depth from a

single view, it is necessary to jointly learn a surrogate task and make assumptions about the

appearance of the world. Unfortunately, some of these assumptions break down when dealing

with low-light or night-time environments. We make the observation that, since feature descrip-

tors such as those from the previous chapters are typically robust to lighting conditions, they

should be able to overcome the photometric assumptions and provide a more stable supervision

signal. Simultaneously, the predicted depth and motion allows us to obtain pseudo-ground

truth correspondences to train the dense feature representation, further reducing the supervisory

requirements. We show that it is possible to learn dense features, monocular depth and VO

simultaneously in an entirely self-supervised manner without requiring any additional labels.

Finally, objective 4 is addressed in Chapter 6 with Medusa. SAND showed how it is possible to

first train a dense feature learning network suitable for correspondence estimation and apply it

to different downstream tasks. Meanwhile, DeFeat-Net simultaneously learned dense features
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along with two highly correlated surrogate tasks. Medusa takes this as step further and aims

to learn a universal feature space through Multi-Task Learning (MTL), with the objective of

generalizing to a much wider range of tasks. Current approaches to MTL have focused on

modelling task relationships at the decoder level by introducing dense connections between

all possible task heads. Whilst this tends to improves performance, it comes at the cost of a

quadratic parameter complexity. Furthermore, it becomes more challenging to decouple the

different task heads and introduce new tasks without retraining. Medusa instead focuses on

learning a shared feature space that contains useful features for all tasks. This is done via a

combination of multiple spatial attention mechanisms, allowing each of the task heads to extract

only the sub-feature space they require and alleviate negative transfer between tasks. This results

in a lightweight architecture that performs on par with the current MTL State-of-the-Art (SOTA)

on the training task set and provides greatly improved generalization to new unseen tasks.

1.3 Summary

To summarize, the main aim of this thesis is to learn feature spaces that can be applied to a wide

range of computer vision tasks in real-world situations. This includes traditional metric uses

for hand-crafted features (such as geometrical correspondence estimation) and as non-metric

features in deep neural networks (for semantic segmentation, monocular depth, stereo disparity

estimation or pose regression).

To provide context for the contributions of this thesis, Chapter 2 reviews existing related work

done in the areas of correspondence estimation and dense metric feature learning. Chapter 3

focuses on objectives 1 & 3, learning a dense feature representation that can be used in a variety

of hand-crafted and deep learning tasks. Objectives 1 & 2 are further explored in Chapter 4 via

dense feature learning in the context of seasonal robustness and weak supervision. Chapter 5

presents DeFeat-Net, simultaneously learning dense features and monocular depth estimation in

a fully unsupervised pipeline, addressing objectives 1, 2 & 4. Chapter 6 satisfies objective 4,

learning shared features for a much wider range of computer vision tasks. Finally, Chapter 7

summarizes the findings of this thesis and discusses avenues for future work and directions for

the field.



Chapter 2

Literature Review

This chapter will discuss the existing methods related to the topics in this thesis. Namely, feature

detection and description. This includes hand-crafted and deep pipelines, sparse and dense

representations, and joint detection and description. Whilst this provides an overview of the

required knowledge to underpin the thesis, some chapters contain a specialised review of their

relevant topics.

2.1 Feature Detection

This thesis primarily focuses on learning feature descriptions. However, a topic intrinsically

related to it since its inception is that of feature detection. As previously mentioned, images

contain millions of pixels, making it infeasible to run most description algorithms on each

of them. Therefore, the first step in the majority of correspondence estimation pipelines

is to determine the subset of points in the image that are most likely to contain useful and

discriminative information. This is known as interest point or keypoint detection. Unfortunately,

this is a semantically ill-posed problem. Even for humans, it can be complicated to determine

which points will be suitable for tracking. Furthermore, downstream tasks may also have vastly

different requirements. In practice, hand-crafted approaches have focused on detecting the

presence of corners, blobs and regions in the image.

9
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2.1.1 Corner Detectors

Moravec [125] defined interest points as those that are discriminative in their local neighbour-

hood. In practice, this was measured by computing the Sum of Squared Differences (SSD)

between a small window centred around the given point and that window offset by a few pixels

in each of the possible directions (vertical, horizontal & diagonals). The final locations were

given by applying Non-Maxima Suppression (NMS) to the score map for the whole image.

However, taking the interest point as the centre of the window is not always optimal. Förster [55]

proposed a procedure for estimating keypoints with sub-pixel accuracy based on the intersection

of lines tangent to those forming the corner.

These methods were sped up by approximating the SSD over sliding windows with the second

moment matrix computed from the image gradients. The extremely popular Harris detector [65]

showed how the eigenvalues of the matrix contain information about the local patch and can be

used to determine the presence of corners. Namely, it defined the selection criteria based on the

ratio between eigenvalues, given by the determinant and trace of the matrix. The Shi-Tomasi

detector [165] simplified this by thresholding based on the minimum eigenvalue magnitude.

Meanwhile, scale and affine invariance was introduced by Mikolajczyk and Schmid [118]

through the Harris-Laplace and -Affine detectors. Scale invariance was achieved by computing

the Harris response over an image pyramid consisting of progressively more downsampled and

smoothed versions of the image. The corner scale was determined by finding the maxima using

a Laplace operator. Meanwhile, the second moment matrix eigenvalues were used to estimate

an elliptical affine region using the Lindeberg algorithm [96]. The estimated shape was further

used to normalize the detected patch to a circular region.

SUSAN [171] instead considered a circular region around each point. The central point defined

the intensity reference and was used to classify the remaining points as similar or different.

Corners were detected as regions where there is an overall low similarity. FAST [147] greatly

sped this process up by considering only the 16 edge pixels of the circular region. Corners were

detected based on the number of contiguous pixels brighter or darker than the center reference.

As such, points can be quickly rejected by testing the four vertical and horizontal points of

the circle. This work was extended by approaches such as AGAST [110] and BRISK [93]

in the form of adaptive point querying and scale-space selection, respectively. The detection
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component of ORB [148] (oriented-FAST) further incorporated rotation invariance by finding

the “centre of gravity” of the patch. This was based on the fact that the overall intensity is offset

from the centre if the patch represents a corner.

2.1.2 Blob & Region Detectors

Corner locations are typically very well defined. However, their appearance does not vary much

over changing scales. Blob and region detectors can provide complimentary information, given

that their scale is well defined.

In the same vein as the second moment matix, Beaudet [14] showed how the Hessian matrix pro-

vides information about the image structure. Here, local maxima of both trace and determinant

were used to detect blobs in the image. Scale and affine invariant versions were obtained in a

similar manner to the procedure described for the Harris detector [119]. Meanwhile, SURF [13]

drastically sped up computation time by approximating the Hessian matrix using box filters and

integral images [193].

Similarly to image spatial gradients, several works [36, 59, 101, 102] noted that the scale-space

Laplacian operator could instead be approximated by the difference between images of different

scales. This lead to the Difference of Gaussians (DoG) operator by applying increasing levels of

Gaussian blurring to the image. Keypoints were found as local maxima in both location and

scale, and further refined via quadratic interpolation.

IBR [185] aimed to detect arbitrary shapes by casting rays from intensity extrema and analysing

the change in intensity throughout them. The resulting regions could be replaced with an

ellipse with a matching second moment matrix to make these compatible with the detections

from previously described algorithms. Meanwhile, MSER [112] performed interest region

detection by targeting light and dark regions stable over a large range of intensity thresholds.

Parting from intensity extrema, a series of connected components were found by thresholding

at various intensity levels. The final regions were those where the relative change in area over

these thresholds is low. Several extension have been made to improve the efficiency of this

algorithm [43, 130].
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2.1.3 Learnt Detectors

TILDE [192] was one of the first machine learning approaches to tackle keypoint detection, using

piece-wise linear functions to regress keypoint scores given the image intensity and gradients.

Training ground truth was gathered from SfM data across seasons using SIFT keypoints, which

were checked for geometric consistency and propagated to images where they were previously

not detected. As previously discussed, keypoint detection is semantically ill-conceived. As such,

rather than biasing learned approaches to these hand-crafted heuristics, it maybe be beneficial

to let the framework discover by itself what constitutes a good keypoint. One such framework

is DetNet [92], which aimed to regress stable detection anchors by introducing a covariant

constraint. This prediction was done in a dense manner for the whole image, with the final

detections given by a voting process between overlapping regions.

Key.Net [88] made use of hand-crafted filters to provide soft anchors for learned filters. This

included first- and second-order derivatives such as those used by the Harris and Hessian

detectors, respectively. The input was processed as an image pyramid, from which the detections

were upsampled, combined and processed in a final convolution block. To make the learning

end-to-end differentiable, they introduced an Index Proposal layer that computed the expected

keypoint location based on a softmax over a small window. On the other hand, D2D [179] did

not strictly learn keypoint detection, but instead made use of learned deep descriptors in the

describe-then-detect paradigm introduced by [131, 45]. Keypoints were detected based on the

absolute and relative saliency of descriptors in the dense feature map. Absolute saliency was

approximated by the standard deviation of the descriptor, while relative saliency was equivalent

to the Moravec detector [125] computing the L2 distance between descriptors.

Most of the approaches detailed above follow the detect-then-describe paradigm. These detectors

are designed to run on dense input images to produce a sparse set of interest points, which are

then processed to describe their context region. Recently, several authors have begun to propose

the describe-then-detect paradigm, where sparse interest points are extracted from dense feature

maps rather than the input images. We will explore these approaches and their effectiveness in

Section 3.2.1.



2.2. Feature Description 13

2.2 Feature Description

Feature description aims to summarize the information contained in a patch within an image.

This is typically done with the objective of establishing geometric correspondences between

images. The resulting vector must therefore be capable of encoding each point in a unique,

distinctive manner, irrespective of the current lighting and viewpoint conditions. Hand-crafted

approaches traditionally focused on summarizing the textures and spatial gradients within the

patch. To avoid unnecessary computation in textureless regions, these methods were combined

with the interest point detectors described in Section 2.1.

2.2.1 Histogram Descriptors

Schmid and Mohr [159] built an image retrieval system based on descriptors at sparse keypoints.

The images were convolved with increasing Gaussian scales, from which invariants such as

average luminance, gradient magnitude and the Laplacian were computed. These invariants were

stacked to form the final descriptor vector for each point. Approaches that followed typically

relied on summarizing the information contained in an image patch by creating a histogram

from its spatial gradients. Perhaps the most well known of these approaches is SIFT [101, 102].

The descriptor received affine regions detected though DoG and computed their spatial gradient

orientation and magnitude. These gradients were quantized into eight possible orientations,

aggregated into a histogram over a 4× 4 window and concatenated to form the final descriptor.

These descriptors were made more robust to illumination changes by L2 normalizing, clipping

the values and re-normalizing. Meanwhile, matching performance was improved by analysing

the ratio between the first and second closest descriptors to a query point, know as Second

Nearest Neighbour (SNN) matching.

Future work focused on improving either the robustness or the speed of SIFT descriptors. For

instance, Arandjelovic and Zisserman [7] made the observation that there are better ways of

comparing histograms, namely through the Hellinger distance. However, since this metric is

not as well optimized as matrix multiplication, it would be beneficial to instead modify the

descriptors such that the standard L2 distance could be used. This was achieved by L1 nor-

malizing the descriptor and taking its square root, leading to RootSIFT. On the other hand,
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DSP-SIFT [42] improved robustness to scale changes by pooling gradients from multiple scales,

while GLOH [120] used a polar grid with varying radial and angular directions. Fan et al. [50]

noted that the descriptor depends on the orientation estimated by the keypoint, which may be

inaccurate. In order to introduce rotation invariance they proposed to pool the gradients based

on the order of their magnitude, which additionally incorporates information about the patch

structure. In a similar vein, Hassner et al. [67] argue that the keypoint scale selection may

also be flawed and instead represent each keypoint as a set of descriptors from multiple scales.

Since increasing scales contain information from the previous scales, the set representation can

be approximated as a single point, allowing for efficient comparison. Finally, ASIFT [206]

improved robustness by augmenting the patches with multiple affine transforms, which could be

compared using vanilla SIFT and checked for geometric consistency.

In terms of increasing efficiency, CHoG [23] aggregated gradient orientations over more complex

patterns and quantized the resulting histograms to improve their bit-rate. PCA-SIFT [79] instead

concatenated all horizontal and vertical gradients into a 3042-D vector, which is L2 normalized

and reduced to 20-D via Principal Components Analysis (PCA). Similarly to its detector,

SURF [13] approximated the Gaussian derivatives using box filters and integral images, allowing

for an efficient a filter pyramid. KAZE [3] improved scale selection by replacing Gaussian

blurring with non-linear diffusion filtering, which preserved edge structure by adaptively blurring

based on the gradient magnitudes in a small window. Meanwhile, DAISY [183, 184] provided

an efficient SIFT-like descriptor which could be applied in a dense manner. SIFT’s weighted

sum of gradient orientations was replaced with various oriented derivatives of Gaussian filters.

These values were then pooled from overlapping polar regions with increasing scales to form

the final descriptor.

Brown et al. [15] introduced one of the first procedures for automatically learning robust feature

descriptors. They created a network based on various building blocks, including Gaussian

blurring, non-linear transformations, spatial pooling and normalization. The parameters for

these blocks were jointly optimized using Powell’s multi-dimensional set method [139] to

maximise the Receiver Operating Characteristic (ROC) curve performance when classifying

pairs of patches. However, this optimization process is non-convex and can lead to suboptimal

representations. Simonyan et al. [168] instead formulated the learning of pooling regions and

dimensionality reduction as a convex optimization problem. By computing a normalization
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factor based on the statistics of the gradient magnitudes, a non-linear normalization step can be

removed from the pipeline. The gradients within the patch were then aggregated using various

learnt pooling methods and mapped to a lower dimensional space via a learnt projection matrix.

2.2.2 Binary Descriptors

To further improve the efficiency and storage requirements for descriptors, it is possible to

represent a descriptor simply as a short binary string. LDAHash [175] used locality sensitive

hashing to encode SIFT descriptor similarity based on the collision probability of binary codes.

The covariance across classes was maximized by learning a projection matrix using Linear

Discriminant Analysis. The sign of each channel in the mapped descriptor was used to obtain

the final binary string. However, this still required computing the original SIFT descriptor.

Ojala et al. [132] introduced a method for directly computing a binary string from an image patch

based on performing binary comparisons. In a method reminiscent of the SUSAN detector [171],

the centre intensity was used as a reference and compared against all other intensities in the

patch, which were marked as darker or brighter and flattened to form a texture unit. CS-LBP [72]

simplified this by instead taking the sign of the gradient in each of the possible directions. This

drastically reduced the dimensionality required, while improving robustness to noise.

BRIEF [18] expanded on LBP [132] by considering arbitrary comparisons within the patch,

rather that always using the centre point as reference. The comparison kernels were obtained

by randomly sampling with different strategies, such as uniform, Gaussian or polar weighting.

Meanwhile, BRISK [93] performed the binary comparisons in a polar grid with increasing scale.

This grid was rotated according to the gradient orientation around the keypoint to introduce

additional invariance. ORB [148] instead obtained rotation invariance by rotating the BRIEF

grid to match the estimated orientation using the “center of gravity”. This was done efficiently by

discretizing the rotation angle and creating lookup tables. Furthermore, a training procedure was

introduced to increase the overall robustness and reduce the dimensionality. The first dimension

of the descriptor was taken as that with a mean of 0.5 and a large variance, while subsequent

dimensions were chosen in a greedy fashion as those with low correlation w.r.t. the existing

dimensions.

On the other hand, FREAK [1] proposed a human-inspired sampling pattern, arranged in
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a polar grid and more densely sampled near the centre. The descriptor was constructed by

performing comparisons between items with the same Gaussian scale and reduced using the

training procedure introduced by ORB. Finally, A-KAZE [2] sped up the diffusion solution

computation of its counterpart by using Fast Explicit Diffusion. In this case, the descriptor

was obtained by rotating LDB [202] grids based on the estimated orientation and subsampling

within the scale-space.

2.2.3 CNN Descriptors

Instead of hand-crafting the properties we want to encode into the feature descriptor, it is

possible to let a neural network learn the most discriminative encoding for the given image patch.

As with hand-crafted methods, early deep descriptors processed image patches individually,

after the feature detection stage. However, the increased computing power and parallelism

provided by modern GPUs has allowed for efficient architectures that can process all pixels in

the image in a single forward pass. This has led to the emergence of dense feature descriptors.

Sparse. Based on the recent advances in deep learning, Fischer et al. [52] showed how

SIFT descriptors could be replaced with intermediate features from a Convolutional Neural

Network (CNN) trained on ImageNet [39] in both a supervised [84] and unsupervised [44]

manner. Future work focused on learning the similarity function to predict if two patches are

(non-)matching. MatchNet [64] trained this network using a cross-entropy loss based on the

correct classification, while DeepCompare [207] introduced the Centre-Stream network where

the centre and border of patches are processed by separate networks. However, given that these

approaches were primarily learning the matching function, the feature embeddings were not

explicitly optimized. This also meant that matching could only be done by in a pairwise fashion,

which results in a large amount of duplicated computation.

DeepDesc [167] instead optimized the L2 distance between descriptors directly based on a

hinge loss, without the need for a matching network. They made the observation that it is not

feasible to use all possible training pairs and that once most pairs are correctly classified the

network stops learning. To counter this, they proposed a form of hard negative mining where

only the top-k positive and negative pairs with the highest loss were backpropagated. T-Net [85]

made a similar observation and instead countered it by introducing a global loss based on the
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distribution of positive and negative distances. This aimed to minimize the variance within each

distribution and separate their means by at least a target margin. PN-Net [8] and T-Feat [10]

make use of triplet networks, extending hard negative mining by using both possible negative

pairs within a triplet. This introduced the concept of “anchor swapping”, where the smallest of

the negative distances is used in either a softmax ratio [74] or triplet loss.

In order to greatly increase the number of negative examples seen by the network, L2-Net [181]

introduced the concept of pairwise sampling, where only positive pairs are sampled and all other

items in the batch are used as negatives. Their loss was inspired by Nearest Neighbour (NN)

matching, where only the relative distance between pairs is important. This is enforced by taking

the softmax over rows and columns and computing the loss based on the negative log likelihood.

This loss was further applied to the first and last feature maps in the network, along with a

compactness loss to de-correlate descriptor dimensions and prevent overfitting. On the other

hand, HardNet [121] introduced a hard negative mining scheme inspired by the SNN matching

criterion from SIFT. Instead of using the average loss from all negative samples, they claim that

it is more beneficial to use only the hardest negative sample w.r.t. each anchor/positive. This

forms a quadruplet, reduced to a triplet via anchor swapping. AffNet [123] further improved on

this by making the loss constant w.r.t. the hardest sample by setting its gradient to zero. This

favoured the distance between positive examples and helps to avoid local minima in the loss.

Later work focused on improving the descriptors by introducing additional constraints into the

loss. For example, GeoDesc [105] integrated geometric constraints by classifying the hardness

of training pairs based on the affine changes caused by the difference in viewpoint. This

allowed them to sample hard pairs and exclude pairs that would not contribute to the training.

Furthermore, they applied a margin relative to the positive distance rather than a fixed margin,

reminiscent of SNN matching constraints. Other approaches instead focused on good utilization

of the feature embedding space. Zhang et al. [211] introduced a regularization constraint based

on the observation that two points randomly sampled from the unit hypersphere have a high

probability of being orthogonal. SOSNet [182] instead used second-order similarity, stating

that matching pairs of descriptors should also exhibit similar distances to other points in the

embedded space. However, using all possible pairs can lead to worse results due to the fact that

most of them are easily classified. As such, they used k-NN to select only the hardest pairs.

Meanwhile, Tian et al. [180] and Zhang et al. [210] observe that, when using L2 normalized
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descriptors, both cosine similarity and L2 distance losses result only in gradients perpendicular

to the descriptors. To improve convergence speed they introduced regularizations pushing

descriptor magnitudes to be similar to the matching pair or the mean, respectively. HyNet [180]

made the additional observation that the cosine similarity favours positive distances, while

L2 distance favours negative samples. They therefore introduce a hybrid similarity measure to

take this into account.

Dense. All the approaches discussed so far learn representations based on a single image patch.

However, with the use of Fully Convolutional Networks (FCNs) [100] it is possible to efficiently

produce a descriptor for every single pixel in the input image, resulting in dense feature maps.

UCN [33] introduced a pixel-wise version of the contrastive loss [32]. Given a sampled

descriptor in the first image, its nearest neighbour was found in the second image. If this was far

from the ground truth reprojection, it was used as a negative sample. To increase robustness to

affine warps they used Spatial Transformers [76] in a local manner, applying an independent

transform to each point. Schidmt et al. [160] instead made use of KinectFusion [129] and

DynamicFusion [128] models to obtain pixel-wise correspondences that could be propagated

throughout a video.

To make better use of CNN architecture representations, HiLM [51] extracted features from

both shallow and deep layers within the network. Matching is done in a coarse-to-fine manner,

since deeper layers are better for large distance thresholds (i.e. recall), but are not as precise.

The final location was refined by matching shallow features in a 32× 32 window around the

initial estimated location. SDC-Net [163] focused on the network architecture design, increasing

the receptive field by stacking convolutions with increasing levels of dilation. Meanwhile,

CAPS [194] proposed a weakly supervised approach requiring only relative pose between images.

They exploit epipolar geometry and define the base loss as the distance between the matched

point and the epipolar line. Since this is not enough to guarantee accurate correspondences, they

introduced a cycle consistency loss by matching back to the first image.

2.3 Joint Detection & Description

Finally, given the intrinsic relationship between the two tasks discussed in this chapter, it is

natural to attempt to learn them simultaneously. This leads to a simple form of multi-tasking
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where the computation requirements can be shared and reduced. In the context of this thesis,

the primary focus lies on the feature description component of these pipelines. However, it is

necessary to discuss these approaches in full to understand the design choices and losses driving

these algorithms. Furthermore, these provide the baselines against which we will compare our

methods in future chapters.

LIFT [204] learned detection and description in a sequential manner, inspired by independent

blocks for detection [192], orientation [205] and description [167]. Since each block was

optimizing different objectives, these were trained in stages in reverse order. The descriptor

network was trained using ground truth patches extracted from photo-tourism datasets, while

the orientation estimator predicted the orientation that minimized the distance between positive

descriptor pairs. Finally, the detector was trained to produce a keypoint score for every pixel

in a small patch. This was trained by freezing the rest of the pipeline and maximizing the

classification score. LF-Net [133] merged the detection and orientation estimation into a single

network that additionally predicted keypoint scale. These were used to extract patches from

the predicted location and warp them for use in the descriptor network. AffNet [123] instead

used keypoint locations detected by the determinant of the Hessian and predicted their affine

shape parameters. Similarly to [205, 204], these parameters were not directly optimized and

were instead trained in conjunction with the descriptors. The estimated parameters were used to

unwarp the patch using Spatial Transformers, which was forwarded to the descriptor network to

minimize the loss previously described.

SuperPoint [41] introduced the first framework capable of simultaneously predicting keypoint

locations and descriptors in a dense manner. The network was composed of a VGG [169] back-

bone, which split into two heads without deconvolution layers. The detection head represented

the locations as an 8× 8 cell in the original image, from which the exact location was extracted

via softmax. Despite producing both outputs simultaneously, training still had to be done in

multiple stages. The detector was initially trained using a synthetic dataset of shapes with

keypoints labelled at corners, T-junctions, line segment ends, etc. To obtain a pseudo-ground

truth for real images, the detector was applied to multiple versions of the image augmented

with homographies, and aggregated to form a superset of points. SuperPointVO [40] introduced

a reliability head to predict if a point is reliable to track based on its average track length

and reprojection error when performing VO. UnSuperPoint [34] aimed to remove iterative
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training without requiring pseudo-ground truth. This was achieved by introducing a consistency

loss between the predictions generated for the original and augmented images. Furthermore,

keypoints were regressed by predicting a horizontal and vertical offset for each point, allowing

sub-pixel precision.

Similarly to [123, 40], R2D2 [145] argued that repeatability is not sufficient to guarantee that a

point will be matchable. The detector loss attempted to maximise the cosine similarity between

the saliency maps in corresponding patches in pairs of images. Meanwhile, descriptor matching

was framed as a ranking optimization problem using a differentiable version of Average Precision

(AP) [71] and weighted according to the predicted point reliability. NC-Net [146] targeted

matching performance by learning dense correspondences while enforcing local geometric

constraints. This was done by processing the volume of all possible pair similarities in a

4-D CNN. However, since NN matching is non-differentiable, they introduced a soft version

where matches are weighted based on the highest similarity score within each row and column.

Meanwhile, HF-Net [155] introduced a coarse-to-fine localization pipeline by predicting a

global descriptor as well as dense detection and description. To make this mobile compatible,

they opted for multi-task distillation from expert networks [6, 41]. DISK [186] instead trained a

CNN for joint detection and description through reinforcement learning by optimizing for a high

number of correct matches. The detection scores are divided into a grid, from which a single

location was picked by sampling based on the softmax. Similarly, the matching distribution was

given by the pairwise distance between descriptors at the selected keypoints. If both the forward

and reverse matches are sampled, i.e. Mutual Nearest Neighbour (MNN) matching, the pair was

considered a valid match and evaluated according to the ground truth data.

One common aspect of the approaches described in this section and in traditional pipelines

is that the keypoint detections define the locations from which descriptors are extracted. An

alternative option is to use the dense descriptors to define the locations which should be used

as keypoints. This is know as the describe-then-detect paradigm. DELF [131] did this by

pooling dense features with a weighted sum, where the weights were predicted by an attention

network. However, since their target application is global image retrieval, the loss was based on

the correct classification of the landmark represented by the image. As such, the descriptors

were not explicitly optimized for correspondence estimation. D2-Net [45] instead detected

keypoints based on the local maxima within the spatial response of each of the descriptor’s



2.4. Summary 21

channels. During training this was softened by describing each point as the ratio to the channel

with the highest score. This allowed for a loss that jointly optimized detection and description,

weighted by the detection scores at each pixel. ASLFeat [106] expanded on this by introducing

deformable convolutions constrained to affine warps. They further proposed a multi-level

detection pyramid, where the D2-Net detection procedure was additionally applied to shallower

feature maps. Finally, UR2KiD [201] jointly learned global descriptors with dense keypoints

and descriptors while using only image-level correspondences. The dense descriptors were

trained by taking the pairwise similarity and finding the maximum over rows and columns. The

final loss was a triplet loss based on the average similarity scores between pairs of images.

2.4 Summary

This chapter has introduced a wide variety of existing approaches to both feature detection and

description. While hand-crafted descriptors still provide good baselines for correspondence esti-

mation tasks, the field has recently been dominated by learning based approaches. Furthermore,

learning both components of the pipeline simultaneously has led to more efficient approaches

where the network can jointly reason about what an interest point is and how to best describe it.

However, none of the approaches described have attempted to use the learnt features outside

of geometric correspondence estimation. Even the dense feature learning approaches are still

primarily used only in sparse downstream tasks. We aim to bridge the gap between metric

and non-metric features, applying the learnt dense features to tasks such as depth/disparity

estimation and semantic segmentation. Furthermore, we also address the existing heavy bias

towards ideal sunny daytime conditions in current computer vision approaches. By introducing

dense feature descriptors, we are capable of improving the robustness to low-light conditions

and overcome some of the assumptions made to train these algorithms.
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Chapter 3

Scale-Adaptive Neural Dense Features

The methods reviewed in the previous chapter provide feature representations that are suitable

for geometric correspondence estimation. Hand-crafted approaches typically summarize the

texture and spatial gradients within the given image patch. Meanwhile, deep learning approaches

learn an abstract representation encoding whether two pixels are likely to correspond to the

same point. Despite being generic representations, these features have been exclusively used to

establish correspondences. We argue that such representations should also be applicable to a

wider range of computer vision problems, i.e. both metric and non-metric tasks.

As a solution to this, we present SAND [172] features. In the context of this thesis, this tackles

objectives 1 & 3. The main objective is to learn a dense feature representation capable of

estimating geometric correspondences, as well as supporting a wide range of computer vision

tasks. Designing such a system is highly challenging due to the fact that different tasks may

require very different properties from a features representation. For instance, tasks such as

optical flow, object tracking or VO may favour locally unique features, since they tend to require

iterative processes over narrow spatio-temporal baselines. On the other hand, SLAM and visual

localization require globally consistent features, since these are matched over much wider

baselines with large viewpoint or seasonal appearance changes. Similarly, segmentation focuses

on the overall classification for each pixel in the image, without making a distinction between

different instances within that class.

Tasks currently performed using end-to-end deep learning, such as optical flow or semantic

segmentation, assume the required features are implicitly learnt by the network. As a result,

23
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(a) Image Pair (b) Global Features (c) Local Features

Figure 3.1: Dense Features Produced by SAND. By drawing negatives from different scales we train dense

features with different properties for each task. Furthermore, we show how we can combine and train multiple scales

to improve performance.

these features become specific to each task and may be challenging to reuse in other systems.

Furthermore, they are not suitable for correspondence estimation or tasks such as localization

and VO. We instead frame the problem as a two step process, where a collection of generic

feature descriptors with various properties are pre-trained and then adapted to various geometric

and non-geometric problems. The initial feature training makes use of large-scale SfM [95] or

driving [60] data to learn representations capable of estimating correspondences. Many current

feature learning approaches target negative pairs that are challenging for the network. We instead

introduce constraints based on the geometric relationship between positive and negative pairs.

We show how targeting specific regions around the original correspondence leads to different

behaviour and how these regions can be combined into a more robust multi-scale representation.

The learnt features are then applied to different downstream tasks. In the case of disparity

estimation and semantic segmentation, the encoder portion of the network is replaced with the

learnt SAND features. From this, a matching cost volume is built and further processed in a

3-D stacked hourglass network. Visual localization is instead performed by directly replacing

the input image to the network with its dense feature counterpart. Finally, SLAM requires no

additional training and SAND can instead simply replace existing sparse feature descriptors.
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Image Pair

SAND

SfM Data
Positive Correspondences Spatial Negatives

Relational LossDense Features

Figure 3.2: Proposed SAND Overview. From large-scale SfM data we obtain ground truth correspondences to

train dense features. We propose a spatial negative mining scheme that can be combined with any given relational

embedding loss to train features to be unique within the chosen scale.

3.1 Methodology

In this section we describe the details of the proposed framework, shown in Figure 3.1. Once

again, the objective is to learn a high-dimensional descriptor for each pixel in the input image.

These descriptors should contain information useful across a range of tasks. To achieve this, a set

of ground truth correspondences between pairs of images is provided via SfM reconstructions.

We sample negative pairs based on the spatial negative mining scheme outlined in Section 3.1.3.

In Section 3.1.4 we further show how to combine multiple mining strategies to simultaneously

train dense descriptors containing a wide range of desirable properties.

3.1.1 Network

Contrary to approaches learning feature descriptors from image patches [8, 181, 121, 105, 182,

180], our objective is to produce a feature descriptor for every single pixel in the input image

in a single forward pass [33, 160, 41, 45, 194]. To allow for an arbitrary input image size we

opt for an encoder-decoder FCN [100] architecture. The encoder provides the initial feature

extraction, defined as

E = Φenc
F (I) , (3.1)
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where I is the input image, Φenc
F the encoder portion of the feature network and E the set of

features from each encoder block. The encoder is typically formed by five downsampling stages,

using building blocks such as ResNet [70], VGG [169] or MobileNet-v2 [154]. The final stage

of the encoder can be replaced with a Spatial Pooling Pyramid (SPP) block [69] to incorporate

features from multiple scales.

This is followed by a custom dense decoder with convolutional blocks that upsample the encoder

representation. Skip connections are included between corresponding sized layers to combine

deeper decoder features with early low-level features suitable for dense predictions. This is

given by

F = Φdec
F (E) , (3.2)

with F as the final dense feature representation. As such, the feature network provides a

mapping ΦF : Nh×w×3 7→ Rh/f×w/f×ndim , where ndim is the desired descriptor dimensionality.

In practice, the final representation is downsampled by a factor f to reduce the memory

requirements and improve the global consistency of the feature maps.

3.1.2 Losses

Feature description is a metric task, where the system can only be evaluated using the relationship

between different images and points in the dataset. Furthermore, since the objective is to learn

the feature representation, there are no ground truth embeddings for use during training. The

only ground truth available is the pairs of samples that should have a similar representation.

Unfortunately, we cannot rely on a simple attractive loss, such as L2 distance, due to the degen-

erate solution where every point has a constant embedding. We therefore need to incorporate the

concept of negative samples, i.e. those that should be distant from each other in embedding space.

As such, these losses are known as relational losses. SAND can be trained with any relational

loss, but in this work we will focus on the Pixel-wise Contrastive (PixCon) and Normalized

Temperature-scaled Cross-entropy (NT-Xent) losses.

PixCon is an adaptation of a well established contrastive learning loss [32, 33, 160] for dense

pixel-wise problems. Given a pair of 2-D points p1 & p2 from two different images I1 & I2,
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this loss is defined as

ℓcon (y,p1,p2) =


∥f1−f2∥22 if y = 1

+(m− ∥f1−f2∥2)2 if y = 0

0 otherwise

, (3.3)

where y is the label indicating if the pair is (non-)matching, m is the margin, f = F ⟨p⟩ is a

feature descriptor bilinearly sampled from the dense feature map, ∥f1−f2∥2 is the L2 distance

and +(a) ≡ max (0, a), i.e. the positive clipping function. Intuitively, the objective of this loss

is to minimize the distance between matching descriptors, while separating non-matching pairs

by at least a target margin m.

To extend this loss to a dense scenario, it is necessary to create a dense label map Y describing

the relationship between each possible pair of pixels. The loss can then be aggregated over all

pairs through

Lcon (Y,F1,F2) =
∑
p1

∑
p2

ℓcon (Y (p1,p2) ,p1,p2) , (3.4)

where
∑N

i=0
i ≡ 1

N

∑N
i=0 i represents the average summation.

As has been pointed out by previous works [167, 85, 121], it is infeasible to use all available

negative examples due to computational requirements. Furthermore, if most examples are

already correctly classified, the network will not learn effectively. NT-Xent [197, 188, 29] aims

to solve this by framing the learning of a feature embedding as a classification problem. The

classification prediction is obtained based on the softmax over the distance between one point

and all available pairs in the second image. The loss is therefore defined as

ℓxent (Y,p1,F2) =

∑
p2

JY (p1,p2) = 1K exp
(

f⊤1 f2
∥f1∥ ∥f2∥

1

τ

)
∑
p2

JY (p1,p2) ∈ {0, 1}K exp
(

f⊤1 f2
∥f1∥ ∥f2∥

1

τ

) , (3.5)

where JK represents the Iverson bracket, τ is the softmax temperature and a⊤b
∥a∥∥b∥ is the cosine

similarity between descriptors. Note that, since there is only ever one positive correspondence

per point, the condition Y (p1,p2) = 1 is only met once. This loss is advantageous because

each negative sample is automatically weighted according to its difficulty w.r.t. the positive pair.

Furthermore, this encourages a uniform separation between all negative pairs, leading to a well
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distributed embedding space. Once again, this loss can be extended to instead account for two

dense feature descriptor maps through

Lxent (Y,F1,F2) =
∑
p1

ℓxent (Y,p1,F2) . (3.6)

3.1.3 Spatial Negative Mining

The losses discussed in the previous section require ground truth positive and negative descriptor

pairs. This ground truth can be obtained from multiple sources, including optical flow [33, 163],

homographic augmentations [41, 34] or SfM reconstructions [15, 181, 45]. Despite being easier

to obtain, optical flow data is usually restricted to narrow baselines without large viewpoint

changes. Similarly, synthetic homography augmentations do not show the network real world

viewpoint variation, which can result in lower robustness upon deployment. We therefore opt

for real world correspondences obtained via SfM reconstructions.

In this case, given the 2-D point in the image p, its 3-D position in the world q is obtained via

q = π−1 (p|P,K,D) = P−1 K−1 ṗ D ⟨p⟩ , (3.7)

where π−1 is the backprojection function, K are the camera’s intrinsic parameters, P are the

camera’s extrinsic parameters (i.e. its pose in the world), D a dense depth map and ṗ is the

homogenous version of p. This point can then be projected onto any of the other available

images through

p = π (q|K,P) = K P q̇. (3.8)

Any point can therefore be reprojected onto a different image by combining both functions as

ṗ′ = Π
(
p
∣∣K′,P′,P,K,D

)
= K′ P′ P−1 K−1 ṗ D ⟨p⟩ . (3.9)

In the naı̈ve case, the label map Y containing the pairs used for training could simply be defined

as Y (p1,p2) = JΠ(p1|K2,P2,P1,K1,D1) = p2K . While the set of positive examples is

limited by the number of available SfM correspondences, these can be combined into an almost

infinite amount of negative pairs. The simplest solution to make this tractable would be to

uniformly sample a fixed number of negatives for each positive pair [160]. Another option

is to instead sample only positive pairs and use the remaining samples in a training batch as
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Figure 3.3: Spatial Negative Mining. Given the set of original image locations used as positive correspondences

(red), we visualize the potential negative candidates for each of those points. Yellow lines represent negatives chosen

when using a Global scheme (κmin = 50, κmax = ∞), whereas blue is the Local scheme (κmin = 1, κmax = 50).

the negatives w.r.t. each other [181]. This leads to an effective way of scaling the number of

negative samples, providing a NN-style loss where only the relative distance between pairs is

important. Recent approaches [121, 105, 45] have additionally focused on selecting examples

that are challenging for the network, i.e. hard negatives.

However, when applying feature descriptors to non-metric tasks, hard negative mining does

not always reflect the requirements of these tasks. For instance, narrow baseline problems that

depend on the find-grained representations do not need to be robust to changes in distant regions

of the image. Furthermore, repeating patterns or untextured regions could lead to the training set

being dominated by trivial negative examples that are impossible to distinguish from each other.

We therefore instead select negative samples based on their geometric relationship w.r.t. the

positive example. We refer to this strategy as spatial negative mining. This allows us to introduce

invariance into the features based on the desired spatial properties in the downstream tasks.
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We formalize this as

Y (p1,p2) =


1 if Π(p1|K2,P2,P1,K1,D1) = p2

0 if κmin < ∥Π(p1|K2,P2,P1,K1,D1) −p2∥2 < κmax

−1 otherwise

, (3.10)

where κmin and κmax represent the minimum and maximum distance thresholds, respectively.

As shown in Figure 3.3, this means that we are restricting negative samples to belong to a certain

circular region around the original ground truth correspondence. This defines the context region

in which we expect that descriptor to be unique in.

As has been discussed, narrow baseline matching requires locally discriminative features. Distant

regions do not need to be unique, as long a fine details cause a response change in the embedding

space. To encourage this, we can sample exclusively from a small neighbourhood by setting

a small value for κmin and κmax . Globally consistent features can instead be obtained by

excluding the immediate neighbourhood and sampling from all distant regions in the image.

3.1.4 Hierarchical Context Aggregation

Complex tasks may require more than one set of properties from its features. For instance,

SLAM performs both narrow (VO) and wide (localization) baseline matching. As such, features

that only satisfy one of these properties will still lead to non-optimal results. To benefit from

multiple spatial negative mining strategies simultaneously, the dense feature descriptor can

be split into multiple “sub-descriptors” as fi = f
([

(i−1) ndimNhca
.. indimNhca

])
, where Nhca is the

number of spatial negative mining strategies and [a .. b] represents slicing across the given

channels. Each of these sub-descriptors can be provided with samples from different spatial

negative scales, as illustrated in Figure 3.4

Using a a slight abuse of notation, we can redefine the final dense losses to be

Lcon (Y,F1,F2) =

Nhca∑
i=1

Lcon

(
Yi,Fi

1,F
i
2

)
, (3.11)

Lxent (Y,F1,F2) =

Nhca∑
i=1

Lxent

(
Yi,Fi

1,F
i
2

)
. (3.12)
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Figure 3.4: Hierarchical Context Aggregation. Given a dense feature map, it can be split in multiple sections.

Each of these is trained with a different set of negatives and scales. As a result, these features combine information

and properties from all these scales.

Here each set of labels Yi is generated using different spatial negative mining thresholds, as

described in Section 3.1.3. In this work we consider three mining scales: Global (κmin =

50, κmax = ∞), Local (κmin = 1, κmax = 50) and the hierarchical combination of both (GL).

These values were chosen empirically to provide balanced results, as discussed further on in

Section 3.2.2.

3.2 Feature Descriptor Evaluation

Training & implementation details. We train SAND using 116 scenes from the MegaDepth

dataset [95]. When selecting images as training pairs we enforce an overlap between image pairs

in the range [0.2, 0.8] with no restrictions in scale change. The number of training samples is

balanced by sampling 200 images per scene. For each image pair, ground truth correspondences

are obtained by reprojecting the depth maps per (3.9) and applying z-buffering. From these, 2000

different correspondences are sampled from each image pair. The images are cropped around

these correspondences and resized. This leads to a total of 44.6M positive pixel correspondences

for training. This is then expanded by randomly applying photometric augmentations (colour

jitter, blur, grayscale) to both images and homographic augmentations to the second image.

Models are trained for 10 epochs using Stochastic Gradient Descent (SGD), with base learning
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Figure 3.5: HPatches Image Matching Evaluation. We evaluate Mean Matching Accuracy when reprojecting

predicted matches using different correctness thresholds. The proposed SAND features are robust to illumination

changes, outperforming most approaches after 6 px. Training data, however, restricts viewpoint invariance.

rate 10−3, a momentum of 0.9 and 10−5 weight decay. We find VGG [169] pretrained on

ImageNet [39] to perform best, with descriptor dimensionality ndim = 128 and a downsampling

factor f = 8. As is common practice, descriptors are L2 normalized during both training and

evaluation. PixCon typically uses a margin m = 0.5 and NT-Xent a temperature τ = 0.1.

Finally, we use the spatial negative mining strategies G, L & GL as defined previously.

3.2.1 Image Matching

We first perform a feature centric evaluation to determine the quality of the learnt representations.

This focuses on matching uniqueness across lighting and viewpoint changes, specifically in

the task of correspondence estimation. To do this, we follow the procedure from D2-Net [45]

by evaluating Mean Matching Accuracy (MMA) on the HPatches dataset [9]. The dataset

consists of multiple sequences with either viewpoint or illumination changes, where the features

detected in the first image are progressively matched to each frame in the sequence. The MMA

is computed as the percentage of correct matches given a varying threshold for the reprojection

error for each keypoint. Since SAND does not provide keypoints, we make use of those detected

by SuperPoint [41].

As seen in Figure 3.5, the proposed features are robust to illumination changes, outperforming

most other approaches after the 6 pixel mark. Unfortunately, due to the lack of extreme viewpoint
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Figure 3.6: HPatches Keypoint Ablation. We combine SAND with various keypoint detectors and show the

impact on the performance. Learned detectors (SuperPoint, Key.Net) outperform hand-crafted (HesAff) and

describe-then-detect (D2-Net, D2D) detectors. SAND + D2-Net* represents the case where we apply the D2-Net

algorithm to the learnt SAND features.

Table 3.1: HPatches Keypoint Ablation. We report the average number of matches obtained per Illumina-

tion/Viewpoint sequence in Figure 3.6. Key.Net produces less matches than SuperPoint, but has a similar performance.

On the other hand, D2-Net produces a much larger number of matches, but they tend to be less accurate.

Illumination Viewpoint

SAND + HesAff [118] 1609.55 2987.45

SAND + SuperPoint [41] 703.70 1093.32

SAND + Key.Net [88] 619.09 482.60

SAND + D2-Net [45] 2429.36 3793.72

SAND + D2-Net* [45] 1348.43 1873.15

SAND + D2D [179] 272.04 458.28

changes in the training dataset, SAND is not as robust to viewpoint variation. It is also worth

noting that this evaluation is carried out using MNN. In practice, downstream tasks such as

those in Section 3.3.4 can use more advanced matching [122, 156] or outlier rejection [53, 12]

schemes to filter out many of the incorrectly predicted matches.

Keypoint Ablation. Here we combine SAND with various keypoint detection algorithms. As
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shown by the results in Figure 3.6, the choice of keypoint has a great impact on the final

performance. SuperPoint [41] and Key.Net [88] provide the best MMA, especially at lower

reprojection error thresholds. However, as shown by Table 3.1, Key.Net produces a lower

number of matches.

We also explore various describe-then-detect approaches. In the case of D2-Net [45], we

show two variants. The first (SAND + D2-Net) uses the keypoints detected by the trained

features from D2-Net. The second (SAND + D2-Net*) instead applies the fixed detection

algorithm proposed by D2-Net to the trained SAND features. We also use D2D [179] based

on the absolute and relative metrics of saliency for each descriptor. In all cases, we find

these approaches underperform traditional keypoint detection methods. This is partially due

to the fact that describe-then-detect approaches operate on the downsampled feature maps,

resulting in keypoints that are not accurately localised. As shown by the drop in performance

in SAND + D2-Net*, training the features along with the keypoint detection is also likely to

provide more stable keypoints that improve performance.

3.2.2 Ablation Study

To validate our choice of parameters we show an ablation study performed on the Kitti Odom-

etry [60] dataset. In this case, correspondences are obtained via ground truth LiDAR and

odometry data. We use sequence 00 for training and 03 for evaluation. Similarly to the previous

section, we evaluate performance through the MMA at varying thresholds.

Losses. We first explore two different negative sampling strategies: sample and pairwise.

Sample is akin to the strategy from [160], where each positive correspondence samples a fixed

number of new random negative points. This allows sampling from regions regions of the image

without ground truth LiDAR data. However, it leads to a large increase in memory requirements.

The pairwise sampling strategy instead resembles that used by [181, 121]. In this case, only

positive pairs are sampled and the remaining pairs in the image are used to generate the negative

pairs. This provides an effective way of scaling the number of negatives as
(
N
2

)
. We evaluate

both sampling modes with both losses introduced in Section 3.1.2, PixCon and NT-Xent. As

shown in Figure 3.7a, the Pairwise-NT-Xent combination performs best, since it provides an

effective way of both sampling and weighting negative pairs.
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(a) (b)

(c) (d) (e)

Figure 3.7: Kitti Ablation Study. We study the components of the proposed approach, namely losses, architecture,

feature dimensionality and feature resolution. Interestingly, we find feature resolution to be the component that most

affects performance. The proposed loss and negative training method also provide a large boost in performance.

Architecture. Regarding the feature network architecture, we test encoders corresponding to

ResNet [70], VGG [169] and MobileNet-v2 [154]. We optionally make use of ImageNet [39]

pretrained models (PT). Figure 3.7b shows the results of these tests. As expected, increasing the

network size typically results in improved performance. However, ImageNet pretraining leads

to mixed results, with ResNet models performing significantly worse than their counterparts

trained from scratch.

Descriptor dimensionality. When increasing the dimensionality of the learned descriptor, we

notice a large performance gap at the lower levels. However, Figure 3.7c suggests that this effect

seems to plateau rather rapidly as the dimensionality increases.
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Dense descriptor resolution. This controls the downsampling factor of the output dense

descriptor maps w.r.t. the input image. The results can be found in Figure 3.7d. Surprisingly,

this is the factor that contributes most to the performance of the descriptors. Furthermore,

performance is improved at increased levels of downsampling. These versions tend to produce a

slightly lower number of matches, but of better quality. As shown in [117], larger downsampling

factors lead to an improved global consistency due to the overall increased receptive field, in

exchange for a loss of finer detail. In the context of correspondence estimation, we theorize

that as long as the keypoints are in the correct location, the global consistency has sufficient

discriminative power.

Spatial negative scale. Here we regulate the scale used to select negative samples for each point.

The results in Figure 3.7e use two different configurations: Global and Local. In the Global

case, we are setting the minimum distance κmin from the original correspondence, whereas

Local defines the maximum distance κmax . It is worth noting that neighbouring pixels have

highly overlapping context regions due to the receptive field of the network. This can lead to

very similar descriptors that are hard to differentiate. As such, when using Local strategies it is

important to select large enough thresholds that account for this. However, we find that Global

strategies tend to perform better in the task of correspondence estimation. We believe this is due

to the fact that this strategy provides a broader context to the features that allows them to be

more discriminative when matching points across the whole image.

3.3 Downstream Tasks

The original motivation for SAND was to develop generic deep features useful in a wide range

of tasks. The previous evaluation focused on correspondence estimation, whereas now we will

directly evaluate SAND features across a range of different tasks without additional training at

the feature level. We further show how the different spatial negative mining schemes can be

leveraged by different tasks.

The target tasks are chosen to cover many common computer vision applications, namely

disparity estimation, semantic segmentation, visual localization and SLAM. Disparity estimation

and semantic segmentation represent classic deep learning tasks, where we replace intermediate
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deep features, process them in a feature matching cost volume and produce a dense regression

or classification, respectively. Visual localization is performed in an end-to-end manner by

replacing the input image to a network with its dense feature representation. In this case, the

objective is to regress holistic translation and rotation. Finally, SLAM is another classic use of

correspondence estimation, where we directly replace sparse hand-crafted features.

It is worth noting that once again the evaluation for these tasks takes place on a completely

different dataset to that used during training. Visual localization is performed on the Cambridge

Landmarks dataset [80], while the rest make use of the various Kitti [60] subsets.

In the following sections we show results corresponding to two different variants. The original

models published in SAND-v1 [172] correspond to models trained using ResNet-18 with an SPP,

ndim = 32, f = 1 and the PixCon loss. Meanwhile, the updated version SAND-v2 is trained

with VGG-19, ndim = 128, f = 8 and NT-Xent.

3.3.1 Feature Matching Cost Volume

Inspired by [24], disparity estimation and semantic segmentation uses a cost volume V to

combine the dense features from stereo pairs. The features are concatenated across each

disparity level d̂ through

V
(
x, y, d̂, z

)
=


F1 (x, y, z) if z ≤ ndim

F2

(
x+ d̂, y, z−ndim

)
otherwise

, (3.13)

resulting in a cost volume of size h × w × Nd̂ × 2ndim which maps from a 4-D index to a

single value, V : N4 7→ R. This represents an application agnostic extension to traditional cost

volumes [54]. The following layers in the network can either compute traditional pixel-wise

distances or aggregate multi-scale information to improve robustness to viewpoint changes.

The cost volume is fed to a 3-D stacked hourglass network with skip connections, including

connections from the early feature extraction layers in the dense descriptor network. To

demonstrate the generality of this approach we use the cost volume for two very different

tasks. Stereo disparity estimation represents a classical use of these techniques, while semantic

segmentation usually makes use of a single image. We adapt the network to this purpose by

modifying the final layer to produce the desired number of segmentation classes.
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Table 3.2: Kitti Stereo 2015 Disparity Estimation Evaluation. We report the percentage of incorrect pixels (3-px

abs. and 5% rel. error). SAND-v1 variants trained on the full image resolution outperform the baseline consistently.

Train (%) ↓ Eval (%) ↓

Baseline [24] 1.49 2.87

SAND-v1-G 1.05 2.65

SAND-v1-L 1.09 2.85

SAND-v1-GL 1.06 2.79

SAND-v2-G 2.44 5.41

SAND-v2-L 2.41 5.35

SAND-v2-GL 2.46 5.53

3.3.2 Disparity Estimation

In this experiment we compare our disparity estimation procedure to that from PSMNet [24],

which is trained on Kitti Stereo 2015 for 600 epochs. As previously mentioned, the proposed

approach replaces the intermediate feature extraction network with a dense SAND model and is

trained for 450 epochs. SAND-v1 variants include descriptor finetuning at a lower learning rate

for the last 250 epochs.

Both approaches are evaluated based on the original Kitti evaluation scripts, shown in Table 3.2.

This reports the percentage of incorrect pixels based on relative and absolute errors of 3 pixels

and 5%, respectively. As seen, the SAND-v1 variants outperform the baseline. However, we find

a decrease in performance when using SAND-v2.

This demonstrates the fact that different tasks have different feature requirements. As previously

discussed, feature resolution represents a trade-off between global consistency and local detail.

In a task such as disparity estimation, where the fine detail is more discriminative, it is natural

for the original version from SAND-v1 to outperform the downsampled SAND-v2 variants. From

the visualizations in Figure 3.8, it is apparent that most of the error is accumulated on borders

and thin objects.
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(a) Baseline (b) SAND-v2 G

(c) SAND-v2 L (d) SAND-v2 GL

Figure 3.8: Kitti Stereo 2015 Disparity Estimation Visualization. Despite the difference in metrics (Table 3.2),

visualizations show the performance to be comparable. As seen, most of the error occurs around object borders,

likely caused by the decreased resolution of SAND-v2 features.
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Table 3.3: Kitti Semantic Segmentation Evaluation. The proposed changes from SAND-v2 improve on both the

baseline and our previous results from SAND-v1 [172] This is particularly noticeable in complex categories such as

Human and Vehicle.

Class ↑ Cat. ↑ Flat Nature Object Sky Const. Human Vehicle

Baseline 29.3 53.8 87.1 78.1 30.1 63.3 54.4 1.6 62.1

SAND-v1-G 31.1 55.8 87.3 78.5 36.0 59.8 57.5 6.7 66.8

SAND-v1-GL 29.4 51.7 85.1 76.6 33.8 51.8 54.4 4.3 56.3

SAND-v2-G 31.4 60.0 85.9 74.7 30.6 85.5 62.2 9.0 71.8

SAND-v2-L 31.5 58.3 85.3 74.5 27.5 88.8 59.5 4.0 68.3

SAND-v2-GL 31.8 58.8 84.5 73.4 30.9 88.3 59.3 6.2 69.3

3.3.3 Semantic Segmentation

Once again, this approach is based on the cost volume presented in Section 3.3.1, with the

final layer predicting a 19-class segmentation. All models are trained on the Kitti pixel-level

semantic segmentation data for 600 epochs. As with disparity estimation, the baseline trains the

full network from scratch, while SAND variants use their respective pretrained model.

Results are obtained from the Kitti evaluation script, which reports the mean-Intersection

over Union (m-IoU) for each class and category. For the sake of brevity, Table 3.3 shows

only the breakdown at the category level. Both SAND variants lead to improvements over the

baseline, with SAND-v2 being better overall. The additional changes from this version improve

performance especially in complex foreground categories such as Vehicle and Human. The

visualizations in Figure 3.9 also show how the consistency in predictions for large instances is

also improved.
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(a) Ground Truth

(b) Baseline

(c) SAND-v2 G

(d) SAND-v2 L

(e) SAND-v2 GL

Figure 3.9: Kitti Semantic Segmentation Visualization. SAND improves prediction consistency, as evidenced by

the sky region in the shown images. As with disparity estimation, however, downsampling affects edges and thin

objects.
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(a) 05 (b) 06

Figure 3.10: Kitti Odometry SLAM Trajectory Visualizations. Variants using SAND features drift less and

provide more robust trajectories overall. This can be seen in the bottom region of both trajectories shown.

3.3.4 SLAM

The next target task is SLAM. This represents another traditional use for feature descriptors,

where correspondences are used to estimate the change in pose between consecutive frames, as

well as triangulate the overall position in a map. As such, this is another case where hand-crafted

approaches still dominate. We make use of S-PTAM [138] a stereo SLAM algorithm using

ORB [148] descriptors. We can therefore simply replace those with different SAND versions,

keeping the same keypoint detector and backend optimizer. Matching is performed via MNN

between L2 normalized descriptors.

We use the whole of Kitti Odometry and report Absolute and Relative Pose Error in Table 3.4.

The variants using SAND-v1 tend to outperform the baseline, with the other trajectories being

comparable. This can also be seen in the accuracy of the predicted trajectories shown in Fig-

ure 3.10. Unfortunately, SAND-v2 suffers from viewpoint changes, which results in undetected

loop closures and accumulated drift errors. However, it can be seen how the hierarchical ver-

sion performs best in both cases. This is due to the fact that it is able to effectively combine

information from multiple scales, improving both VO and loop closure.



Table 3.4: Kitti Odometry SLAM Evaluation. We report Absolute and Relative Pose Error for each trajectory, excluding 01 due to lack of alignment for all approaches. In this

case, SAND-v1 provides larger improvements in trajectories containing loop closures, whereas SAND-v2 improves the remaining trajectories.

00 02 03 04 05 06 07 08 09 10

APE ↓ RPE ↓ APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE

Baseline [138] 5.63 0.21 8.99 0.28 6.39 0.05 0.69 0.04 2.35 0.12 3.78 0.09 1.10 0.19 4.19 0.13 5.77 0.43 2.06 0.28

SAND-v1-G 13.09 0.21 41.65 0.36 6.00 0.08 6.43 0.13 6.59 0.16 9.10 0.13 2.05 0.21 15.40 0.17 11.50 0.45 18.25 0.35

SAND-v1-L 5.99 0.21 9.83 0.29 4.40 0.04 1.13 0.05 2.37 0.12 2.54 0.09 0.88 0.19 5.26 0.13 6.25 0.42 2.03 0.30

SAND-v1-GL 4.84 0.20 9.66 0.29 3.69 0.04 1.35 0.05 1.93 0.11 2.00 0.08 0.96 0.19 6.00 0.13 5.48 0.42 1.36 0.29

SAND-v2-G 7.87 0.20 18.34 0.33 2.15 0.06 2.99 0.07 2.34 0.13 2.66 0.11 0.68 0.20 8.50 0.15 5.18 0.42 4.16 0.31

SAND-v2-L 7.70 0.20 21.22 0.34 1.88 0.05 3.00 0.07 1.53 0.13 2.12 0.10 0.57 0.20 9.36 0.15 6.33 0.42 3.83 0.32

SAND-v2-GL 6.54 0.20 16.81 0.32 1.96 0.06 2.78 0.07 1.95 0.13 1.81 0.10 0.83 0.21 10.61 0.15 6.56 0.42 3.93 0.31
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Table 3.5: Cambridge Landmarks Localization Evaluation. Results show the MSE for both Translation(meters)

and Rotation (radians). The feature representations learnt by SAND help to improve localization accuracy, most

notably in term of position. We improve our original results from [172].

GreatCourt KingsCollege OldHospital ShopFacade StMarysChurch Street

T ↓ R ↓ T R T R T R T R T R

Baseline [80] 10.30 0.35 1.54 0.09 3.14 0.10 2.22 0.19 2.77 0.22 22.60 1.01

SAND-v1-G 11.46 0.30 1.62 0.09 3.30 0.11 2.20 0.25 3.67 0.23 31.92 1.24

SAND-v2-G 6.79 0.23 1.44 0.08 3.27 0.09 1.34 0.18 3.14 0.21 26.35 1.06

SAND-v2-L 5.43 0.24 1.28 0.08 3.75 0.10 1.18 0.17 3.19 0.22 25.74 1.12

SAND-v2-GL 6.52 0.21 1.24 0.08 3.24 0.09 1.09 0.21 3.02 0.23 29.71 1.11

3.3.5 Visual Localization

The final downstream task is visual localization. This is a task still currently dominated by

hand-crafted approaches. However, there have recently been some efforts to perform this in an

end-to-end fashion [80]. These approaches represent a different type of task to those presented so

far. In this case, the objective is to perform a holistic regression of 6-Degrees of Freedom (DoF)

pose given an input image. The baseline represents the original approach trained from scratch

using the Cambridge Landmarks [80] dataset. Meanwhile, SAND variants replace the input

image to the network with its learned dense representation. This is upsampled to the original

image resolution, with the first network layer modified to accept the required number of channels.

Each scene in the dataset is trained for 100 epochs with a constant learning rate. It is worth

noting that none of the SAND versions have additional training at the feature level.

The results in Table 3.5 show the median Mean Squared Error (MSE) for each scene for both

Translation (meters) and Rotation (radians). As seen, SAND-v1 produces comparable results

to the baseline without feature finetuning. However, the various improvements introduced by

SAND-v2 result in a drastic error reduction. This is most notable in sequences such as GreatCourt

and ShopFacade, where the translation error is approximately halved. We find the multi-scale

GL descriptors to slightly outperform the remaining SAND variants. Once again, this illustrates

the benefits of incorporating multiple negative mining scales, allowing the downstream task
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to incorporate both global and local features into its predictions. One of the main limitations

of PoseNet + SAND is the decrease in performance in sequences with high self-similarity. In

this case, the global feature representation cannot be reliably correlated with the exact position.

Future work could explore the incorporation of additional temporal constraints to refine the

predicted locations.

3.4 Conclusion

In this chapter we targeted thesis objectives 1 & 3, exploring dense feature learning in the

context of both correspondence estimation and a wider range of computer vision tasks. To this

end, we proposed SAND and introduced the concept of spatial negative mining. Complementary

to hard negative mining, spatial mining can result in a hierarchical aggregation of the context

information visible to each pixel during the training process. This allowed us to embed different

properties into the feature space which might be useful for different target downstream tasks.

We evaluated these features in different computer vision tasks, each requiring different properties,

including dense regression and classification, holistic regression and correspondence estimation.

We showed how in each of these cases, the proposed solution outperforms the baselines and

provides consistent improvements.

However, a common limitation seen in SAND and other methods present in the evaluation is the

overwhelming bias towards ideal daytime conditions. Most of the commonly used datasets for

training and evaluating lack data for adverse and challenging conditions such as night-time, rain

or snow. Even if this data is present, training a supervised feature learning network is non-trivial

due to the difficulties in obtaining accurate ground truth. We will discuss and overcome these

limitations in the next chapter.
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Chapter 4

Weakly Supervised Seasonal Features

As we saw in the previous chapter, generic dense features can be adapted to work in non-metric

deep learning tasks. However, the limitations in the training and evaluation procedures bias

systems towards ideal daytime conditions. In real-world problems, the deployed systems must

be capable of operating regardless of the current seasonal and weather conditions. Despite this,

many of the common training datasets [35, 60, 75] do not include such variation, exhibiting

heavy biases towards clear daytime conditions. Even the few datasets which exhibit temporal

variance [107] are unable to provide the accurate pixel-level correspondence ground truth

needed to train techniques such as SAND. This chapter addresses the challenging task of

learning general purpose dense pixel-wise feature descriptors without requiring pixel-wise

correspondence ground truth. This makes it possible to learn feature descriptors robust to these

changes, including both short-term (day vs. night) and long-term (summer vs. winter) variation.

Even if seasonal variation is present in the dataset [107], it is still non-trivial to train existing

feature learning approaches on this data. As discussed in Chapter 2, most of these approaches rely

on ground truth pixel-wise correspondences between images. When this data is collected over a

long period of time, VO drift and Global Positioning System (GPS) inaccuracies can lead to

pointcloud misalignment errors of the order of tens of pixels. Self-supervised approaches [41, 34]

do not suffer from this problem since they make use of homographic augmentations. However,

this comes at the cost of not showing the network real world variation, which was shown to

reduce robustness in the previous chapter.

47
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Figure 4.1: Déjà-Vu Feature Learning. Descriptor learning is commonly framed as a supervised problem based

on ground truth geometric correspondences. Obtaining this ground truth in cross-seasonal environments is highly

challenging. We propose a method for leaning dense features from image-level labels indicating if images correspond

to the same location.

We propose a middle ground making use of real images with weak supervision in the form of

image-level relationships of (dis)similarity, i.e. if the images correspond to roughly the same

location in the world. No correspondence ground truth is required between the contents of

the two images. Unlike the pixel-wise correspondences of the previous chapter, it is trivial to

automate the process of obtaining these weak image-level annotations by simply comparing GPS

measurements. We then train the network to produce globally similar dense feature maps for

images corresponding to the same location. This is based on the intuition that, in a positive pair,

each descriptor should have one and only one matching feature in the second image. Since this

compares the feature maps in a dense manner, we do not require the image pairs to be aligned.

As such, our approach is more robust to inaccurate ground truth compared to other approaches

based on camera pose and epipolar geometry supervision [194]. We refer to our approach as

Déjà-Vu features [173]. In the context of this thesis, this helps address objectives 1 & 2, since

we aim to reduce the amount of labels required to train dense feature approaches.

4.1 Methodology

As with SAND, the objective is to produce a dense feature description of the input image.

However, this is achieved by using only weak supervision. This process is illustrated in

Figure 4.2. We employ the same network as previously discussed in Section 3.1.1. To summarize,

this is an FCN encoder-decoder network mapping ΦF : Nh×w×3 7→ Rh/f×w/f×ndim , with ndim
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Figure 4.2: Proposed Déjà-Vu Overview. We train the network with image-level similarity labels, consisting of

consecutive Anchor - Positive - Negative triplets. The loss computes the global similarity based on the average

discriminative power of each descriptor in a dense feature map, without requiring spatial alignment between images

or geometric correspondences.

as the descriptor dimensionality and f as the target downsampling factor. The network also

incorporates skip-connections between correspondingly sized layers of the encoder and decoder.

4.1.1 Aligned Pixel-wise Contrastive Loss

Déjà-Vu is a weakly supervised approach. However, we fist provide a supervised baseline based

on the PixCon loss from (3.3) introduced in the previous chapter. As discussed, the pixel-wise

correspondences required for training are usually obtained by reprojecting LiDAR points onto

images according to the reprojection equation (3.9). Obtaining accurate ground truth data in

cross-seasonal environments is highly challenging. We therefore opt for a synthetic dataset,

described in more detail in Section 4.2.3, to train this baseline.

Given a synthetic dataset, it is possible to create perfectly aligned cross-seasonal environments,

including both static and dynamic objects. In other words, the camera position and scene

contents will be identical between the different seasons, meaning that every pixel has a ground

truth correspondence with the same pixel in the other image. This allows us to introduce

the Aligned PixCon loss using a cross-seasonal triplet TX = {IA, IP , IN}. Given the anchor

image IA, we define the positive sample IP as an image with the same location, but a different

season. Meanwhile, the negative sample IN comes from a different location and any season.

The alignment of this synthetic dataset allows us to simplify the summation over correspondence

pairs from equations (3.3), replacing it with elementwise matrix subtraction. We can thus define
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the Aligned PixCon loss as

ℓa−con (y,F1,F2) =


∥F1−F2∥22 if y = 1

+(m− ∥F1−F2∥2)2 if y = 0

, (4.1)

where we are computing the L2 distance between pairs of feature descriptors at corresponding

spatial locations and y, in this case, is the image-level label indicating whether the images

correspond to the same location. Given the cross-seasonal triplet TX , the final loss is obtained

through

La−con (TX) = ℓa−con (1,FA,FP ) + ℓa−con (0,FA,FN ) , (4.2)

where again only image-level labels are required.

4.1.2 Contextual Similarity

The proposed Aligned PixCon loss is only applicable if the cross-seasonal pairs are perfectly

aligned. This is practically impossible in the case of real world data, since it would require

perfect synchronization of sensors across multiple runs, as well as aligned dynamic objects.

We therefore require a similarity metric that can be applied to non-aligned images. We take

inspiration from [115], quantifying how uniquely each feature within a source map matches to a

feature in the target dense feature map.

More formally, we define two feature maps as similar if each feature descriptor in F1 has only

one descriptor from F2 significantly closer than the rest in the embedding space. To measure

this, we first build the distance matrix as

C (p1,p2) = ∥F1 (p1) −F2 (p2)∥2 , (4.3)

which is normalized according to

Ĉ (p1,p2) =
C (p1,p2)

min
p2

C (p1,p2)
. (4.4)

In this case, the best match is assigned a cost of 1. The remaining costs are described as their

ratio w.r.t. the best match in the range [1,∞). For instance, a point with a feature distance twice

that of the best match will be assigned a cost of 2. On the other hand, if there are multiple
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equally good matches, several features will have a cost of 1. Note that this is akin to SNN

matching based on the ratio test [102].

These individual ratio test costs are then converted into a uniqueness measure via the softmax

C̃ (p1,p2) =

exp

(
1−Ĉ(p1,p2)

τ

)
∑
p2

exp

(
1−Ĉ (p1,p2)

τ

) , (4.5)

where τ represents the softmax temperature. In the case where a feature has a single good match,

i.e. where the lowest distance in C is much smaller than the second lowest distance, the resulting

similarity in C̃ will be large. However, if multiple points have low costs Ĉ, they will all obtain a

similarly reduced uniqueness score.

Finally, the global similarity between dense feature maps is given by averaging these uniqueness

scores across all samples

CX (F1,F2) =
∑
p2

max
p1

C̃ (p1,p2) , (4.6)

where
∑

once again represents the average summation. Since we are computing the average

similarity for each descriptor in the feature map, the resulting metric is constrained to the

range [0, 1], with 1 signifying that the feature maps are identical. This allows us to quantify

both the distances and uniqueness of each feature in the embedding space without requiring

geometric correspondences. Note that this metric can also be used at test time to determine the

likelihood of a pair of images corresponding to the same location.

4.1.3 Contextual Triplet Loss

To make use of the proposed contextual similarity measure during training, we incorporate it

into a triplet framework. Note that, unlike in the Aligned PixCon loss, positive pairs should be

those with a high similarity.

The base triplet loss is therefore given by

ℓcx (T) = +(m+ CX (FA,FP )− CX (FA,FN )), (4.7)

where m is once again the target margin, in this case representing the separation in terms of

global feature map similarity.
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Figure 4.3: Contextual Triplet Loss Framework. Each training sample consists of two consecutive triplets.

These triplet can further be combined into either seasonal or cross-seasonal triplets, aiding in short- or long-term

matching, respectively. Positive pairs aim to maximise the global similarity between dense feature maps based on

the assumption that each feature should only match well with one other feature in the second image.

The previously introduced cross-seasonal triplet TX provides effective supervision for matching

across different seasons. Unfortunately, it does not include any within-season changes. For

this reason, we expand each training sample to contain the following frame for each image

in the original triplet TX
2 = {IA′, IP′, IN′}. As illustrated in Figure 4.3, this leads to three new

within-season triplets

TS
1 =

{
IA, IA′, IN

}
, TS

2 =
{

IP , IP′, IN′
}
, TS

3 =
{

IN , IN′, IA
}
,

which provide additional consistency within each season’s features.

Once again, we incorporate all of this information into the final loss, given by

Lcx (TX ,TS) =
∑
i

ℓcx
(
TX

i
)
+ λcx

∑
i

ℓcx
(
TS

i
)
, (4.8)

where λcx ∈ [0, 1] is the weight balancing the contribution of the seasonal triplets. It is worth

reiterating that the simple image-level labels y are the only ground truth driving both the within

season and cross-seasonal learning of these pixel-wise dense features.

4.2 Datasets

This section covers the various datasets used during both training and evaluation. We make use of

two real world datasets: RobotCar Seasons [157] and UTBM RoboCar [200]. RobotCar Seasons
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serves as the primary training dataset, since it contains a large amount of seasonal variation

and well defined sequences from which to draw positive pairs. To show the transferability and

generality of the learnt features, we carry out a similar evaluation on UTBM RoboCar. Finally,

we make use of the synthetic CARLA Seasons dataset. We use this dataset to explore the

Aligned PixCon loss, representing the ideal case where we have perfectly aligned cross-seasonal

data. This additionally allows us to further explore the transfer capabilities of our features,

bridging the sim-to-real gap.

4.2.1 RobotCar Seasons

The original RobotCar dataset [107] was collected by traversing roughly the same trajectory

over the course of a whole year. As such, it contains a large amount of seasonal variation and

environment changes caused by construction. The dataset uses a camera rig including stereo

forward-facing cameras, both sides and rear viewpoints. Additionally, the dataset provides

VO, GPS and LiDAR data. Unfortunately, this data is not accurate enough to provide robust

cross-seasonal correspondences. Luckily, these labels are not required by Déjà-Vu.

RobotCar Seasons [157] is a subset of RobotCar focusing on cross-seasonal revisitations. The

original trajectory is split into 49 distinct sequences, each containing roughly aligned data at

several seasonal conditions, including sun, rain, dawn, overcast, dusk and night-time. We make

use of 40 sequences to train our models, leaving the remaining 9 for evaluation.

The structure of this dataset provides a natural separation regarding the image-level labels

required to train Déjà-Vu. From a given Anchor image, we consider images from the same

sequence and a different season as Positives. Meanwhile, Negative pairs are sampled from

different sequences and any season.

4.2.2 UTBM RoboCar

The UTBM RoboCar dataset [200] provides another example of real world cross-seasonal

variation, collected by traversing the same route over a long period of time. In this case, the

dataset contains sequences at evening, night, sunny, cloudy and snow. It mainly targets robotics

applications, so a toolkit was developed to make it easier to use in a deep learning environment
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and evaluate Déjà-Vu. As already discussed, this dataset is used for evaluation purposes to show

the ability of Déjà-Vu models trained on RobotCar or CARLA Seasons to transfer to unseen

real world data. Once again, the dataset provides GPS, Inertial Measurement Unit (IMU) and

LiDAR data, which our method does not require.

This dataset unfortunately does not provide clear sequences like RobotCar Seasons. Instead, each

trajectory contains approximately 10000 sequential frames. To make the similarity computation

tractable, we take 5000 frames from the middle of the sequence and downsample by keeping

1 in every 10 frames. Note that, despite this downsampling, the final evaluation set still

consists of approximately 3.1 million image pairs. In order to create ground truth image level

correspondence labels for evaluation we make use of the GPS data. We define true positives as

pairs with a distance of 10 meters or less and an orientation change smaller than 60◦.

4.2.3 CARLA Seasons

Finally, we make use of the CARLA Seasons synthetic dataset. In recent years, simulation has

become a crucial tool to generate data that is challenging or impossible to obtain in real life. The

CARLA Seasons dataset is composed of 10 unique environments, each run representing one

minute of driving at 20 Frames Per Second (FPS). The simulated vehicle is rigged with three

forward facing stereo camera pairs, placed on the bonnet, roof and bumper. Additional labels

for depth, semantic segmentations and GPS are provided. Note that in the case of Déjà-Vu we

only require the GPS labels.

The primary objective of the dataset is to provide aligned trajectories over a wide variety of

weather and seasonal conditions. Overall, it provides a total of 27 combinations, each perfectly

aligned with the rest. Regarding the seasons, it contains heavy/light fog, rain, snow and rain/snow

deposits. Each of these is further traversed at midday, sunset and dusk.

To make the training and evaluation more comparable with RobotCar Seasons, we choose

a representative subset of seasons/weathers, as shown in Figure 4.4. We use the first four

environments as training sequences and the final four as evaluation. Finally, we speed up the

evaluation by using a single viewpoint—bonnet-left—from the camera rig. Regarding image

pair sampling, we employ the same strategy as the one defined for UTBM RoboCar.
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(a) Clear Midday (b) Clear Sunset (c) Clear Night

(d) Heavy Fog Midday (e) Heavy Rain Midday (f) Light Snow Midday

Figure 4.4: CARLA Seasons Sample Images. We show a subset of the 27 total combinations of seasonal and

weather effects available in the CARLA Seasons dataset. By making use of simulated environments, perfectly

aligned data is provided—including dynamic objects—which is practically impossible to obtain in the real world.

4.3 Results

Training details. As previously outlined, the main models are trained on the RobotCar Seasons

dataset using all three cameras available—left, right & rear. We train for 100 epochs using SGD

with 0.9 momentum and a base learning rate 10−3. Similar to SAND, we find VGG-19 [169]

pretrained on ImageNet [39] and ndim = 128 to perform best. We set the contextual triplet loss

margin m = 0.5 given that the similarity measure is constrained to the unit interval.
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Figure 4.5: Déjà-Vu PCA Feature Visualization. Night-time causes drastic changes in visual appearance due to

the lack of light present in the scene, as well as motion blur. Déjà-Vu is capable of providing a consistent dense

feature representation, allowing it to identify the correct matching pair.

Feature visualization. We visualize the features by reducing their dimensionality via PCA

and mapping to the RGB cube. Sample triplets are shown in Figure 4.5, illustrating some

of the biggest challenges of cross-seasonal feature learning. Features must be robust to the

drastic appearance changes caused by different lighting conditions. Night-time is particularly

challenging due to the low light levels and motion blur resulting from an increased exposure

time. Despite these challenges, Déjà-Vu easily distinguishes the correct positive pair.
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4.3.1 Cross-Seasonal Retrieval Performance

Déjà-Vu is evaluated using the Area Under the Curve (AUC) of the ROC curve based on the

predicted classification of image pairs corresponding to the same location or not. As discussed

in Section 4.2, RobotCar Seasons provides a clear split based on the different sequences, each

consisting of approximately 10 frames. Meanwhile, since UTBM RoboCar and CARLA Seasons

provide only a continuous trajectory, we consider pairs as positive if the distance between them is

less than 10 meters and the change in orientation is less than 60◦. All other pairs are considered

“true negatives”. This is the case for both training and evaluation.

To illustrate the complexity of the problem at hand, Seasonal and X-Seasonal performance are

analysed separately. In the Seasonal case we only evaluate on positive pairs with corresponding

locations and seasons. On the other hand, pairs used in the X-Seasonal evaluation originate from

the same location, but different seasons.

Déjà-Vu is compared to both hand-crafted and learned baselines, using the code and models

provided by the respective authors. Déjà-Vu is primarily trained on RobotCar Seasons using

the training scheme previously outlined. We further explore the use of the contextual similarity

as a metric for image retrieval. To do this, we show variants of the hand-crafted features using

either traditional retrieval techniques or the proposed metric from (4.6). Finally, we provide two

additional models trained on CARLA Seasons using either the Aligned PixCon or contextual

triplet loss. Note that, since Aligned PixCon requires perfect alignment between frames it

cannot make use of the seasonal triplets TS . We modify the contextual loss variant accordingly

by setting the seasonal weight λcx = 0. Models trained on CARLA Seasons can be identified

by the † symbol.

RobotCar Seasons. Table 4.1 contains the results for RobotCar Seasons. We find that most

baseline approaches tend to perform well in the Seasonal setting. This means that, despite not

having been trained with data from multiple seasons, these approaches still provide consistent

representations when evaluating in unseen conditions. Whilst this is beneficial, we find that the

X-Seasonal evaluation nevertheless exhibits a large drop in performance for baseline systems.

Meanwhile, Déjà-Vu provides consistent results and outperforms all baselines by a large margin

under this evaluation protocol. We also note that using our contextual matching scheme

greatly enhances the performance of hand-crafted features in comparison to traditional matching



58 Chapter 4. Déjà-Vu

Table 4.1: RobotCar Seasons AUC Evaluation. We split performance when performing image retrieval within the

same (Seasonal) or different (X-Seasonal) seasons. CX indicates approaches using the contextual matching from

(4.6). Déjà-Vu outperforms all baselines in the X-Seasonal setting by a large margin. † Trained on CARLA Seasons.

CX Seasonal ↑ X-Seasonal ↑

SIFT [102] 80.79 46.81

RootSIFT [7] 97.16 59.78

ORB [148] 96.72 67.58

SIFT ✓ 94.49 66.11

RootSIFT ✓ 95.70 68.39

ORB ✓ 95.17 70.19

VGG [169] ✓ 98.94 72.38

NC-Net [146] ✓ 97.54 73.95

D2-Net [45] ✓ 98.43 74.00

NetVLAD [6] ✓ 99.41 77.56

SAND [172] ✓ 99.61 74.86

Aligned PixCon † ✓ 95.89 73.07

Déjà-Vu † ✓ 97.83 83.64

Déjà-Vu ✓ 99.42 95.45

schemes, both in the Seasonal and X-Seasonal case, improving SIFT results by 20%. The

Aligned PixCon baseline performs on par with existing hand-crafted and learned approaches,

despite being trained with synthetic data. However, we find that this is still outperformed by our

contextual supervision. We believe this is due to the additional constraints imposed by our loss,

requiring uniqueness in the feature matching and supported by the ratio test.

CARLA Seasons. Similarly, we carry out an evaluation on the synthetic CARLA Seasons

dataset, as seen in Table 4.2. Overall, there is a drop in performance, indicating that CARLA

Seasons is still a complex problem to solve. Once again, Déjà-Vu provides the best overall

performance, outperforming NetVLAD in a X-Seasonal setting by over 10%. It is worth noting

that this model was trained on RobotCar Seasons and is therefore also performing cross-dataset

generalization. Surprisingly, we find that the supervised version trained with the Aligned PixCon
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Table 4.2: CARLA Seasons AUC Evaluation. We evaluate on the newly proposed cross-seasonal synthetic dataset.

It is worth noting that our weak supervision (Contextual) greatly outperforms even the supervised cross-seasonal

baseline (Aligned PixCon). † Trained on CARLA Seasons.

CX Seasonal ↑ X-Seasonal ↑

SIFT [102] 73.39 56.49

RootSIFT [7] 85.32 64.29

ORB [148] 81.67 57.87

SIFT ✓ 88.25 62.50

RootSIFT ✓ 88.58 62.93

ORB ✓ 78.20 64.48

VGG [169] ✓ 73.82 65.71

NC-Net [146] ✓ 77.69 65.52

D2-Net [45] ✓ 81.80 67.77

NetVLAD [6] ✓ 79.40 69.72

SAND [172] ✓ 85.49 65.58

Aligned PixCon † ✓ 78.82 77.68

Déjà-Vu † ✓ 87.42 87.65

Déjà-Vu ✓ 88.50 80.51

loss is outperformed by the proposed weak supervision, demonstrating the effectiveness of

Déjà-Vu. However, as expected, the Aligned PixCon version still outperforms all other baselines.

UTBM RoboCar. We provide a final evaluation on real-world data using the UTBM RoboCar

dataset. As shown in Table 4.3, Déjà-Vu still provides the best X-Seasonal performance,

demonstrating the generality of the learned features and their ability to transfer to unseen

real-life datasets in addition to unseen synthetic datasets. Whilst Déjà-Vu does not provide

the best Seasonal performance, it is comparable. Interestingly, the best performing seasonal

approaches are (Root)SIFT, which outperform all other learned baselines on this dataset. Once

again we note that the proposed contextual matching approach proves effective in image retrieval

scenarios even when using hand-crafted features. Finally, we note that the CARLA Seasons

models do not transfer as well to the UTBM RoboCar dataset, as those trained on RobotCar
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Table 4.3: UTBM RoboCar AUC Evaluation. We evaluate on a real-world cross-seasonal dataset unseen during

training. Déjà-Vu provides the best performance, demonstrating that the learnt features transfer well to new datasets.

† Trained on CARLA Seasons.

Features CX Seasonal ↑ X-Seasonal ↑

SIFT [102] 90.57 65.31

RootSIFT [7] 95.66 76.70

ORB [148] 93.30 62.40

SIFT ✓ 95.90 73.56

RootSIFT ✓ 96.35 75.41

ORB ✓ 86.01 63.30

VGG [169] ✓ 92.77 60.65

NC-Net [146] ✓ 93.61 69.88

D2-Net [45] ✓ 95.26 67.47

NetVLAD [6] ✓ 93.73 67.20

SAND [172] ✓ 93.97 68.09

Aligned PixCon † ✓ 91.37 69.39

Déjà-Vu † ✓ 89.90 75.19

Déjà-Vu ✓ 92.38 84.94

Seasons. This is likely due to the challenges bridging the sim-to-real gap. Future work could

explore the use of domain adaptation techniques to minimize the performance gap.

4.3.2 Ablation Study

Similar to SAND in Section 3.2.2, we perform an ablation study of Déjà-Vu’s components on

RobotCar Seasons. The baseline results are obtained using ResNet-18 with feature resolution

f = 8, feature dimensionality ndim = 128, margin m = 0.5, seasonal consistency weight

λcx = 0.5 and softmax temperature τ = 0.5. These results can be found in Table 4.4.
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Table 4.4: Déjà-Vu Ablation Study. We study components of Déjà-Vu, including architecture, feature dimensionality

& resolution, triplet margin, seasonal weight and softmax temperature. Based on this ablation we select the parameters

for the final models presented in Section 4.3.1.

Seasonal ↑ X-Seasonal ↑

MobileNet 99.51 93.88

ResNet-18 99.12 94.26

ResNet-50 99.40 94.24

ResNet-101 99.51 94.90

VGG-11 99.42 95.08

VGG-19 99.54 95.49

ndim = 10 98.61 92.00

ndim = 32 99.07 93.77

ndim = 64 99.03 93.58

ndim = 128 99.43 94.81

f = 4 99.28 92.16

f = 8 99.30 95.13

Seasonal ↑ X-Seasonal ↑

m = 0.1 99.12 93.85

m = 0.3 99.26 94.64

m = 0.5 99.43 95.10

m = 0.7 98.43 91.95

m = 1.0 97.12 88.78

λcx = 0.0 98.98 92.84

λcx = 0.5 99.15 93.47

λcx = 1.0 99.14 92.63

τ = 0.1 98.76 92.24

τ = 0.2 99.48 94.63

τ = 0.5 99.56 95.78

τ = 1.0 99.12 94.42

Architecture. We first explore the different available backbones for the encoder portion of

the feature network. As with SAND, we evaluate MobileNet-v2, ResNet and VGG, pretrained

on ImageNet. As expected, increasing the network size typically leads to a steady increase in

performance, with VGG-19 being the most accurate.

Descriptor dimensionality. Regarding the dimensionality of the learnt descriptors ndim , we

also find similar results to the SAND ablation. The lowest dimensionality provides the worst

results, but as the dimensionality increases this performance gap tends to shrink. This shows

potential for applications where compute power and/or storage capabilities are limited, since we

can provide much smaller descriptors that still perform well.

Dense descriptor resolution. This corresponds to the downsapling factor applied to the output

dense feature map, with f = 1 corresponding to the original image resolution. In the case of

Déjà-Vu, the contextual similarity has quadratic memory requirements, since we are computing
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the similarity between each possible pair of pixels. Due to this, training and evaluating at higher

resolutions becomes impractical. However, as with SAND, training at a lower resolution leads

to better performance.

Triplet loss margin. Here we explore the marginm used in the triplet loss, controlling the target

separation between positive and negative pairs. From the results, we find that it is beneficial

to have an intermediate margin that is neither too strict nor too lax. A margin that is too lax

(m = 0.1) can lead to poor separation between positives and negatives. On the other hand,

too strict a margin (m = 1) results in an unreachable target given that we are optimizing the

contextual loss. Once again, this has a pseudo-physical meaning, where a value of 1 indicates

identical images and 0 indicates completely different images. As such, a target separation of

50% provides a better optimization objective.

Seasonal consistency weight. This weight λcx controls the contribution of the seasonal triplets.

As seen, disabling the seasonal triplets (λcx = 0) results in a slightly decreased Seasonal

performance. However, since our primary focus is cross-seasonal retrieval, we find that a

balanced weight leads to better results.

Softmax temperature. Finally, we test the temperature τ regulating the harshness of the

softmax. As a reminder, a lower temperature value aims to emphasize the difference between

probabilities in a distribution, increasing the confidence in the matching predictions. This can

be seen as increasing the SNN ratio, resulting in higher C̃ values on average. In the context of

SAND, a low temperature forced the model to make predictions that would result in a better

separation between positives and negatives, with the objective of performing SNN matching.

However, since Déjà-Vu does not use ground truth correspondences, too high a temperature value

may result in overconfidence in incorrect predictions, leading to an artificially high similarity

value. Similarly, a higher temperature can lead to artificially low similarities. We therefore find

the balanced option τ = 0.5 to provide the best performance.

4.3.3 Sparse Feature Matching Performance

Déjà-Vu is trained to produce dense features based only on image-level supervision. We only

need to know whether two images correspond to roughly the same location, without requiring

the exact alignment between them. Despite this, we will next show how Déjà-Vu can still

perform sparse pixel-wise descriptor matching.



4.3. Results 63

Figure 4.6: Cross-seasonal Correspondences from [90]. Despite using SOTA SfM pipelines [161], the obtained

cross-seasonal correspondences are not always accurate. This includes errors due to dynamic objects (e.g. cars and

pedestrians) as well as global misalignments (e.g. the corner of the building or the car). Using such correspondences

for either training or evaluating is infeasible.

Recently, new datasets have been proposed containing small numbers of ground truth cross-

seasonal pixel correspondences [90]. Upon closer inspection, however, it becomes obvious that

this labelling is inaccurate. As shown in Figure 4.6, we find that many of the correspondences

are incorrect, typically due to camera pose misalignments and dynamic objects. In the absence

of a sparse cross-seasonal correspondence benchmark, we instead opt for qualitative sparse

matching visualizations on RobotCar Seasons pairs, using D2-Net and SAND as baselines.

In the case of the D2-Net we use the keypoints detected by their describe-then-detect approach.

Meanwhile, since SAND and Déjà-Vu do not predict keypoints, we use the well established

Shi-Tomasi detector [165]. Descriptors are matched using SNN, with the final matches refined

by USAC [141]. Figure 4.7 shows sparse matching performed between consecutive images

within the same season. As seen, all approaches perform well in this case, showing that the

learnt representations are consistent within a given season. D2-Net produces the largest number

of matches, but it is worth recalling that the experiments in Section 3.2.1 showed that these do

not tend to be as accurate as other methods. In contrast, Figure 4.8 performs matching between

images from different seasons, mostly exhibiting the large appearance changes between day

and night. In this case, the performance of SAND and D2-Net drops, producing a lower number

of matches that are also less accurate. Déjà-Vu however, is capable of providing features that

are more consistent across seasons. The final column in this figure shows a partial failure case,
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Figure 4.7: Sparse Seasonal Matching. Within season correspondences estimated by SAND, D2-Net and Déjà-Vu.

All approaches provide consistent results within each season, as reflected in the retrieval experiments in Table 4.3.
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Figure 4.8: Sparse Cross-seasonal Matching. Cross-seasonal correspondences estimated by SAND, D2-Net and

Déjà-Vu. Even though previous approaches can match within a given season, performance drops as we match across

seasons. Déjà-Vu produces less matches in this scenario, but those obtained tend to be of good quality.

where a subset of the matches predicted by Déjà-Vu are incorrect. This is still a challenging

problem that requires the incorporation of additional geometric constraints and better quality

training data.
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Figure 4.9: Cross-Seasonal Visual Localization. We show the predicted trajectories without any temporal

smoothing. This is performed in a cross-seasonal setting, where PoseNet models using each feature baseline are

trained on one season, but evaluated on a different one. Déjà-Vu provides a smoother trajectory with less outliers

than other feature baselines.

4.3.4 Cross-Seasonal Visual Localization

Finally, we show how Déjà-Vu can be incorporated into a downstream computer vision task.

Similar to Section 3.3.5 in the previous chapter, we use a 6-DoF relocalization pipeline based on

PoseNet [80]. To illustrate the benefits of Déjà-Vu, we do this in a cross-seasonal manner. The

models are trained on a subset of the original RobotCar trajectory at one season, but evaluated

using the corresponding subset of frames at a different season.

As done previously, we train the dense feature variants of PoseNet by replacing the input image

to the network with the dense feature representation, modifying the first layer accordingly. In

this case, we evaluate variants trained on D2-Net, SAND and Déjà-Vu.

We show qualitative results for the estimated trajectory in Figure 4.9. Note that each prediction

is performed independently, without temporal smoothing or additional cues. As expected, the

variant using Déjà-Vu features follows the ground truth more closely and with less outliers.

Once again, it is worth remembering that models were trained and evaluated using data from

one season and evaluated on data from a different season. Quantitative results can be found in

Table 4.5. As reflected by the previous visualization, Déjà-Vu clearly outperforms the baselines,
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Table 4.5: Cross-Seasonal Visual Localization. We quantitatively evaluate the results from Figure 4.9 based on the

Position (meters) and Rotation (radians) error. The feature based models were obtained by replacing the input image

to PoseNet with the learnt dense feature representation. Déjà-Vu almost halves the error compared to the original

PoseNet baseline.

P (m) ↓ R (rad) ↓

PoseNet [80] 10.34 0.0170

D2-Net [45] 11.18 0.0029

SAND [172] 7.33 0.0045

Déjà-Vu - λcx = 0 5.57 0.0050

Déjà-Vu - λcx = 1 7.20 0.0036

almost halving the translation error. In this case, since we specifically focus on the cross-seasonal

performance of the system, it is natural that the fully cross-seasonal model λcx = 0 performs

best. However, the model using seasonal triplets still generally outperforms the remaining

baselines.

4.4 Conclusions

This chapter has introduced Déjà-Vu features, a solution that overcomes the reliance of SAND

on accurate pixel-wise labelling and the resulting issues with data bias. This has allowed us

to develop cross-seasonally robust descriptors without needing cross-seasonal labels. Déjà-Vu

uses only weak image-level supervision, which can be easily obtained from cheap, inaccurate

sensors such as GPS. This removes the need for accurate pixel-wise correspondences, while

still showing the networks real-world changes caused by different seasons and weathers. As

such, this work has addressed objectives 1 & 2 of this thesis.

Our evaluations suggest that existing baseline techniques have learnt to be equivariant to seasonal

transformations, not invariant. Two environments that can be identified as being similar under

one season will likely appear similar to each other in a different season. However, the same

environment under two different seasons is not recognised as begin similar. Déjà-Vu was shown

to clearly overcome these limitations, outperforming these baselines and providing over 90%
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accuracy. We further showed how incorporating the proposed contextual matching can lead to

improved location retrieval robustness, for both hand-crafted and learning based features. We

hope that the introduced technique is a step towards generalizing performance in challenging

environments.

Unfortunately, Déjà-Vu’s main strength also provides its biggest limitation. By removing spatial

constraints from our loss function we are able to successfully incorporate non-aligned data

from multiple different seasons. However, this means that the correspondences estimated when

computing the similarity are not required to be correct. Whilst in practice we have shown that

Déjà-Vu is still capable of performing sparse feature matching, the next chapter will show how

re-incorporating these spatial and geometric constraints leads to a further improvement.
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Chapter 5

Simultaneous Depth & Feature

Learning in Challenging Conditions

In Chapter 3, SAND provided a framework for learning dense descriptors in a supervised manner.

Given pixel-wise correspondences, we could establish relationships of (dis)similarity between

feature descriptors. This relied on the availability of ground truth data, which is increasingly

difficult to obtain as viewpoint and lighting conditions change. Déjà-Vu instead targeted cross-

seasonal descriptors using non-aligned images from multiple seasons. Whilst this approach is

quite flexible—requiring only GPS location—it comes at the expense of not enforcing spatial

constraints.

This chapter provides the natural extension to both methods. We adapt the loose cross-seasonal

constraints from Déjà-Vu and introduce strict spatially-valid pixel-wise constraints within

seasons, as in SAND. This makes is possible to remove the need for LiDAR ground truth and

instead introduce a self-supervised scheme based on monocular depth estimation. This allows

us to include within-season matching constraints even for challenging scenes.

Recently there has been an increased interest in monocular depth estimation. We make the

observation that depth estimation and feature description are inherently complimentary tasks.

The process of estimating dense depth and VO between frames can be used to reconstruct

the underlying 3-D geometry of the scene, allowing us to enforce photometric consistency

when synthesising the new views required for training monocular depth. This also establishes

69
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(a) (b)

Figure 5.1: Night-time Depth Estimation Challenges. (a) Challenging lighting conditions during night-time

driving. (b) A catastrophic failure during depth map estimation for a current SOTA monocular depth estimation

framework, after being trained specifically for this scenario.

pseudo-ground truth correspondences to drive feature descriptor learning. What’s more, this is

done in an entirely self-supervised way, requiring only a sequence of images and the camera’s

intrinsic parameters.

Unfortunately, as shown in Figure 5.1, current approaches to monocular depth estimation tend

to fail in challenging environments. This is largely due to the assumptions of photometric

consistency, which break down in low-light environments. Complex lighting from multiple

sources, as well as reflections, lead to changes in appearance that are not taken into account in

existing frameworks. However, feature descriptors are naturally trained to overcome changes

in appearance from viewpoint and lighting changes. As such, they should be able to provide a

more robust supervision signal for monocular depth estimation in adverse conditions.

We refer to our approach as Depth & Feature Network (DeFeat-Net) [174]. As discussed, the

objective is to simultaneously learn monocular depth, dense feature description and VO. This

addresses thesis objectives 1 & 4, which relate to the learning of dense features and simultaneous

optimization of multiple tasks. Similar to the previous chapter, the only supervision signals

required are the camera intrinsics and a rough measurement of which images are adjacent to

each other. Neither LiDAR measurements nor accurate ground truth camera poses are needed.

As such, this targets objective 2, reducing the amount of labels required to train the whole

system.
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5.1 Literature Review

Chapter 2 provided an overview of existing approaches to feature detection and description. This

section provides additional background related to recent methods for depth estimation, including

(self-)supervised approaches. Within these categories it is also worth making a distinction

between those that rely on multiple images (stereo) vs. a single image (monocular).

5.1.1 Supervised

Stereo. Traditionally, depth estimation techniques simplified the process of finding geometric

correspondences by stereo rectifying pairs of images. This reduces the problem to a search

along a single row in the target image, known as disparity estimation. Initial approaches

used a sliding SSD over a small window, incorporating smoothness and energy minimization

constraints. Ladickỳ [87] and Žbontar [208] showed how learning the matching function

drastically improved performance. Following approaches incorporated deep learning techniques

to regress this disparity. For instance, DispNet [113] applied an FCN architecture [100] to

directly predict the disparity between two images. Pang et al. [135] improved the resolution

of DispNet by introducing additional refinement stages. Meanwhile, Kendall et al. introduced

GC-Net [81], making use of a matching cost-volume in a 3-D CNN.

Monocular. Later approaches attempted to estimate the depth of a scene from a single image.

This is a fundamentally ill-posed problem, since without additional cues it is impossible to

differentiate between the size of an object and its depth. Saxena et al. [158] demonstrated that it

was possible to approximate the scene’s geometry by dividing it into superpixels and estimating

their position and orientation independently. Liu et al. [98] expanded this by learning the models

using a CNN, while Ladickỳ et al. [86] incorporated additional semantic cues.

Eigen et al. [48, 47] introduced the first framework capable of estimating monocular depth using

end-to-end deep learning via a scale invariant loss. Laina et al. [89] improved the performance

by using deeper networks and the more robust berHu loss [134, 217]. On the other hand, Cao et

al. [19] treated depth estimation as a classification problem, where the depth was first quantized

into multiple bins. Meanwhile, DeMon [187] targeted SfM and incorporated VO estimation.

The DeFeat-Net approach proposed in this chapter takes this one step further, additionally

learning a dense feature representation for correspondence estimation.
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5.1.2 Self-supervised

Stereo. The ground truth required to train the previously presented methods typically relies on

LiDAR data, making it costly and challenging to obtain. To circumvent this, several approaches

have been proposed that instead use photometric constraints to learn depth estimation. For

example, DeepStereo [54] synthesised novel views using pixel RGB values from arbitrary

nearby views. Deep3D [198] restricted this to stereo rectified pairs and introduced a novel

image reconstruction loss. The performance of these methods was greatly improved by Garg

et al. [58] and Godard et al. [61], who introduced an additional autoencoder and left-right

consistency, respectively. UnDeepVO [94] additionally learnt VO by adapting [216] and

enforcing consistency between the stereo streams. A series of approaches have since made

use of GANs [4, 137], forcing the reconstructed view to appear more realistic. Most notably,

Sharma et al. [164] used GANs to perform day-to-night conversions to improve performance at

night-time. However, this still does not generalize well and is highly sensitive to both adversarial

training and the quality of the generated images.

Monocular. Finally, in order to learn monocular depth from a single stream of images without

stereo information, it is necessary to incorporate motion information. If the whole framework is

to be self-supervised, the motion must be learnt alongside the depth estimation. Zhou et al. [216]

introduced this concept, warping the previous and next frames in a sequence to reconstruct the

target view. This approach was extended by Zhan et al. [209], who incorporated a feature based

warp loss. Meanwhile, Babu et al. [108] introduced an unsupervised version of DeMon [187].

More recently, research has focused on overcoming the “static world” assumption of the

photometric loss, where dynamic objects result in unaccounted for occlusions. This has been

achieved though additional temporal [109] or semantic [27] constraints, as well as edges &

normals [203] or cycle consistency [136, 196]. The popular Monodepth2 [62] provided a simple

and effective way of handling occlusions via the minimum reprojection loss. An additional

automasking procedure is introduced to remove stationary pixels in the target frames, improving

robustness to dynamic objects. Unfortunately, due to the previously discussed limitations of the

photometric loss, performance is still decreased in challenging seasonal conditions.
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Figure 5.2: DeFeat-Net Overview. We simultaneously learn monocular depth estimation, dense feature description

and VO. The correspondences obtained through the predicted depth and motion can be used in photometric warp

losses and as feature supervision. Introducing dense feature learning improves the robustness of the system to

complex seasonal conditions.

5.2 Methodology

The objective of DeFeat-Net is to jointly learn dense features, monocular depth and VO. By

introducing the task of learning dense feature descriptors, which are trained to be invariant

to lighting conditions, we can increase the robustness of the framework to adverse weather

conditions. What’s more, the geometric constraints linking both tasks allow us to achieve this in

a fully self-supervised manner. The system can also be extended to improve the cross-seasonal

consistency by incorporating GPS labels, which are inexpensive and easy to obtain.

Figure 5.2 shows the overview for the proposed system. The base monocular depth algorithm

contains a target frame It and multiple supporting frames It+k. These are typically the previous

and next frames, i.e. k ∈ {−1, 1}. The estimated depth and motion allows us to obtain pixel-

wise geometric correspondences, which support both the photometric and feature losses. To

incorporate the contextual loss, we follow the procedure introduced in the previous chapter. The

positive sample consists of consecutive frames at the same location and a different season, while

negative samples are from a different location and any season.
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5.2.1 Networks

DepthNet. Given an input image It, the disparity is obtained through

D̂t = ΦD̂ (It) , (5.1)

where ΦD̂ is a ResNet-based encoder-decoder network. The decoder contains four blocks, each

upsampling the features by a factor of two and connected to the correspondingly size encoder

layers via a skip connection. Each stage additionally produces an initial disparity estimate,

which is used as additional supervision during training. The disparity produced by the network

is constrained to the range [0, 1]. This is converted into a scaled depth via

Dt =
1

aD̂t + b
, (5.2)

where a & b are constants chosen to scale the final depth map to the range [0.1, 100].

VO-Net. The second network present in most monocular depth estimation frameworks is the

VO regression network ΦP. Similar to the the depth network, the encoder is based on residual

convolutional blocks. However, since we are predicting relative motion, it is necessary to

combine information from two frames. This is done by concatenating the images channel-wise

and modifying the first convolution layer accordingly. Furthermore, the disparity network

produces a dense output of the same shape as the input. Meanwhile, VO is a global task where a

single 6-DoF pose is regressed for the whole image. Formally, we define this process as

Pt→t+k = ΦP (It ⊕ It+k) , (5.3)

where ⊕ is channel-wise concatenation and Pt→t+k is the transform between the cameras at

time t and t+ k. As in previous work [216, 62], this transform is represented as a translation

and axis-angle rotation, scaled by a factor 0.01.

FeatNet. The final network in the system, and the one related to our main contribution, is the

dense feature descriptor network ΦF. We use the same network as previously introduced in

Chapter 3. As a reminder, this consists of an encoder-decoder structure with skip connections

between corresponding layers and an optional SPP as the final encoder stage. The output of the

network is given by

Ft = ΦF (It) , (5.4)
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where Ft is of shape h/f × w/f × ndim . Once again, the objective is to produce a dense feature

map, while allowing for a downsampling factor f to improve the global consistency.

5.2.2 Correspondence Module

Following the equations presented in Section 3.1.3, we can use the reprojection function (3.9)

along with the estimated depth and motion to establish correspondences between frames. We

therefore define the dense set of correspondences as

Ct+k (pt) = Π (pt|Kt,Pt→t+k, I4,Kt,Dt) ∀ pt ∈ It, (5.5)

where Π once again is the reprojection function, conditioned on the camera intrinsics Kt, the

depth at the point Dt ⟨pt⟩ and the relative position change between cameras Pt→t+k. Note that

since we use the relative position, the first image is therefore located at the origin and its pose is

represented by the 4× 4 Identity matrix I4.

These correspondences are commonly used as the sampling locations when synthesizing new

views in the photometric warp loss. We additionally use them as positive matches in the

feature learning loss. This allows us to obtain pixel-wise geometric constraints in an entirely

self-supervised manner.

5.2.3 Losses

Relational feature loss. As in Chapter 3, any relational loss with a notion of positive and

negative samples can be used to train the feature descriptor network. We make use of the

previously introduced PixCon and NT-Xent losses. The relational feature loss Lfeat therefore

corresponds to either Lcon from (3.4) or Lxent from (3.6). As a reminder, these losses require a

correspondence map Y indicating the ground truth relationship between each pair of pixels in the

dense feature maps: matching, non-matching or ignored. In SAND, this correspondence map was

obtained by reprojecting LiDAR or SfM data onto pairs of images. In the case of DeFeat-Net,

we instead used the estimated correspondences Ct+k as pseudo-ground truth, resulting in

Y
(
pt,pt+k

)
= JCt+k

(
pt+k

)
= ptK. (5.6)
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This loss serves to drive the feature learning, enabling robustness to changes caused by different

weathers and seasons.

Contextual feature loss. The correspondences Ct+k are only obtained between sequential

images of the same season. This ensures that the resulting descriptors can be used to match

within each of the training seasons. However, as we saw in the previous chapter, this does not

guarantee that the descriptors are consistent across multiple seasons. We therefore incorporate

the contextual triplet loss ℓcx from (4.7). Each training batch is constructed following the

procedure from Déjà-Vu, where we sample a positive sequence from the same location and a

different season, as well as a negative from any season and any location.

Déjà-Vu repeated this process to create a cross-seasonal triplet for the current frame TX
1 and

for the following frames TX
2. In DeFeat-Net we extend this idea to create a triplet TX

k for each

offset k, including the target image k = 0. Note that, due to the inclusion of the within-season

pixel-wise supervision Lfeat , we do not require seasonal triplets. As such, we redefine the

contextual loss as

Lcx (TX) =
∑
k

ℓcx

(
TX

k
)
. (5.7)

Photometric & feature warp. To train the depth and motion networks we additionally use the

estimated correspondences in a differentiable bilinear sampler [76]. This allows us to synthesize

the target frame and target feature map based on either the support frames or support feature

maps. This is defined as 
Ît+k = It ⟨Ct+k⟩ ,

F̂t+k = Ft ⟨Ct+k⟩ ,
(5.8)

where ⟨⟩ once again represents the bilinear sampling operation. The final reconstruction loss is

a weighted combination of the SSIM and L1 losses as

Lphoto (I1, I2) = λssim
1−SSIM (I1, I2)

2
+ (1−λssim) |I1−I2| , (5.9)

where λssim controls the balance between both losses. Note that Lphoto produces a dense loss

with an error for each pixel in the image. Importantly, this loss can be applied to both the
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synthesised image and the synthesised feature map
Li−photo =

∑
k

∑
p

Lphoto

(
It, Ît+k

)
Lf−photo =

∑
k

∑
p

Lphoto

(
Ft, F̂t+k

) , (5.10)

where the loss is averaged over all pixels in the image p and each of the support frame offsets k.

The photometric loss Li−photo primarily supports the depth and motion learning during the

initial stages of training, while the feature space is being learnt. Meanwhile, Lf−photo provides a

more reliable supervision in challenging seasonal and weather conditions, where the assumptions

of photometric consistency break down.

Smoothness. Finally, we apply a common regularizing constraint [61] to enforce smoothness in

the predicted depth proportional to the strength of the edges in the image. This is defined as

Lsmooth = λsmooth

∑
p

|∂Dt (p)| exp (− ∥∂It (p)∥) , (5.11)

where ∂It are the spatial gradients in the image and λsmooth controls the overall contribution of

the loss. Intuitively, this only allows for sudden changes in depth in highly textured regions of

the image, where there is more likely to be object boundaries.

5.2.4 Masking & Filtering

Photometric consistency is one of the main assumptions made by previous monocular depth

frameworks. Our feature matching loss seeks to loosen this assumption. The second common

assumption is that of a static world, where no objects move across different frames. However,

this is frequently violated due to dynamic moving objects such as vehicles and pedestrians. This

causes incorrect correspondences which can lead to oversmoothed boundaries and inaccurate

predictions. It is therefore natural that recent improvements in monocular depth prediction have

arisen from explicitly handling occlusion filtering and stationary pixel masking [62].

Minimum reprojection. Throughout the motion in a sequence, different objects will become

(dis)occluded. To provide increased robustness, multiple supporting frames can be used, each

with different occlusions. Instead of taking the mean error over these offsets, as in (5.10), it
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can be beneficial in this situation to assume that the point with the lowest loss is the correct

correspondence and to ignore the others. We therefore redefine the photometric losses as
Li−photo =

∑
p

min
k

Lphoto

(
It, Ît+k

)
Lf−photo =

∑
p

min
k

Lphoto

(
Ft, F̂t+k

) . (5.12)

Note that these minimum reprojections are also used to refine the correspondence map Y

generated in (5.6), used to compute the relational feature learning loss Lfeat .

Automasking. Objects in the image that are further away will move a smaller distance than

those that are closer. Therefore, an object that does not move at all must be at an infinite distance.

However, this effect can also be caused by static scenes where the camera has not moved, or

by objects travelling at similar speeds to the reference camera i.e. other cars. This results in

incorrect predictions of infinite depth. Previous works [216] attempted to simultaneously predict

which points should be masked out from the loss. A simpler and more effective alternative is

M = Jmin
k

Lphoto

(
It, Ît+k

)
< Lphoto (It, It+k)K, (5.13)

where M is the resulting mask indicating if a correspondence is valid. Note that the second loss

term in the Iverson bracket uses the original non-warped support image It+k. Intuitively, this

masks pixels where the original unwarped support frame leads to a smaller loss than the warped

frame. This would be expected if a pixel does not move across frames. Since low-light data

suffers from a reduced overall brightness and contrast, the automasking process may result in

the filtering of correct correspondences. To account for this, the automasking procedure can

also be applied using the feature-based photometric loss Lf−photo . Once again, the improved

robustness to lighting conditions provided by the learned feature descriptors can provide a more

informative supervision loss.

5.3 Results

Implementation details. Each network in DeFeat-Net uses a ResNet-18 backbone, pretrained

on ImageNet [39]. Due to the high memory requirements, the feature network ΦF uses a feature

dimensionality ndim = 10 and a downsampling factor f = 8. As mentioned previously, we use
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the previous and next frames as support frames k ∈ {−1, 1}. Regarding the losses, the final

relational feature loss Lfeat uses NT-Xent and randomly samples 5000 pseudo-ground truth

correspondences from the depth & motion reprojection. We use an SSIM weight λssim = 0.85

and a smoothness factor λsmooth = 0.001. The feature-based photometric loss Lf−photo

computes a separate automask based on the learnt dense features. DeFeat-Net is trained using

an Adam optimizer with a base LR of 10−4. Models using Kitti train for 30 epochs, while those

on RobotCar Seasons use 100 epochs.

Datasets. We use the Kitti dataset [60] to train our baseline daytime models. As is common,

we follow the Eigen-Zhou evaluation protocol, which provides almost 44k images for training

and 4.5k for validation. As with Déjà-Vu, the cross-seasonal models are trained using RobotCar

Seasons [157], which contains a wide variety of seasonal conditions.

Unfortunately, RobotCar Seasons does not contain ground truth depth data. Since DeFeat-Net

only requires the GPS-level supervision from Déjà-Vu, this does not affect out training procedure.

However, it means that a quantitative evaluation on this dataset is impossible. We therefore

make use of the original RobotCar dataset [107] with sequences “2015-08-27-10-06-57” and

“2014-12-16-18-44-24” as daytime and night-time, respectively. We ensure that this data does

not overlap the sequences used for training in RobotCar Seasons. This results in approximately

3000 images with corresponding ground truth LiDAR data.

5.3.1 Depth Evaluation - Canonical Season (Kitti)

We first evaluate DeFeat-Net in a traditional daytime driving scenario, where the photometric

consistency assumption typically holds. As discussed, we use the Eigen-Zhou evaluation

protocol on Kitti, which includes standard error metrics such as absolute relative depth error,

relative square error and Root Mean Squared Error (RMSE). We additionally show the inlier

ratio measures, reporting the relative depth errors within 25%, 56% and 95% of the ground

truth. In this case, since Kitti provides only daytime data, DeFeat-Net cannot be trained with

the contextual loss Lcx .

These results can be found in Table 5.1 and visualized in Figure 5.3. In this case, our approach

provides comparable performance to the current SOTA [62], while outperforming all previous

approaches. Note that these results were obtained by retraining the code provided by the authors.
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(a) Monodepth2 (b) DeFeat-Net

Figure 5.3: Kitti Depth Estimation. We visualize the network predictions on the Kitti daytime data. In this case,

both Monodepth2 and DeFeat-Net provide similar results and robustness.

Table 5.1: Monocular Depth Evaluation on Kitti. We evaluate on ideal daytime driving conditions following the

Eigen-Zhou protocol. In these conditions the photometric assumptions typically hold. As such, DeFeat-Net simply

increases the complexity by introducing a new task.

Abs-Rel ↓ Sq-Rel ↓ RMSE ↓ RMSE-log ↓ A1 ↑ A2 ↑ A3 ↑

SfMLearner [216] 0.183 1.595 6.709 0.270 0.734 0.902 0.959

LEGO [203] 0.162 1.352 6.276 0.252 - - -

Ranjan [142] 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ [104] 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth [22] 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Monodepth2 [62] 0.121 0.851 4.700 0.191 0.867 0.961 0.983

DeFeat-Net 0.122 0.869 4.807 0.191 0.861 0.960 0.983

It is not surprising that DeFeat-Net does not provide significantly different results under these

experimental conditions. In clear daytime driving, the assumptions of photometric consistency

are typically valid. As such, DeFeat-Net is simply adding an extra task to be learnt (dense

feature descriptors), whilst not providing additional training support. However, this changes

when training and evaluating in challenging environmental conditions.
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Table 5.2: Monocular Depth Evaluation on RobotCar. We evaluate on daytime and night-time RobotCar

sequences, using models trained on all seasons in RobotCar Seasons. DeFeat-Net provides a clear advantage over its

purely photometric counterpart [62]. This is particularly noticeable at night-time, where the relative error metrics are

reduced by over 30%. Meanwhile, A1 robustness is improved by 6%.

Test domain Abs-Rel ↓ Sq-Rel ↓ RMSE ↓ RMSE-log ↓ A1 ↑ A2 ↑ A3 ↑

Monodepth2 [62] Day 0.272 3.806 9.629 0.329 0.592 0.824 0.925

DeFeat-Net Day 0.259 3.571 9.443 0.319 0.608 0.837 0.933

Monodepth2 [62] Night 0.336 5.657 9.546 0.370 0.603 0.822 0.911

DeFeat-Net Night 0.230 3.021 8.817 0.292 0.665 0.864 0.943

5.3.2 Depth Evaluation - All Seasons (RobotCar)

The performance on the challenging RobotCar dataset shows the true benefit of the joint

optimization performed by DeFeat-Net. RobotCar (Seasons) provide a wide variety of weather

conditions including night, night & rain, snow, dusk and dawn. In most of these cases, these

environments contain multiple light sources, complex reflections, increased blur and brightness

changes that invalidate the photometric assumption.

As seen in Table 5.2, DeFeat-Net provides a clear advantage over Monodepth2 [62] in these

conditions. Whilst improvements in the daytime sequence are modest, night-time results show

an overall improvement > 30% in the relative error measures. DeFeat-Net is particularly robust

with regards to the number of outliers, showing consistent A1, A2 & A3 metrics across day

and night data. This suggests that when facing regions of uncertain depth, such as blurring or

under-exposure, the proposed approach fails gracefully rather than producing catastrophically

incorrect predictions. This is also reflected in the qualitative visualizations in Figure 5.4, where

Monodepth2 shows many holes of infinite depth instead of predicting the road surface.

In the case of DeFeat-Net, incorporating the dense feature learning task increases the overall

complexity of the system. However, the base photometric loss is not robust enough to the

complex lighting conditions, leading to a weak supervision signal. Meanwhile, the feature

supervision losses result in feature representations invariant to these conditions. This allows the

feature warp loss to provide a more stable supervision that leads to improved depth predictions.
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(a) Monodepth2 (b) DeFeat-Net

Figure 5.4: RobotCar Depth Estimation. We visualize the network predictions on the RobotCar data. DeFeat-Net

provides clear improvements under the challenging night-time conditions. The basic photometric loss is not capable

of providing effective supervision in these conditions, leading to more holes of infinite depth.



5.3. Results 83

Table 5.3: DeFeat-Net Ablation Study. We test the various contributions of DeFeat-Net. Each of these results in

improvements over the featureless baseline [62]. Most notably, we find that better features directly correlate better

depth estimation.

ΦF Lfeat F-Mask CX Abs-Rel ↓ Sq-Rel ↓ RMSE ↓ RMSE-log ↓ A1 ↑ A2 ↑ A3 ↑

0.336 5.657 9.546 0.370 0.603 0.822 0.911

f = 1 Lcon 0.295 5.459 9.266 0.340 0.632 0.848 0.930

f = 1 Lcon 0.295 5.459 9.266 0.340 0.632 0.848 0.930

f = 8 Lcon 0.277 4.086 9.020 0.333 0.657 0.851 0.929

f = 8 Lxent 0.233 3.677 9.051 0.299 0.677 0.864 0.940

f = 1 Lcon 0.295 5.459 9.266 0.340 0.632 0.848 0.930

f = 1 Lcon ✓ 0.280 4.556 9.176 0.334 0.655 0.850 0.930

f = 8 Lxent ✓ 0.235 3.045 8.842 0.299 0.651 0.860 0.941

f = 8 Lxent ✓ ✓ 0.230 3.021 8.817 0.292 0.665 0.864 0.943

5.3.3 Ablation Study

As in previous chapters, we perform an ablation study to test the effects of the various compo-

nents that form DeFeat-Net. This ablation is performed on the RobotCar night-time data. The

base models use ResNet-18 backbones pretrained on ImageNet, a feature network with scale

f = 1 and the PixCon loss Lcon . These results can be found in Table 5.3.

Monocular depth vs. DeFeat-Net. We first compare performance with a baseline model based

exclusively on the photometric image loss [62]. We then introduce the feature learning task

proposed by DeFeat-Net, consisting of the feature network ΦF, the relational feature loss Lcon

and the feature-based photometric loss Lf−photo . As seen in the first two rows in Table 5.3, even

in its most basic form, incorporating the feature learning task results in significant improvements.

As previously discussed, this is due to the additional robustness provided by the feature-based

photometric loss in challenging conditions.

Feature resolution & loss. As in previous chapters, we find that a lower resolution feature

map results in improved consistency. Note that in this case we upsample the features to the

original image resolution when computing the feature-based photometric loss Lf−photo . Similar
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to SAND, the NT-Xent loss provides better results than PixCon. This ablation highlights the

importance of the learnt feature representation. A more discriminative feature representation

directly correlates with improved depth estimation in challenging conditions.

Feature automasking. Following [62], we introduce automasking to filter points from static

scenes and objects moving at similar speeds to the vehicle. This procedure suffers from similar

limitations to the image-based photometric loss when applied to night-time data. Following

our intuition for the proposed photometric feature loss, we compute a new automask using

the features as opposed to the raw images. As seen in the results in rows 6 & 7 of Table 5.3,

incorporating this automasking results in further improvements.

Contextual loss. Finally, we incorporate the contextual supervision used in Déjà-Vu, which

only requires the use of rough alignment labels obtained via GPS. This is shown in the final

rows of Table 5.3. Despite not directly interacting with the depth estimation, incorporating

this loss still results in improved performance. We believe this is due to the fact that this loss

improves invariance to adverse weather conditions (as previously demonstrated with Déjà-Vu),

further increasing the robustness and stability of the photometric feature loss Lf−photo .

5.4 Conclusions

This chapter presented the DeFeat-Net framework, with the objective of combining the advan-

tages of both SAND and Déjà-Vu. We achieved this by simultaneously learning monocular depth

estimation, dense features and VO. Most importantly, we were still capable of providing robust-

ness to drastic appearance changes caused by different seasons and weathers, while requiring

minimal labelling. This approach provides a bridge between supervision using sparse geometric

constraints (within seasons) and global similarity labels (across seasons). This has therefore

tackled objectives 1, 2 & 4 in this thesis.

This chapter demonstrated that dense features can be learnt simultaneously alongside other

computer vision tasks, complementing them and boosting their performance. As shown in the

results, DeFeat-Net provides a significant improvement over previous SOTA when applied to

complex real-world scenes. However, one of the limitations of DeFeat-Net is its large memory

requirements. For instance, each of the different tasks trains a completely separate network.
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Paired with the memory requirements for the multiple losses, i.e. synthesising new views and

sparse & dense distance cost matrices, the resulting system must use a limited batch size with

downsampled images.

The main reason for separating the depth, pose and feature networks is that naı̈ve multi-tasking

(where the encoder is shared and each task has a separate decoder) can actually lead to worse

performance. This is caused by the sharing of irrelevant distractor features. Deciding what

features should be shared is a complex research problem, since this relationship changes

depending on the combination of tasks, scales and each individual image. The following chapter

will discuss these challenges in greater detail, providing a simpler solution that can still maintain

high performance.
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Chapter 6

Universal Feature Learning via

Attentional Multitasking

Chapter 3 presented a two-stage pipeline, where generic features were first trained using ground

truth correspondences and then applied to various downstream tasks. In most cases, these

features required finetuning to reach their maximum performance. Unfortunately, this process

destroyed the generality of those features and resulted in them forgetting [114, 143] previous

tasks. SAND also required hand-picking an appropriate spatial negative mining scale based on

our intuition of the properties of the target task. On the other hand, DeFeat-Net simultaneously

trained monocular depth, VO and dense features in a naı̈ve multitasking system. This provided

a boost in performance due to the inherent relationship between the tasks, but did not explicitly

share information at the feature level. This made the system less efficient and harder to train,

since none of the computation was shared.

This chapter focuses on learning generic feature representations which are simultaneously

applicable to a wide variety of computer vision tasks. We therefore approach this from the

perspective of MTL. Initial naı̈ve approaches to MTL focused on sharing computation at the

backbone level, from which multiple independent task heads emerged [83, 99, 124, 57]. This

makes the network highly efficient. Unfortunately, these approaches do not perform well due

to the fact that different regions of the image have differing levels of importance for each task.

To improve performance, recent approaches [199, 213, 191] attempt to model the relationship

between tasks by incorporating spatial attention connections between each possible pair of tasks.

87
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Figure 6.1: Universal Feature Learning. Current approaches to MTL incorporate connections between every pair

of tasks, resulting in a quadratic parameter complexity w.r.t. the number of tasks. We reduce this to a linear scaling

by keeping isolated task heads. Furthermore, incorporating two spatial attention mechanisms (SFA & MSA) matches

the performance of these complex methods, while learning features that transfer beyond the original training set.

This comes at the cost of a quadratic parameter complexity, limiting the applicability of these

approaches to a larger number of tasks.

We make the observation that all of these techniques result in a system that is highly optimized

only for the set of training tasks. In other words, the set of training and evaluating tasks are

the same. We argue that these systems are therefore not generic and reusable, especially given

that adding a new task would require incorporating new connections to all previous tasks and

retraining the whole network. In contrast, we want the features in the network to generalize

beyond the original training tasks, i.e. the training and evaluating tasks are different. We refer to

this process as Universal Feature Learning (UFL).

We propose to revisit architectures with completely independent task heads, where the backbone

is the only shared component. This creates an information bottleneck that forces the backbone

to learn generic features suitable for all target tasks, as illustrated in Figure 6.1. To mitigate the

effects of negative transfer between unrelated tasks we introduce a spatial attention mechanism

between the backbone and each task head at each scale. The task head features are refined and

used to make initial predictions at each scale for additional supervision during training. Finally,

the task features at all scales are combined using the novel Multi-Scale Attention (MSA) task

head, accounting for the fact that different scales have different roles in the final prediction.

The whole procedure results in a highly efficient feature extraction process that is only linear

w.r.t. the number of tasks. It also becomes trivial to add new task heads after the initial training

stage. These can be trained independently while making use of the learnt shared features.
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6.1 Literature Review

The objective of MTL [21, 149, 190] is to train a network that can simultaneously perform mul-

tiple tasks. This leads to an improved efficiency and/or performance over multiple independent

networks due to the fact that information between tasks can be shared. UberNet [83] proposed a

multi-scale and multi-head architecture consisting of a shared backbone and additional feature

sharing layers. Meanwhile, Cross-stitch networks [124] learned linear combinations of task

features, introducing the concept of soft feature sharing. Further approaches [150, 57] extended

this concept, replacing the linear combinations with subspace & skip connection sharing and di-

mensionality reduction, respectively. The main drawback of the soft feature sharing approaches

is that they first require each task to be trained separately, from which the features are then

finetuned. This also means that these approaches focus on improving performance, not on

making the MTL system more efficient.

Unfortunately, the performance of these systems was not always improved, despite the incorpo-

ration of feature sharing layers. This is due to the fact that not all tasks are related, and not all

information should be shared. The sharing of unrelated information, harming performance for

both tasks, is known as negative transfer [83, 214]. Vandenhende et al. [189] used precomputed

task affinity scores [46] to decide the structure of the network and what layers to share. Other

approaches instead aim to learn these relationships, optimizing the network architecture directly.

For instance, FAFS [103] begins with a fully shared model, which is then optimized to separate

dissimilar tasks and regularized to maintain a low complexity. Meanwhile, BMTAS [16] and

LTB [63] represented branching points in the shared backbone using the Gumbel softmax [77].

More recent approaches have instead opted for maintaining a static network architecture, where

the flow of information between tasks is dynamic based on attention mechanisms. For instance,

MTAN [99] created parallel task encoders by introducing spatial attention at each stage in the

shared backbone. PAD-Net [199] introduced the concept of multi-task distillation, where each

task head first made initial predictions. These predictions were then refined and combined via

spatial attention between each possible pair of tasks. MTI-Net [191] extended this to a multi-

scale approach, including addition feature propagation modules between scales. PAP-Net [213]

replaced the spatial attention in the multi-task distillation with a learnt affinity and diffusion

between each pair of tasks. TRL [212] instead proposed a recursive procedure for refining
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sequential task predictions, which are combined using spatial attention. These approaches

generally result in an improved performance. However, introducing connections between all

possible pairs of tasks leads to a quadratic growth in complexity w.r.t. to the number of tasks.

This is not a problem when only a small number of tasks are being trained, but causes severe

scaling issues as the number of tasks increases.

6.2 Methodology

We refer to the approach proposed in this chapter as Medusa. It aims to learn generic features

that can be applied to a wide range of computer vision tasks. This includes extending beyond the

original set of training tasks. An overview of the proposed network can be found in Figure 6.2,

illustrating the two main components of Medusa: a shared backbone and independent task heads.

The shared backbone represents an information bottleneck that forces the network to learn a

generic representation suitable for all training tasks. Each task head is connected to the backbone

via the Shared Feature Attention (SFA), allowing it to retain only the relevant information for

that task and mitigating negative transfer. The predictions for each task are further processed

by the novel MSA heads, providing an effective way of combining information from multiple

scales. Altogether, this results in a highly efficient architecture that maintains performance over

multiple tasks.

6.2.1 Shared Feature Attention

The only component shared between the multiple tasks is the common backbone. Given an

input image I, this backbone produces a multi-scale feature representation Bs = ΦB (I), where

the scale s represents an increasing downsampling factor. Since these features are common to

all downstream tasks heads, the learnt representation must be generic and reusable. However, as

previously discussed, the sharing of information across unrelated tasks can be harmful to their

performance. We therefore require a way of filtering the information in such a way that each

task head keeps only relevant features. This is achieved by introducing a local spatial attention

mechanism between the backbone features and each of the individual task heads. Following

previous work [38, 99, 199, 191], we define the process of applying spatial attention SA to an
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Figure 6.2: Proposed Medusa Architecture. Our architecture focuses on maintaining independent task heads. This

results in a more efficient scaling to a larger number of tasks, while learning more generic and reusable features.

(a) Shared Feature Attention filtering shared backbone features into task specific features at each backbone scale

through per-channel spatial attention. (b) Novel Multi-Scale Attention head combining task features at different

scales to generate the final predictions.

arbitrary feature map F as

SA (F) = σ (ϕ1 (F))⊙ ϕ2 (F) , (6.1)

where σ is the sigmoid operation, ⊙ the Hadamard product and ϕ a convolutional block including

BatchNorm and ReLU.

In the case of Medusa, we learn a separate attention for each target task at each backbone

scale, resulting in NT ·Ns independent attention blocks. Therefore, FT
s = SAT

s (Bs) represents

the initial task features for a given scale s and task T. To summarize, the per-channel spatial

attention σ (ϕ1 (F)) allows each task head to learn which of the generic features within the

backbone are more suitable for its task, while discarding the rest. This reduces the likelihood of

negative transfer in a highly cost-effective manner. Furthermore, the multi-scale nature of the

proposed architecture results in a wide variety of information being available to the following

stages in the task head when making the final predictions.
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6.2.2 Multi-Scale Task Predictions

Previous approaches [124, 99, 111] used task heads that made a direct prediction for each

task. However, recent methods [199, 213, 191] have instead shown the benefit of incorporating

intermediate predictions as additional supervision during training. Following these approaches,

Medusa makes intermediate predictions for each task at each of the scales produced by the

backbone. Once again, these predictions are only used as intermediate supervision during

training and can be discarded when evaluating the final model. To generate these predictions,

the filtered shared features at each scale FT
s are refined into task specific features through

F̄T
s = ψ1 (ψ2 (FT

s)) , (6.2)

where F̄T
s are the resulting refined features and ψ = ϕ (F) + F is a convolutional residual block.

The initial predictions for each scale and task are then given by OT
s = ϕT

s

(
F̄T
s

)
, where ϕT

s

maps from the number of backbone channels at that scale Cs to the channels required by the

task. Once again, these intermediate predictions are used only as additional supervision during

the training phase. This helps to guide the intermediate task features towards the target task,

allowing them to more effectively support the final prediction.

6.2.3 Multi-Scale Attention Task Heads

The final step is producing the output predictions for each task. Previous approaches [99, 111]

operated sequentially, where the final predictions were generated exclusively based on the

features of the last layer. More recent multi-scale approaches [191] instead upsample all

intermediate predictions to the highest resolution, concatenate them together and process them

in a final convolutional stage. We refer to this task head as HRHead in the results discussed in

Section 6.3.

The main drawback of this task head is that it does not take into account the different roles

that each scale provides. In practice, different scales have complementary benefits and failure

modes [117]. For instance, through the wider context available, lower resolution predictions are

capable of providing a cohesive overview of the whole scene. However, this results in a lack of

high-frequency detail and oversmoothed predictions. Conversely, high resolution predictions

capture the nuances in the scene, but can be inconsistent on a global scale.
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We account for this by introducing the novel Multi-Scale Attention head. Given a set of refined

task features at multiple resolutions, we let the task head decide what information from each

scale should be used and how to combine it most effectively. Once again, this is achieved

through the use of the spatial attention defined in (6.1). Formally, we define this process as

HT
s = SAT

s

(
F̄T
s

)
, (6.3)

HT = HT
0 ⊕ HT

1 ⊕ . . .⊕ HT
s (6.4)

where HT represents the channel-wise concatenation of the attended per-task per-scale fea-

tures HT
s. Note that the spatial attention SAT

s across scales used in the MSA task head is learned

independently of that used when filtering the initial task features from the backbone (see Sec-

tion 6.2.1). The final prediction for each task is then obtained through OT = ϕT (HT) , where ϕT

again maps the final number of channels
∑

sCs to the channels required by the task.

It is worth noting that the resulting task heads are completely independent from each other.

Once the features leave the backbone, they do not interact with any of the features from other

tasks. This simple design choice makes it trivial to attach or detach task heads after the initial

training stage without affecting the existing tasks. As such, new task heads can be trained

based on the fixed shared features, leading to an efficient transfer process. Furthermore, the

resulting architecture scales only linearly with the number of task heads, while still maintaining

performance comparable to that of highly complex methods such as MTI-Net [191].

6.3 Results

Dataset. To train Medusa we make use of the NYUD-v2 dataset [166]. This contains images

for complex indoor scenes, in addition to labels for semantic segmentation maps, depth, surface

normals and edges. Following previous approaches [199, 191], we primarily focus on the

semantic segmentation and depth estimation tasks. Meanwhile, surface normal estimation and

edge detection are left as auxiliary tasks that can help to learn more generic features and boost

performance. We evaluate the performance of the depth predictions using the RMSE, while

semantic segmentation uses the m-IoU.

Implementation details. Since we focus on dense prediction tasks, we opt for HRNet-18 [176]

as the shared backbone architecture. This backbone produces feature maps at four different
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scales, with downsampling factors of {4, 8, 16, 32}. We train Medusa using the Adam optimizer

with a learning rate of 10−4 and a polynomial decay [30] for 100 epochs. Since we use an

ImageNet [39] pretrained network, the backbone uses a lower learning rate (a factor of 10) than

the task heads. Regression tasks (depth, surface normals) use the L1 loss, while classification

(semantic segmentation, human part segmentation, saliency) use cross-entropy.

6.3.1 Multi-task Evaluation

It is worth remembering that the primary objective for Medusa is performing UFL. We show

results for this objective further on in Section 6.3.2. However, we additionally carry out

experiments in traditional MTL to provide a fair comparison with existing approaches and

illustrate the complexities of UFL.

In the context of MTL, we follow the procedure introduced by ASTMT [111], evaluating

semantic segmentation and depth estimation on NYUD-v2. Similar to MTI-Net [191], surface

normals and edge detection (N + E) are left as auxiliary tasks that can support the feature

learning for the main tasks. Given multiple target tasks, the overall multi-task performance ∆m

is defined as

∆m =

NT−1∑
T=0

(−1)l
T MT

m−MT
b

MT
b

, (6.5)

where lT is the label indicating whether a lower value means a better performance in that task,

MT
b is the performance of the single task baseline and MT

m is the performance of the target MTL

system we are evaluating. Intuitively, this represents the average improvement in performance

relative to the single task baseline MT
b over all tasks. The results for the single task baseline

(ST) are obtained by training a completely independent network for each task.

We compare against a multi-task baseline (MT) as well as six previous SOTA approaches.

The MT baseline represents a naı̈ve MTL implementation, where the tasks share a common

backbone, connected directly to each task head. Three of the SOTA baselines [124, 57, 99] use

a single scale backbone based on ResNet [70], combined with the popular DeepLab-v3 [25]

head. Multi-scale models [199, 191] instead employ the HRNet backbone along with the simple

HRHead described previously. Since MTAN [99] is the best performing single-scale model

and the most similar in concept to Medusa we additionally adapt it to use the HRNet backbone
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Table 6.1: Multi-task Evaluation on NYUD-v2. The (N+E) column indicates the presence of auxiliary surface

normals and edges tasks. The multi-task performance ∆m represents the average increase in performance across

all tasks. Medusa performs on par with current SOTA [191]. This is achieved while using a much lower number

of computational resources (see Figure 6.4). This is due to the focus on the shared features as well as the novel

lightweight MSA head.

Backbone Head N+E Seg ↑ Depth ↓ ∆m% ↑

ST Baseline ResNet-18 DeepLab-v3+ 35.77 0.600 +0.00

MT Baseline ResNet-18 DeepLab-v3+ 35.74 0.597 +0.12

Cross-stitch [124] ResNet-18 DeepLab-v3+ 36.01 0.600 +0.30

NDDR-CNN [57] ResNet-18 DeepLab-v3+ 34.72 0.611 -2.47

MTAN [99] ResNet-18 DeepLab-v3+ 36.00 0.594 +0.79

ST Baseline HRNet-18 HRHead 34.57 0.606 +0.00

MT Baseline HRNet-18 HRHead 33.21 0.614 -2.63

MTAN [99] HRNet-18 DeepLab-v3+ 35.25 0.581 +3.02

MTAN HRNet-18 DeepLab-v3+ ✓ 36.19 0.567 +5.57

PAD-Net [199] HRNet-18 HRHead 34.39 0.617 -1.23

PAD-Net HRNet-18 HRHead ✓ 35.46 0.604 +1.43

MTI-Net [191] HRNet-18 HRHead 36.94 0.559 +7.26

MTI-Net HRNet-18 HRHead ✓ 37.40 0.540 +9.48

Medusa (ours) HRNet-18 MSA (ours) 36.99 0.573 +6.19

Medusa HRNet-18 MSA ✓ 37.48 0.545 +9.24

for a fairer comparison. However, the nature of MTAN’s architecture still requires the use of

the DeepLab-v3 head. We use the code provided by the authors of [111, 191] to train these

baselines.

As shown by the results in Table 6.1, the naı̈ve MTL approach (MT) actually results in a decrease

in performance. This is due to the fact that the network is forced to share all information across all

tasks even if they are unrelated. Once again, this process is known as negative transfer [83, 214].

It can also be seen how single-scale approaches making direct predictions [124, 57, 99], do

not provide a large increase in performance. Medusa can be seen to outperform all existing
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Figure 6.3: Qualitative Evaluation. Through the proposed MSA heads, Medusa’s predictions are both globally

consistent and have well defined borders. Results are on par with the current SOTA while using less resources.

approaches with independent task heads [99]. Interestingly, we also see improvements when

incorporating the auxiliary (N + E) tasks. This means that forcing the common features to

encode properties useful for predicting surface normals results in features that are also better at

performing depth estimation, despite the fact that the two task heads are completely unaware

of each other. Finally, Medusa performs on par with current SOTA methods [191] that include

connections between all task heads at each different scale. This is achieved while having much

lower resource requirements, as we will discuss later. We show qualitative visualizations for the

network predictions in Figure 6.3. As seen, the baseline MT predictions are highly noisy and

produce many inconsistencies. Medusa’s predictions instead are generally globally consistent

while still providing sharp edges in semantic segmentation. However, some objects still get

misclassified and cluttered scenes are challenging to represent in high detail.

Ablation. To understand the effect of the various components of Medusa, we perform an

ablation study. This focuses on the dual attention mechanisms incorporated into the network. To

mitigate the effect of reduced model complexity, we do not simply remove the SFA modules.
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Table 6.2: Spatial Attention Ablation Study. We study the effect of the spatial attention components of Medusa,

when all approaches use the HRNet-18 backbone. In the SFA column we replace the spatial attention block between

the shared backbone and the task heads with a traditional convolutional block. The MSA task head incorporates

spatial attention when combining the multi-scale task features prior to making the final prediction. Incorporating

both types of attention results in a relative improvement of 37.7%.

SFA Head N+E Seg ↑ Depth ↓ ∆m% ↑

ST Baseline HRHead 34.57 0.606 +0.00

MT Baseline HRHead 33.21 0.614 -2.63

MT Baseline MSA 35.58 0.598 +2.12

Medusa HRHead ✓ 36.50 0.558 +6.71

Medusa ✓ HRHead ✓ 36.64 0.553 +7.31

Medusa MSA ✓ 37.14 0.555 +7.91

Medusa ✓ MSA ✓ 37.48 0.545 +9.24

Instead we replace them with a simple convolutional block using BatchNorm and a ReLU

activation. We follow a similar approach with the proposed MSA head, which incorporates

attention into the basic HRHead used by previous approaches.

The results of these experiments can be found in Table 6.2, demonstrating the benefits of each

attention block. Incorporating the SFA results in a consistent relative improvement across

the different techniques of 8.94% and 16.81%. Meanwhile, the MSA head leads to even

larger performance gains—from 17.88% to 180.60%. Most notably, the MSA head boosts

the performance of the MT baseline such that it improves over the ST baseline by mitigating

negative transfer. This illustrates the importance of flexibility when combining features at

multiple scales, allowing the network to decide which features are more suitable within a local

neighbourhood. Overall, the proposed changes lead to a relative performance increase of 37.7%

w.r.t. the base model without any spatial attention. It is worth noting that these changes are very

simple to implement and do not result in a large increase in resource requirements.

Resources. As discussed, the architecture used by Medusa is simple in concept, but is highly

effective. This is due to the fact that we focus on the core challenges of multi-task and multi-scale

learning, namely effective feature sharing across both tasks and scales. As shown in Figure 6.4a,
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Figure 6.4: Medusa Resource Usage. Modelling the relationships between each pair of tasks and scales [191]

results in a quadratic increase in paramters/GFLOPS w.r.t. the number of tasks. This does not scale well to an

increasing number of tasks. Medusa’s independent task heads lead to a much more efficient scaling, while focusing

on features that are more generic and reusable. Exact values can be found in Table 6.3.

this leads to an architecture that scales only linearly w.r.t. the number of tasks. We further

contrast the trade-off between resource usage and performance in Figure 6.4b & Table 6.3. By

sharing the computation at the backbone, Medusa is more efficient than the ST baseline, which

creates NT duplicate backbones. While the MT baseline is the most efficient, its performance

is lacklustre due to the lack of attention and intermediate predictions. Finally, the additional

connections between all pairs of tasks at each scale from MTI-Net [191] result in a quadratic
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Table 6.3: Medusa Resource Usage. All single-scale baselines require large amounts of both parameters and

FLOPS. Multi-scale baselines reduce these requirements, while improving performance significantly. However,

methods with densely connected task heads [199, 191] do not scale effectively to an increasing number of tasks.

Medusa provides the best balance between resource usage and performance.

Backbone Head N+E Params (M) ↓ Flops (G) ↓ ∆m% ↑

ST Baseline ResNet-18 DeepLab-v3+ 31.80 156.89 +0.00

MT Baseline ResNet-18 DeepLab-v3+ 20.63 100.49 +0.12

Cross-stitch ResNet-18 DeepLab-v3+ 31.81 156.89 +0.30

NDDR-CNN ResNet-18 DeepLab-v3+ 33.22 164.12 -2.47

MTAN ResNet-18 DeepLab-v3+ 21.65 108.48 +0.79

ST Baseline HRNet-18 HRHead 7.87 22.53 +0.00

MT Baseline HRNet-18 HRHead 4.01 12.77 -2.63

MTAN HRNet-18 DeepLab-v3+ 7.93 11.18 +3.02

MTAN HRNet-18 DeepLab-v3+ ✓ 11.95 12.60 +5.57

PAD-Net HRNet-18 HRHead 7.01 70.24 -1.23

PAD-Net HRNet-18 HRHead ✓ 12.16 168.90 +1.43

MTI-Net HRNet-18 HRHead 8.57 17.14 +7.26

MTI-Net HRNet-18 HRHead ✓ 14.83 22.88 +9.48

Medusa (ours) HRNet-18 MSA 8.00 16.38 +6.19

Medusa HRNet-18 MSA ✓ 10.98 19.07 +9.24

increase in parameters. Even at a small number of tasks—three or more—this approach requires

more parameters than the ST baseline. In other words, MTI-Net is less efficient than training

entirely independent models for each task with no parameter sharing. As the number of tasks

increases this gap only widens. Medusa reduces the number of parameters w.r.t. MTI-Net by

25.9%, with only a slight performance drop of 2.5%. On the other hand, Medusa has roughly

the same number of parameters as MTAN, but provides a relative improvement of 65%.
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Table 6.4: Universal Feature Learning. We evaluate the transfer capabilities to new tasks and new datasets

(PASCAL-Context) of the highest performing MTL approaches in Table 6.1 (NYUD-v2). Since Medusa places a

larger focus on the shared feature representation, the resulting features provide large improvements over commonly

used ImageNet pretrained features (ST Baseline). This is archived while using orders of magnitude less data.

NYUD-v2 PASCAL-Context

Seg ↑ Depth ↓ ∆m% ↑ Parts ↑ Sal ↑ ∆m% ↑

ST Baseline 34.57 0.606 +0.00 48.73 56.44 +0.00

MT Baseline 33.21 0.614 -2.63 36.13 51.96 -12.93

MTAN [99] 36.19 0.567 +5.57 47.37 57.84 +4.26

MTI-Net [191] 37.40 0.540 +9.48 51.50 60.19 +10.76

Medusa 37.48 0.545 +9.24 52.24 61.91 +13.18

6.3.2 Universal Feature Learning

To conclude, we evaluate Medusa in the proposed UFL task for which it was developed. The

objective is to train a network with a wide range of tasks, such that the resulting features

generalize beyond the original training set. In other words, the set of evaluation tasks is different

from the training tasks. This differs from standard MTL, where we only require the features to

perform well on the original training tasks.

We make use of the PASCAL-Context dataset [30] to show the transfer capabilities of Medusa.

This means we are not only transferring to new tasks, but also to a previously unseen dataset.

This dataset contains ground truth labels for semantic segmentation, human part segmentation

and edge detection, as well as pseudo-ground truth labels for surface normals and saliency based

on SOTA models [11, 26]. Three task are common to NYUD-v2, while two of them (human

part segmentation and saliency) are unique. To carry out this evaluation we use the previous

models trained on NYUD-v2 in Section 6.3.1 with the auxiliary (N+E) tasks and check their

transfer capability to the new target tasks in the PASCAL-Context dataset. This is done by

freezing the shared feature backbone network and adding a new task head corresponding to

either saliency estimation or human part segmentation. In the case of MTI-Net, adding their

proposed task head would require incorporating new connections to each of the existing tasks
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and retraining. Since this defeats the point of UFL, we instead replace the new task heads with

the common task head used by other approaches. It is also worth noting that here, the single

task baseline (ST) represents features obtained by pretraining on ImageNet [39], freezing the

backbone and training only the target task head.

These results are shown in Table 6.4, where we include the previous MTL results on NYUD-v2

for comparison. The MT baseline is completely unable to transfer the learnt features to these new

tasks. This illustrates the core difference between UFL and MTL, where the goal of MTL is to

perform well only in the original training tasks. This is only exacerbated by the naı̈ve multi-task

implementation, resulting in a large amount of negative transfer between tasks. Meanwhile,

Medusa provides the best transfer capabilities. Even through MTL performance is almost equal

to MTI-Net (9.24% vs. 9.48%), the features learnt by Medusa generalize to a broader range

of tasks (13.18% vs. 10.76%). This is due to the fact that Medusa places more importance on

learning an effective shared representation. Each task head is capable of extracting the relevant

features that provide the best performance in the target task. In contrast, MTI-Net focused on

modelling the connections between task heads. As such, the features do not learn to be generic

and instead focus on solving only the original set of training tasks.

6.3.3 Image Matching

Despite not being optimized for the task of correspondence estimation, we theorize that Medusa’s

generic features may encode properties useful for this task. To test this, we again make use of the

image matching evaluation on HPatches [9] described in Section 3.2.1. This reports the MMA,

defined as the percentage of correct matches given a varying threshold for the reprojection error

for each keypoint. We use keypoints detected by SuperPoint [41].

Medusa does not have an explicit task head trained to produce feature descriptors. We therefore

instead use the shared backbone, which produces a feature representation at multiple scales

with an increasing downsampling factor. We first perform an ablation to find the most effective

scale(s). As show in Figure 6.5a, each scale separately provides poor performance. Similar to the

ablations from SAND and Déjà-Vu, we find that higher downsampling factors typically provide

increasing performance. However, concatenating the descriptors from all scales channel-wise

results in a much larger performance boost, especially under viewpoint changes.
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(a)

(b)

Figure 6.5: Medusa HPatches Evaluation. Despite not being optimized for feature description, Medusa is robust

to both illumination and viewpoint changes. (a) Concatenating Medusa’s feature representations over all scales

improves performance drastically. (b) Medusa outperforms most feature descriptors in illumination invariance and

matches SAND’s viewpoint performance.

Figure 6.5b shows this performance in the context of SOTA descriptors. Surprisingly, despite

the lack of direct supervision, Medusa provides highly competitive performance. Most no-

tably, Medusa is more robust to illumination changes than SuperPoint [41], HardNet [121],

RootSIFT [7] and D2-Net [45] at the majority of thresholds. This shows the effectiveness of
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the proposed training approach, combining multiple-tasks and multiple-scales to learn highly

generic features that can be applied to many downstream tasks. In this case, this is achieved

without requiring any additional training.

6.4 Conclusions

This chapter has presented a framework for learning universal features through the lens of

MTL. We proposed a simple framework, focusing on the shared feature representation, that is

capable of matching the MTL performance of architectures with densely connected task heads

and additional feature propagation modules. Furthermore, we show that Medusa is capable of

extending beyond the original set of training tasks, solving the problem of UFL. This addressed

objective 4 of this thesis.

One of the main limitations of Medusa is the high annotation requirements. Currently, each

image in the dataset is required to have labels for all target training tasks. Generating or

annotating these labels is time consuming and expensive, especially as the size of the dataset

increases. Similarly, while Medusa is effective at learning generic features, it still depends on

the set of training tasks. It is unlikely that the shared features will transfer well to a new task if it

is completely unrelated to the training tasks. Both of these issues could be mitigated by making

the training process more flexible. For instance, it would be interesting to combine multiple

datasets where each has a different set of training tasks. In this case, only a subset of the task

heads and associated losses would be activated for each input example. Another option could be

to instead perform multi-task distillation from SOTA models for multiple different tasks. This

would offset the need for large amounts of labels.
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Chapter 7

Conclusions and Future Work

Feature description is a long explored topic of computer vision research. Traditional hand-crafted

features were hard-coded to encode attributes about the image patch with a physical meaning,

such as the strength of the spatial gradients or their orientation [102, 120, 184]. Recent advances

in deep learning made it possible to directly learn a more discriminative feature representation.

This was complemented by the development of new loss functions [181, 121, 180], which

encouraged a more effective use of the embedding space. More recently, the description process

has been done in a dense manner [33, 160, 45], where the whole image is processed in a single

forward pass to generate a feature descriptor for each pixel in the image.

The purpose of this thesis was to bridge the gap between metric features for tasks such as

correspondence estimation and the wider world of computer vision. This was motivated by

the observation that current metric feature learning approaches learn to encode the similarity

between different image regions. We hypothesized these properties can be beneficial for a

much wider range of tasks. The contributions in this thesis demonstrated this is indeed the case.

We further showed how to manipulate the learnt feature representation and embed additional

properties that are important for many tasks, leading to highly generic and robust feature

descriptors. This resulted in the following objectives for this thesis:
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1. To explore deep neural network solutions to dense metric feature learning and correspon-

dence estimation.

2. To reduce the amount of labels required to train these representations whilst still showing

real-world variation.

3. To explore the application of dense metric feature descriptors to a wide range of tradition-

ally descriptive computer vision tasks.

4. To explore the simultaneous optimization of multiple tasks based on shared feature spaces.

Chapter 3 introduced SAND features, with the objective of training a feature representation for

correspondence estimation that could be applied to multiple downstream computer vision tasks.

This therefore targeted thesis objectives 1 & 3. To train these features we required LiDAR or

SfM data to determine which points in the image corresponded to each other. However, this

did not impose restrictions on the negative samples used in the relational loss. To this end,

we introduced the concept of spatial negative mining, where the negative samples are chosen

based on a pre-defined context region around the original correspondence. This training regime

limited the region in which we required each descriptor to be unique and could be modified

according to the properties required by the downstream task. We demonstrated application to

three downstream deep learning tasks, each with different requirements: semantic segmentation,

disparity estimation and visual localisation. In each case, we showed how SAND could improve

the performance in these tasks by replacing the input image to the network with its dense feature

representation. Finally, we also demonstrated how SAND could be used in a traditional sparse

correspondence estimation task, replacing hand-crafted features in a SLAM pipeline.

Chapter 4 addressed thesis objectives 1 & 2 trying to reduce supervision requirements via

Déjà-Vu. As previously discussed, robustness to lighting and seasonal conditions is one of the

critical requirements for feature descriptors. Unfortunately, obtaining the required pixel-wise

ground truth correspondences in these scenarios is still highly challenging, even if ground truth

location and depth data is available. Any slight misalignment or drift in the data leads to wildly

incorrect correspondences that harm the performance of the features. This is exacerbated by the

presence of dynamic objects, such as pedestrians and other vehicles. Déjà-Vu solved this issue

using weak supervision, generating (cross-)seasonal triplets of roughly aligned images based
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on their GPS position. The overall similarity between images was computed using the average

matching score for each pixel. This assumed that each pixel in the image should match well with

only one pixel in the second image. We demonstrated Déjà-Vu’s performance by performing

image retrieval in a cross-seasonal setting.

Chapter 5 proposed a combination of both SAND and Déjà-Vu, resulting in DeFeat-Net. Déjà-Vu

removed all spatial constraints in order to train with cross-seasonal data. DeFeat-Net re-

introduced these constrains within each season in a self-supervised manner by additionally

learning depth and motion, from which pseudo-ground truth correspondences were obtained.

As such, this addressed thesis objectives 1, 2 & 4 by learning general features for many tasks

without ground truth correspondence supervision. Since the resulting dense features are robust to

seasonal changes, they were also used to create a view synthesis warp loss. This was more stable

and provided a stronger depth supervision signal than the traditional photometric consistency

used in modern monocular depth approaches. We evaluated DeFeat-Net on the challenging

RobotCar [107] dataset and showed the improved performance over the previous SOTA.

Finally, objective 4 was handled in Chapter 6 by Medusa. We introduced a generic and efficient

framework for learning feature representations that could support many different computer

vision tasks. We approached this from the perspective of MTL, where the network is trained

using labels for all target tasks simultaneously. This was expanded by the concept of UFL,

where we require the learnt features to generalize beyond the original training tasks. By keeping

independent task heads, Medusa provided a flexible architecture that could easily be expanded.

Furthermore, the use of spatial attention allowed the system to overcome negative transfer

between unrelated tasks. As a result, the proposed approach performed on par with previous

SOTA while scaling much more efficiently to an increasing number of tasks. Furthermore, the

learned features were shown to transfer more effectively to new tasks on new datasets.

7.1 Directions for the Field

The contributions in this thesis will help to guide future research in the field of generic and

reusable feature learning. This is most notable when combining the various ideas from multiple

contributions together. This section discusses long-term future work and directions for the field

guided by the contributions in this thesis.
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Chapters 4 & 5 have highlighted some exciting avenues for future research. Current deep

learning solutions to many computer vision tasks are not necessarily robust to adverse conditions

that are commonplace in the real world. This can be due to either violated assumptions that

affect the optimization objective or the large domain shift caused by drastic appearance changes.

The contributions from these chapters have shown that it is possible to learn a feature space

invariant to these conditions and that these features can in turn support existing frameworks and

improve their performance. Future work should explore how cross-seasonal robustness can be

integrated into a broader range of non-geometric tasks, if these are to be deployed in the real

world. For instance, tasks such as biometric identification via face recognition, iris recognition

or even gait recognition may be impacted by the current weather conditions.

These concepts also extend beyond the realm of seasonal appearance changes. For instance, it

has become increasingly common to develop vision systems using alternative imaging methods,

such as near/far infrared [152, 82] or hyperspectral cameras [31]. These sensors have different

characteristics and failure modes that complement each other and improve the overall robustness

of the systems. However, rather than treating each of these sensors independently, it is now

possible to learn feature spaces that are common and shared across all different modalities. This

lends itself to important research tasks related to medical imaging, such as multi-modal image

registration [73, 37, 66].

Chapter 6 demonstrated the effectiveness of multi-tasking frameworks. This is a core component

of many complex real-world systems, such as autonomous vehicles, smart cities, surveillance,

personal robot assistants, augmented reality and more. A framework capable of efficiently

learning and performing all target tasks simultaneously would be greatly beneficial. Medusa

focused on modelling the relationships between tasks at the shared feature level, allowing for

an efficient approach where task heads are independent from each other. Existing work has

also shown the benefits of incorporating additional constraints between the outputs of multiple

tasks [174, 17, 116, 28]. However, this has been limited to a very small number of tasks—two or

three—which may use ground truth labels. One could imagine a more generalized multi-tasking

system that improves performance by both sharing features within the network and ensuring

consistency in the predictions based on the relationships between tasks. This could include

generalized inter-data constraints, such as those used in the spatial negative mining introduced

in Chapter 3, or human-inspired cues that identify useful priors or common sources of error.



7.1. Directions for the Field 109

One of the benefits of such an approach is the ability to dynamically add or remove task heads

as required. Agents could learn low-level vision tasks—depth estimation, surface normals,

edge detection, feature description, classification—alongside high-level tasks specific to the

agent’s goals. For instance, an autonomous vehicle could additionally learn lane segmentation,

traffic light/sign detection or motion/crash prediction. During deployment, the low-level task

heads not strictly required to control the vehicle can be discarded, leading to a more efficient

network that nonetheless still contains the information for the low-level tasks in its shared

feature representation. Even more ambitiously, a task head could be trained to predict the

acceleration and steering wheel angle required to control the vehicle. Once again, all other task

heads could be removed, resulting in a single end-to-end network capable of directly operating

the vehicle without requiring auxiliary outputs. It is also trivial to imagine the opposite case,

where we want to add new functionality to an existing system. After the system is deployed, a

new task head could be attached and trained based on the frozen shared feature representation,

without deteriorating the performance of previously trained task heads. It may even be possible

to imagine a situation where new tasks are detected and trained on the fly, according to some

existing knowledge base and rule structure.

In summary, the work presented in this thesis has opened up many new potential areas of

research across the field of computer vision. We hope these contributions have helped to pave

the way towards one of the holy grails of computer vision: a truly generic feature representation

that can easily be applied to all seasonal conditions and serve all downstream tasks.



110 Chapter 7. Conclusions and Future Work



Bibliography

[1] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. FREAK: Fast retina keypoint.

In Conference on Computer Vision and Pattern Recognition, pages 510–517. IEEE

Computer Society, jun 2012.
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Conference on Computer Vision, 11209 LNCS:774–791, 2018.

[141] Rahul Raguram, Ondrej Chum, Marc Pollefeys, Jiri Matas, and Jan Michael Frahm.



BIBLIOGRAPHY 127

USAC: A universal framework for random sample consensus. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(8):2022–2038, 2013.

[142] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim, Deqing Sun, Jonas Wulff,

and Michael J. Black. Competitive Collaboration: Joint Unsupervised Learning of Depth,

Camera Motion, Optical Flow and Motion Segmentation. Conference on Computer Vision

and Pattern Recognition, pages 12232–12241, jun 2019.

[143] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by

learning and forgetting functions. Psychological review, 97(2):285–308, 1990.

[144] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. Conference on Computer Vision and Pattern

Recognition, pages 779–788, dec 2016.

[145] Jerome Revaud, Cesar De Souza, Martin Humenberger, and Philippe Weinzaepfel. R2D2:

Reliable and Repeatable Detector and Descriptor. In H Wallach, H Larochelle, A Beygelz-
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[208] Jurě Zbontar and Yann Lecun. Stereo Matching by Training a Convolutional Neural

Network to Compare Image Patches. Journal of Machine Learning Research, 17:1–32,

2016.

[209] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie Li, Harsh Agarwal,

and Ian M. Reid. Unsupervised Learning of Monocular Depth Estimation and Visual

Odometry with Deep Feature Reconstruction. Conference on Computer Vision and

Pattern Recognition, pages 340–349, jun 2018.

[210] Dingyi Zhang, Yingming Li, and Zhongfei Zhang. Deep Metric Learning with Spherical

Embedding. In Advances in Neural Information Processing Systems, volume 33, pages

18772–18783. Curran Associates, Inc., 2020.

[211] Xu Zhang, Felix X. Yu, Sanjiv Kumar, and Shih Fu Chang. Learning Spread-Out Local

Feature Descriptors. In International Conference on Computer Vision, pages 4605–4613.

IEEE Computer Society, dec 2017.

[212] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang Li, and Jian Yang. Joint

Task-Recursive Learning for Semantic Segmentation and Depth Estimation. In European

Conference on Computer Vision, pages 235–251. Springer International Publishing, 2018.

[213] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe, and Jian Yang. Pattern-

affinitive propagation across depth, surface normal and semantic segmentation. In Con-



BIBLIOGRAPHY 135

ference on Computer Vision and Pattern Recognition, pages 4101–4110. IEEE Computer

Society, jun 2019.

[214] Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang, and Ying Wu. A Modulation

Module for Multi-task Learning with Applications in Image Retrieval. In European Con-

ference on Computer Vision, volume 11205 LNCS, pages 415–432. Springer International

Publishing, sep 2018.

[215] Yong Zhao, Shibiao Xu, Shuhui Bu, Hongkai Jiang, and Pengcheng Han. GSLAM:

A general SLAM framework and benchmark. International Conference on Computer

Vision, pages 1110–1120, oct 2019.

[216] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsupervised

Learning of Depth and Ego-Motion from Video. Conference on Computer Vision and

Pattern Recognition, pages 6612–6619, jul 2017.

[217] Laurent Zwald and Sophie Lambert-Lacroix. The BerHu penalty and the grouped effect.

arXiv preprint, jul 2012.


	Nomenclature
	Symbols
	Declaration
	Introduction
	Motivation & Objectives
	Contributions
	Summary

	Literature Review
	Feature Detection
	Corner Detectors
	Blob & Region Detectors
	Learnt Detectors

	Feature Description
	Histogram Descriptors
	Binary Descriptors
	CNN Descriptors

	Joint Detection & Description
	Summary

	SAND
	Methodology
	Network
	Losses
	Spatial Negative Mining
	Hierarchical Context Aggregation

	Feature Descriptor Evaluation
	Image Matching
	Ablation Study

	Downstream Tasks
	Feature Matching Cost Volume
	Disparity Estimation
	Semantic Segmentation
	SLAM
	Visual Localization

	Conclusion

	Déjà-Vu
	Methodology
	Aligned Pixel-wise Contrastive Loss
	Contextual Similarity
	Contextual Triplet Loss

	Datasets
	RobotCar Seasons
	UTBM RoboCar
	CARLA Seasons

	Results
	Cross-Seasonal Retrieval Performance
	Ablation Study
	Sparse Feature Matching Performance
	Cross-Seasonal Visual Localization

	Conclusions

	DeFeat-Net
	Literature Review
	Supervised
	Self-supervised

	Methodology
	Networks
	Correspondence Module
	Losses
	Masking & Filtering

	Results
	Depth Evaluation - Canonical Season (Kitti)
	Depth Evaluation - All Seasons (RobotCar)
	Ablation Study

	Conclusions

	Medusa
	Literature Review
	Methodology
	Shared Feature Attention
	Multi-Scale Task Predictions
	Multi-Scale Attention Task Heads

	Results
	Multi-task Evaluation
	Universal Feature Learning
	Image Matching

	Conclusions

	Conclusions and Future Work
	Directions for the Field

	Bibliography

