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Abstract

New bio-inspired sensors that measure brightness changes per-pixel have the potential to become
a novel solution to the pose estimation problem. The sensor generates a stream of events that
represent the position and the polarity of intensity change. This means that it can still work
well under the low light condition, even with unstable movement. Currently, event-based vision
sensors output compressed digital data in the form of events, reducing latency and having
higher temporal range than conventional image-based methods. These event-based cameras
encode visual information in an extremely efficient manner in terms of data reduction and energy
consumption. This is especially important in the field of localization, where responsiveness is
one of the most significant properties.

In this thesis, we explore approaches to perform feature detection directly on the event stream
without intermediate event accumulation. Event flows are obtained to track lines. We introduce
ASL-SLAM, the first line-based SLAM system operating directly on asynchronous event streams.
This approach maximizes the advantages of the event information generated by a bio-inspired
sensor. We estimate the local Surface of Active Events (SAE) to get the space-time planes
associated with each incoming event in the event stream. Then the edges and their motion are
recovered by our line extraction algorithm. We show how the inclusion of event-based line
tracking significantly improves performance compared to state-of-the-art frame-based SLAM
systems. The approach is evaluated on publicly available datasets. The results show that our
approach is particularly practical with poorly textured frames. We also experimented with
challenging illumination situations, including low-light and high motion blur scenarios. We
show that our approach with an event-based camera has natural advantages and provides up
to 85% reduction in error when performing SLAM under these conditions compared to the
traditional approach.
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Chapter 1

Introduction

In recent years, mobile robot technology has developed rapidly. The robot is capable of

moving, automatic navigation, multi-sensor control, human-computer interaction, etc. The use

of mobile robots has made a significant breakthrough along with the development of artificial

intelligence. The application of mobile robots has transcended the industrial assembly lines,

making unmanned factory or package delivery by a robot a reality. People are committed to the

application of mobile robots in various scenarios, from indoor and outdoor motion robots to

service robots and industrial robots.

When a mobile robot must solve any task, an essential precondition is to know where it is and

what its surroundings are, and other problems( Fig.1.1). Due to the importance of the problem,

researchers have explored using visual sensors, speech recognition sensors, olfactory sensors,

lidar, ultrasonic sensors and more to achieve the localization and navigation tasks

In general, there are two kinds of localization problems. Relative (local) localization methods

evaluate the position and orientation relative to some observed location (often the start pose).

These techniques use the information provided by onboard sensors like INS (Inertial Navigation

System), cameras, and laser and ultrasonic sensors. Methods that obtain the absolute position

using beacons, landmarks or satellite-based signals are called absolute (global) localization,

such as GPS (global position system) and GNSS (global navigation satellite system). This

type of localization is relative to an external, often unobserved but universally agreed, frame of

reference, which researchers and engineers have developed for many years.

1



2 Chapter 1. Introduction

Figure 1.1: An Intelligent Robot in the Office

However, some new sensors have appeared in the past decade that have significantly changed

the way we deal with many visual localization tasks. The emergence of cheap commercial depth

sensors around 2010 led to massive growth in computer vision research. More recently, new

dynamic vision sensors called event cameras are beginning to emerge, which are activity-driven.

Techniques have been proposed to use these sensors for feature detection and tracking [46], 3D

reconstruction [7], object recognition [11], simultaneous localization and mapping (SLAM)

[1] and more. The advantages and disadvantages are summarized in Table.1.1 This thesis will

attempt to introduce the first formalism for undertaking line-based projective geometry from

event streams and demonstrate its applications to SLAM.

1.1 Localization and Mapping

As discussed, there are various methods and sensors that can be applied to indoor and outdoor

localization. Here we will contrast the advantages and disadvantages of different approaches.

GPS was invented in the 1970s and becomes a very mature wireless navigation system.

It calculates the distance from a collection of satellites and the Earth’s ground point to get

the absolute location. The accuracy of GPS is relatively high, but it is highly subject to

signal strength, especially in indoor environments. A common alternative for absolute indoor

localization is to use a map or floorplan of the building to get the absolute position.
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Figure 1.2: Sensors and techniques. The top left is GPS, the top right is IMU, the bottom left is

LIDAR, the bottom right is ultrasonic sensor

LIDAR also achieves positioning by calculating the distance between the obstacles and itself.

It has the merits of long detection distance, high measurement accuracy and high angular

sensitivity. However, it usually needs a point cloud map to get the exact position and has a vital

drawback of high cost when compared with other embedded sensors.

IMU(inertial measurement unit) has been a very active research subject as a small portable

device in recent decades. It is a low-cost positioning system consisting of a 3-axis accelerometer,

a 3-axis gyro, sometimes equipped with a magnetometer, combined to calculate the position

and posture of the carrier. It can be applied with odometry algorithms, which are a type of

relative localization method that only calculates the position change in a short time interval. Due

to the high precision of inertial navigation, the system can undertake the attitude calculation

and position evaluation based entirely on its measurements. It is widely used in aerospace

technology. However, when the element is used in isolation for a period of time, the error will

accumulate due to the integration, which is not conducive to the long-term positioning of the

robot. An easy approach to this problem is to adopt high-precision inertial sensors, but the high

cost limits its universality.

Camera is another popular solution for robots to estimate the position. In 2004, the Mars

probe MER of NASA successful applied visual localization in the wild. Since then visual
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sensors have been widely admitted by researchers for their advantages of small volume and low

power consumption. The visual positioning method gets the motion parameters of the mobile

robot by obtaining an image sequence, extracting and describing the feature points in the image

then performing feature matching across frames. It does not depend on other sensors and is

unaffected by environmental complexity. Therefore it can be applied to a variety of unknown

indoor environments. Traditional visual sensors such as monocular, binocular(stereo vision),

RGBD (shown in Fig1.3) and omnidirectional cameras are commonly used in the estimation

of the robot’s pose and position. The stereo camera has two lenses, each of which has an

image separately. Two images obtained means scale can be retrieved and more features for

tracking, also the lenses need calibration[65]. The algorithm based on the depth camera or

stereo camera is similar to the laser solution. The distance of obstacles can be calculated directly

by collecting point cloud data. In contrast, the monocular method is a lower-cost solution and

has low computational complexity, which is valuable for small robotics because it can work in

real-time on limited compute hardware[15]. The monocular and fish-eye camera schemes use

multiple frames to estimate the position and pose change, and the distance from the object is

calculated by the cumulative position and pose change, then the location and map construction

is carried out. However, scale uncertainty is unsolvable when camera motion is not constrained

for monocular localization systems. Such as when an obvious change at the end of the road

happens, it may lead to the wrong estimation of the scaling factor, which further affects the

trajectory’s estimation.

Figure 1.3: Monocular, Stereo and RGBD cameras

As discussed above, data from sensors need further process before getting the position. Normally

it is the change in position over time that we estimate from motion sensors, odometry is a
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significant method for robots to estimate the position from its start point. Visual odometry(VO)

is the process of estimating odometry using only a stream of images acquired from single or

multiple cameras firstly proposed by [64]. VO is a pose estimation algorithm that can be used to

localize robots, cars and other moving objects. The core of VO is that cameras’ pose changes can

be calculated from the difference between two images acquired from the input video. However,

the drift accumulates as the VO runs. Then an expanding system appeared later, as one of the

most advanced positioning technology in mobile robot research. As for VO, SLAM has not

only localization but also mapping. It attempts to figure out the robot’s motion in a completely

unknown environment, and at the same time construct a map of that environment.

Figure 1.4: Diagram of a complete visual SLAM system and pose construction in the SLAM

process

A classical visual SLAM system consists of five modules: Data collection, Visual odometry

(Front End), Optimization (Back End), Loop closure and Mapping. In the beginning, the

information obtained by the camera is read and pre-processed. Then the visual odometry

calculates the orientation and position change during that period using a series of algorithms.

The Back End optimizes the VO result with the information from loop closure to get the absolute

position of the camera. To see if the robot has been in the same place before is a valuable

supplement for a perfect SLAM system, it can improve the accuracy of the estimation. At last, a

final map of the trajectory is built in the Mapping module. A complete visual SLAM system

is shown in Figure.1.4. Nowadays, SLAM technology can be widely used not only for robots

and unmanned aerial vehicles, but also for AR, VR and so on. One limitation of this purely

visual approach was that motion can only be retrieved up to an unknown scale. Therefore many

tasks like autonomous positioning, mapping, path planning can be realized by single or multiple

sensors, such as laser SLAM and visual-inertial SLAM.
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Unfortunately, visual algorithms lack robustness under fast motion or poor light conditions.

Movement estimation can easily fail when visual tracking is lost. In addition, a major limitation

of frame-based data acquisition is the computation cost. Many algorithms struggle to operate in

complex and noisy scenes on embedded robotics hardware. Efforts have been made to improve

the efficiency of these approaches. However, frame-based data acquisition places a fundamental

limit on the computation cost. Standard cameras also can be affected by motion blur during

fast movement. In contrast, event cameras do not suffer from motion blur and have greatly

reduced data bandwidth [28], which means event cameras are promising for visual odometry

or SLAM tasks. Here we conclude the advantages and disadvantages of different sensors or

methods mentioned above in Table.1.1.
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1.2 Event Cameras

Thanks to the development of sensor technology, event-driven visual sensors are now available

to solve the computational complexity problem. These sensors transmit active events on the

event stream asynchronously [77] without the need to redundantly transmit duplicated pixels

which have not changed. Event cameras output compressed visual data in the form of a visual

event stream. The data provides an increased temporal resolution and lower latency compared

to conventional images as shown in Fig.1.5. The red points represent the positive events and the

blue points represent the negative events. The positive and the negative means the increase and

the decrease of the brightness respectively.

Figure 1.5: Events rendering on the frame and normal frame.

The event stream also records the timestamp with nanosecond precision, in addition to the

position and polarity of the change. This stream is equivalent to a high-speed camera taking

pictures at a rate of thousands of frames per second, with the additional benefit of far less

redundant data [12]. Some event cameras also provide absolute intensity and very sensitive

to light changes, which means it has better performance in a low-light environment than a

traditional camera.

These characteristics make it possible to combine the benefits of traditional cameras with the

unique properties of event-based sensors. This has massive potential for computer vision and

high-speed robotics. In essence, visual information from event cameras is asynchronously

acquired. Although it sends no information when there is no movement in the scene, it does not

have to wait for the next frame before transmitting the signal when motion does occur. This

paradigm shift (in Fig.1.6) means it has the advantages of high temporal resolution, low latency,

high dynamic range and low power consumption.
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Figure 1.6: A comparison of a traditional frame-based output (top right) and asynchronous line

detections. The scene comprises a black hexagon rotating on a disk. The normal camera outputs

frames at a fixed rate, instead the event camera produces the stream of events responding to

brightness changes from which asynchronous lines can be extracted.

As this technology is still in it’s infancy, there are several types of event camera that can provide

varying information. Fig.1.7 shows four platforms of event camera which are DVS, DAVIS,

DVXplore and stereo event camera kit from left to right. The original and most basic event

camera is DVS, normally with a resolution of 240 × 480. Then an alternative sensor was

developed with an absolute intensity value. The Asynchronous Time Based Image Sensor

(ATIS) has pixels that contain a subpixel of DVS[67] while another subpixel is triggered to read

out the absolute intensity. The ATIS reaches an extensive, static dynamic range (> 120dB) but

has a drawback that the area of the pixels is at least double the DVS pixels area. What is more,

the time interval between two incoming events can be long so that the new events could interrupt

the measurement of intensity in dark environments.

Another popular sensor Dynamic and Active Pixel Vision Sensor (DAVIS), combines a conven-

tional active pixel sensor (APS) in the same pixel with DVS. A much smaller pixel size of ATIS

makes it superior since the photodiode is shared and the readout circuit only increased about 5%

compared to the DVS pixel area[10]. DVS events are analysed to trigger intensity (APS) frames

on demand.However, the APS readout is limited at a dynamic range (55dB), which will result

in information redundancy if the pixels do not change (as with a normal camera). Recently

some new variants of the event camera were developed with other sensors fused such as 6-axis

IMU in DVXplore. Two event cameras can also be integrated as one stereo platform to imitate



10 Chapter 1. Introduction

traditional binocular cameras and applied to extensive research.

Figure 1.7: Four kinds of event camera platforms

1.3 Motivation and Aims

As a new type of sensor, there are still techniques that can be discovered and developed to

take advantage of event cameras. Based on the background in traditional visual odometry, this

thesis aims to investigate approaches to visual odometry and localization using event cameras.

These techniques will operate directly on the event stream, rather than relying on traditional

image-based intermediate representations.

In order to make full use of asynchronous data, similarities and differences have to be discovered

between traditional cameras and event cameras. Traditional feature-based SLAM techniques

may provide some clues to achieve with event streams while asynchronous event data has to

be dealt with to get the simultaneous feature. However, an essential step in developing this

new type of event-based SLAM is to create a comprehensive benchmark system that makes it

possible to contrast both event and image-based SLAM under different conditions.

The objectives of this thesis are:

1. Create an event-camera SLAM benchmark using data with the following information:

normal colour images, event data, ground truth position and covering a variety of different

conditions.

2. Design a novel feature detection method based directly on the asynchronous event data.

3. Build a SLAM system for event-based cameras that uses the features developed in

objective 2.
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4. Conduct an extensive experimental evaluation compared with other SLAM methods using

event features on publicly available datasets, demonstrating the validity and efficiency.

Analyse the performance with other SLAM solutions.

1.4 Thesis Structure

In this thesis we tackle the problem of line-based SLAM with event cameras in natural scenes

and arbitrary 6-DoF motion. This first chapter discussed briefly the development of robot

localization, illustrating the methods that are commonly in use. It also detailed the advantages

and disadvantages of state-of-the-art SLAM solutions using different sensing modalities. The

event sensors were also introduced and compared with traditional cameras.

The second chapter discusses in depth previous VO or SLAM approaches. It also reviews

the difference between frame-based methods and direct methods. We conclude by analysing

the characteristics of feature points and reveal the limitation of traditional cameras. Then the

application of event cameras is discussed.

In the third chapter we integrate the event stream alongside a low-speed visual point tracking in a

framework inspired by PL-SLAM [68]. We detail the new general SLAM framework developed,

which can estimate the camera motion by extracting line information from event streams. We

make full use of asynchronous data to produce line feature tracks with a high temporal resolution

by avoiding the need to accumulate events into frames. To achieve this, a line feature extraction

approach that works directly on the event streams is designed.

Chapter 4 provides results based on the proposed algorithm. We propose a standard benchmark

and give the performance evaluation of the ASL-SLAM in several scenes from different datasets.

We compared our system with the current state-of-art frame-based SLAM methods, such as

ORB-SLAM and PL-SLAM by employing their open-source implementations. An in-depth

discussion of the results is also presented in this chapter. Finally the conclusion and future work

have been described in chapter 5.

Contributions: In summary, our contributions are: 1: A novel asynchronous line detection

method based directly on the event stream. 2: The first publicly available SLAM system built

on event cameras, and the first SLAM system built on asynchronous lines. 3: An extensive
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experimental evaluation is conducted on asynchronous features compared with other SLAM

methods on publicly available datasets, demonstrating that the system is computationally

efficient, running in real-time on a standard CPU.



Chapter 2

Review of SLAM Technology and

Event Cameras

SLAM has become a mature technology to achieve localization whether indoors or outdoors.

Techniques below are some state-of-art SLAM methods [22] which a robot may use to estimate

its position in an unknown environment and build a map of the environment simultaneously.

The main difference between Visual Odometry (VO) and SLAM is that VO mainly concentrates

on locally consistent estimates to incrementally calculate the path of the camera/robot pose. In

contrast, SLAM techniques focus on obtaining global consistency of the camera/robot trajectory

and map. As referred to in the previous chapter, VO can be an essential part of the visual

SLAM system. According to the types of data processing, SLAM approaches can be categorized

into filtering approaches (such as particle filter based SLAM [58] and EKF-SLAM [76]) and

smoothing approaches (eg. RGB-D SLAM [38], Graph SLAM [78], Smoothing and Mapping

[18]). It also can be divided into feature-based approaches and direct methods based on the type

of data association. In addition, there is a long history of developing SLAM algorithms based

on new sensors. The most recent challenge is applying SLAM to event cameras. Although

there are some studies illustrating Event-based VO/SLAM, there is still significant scope for

improvement. In this study, we mainly focus on feature-based SLAM using event features and

traditional features.

This chapter will first look at the traditional technology using standard cameras, the difference

between the frame-based method and the direct method, the specific problems that arise due to

13
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the limitation of traditional cameras and achievements made by the new event camera.

2.1 Feature-based VO/SLAM

VO is an effective non-contact positioning method and one of the most common visual navigation

topics in robotics research, especially for indoor applications. Monocular vision has lower

accuracy than binocular stereo vision does under certain scenes, such as indoor rooms with a

small scope and low environment complexity [4]. However its computational complexity is

lower, which helps achieve real-time positioning. As such it is more suitable for synchronous

positioning and 3D online map creation in a complex environment [13].

In 2004, the first monocular VO running in real-time in a large-scale environment was proposed

by Nister [64]. It detected Harris points using both single and stereo cameras. The results show

competitive performance compared with INS and GPS methods. Feature tracking methods are

used for the estimation of position change with the constraint of RANSAC [26]. Then the 3D to

2D camera-pose recovery is applied to update the camera pose.

2.1.1 Monocular Feature-based SLAM

Recently the most widely used feature-based approach is ORB-SLAM [61]. Under normal

operating conditions, it can provide robust camera tracking and mapping. Subsequently, ORB-

SLAM2 [62] was proposed to improve performance by using bundle adjustment. Both ap-

proaches rely on fast and continuous tracking of ORB features [73]. Many alternative feature

detectors exist, for example, Harris points [34] are based on Moravec’s corner detector when a

non-corner region is defined to have no change in image intensities between adjacent regions in

all directions. FAST (Features from Accelerated Segment Test) points [72] are known to be one

of the most computationally efficient feature extraction methods. Then ORB method combines

the FAST feature detector and BRIEF descriptor [14]. From this research, we summarize the

performance and characteristics of some typical features which have been tested and contrasted

in [37] [89] [40] as shown in Table 2.1.

From the table above, we can see that the FAST method has the best calculation speed as well as

the most feature points while SURF and ORB have better rotation robustness, scale robustness
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Table 2.1: Comparison of features

FAST Harris SURF SIFT ORB

Calculation speed ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆

Feature Amount ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆

Rotation robustness ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Scale robustness ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆

Intensity robustness ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

and intensity robustness. As a result of the relatively slow calculation speed, the SURF [8] and

SIFT are less frequently applied to simultaneous localization, even if they are recognized as the

most robust feature detectors but this comes at the expense of computation. In practice, it is

not feasible to achieve real-time calculation of the SIFT features on the CPU [84]. Although

the Fast and the Harris show stable performance in detection, the lack of descriptor means the

features cannot be matched or tracked in SLAM. Even the ORB, detector requires almost 20ms

to get a result. However, these traditional feature methods fail when the mobile platform comes

to a poorly texture environment (such as a blank wall or empty hall) or suffers from motion blur.

In these situations it is hard to get an accurate odometry estimation. These issues led researchers

to explore a more robust representation such as edge features and line features [6].

2.1.2 Stereo VO/SLAM

Binocular stereo vision technology refers to two images taken by two cameras from different

parallel positions at the same moment [42]. The parallax of the object is calculated by the

similar triangle principle, and the 3D stereo information of the environment is recovered

accordingly [39]. The study of binocular stereo vision technology has significant theoretical

and practical value, and researchers have invested a lot of time in this field. Many feature-based

approaches discussed in the previous part can also support stereo alternatives. The difference

is that the depth can be calculated from the two cameras’ parallax. It can be concluded

that the binocular stereo vision system will have a more accurate scale and depth than the

monocular system does. However, there are shortcomings that can not be ignored. First,

binocular vision systems are computationally intensive and require high CPU processing speed
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[31]. Additionally, it is difficult to design a low-cost FPGA or custom compute hardware to

increase the computational efficiency of full parallel optimization [74]. Most mature binocular

vision products use computing units with GPUs for parallel feature point calculation and stereo

matching. Others optimize stereo matching algorithms and develop special FPGAs to complete

the optimization [1]. Second, the binocular stereo alignment effect has a large impact on the

accuracy of the solved distance, and a small matching error can lead to a huge error in the

measured distance.

2.2 Direct VO/SLAM

The direct method is another branch of visual odometry, which differs significantly from feature-

based approaches. These methods eschew feature tracking and essential matrix estimation.

Instead, they start from a candidate motion which is optimised in order to best match the

observations. It uses dense optical flow to calculate the change of brightness patterns from one

frame to the next [83]. Not only can optical flow track the camera motion locally, Engel et.al

[24] also built a consistent, large-scale map of the environment. Later they proposed Direct

Sparse Odometry (DSO) [23] that can sample pixels from all image regions having intensity

gradients. This method works directly on pixel intensities without traditional feature extraction

and matching when estimating the pose.

Other optical flow based approaches are closer to traditional feature point tracking, and can be

very computationally efficient. They retain the process of feature extraction in the first frame,

but replace descriptor matching with optical flow tracking. [27] proposed a fast semi-direct

monocular visual odometry (SVO) approach which works well on a micro aerial vehicle. During

its localization process, the position change is firstly estimated by minimizing the intensity error

of the same pixel between two frames. The optical flow and feature points are used to optimize

the current position. Finally, it explicitly models outlier measurements to get 3D points using a

probabilistic mapping method.

However, for optical flow methods to be accurate the camera motion needs to be slower or the

frame rate must be higher to achieve higher accuracy. An alternative to feature point detection

is edge or line detection. This is an efficient and highly parallelizable operation. Rather than
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detect and match large numbers of points, a small number of lines or edges are often detected

and tracked in a direct manner. Edge-SLAM [57] detects edge points in frames and tracks them

using optical flow for data association. This edge-based approach is shown to work well in both

low-textured and highly-textured environments. In [53], direct lines are used to guide key point

selection to increase efficiency. This idea is extended by using the stereo camera in [33]. The

edge depth that the monocular method lacks is a valuable attribute to allow acceptable surface

fitting [41]. All of these line-based approaches are shown to have high computational efficiency.

2.3 Improvement of SLAM Methods

Researchers have proposed some solutions to overcome the shortcomings of traditional SLAM.

These mostly fall under one of three categories: multi-sensors fusion, deep learning and new sen-

sors. Sensor fusion can compensate for the limitations of any individual sensor. Unlike industrial

applications dealing with pure, representative and well-defined benchmarks, the camera-laser

carrier system is a robust and accurate combination but requires advanced real-time techniques

and algorithms to process dynamic unknown objects [30]. Kalman filtering was applied to fuse

sonar and camera data which has significantly simplified the SLAM data association problems

[43]. GPS can help SLAM to work in an outdoor environment despite complex surroundings and

rapid motion [81]. The visual-inertial monocular system is a straightforward way to get accurate

estimation at a relatively low cost[19] [50]. Thanks to the recent advances in GPU technologies,

more attention can be paid to using deep learning to increase the SLAM accuracy. By training

a convolutional network, DEMON [79] achieved not only depth and motion estimation. It is

also successful in getting the surface normals, image optical flows and the predicted matches.

Both SfM Learner [85] and Monodepth [32] use unsupervised convolutional neural networks to

predict the depth of the input images(video).

2.4 Event-based Detection and Tracking

As outlined above, feature detection and tracking is the cornerstone of many SLAM algorithms.

As such, it is natural that work has been undertaken in this area using event cameras to achieve

asynchronous tracking with high processing speed and microsecond latency especially under
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high-dynamic sequences. How to detect features using event data becomes the fundamental

question in the event-based visual odometry field. Researchers chose features and developed

new methods aiming at dealing with event streams and image frames. Efforts have been put

into trying to synthesize colour images from event data. In this case traditional features such as

Harris can be detected on new event frames [80] [87]. Compared to synthesizing frames, [16]

[52] have improved the normal features and detected them directly on event streams, plus [3]

[59] achieved tracking on the event stream. [2] also proposed a novel local region descriptor of

corner events and corresponding tracker. [46] can track different visual features in real time,

which are capable of handling position variations, orientation and scale by the use of multiple

pools of trackers. Another linkage of event camera and standard camera are proposey [20]. They

extract the features on the normal frames, track them by event streams and update the features

using new frames. However, it can be inferred that the traditional monocular camera and event

camera need to be calibrated accurately when tracking and modifying the features. The import

of the standard camera might reduce the dynamic range of the system, and cause the problem of

calibration and synchronization.

Pure event-based feature detection and tracking are proposed in [17]. It intertwined the velocity

vector and a bayesian description of the generative feature contours instead of aiming for

particular predefined shapes such as corners which saves time on detection. Optical flow (OF)

is widely used for feature tracking in event cameras as well as traditional cameras. Generally,

the surface of active events(SAE) [9] also called the pixel map of the latest timestamps of the

events, is used to compute the flow that is parallel to the brightness gradient. In this case Event

lines can be segmented directly from the event streams. [71] uses iterative event-based weighted

least squares fitting and optical flow to extract lines. More recent methods, such as [29], [5],

[88], estimate the whole optical flow (i.e., both tangential and normal components). This full

flow has more information than normal flow does at the expense of computation workload. [66]

introduces an algorithm for spatio-temporal tracking that is suitable for the Dynamic Vision

Sensor. In particular, it addresses the problem of multi-sensor tracking with high occlusions.

There are many works combing event cameras, standard cameras and IMUs (Inertial Measure-

ment Units) to achieve higher accuracy in feature detection and tracking. [51] takes three kinds

of data collected from the above sensors, detecting Harris points and Canny edges, using the esti-

mated optical flow from event streams and the IMU data to update the position of line segments.
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Table 2.2: Summary table of some feature detection and tracking methods in literature

Methods Feature Detection Feature Tracking Assumption/Limitation

ACE [2] Events Normal frames
tracked features is relatively

less and tracking time is longer

Arc* [3] Events Event stream Use a Surface of Active Events

eFast [59] Events Normal frames
Detection quality is slightly

worse

Clady [16] Events Matching on events
Rely on estimation of local

velocities.

Fa-Harris [52] Events Intensity images Detecting speed is slight lower

Lagorce [46] Already known Event stream
Feature’s position has to be

known beforehand.

Zhu [87] Event frames Event frames
Event density over a temporal

window is used.

Vasco [80] Event frames None Not computationally efficient.

Yan [20] Standard frames Event & Standard frames Unstable in different scenes.

However, relying on the edge map from the Canny detector also results in unstable performance

in different scenes. Similar to the traditional cameras, the appearance-based method can be also

applied to events. Owing to its frame-free, asynchronous event nature, the DVS vision sensor

is capable of monitoring a small moving particle seamlessly from one pixel to the next over

a range of speeds, limited only by bandwidth [21]. [75] acquires a filtered or time-averaged

version of the input event data by using the theory of continuous-time filter. The state of art

methods for event feature detection and tracking are summarized in Table 2.2. We can see that

tracking directly on event streams is still a challenge for further research.

2.5 Event-based VO/SLAM

As discussed above, there has been a great deal of work on feature point detection and tracking

using event cameras. It is unsurprising that some of these techniques have been adapted for
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VO/SLAM. Similar to the traditional camera, these techniques cover both monocular event-

based VO and stereo event-based VO. For a single event camera, it has the same shortcomings

as the traditional monocular camera. The scale can not be estimated, also meaning it needs

supplements to get the estimation of depth. It is worth noting that event-only SLAM/VO

techniques are very challenging to develop.

A groundbreaking work [44] achieved the first event-based visual odometry with the monocular

DAVIS sensor. This work takes feature detections on the standard grayscale frames and tracks

them asynchronously with event streams to calculate the 6-DOF motion estimate. [70] is able to

reconstruct intensity images from the event stream through a combination of event-based feature

tracking techniques and event-based 3D reconstruction techniques. Both approaches utilize the

standard images or try to make standard images to get close to the existing VO/SLAM.

However, a stereo event camera can avoid the above issues. The work [86] performs VO with

an event-based stereo camera instead of the monocular event camera. It uses time-surface maps

to represent the 3D spatial event data. Then a spatio-temporal consistency is enforced from

two time-surface maps, which builds the data association based on the events. As mentioned

before, INS can also be helpful to event-based SLAM/VO. [90] fuses the event-based tracking

algorithm with an inertial measurement unit(IMU), providing metric tracking of the 6-DOF

pose.

All of these prior techniques focus on point-based features, which are sparse and hard to extract

from event camera streams. Driven by this problem, we intend to develop an event feature-based

SLAM system which can overcome the difficulty of the asynchronous data and utilize the

advantages of the event camera in this study.

2.6 Event Datasets and Simulators

The world’s first collection of event datasets is presented by [60]. It includes not only event

data from DAVIS240C installed on high-speed robotics, but also intensity images, inertial

measurements as well as the ground truth obtained from the motion-capture system. It provides

various situations such as indoor simple shapes scenes, wall poster scenes even complex outdoor

movement, which will contribute to the research of event-based visual odometry and SLAM.
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Figure 2.1: Samples of event edges (upper), RGB (centre), and thermal images (lower) from

day1, day2 and night sequences, from left to right[48].

Recently, [48] has updated their datasets based on their previous ViVid dataset[49]. It expanded

their experiment to driving sequences with more details on dataset statistics and characteristics.

Compared to [60], it has more data from standard RGB cameras and depth cameras shown in

Fig.2.1. This makes it possible to contrast the performance between event camera and other

sensor types.

Since the event sensors are still scarce and expensive to get, [60] has also provided the event

simulator which offers a good baseline. It generates the streams of events, intensity frames

and depth maps which can be seen in Fig.2.2. A computer graphics software Blender is used

to generate thousands of rendered images of the scene, which are then differenced in order to

extract events. Later, they provide an enhanced open-source simulator for event streams. This

was the first event camera simulator [69] able to generate large amounts of reliable events for

complex scenes.

Building on this, the first differentiable simulator of event streams is introduced [63]. It can
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Figure 2.2: Example outputs from ESIM. From left to right: a preview of the scene, depth map,

optical flow, events, 3D event point cloud with camera trajectory[69].

simply be applied to the original incoming events without any pre-processing. This can be

helpful for event-based tracking and reconstruction of non-rigid objects in 3D, like hands and

bodies.

In this thesis, a number of suitable VO datasets were explored. Our experiments will primarily

focus on real-life data collected within the ViVid dataset as it enables us to compare fairly

against monocular VO techniques.
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Feature Detector Background

The literature review has shown that in most visual localization, valid features first must be

extracted from the local environment to describe the robot’s surroundings. These markers may

describe artificial characteristics or natural characteristics. The former are artificial patterns with

special significance, such as QR codes, bar codes, numbers, Chinese characters, etc. The latter

is the natural expression of non-artificial objects in the real environment, such as table corners,

windows, chairs, fans, etc. In this chapter we will formalize and contrast some typical features

that are commonly used in visual localization technology, for both RGB and event cameras.

3.1 Traditional Feature Detection and Tracking

First we will formalize two traditional feature point detection methods using frame-based

cameras. We will specifically focus on detailing the frame-based feature detection algorithms

which are necessary to understand the subsequent event-based detectors. All these discussions

below will make it easier to understand the event-based features.

3.1.1 Harris Feature Detector

One of the most widely used classical corner detectors is the Harris corner detector, the idea

behind it is to detect points based on the intensity variation in a local neighbourhood. Harris

[35] identified a corner when the intensity gradient in two perpendicular directions is larger

23
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than any neighbouring region. Let the image be a scalar function I : Ω→ R. The process can

be summarised in 5 steps: First the horizontal and vertical gradients images I(x, y) must be

computed by convoluting I with a derivative kernel:

Ix = I ⊗ (−1, 0, 1) = ∂I

∂x

Iy = I ⊗ (−1, 0, 1)T =
∂I

∂y

(3.1)

Next the autocorrelation matrix M is computed: M =

A(x) C(x)

C(x) B(x)

:

A(x) = g(I2x) = I2x ⊗ ω

C(x) = g(I2y ) = I2y ⊗ ω

B(x) = g(Ix,y) = IxIy ⊗ ω

(3.2)

where the function ω allows selecting the support region that is typically defined as a rectangular

or Gaussian function. Next the corner response value R is computed:

R(x) = det(M)− α(trace(M))2

SH = {x : R(x) > t}
(3.3)

SH represents the corner set. After computing non-maximum suppression, output corners will

be selected. The parameter α is a constant that can affect the performance of the corner detector.

The corner response value R will decrease when the value of α increases and the number of

detected corner points will also be reduced making the detector more selective.

3.1.2 FAST Feature Detector

In contrast to the linear algebra approach employed by Harris, the traditional FAST corner

detector applies a segment test to candidate points. The rule is to detect a feature point at

position p, if there exists a set of n contiguous pixels in the circle with radius r that are all darker

than Ip minus a threshold t, or all brighter than Ip + t. Fig. 3.1 shows the idea where pixels

on the circle are the pixels used in the corner detection. The 2D pixel offsets belonging to this

circular domain are grouped into the set O = O1, O2..O16 .
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Figure 3.1: Feature detection in an image patch using the FAST detector[72]

The pixel at position p is added to the set of FAST corners if it obeys one of these two conditions:

Sf (x, y) =


1, ∃i, j Ip + t < min(Oi..Oj)

1, ∃i, j Ip < max(Oi..Oj − t)

0, otherwise

(3.4)

From the above process, the non-feature points can be easily screened out which will help

significantly increase the speed of feature detection. However, this also results in very dense

features. An algorithm of non-maximum suppression is used to improve its robustness.

3.1.3 Lucas–Kanade Optical Flow Tracking Algorithm

Regardless of which of the previous feature detectors is used, the resulting feature detected

in the previous step is generally fed to the next feature tracking step. A common approach to

feature tracking uses the Lucas–Kanade (LK) [56] method. It assumes that the flow is essentially

constant in a local neighbourhood of the pixel under consideration, and solves the basic optical

flow equations for all the pixels in that neighbourhood. Even for event-based feature points, we

can find the corresponding pixel on the normal image frame.

To calculate the optical flow, every moving point q must satisfy:

Ix(q1)Vx + Iy(q1)Vy = −It(q1)

Ix(q2)Vx + Iy(q2)Vy = −It(q2)
...

Ix(qn)Vx + Iy(qn)Vy = −It(qn)

(3.5)
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where q1,q2,...,qn are the pixels inside the window, and Ix(qi),Iy(qi),It(qi) are the partial

derivatives of the image I with respect to position x, y and time t, evaluated at the point qi and

at the current time. So Vx and Vy can be calculated by the linear equations:Vx

Vy

 =

 ∑
i Ix(qi)

2
∑

i Ix(qi)Iy(qi)∑
i Iy(qi)Ix(qi)

∑
i Iy(qi)

2

−1 −∑
i Ix(qi)Ik(qi)

−
∑

i Iy(qi)Ik(qi)

 (3.6)

Now that the motion of the detected feature points is known, it can be used to estimate the move-

ment of the camera. The core of event-based VO is calculating relative position by the relative

displacement of feature points between two images. Once we have point-correspondences, the

geometric relationships between adjacent frames can be described by the essential matrix:

Et,t−1 ≃= T̂t,t−1Rt,t−1 (3.7)

T̂t,t−1 and Rt,t−1 are the translation matrix and the rotation matrix respectively from time t−1 to

t. Then RANSAC [25] will be used to find five feature correspondences between two successive

frames to estimate motion accurately. The RANSAC is an iterative algorithm. At every iteration,

it randomly samples five points from a set of correspondences, estimates the Essential Matrix,

and then checks if the other points are inliers when using this essential matrix. Let the pose of

the camera be denoted by Rk, Tt. The trajectory can be tracked using the following equation:

Rt = Rt,t−1Rt−1

Tt = Tt,t−1 + tt−1Rt,t−1

(3.8)

3.2 Event-based Feature Detection

The asynchronously and continuously updated output of an event camera is basically different

from grayscale images. Thus accordingly changes are necessary for making a corner detector

work on the event stream. As shown in equations 3.1 - 3.4, both traditional FAST and Harris

corners are calculated over a local neighbourhood. However, in an event stream the definition

of a local neighbourhood is unclear. Fortunately, for event cameras, the lack of redundant data

makes it fast to exhaustively check the events, despite the lack of efficient convolution operations.

This check is performed at the moment the event occurs asynchronously. As a replacement for

the local neighbourhood, we use the concept of the Surface of Active Events (SAE), which is
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similar to an elevation map. Since visual information is indexed by time, the event corner can be

assumed to operate on the SAE S :
∑

(x, y, p) 7→ t. The SAE maps the position on the image

plane to the timestamp of the latest event, where t is the most recent event triggered at the pixel

location (x, y). The local neighbourhood in S of the new event (i.e., the temporal ordering of

the latest triggered events in the neighbouring pixels), is used to test whether the new event is a

corner. It is worth noting that the event camera can only detect moving corners. Static corners

will not create any intensity changes so no events will occur. This is generally acceptable for

dynamic tasks like VO.

3.2.1 eHarris Event Corner Detector

The event-based Harris Detector binarizes the SAE by the latest N events. They defined a local

spatial window (W ) which is L pixels wide, using the binarized surface Sb(x, y) instead of the

2D image I(x, y) in the traditional Harris detector. The binarized SAE is defined as

Sb(x, y) =


1, (x, y) is one of the N most recent events

0, otherwise

(3.9)

Fig. 3.2 shows an example of the binarized SAE when the local window includes an edge (a)

and a corner (b), the black patterns correspond to “1” in the binary local map where an event

occurred. The local change in contrast is high in (b) along the two major axes, compared to (a)

which is high along one direction.

Figure 3.2: A visualization of the asynchronous local contrast map[80].

Then compute the gradients of the obtained binary surface ∆Sb = [∂Sb
∂x , ∂Sb

∂y ]. These are
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substituted in place of Ix and Iy in equation (2), and then the algorithm proceeds as for the

frame-based harris detector.

3.2.2 eFAST Event Corner Detector

Similar to e-Harris, eFAST [59] has enabled traditional FAST features to be computed from

event streams. It compares the timestamps of the most recent event of the pixels on two circles

around the current event. As a result of the latest event is identified as the centre pixel of the

local neighbourhood it always has the highest timestamp on the SAE. The whole process can be

described as: firstly a circle that is similar to traditional FAST (see Fig. 3.3) is proposed:

Cr = {Cr
0 , C

r
1 ...C

r
n}, n = (r + 1)2 − 1 (3.10)

where Cr is the set of pixels with radius r from the centre pixel. Cr
0 is the pixel directly above

the centre pixel on the circle, with subscripts of each pixel increasing in a clockwise manner

around the circle.

|P − Cr
i | = r (3.11)

Assume indices are periodic such that: Cr
n+1 = Cr

0 . A potential feature point is detected if there

exist two indices i and j, (i, j ∈ (0, n)), the timestamp of which satisfy:

min{tCr
i
...tCr

j
} > max{tCr

j
...tCr

i
} (3.12)

if |i− j| > Tr, where Tr is the pre-set threshold time.

Unlike the frame-based FAST detector, e-FAST uses two circles C1 (inner circle) and C2 (outer

circle) of radius of r1 and r2 around the latest event on SAE S. Both circles must contain a

contiguous block of recent events that are used to decide whether it is an event corner.

In Fig. 3.3, for circle C1 (red), a segment of length between 3 and 6 (pixels) (3 <= Tr1 <= 6)is

required, for C2, a segment of length between 4 and 8 (3 <= Tr2 <= 6) is needed. A corner is

classified when both circles need to meet the condition above.

3.2.3 Arc* Event Corner Detector

Inspired by the FAST event corner detector(eFAST), Arc* is presented as a means to detect

corners much faster. Firstly, it proposed an event filter that is more strict to limit the timestamp
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Figure 3.3: The inner (red) C1 circle and outer (blue) C2 circle around the latest event (black)

and visualization of the SAE around the latest event (black) and of the circles used for the

timestamp comparison[59].

range of the SAE, such that S :
∑

(x, y, p) 7→ (tb, tl). The value of tl is always updated when

the newest event happens, tl ← t, as in the standard SAE. Meanwhile, the reference time tb

is only updated if the time since the last event at that location exceeds k (such that tb ← t if

t > tl + k), or if the polarity of the latest event triggered in the same location differs from the

polarity of the incoming one.

After this filter, arc* proceeds similarly to the original eFAST algorithm selecting a subset of

the circles around the newest event, and searching for a contiguous circular arc whose angle is

within a pre-defined range. However, eFAST fails to detect some corners such as in Fig. 3.4

where the angle of the arc of the newest elements is now over 180°. Then Arc* has considered

both situations and optimized the basic constraint with an equation 3.12 and additional equation

3.13 (one represents the corner on the right and the other represents the corners on the left):

max{tCr
i
...tCr

j
} < min{tCr

j
...tCr

i
} (3.13)

Figure 3.4: Two different motion directions of the same corner[3]



30 Chapter 3. Feature Detector Background

3.2.4 The Fa-Harris Event Corner Detector

In the previous section, both the eFAST and the eHarris detector construct and maintain a local

SAE with a constant size for each pixel in the image plane with a size up to M×N, which means

there are up to M×N local SAEs to be calculated. Representing this necessitates a complex

data structure which is time-consuming[52]. A single global SAE (G-SAE) with size M×N

is proposed which saves the newest timestamp of the event at the corresponding pixel. When

a new event occurs, G-SAE will be updated at the corresponding position of the event. Then

the local SAE centred on the event will be extracted from G-SAE (9×9 size in the algorithm).

The local SAE is then used for corner candidate selection and refinement. The events of two

polarities are handled on two different G-SAEs respectively. This greatly accelerates the speed

of the algorithm.

3.3 Conclusion

In this chapter we discussed some traditional features and event features. A comparative

evaluation of these different techniques will be provided in chapter 5. However, it is obvious

that many event features are derived and developed from classic methods, simply exchanging

the pixels for events. Because events are not synchronised into frames, the techniques must also

be adapted to operate across the time dimension. The results in [59] show that asynchronous

feature detection methods have better real-time performance than those which accumulate events

into artificial frames. Based on this observation we propose to detect our line features by fitting

event planes in the continuous event stream.
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Asynchronous Line SLAM

We have seen that feature-based tracking is still the most common form of SLAM. There have

also been a huge number of frame-based and event-based feature-point detectors proposed. The

extraction speed and reduction rate differ greatly between these techniques. Unlike traditional

monocular or stereo SLAM, event-based SLAM has several additional steps making the feature

extraction more complex. As we discussed in last chapter, event based features are rare,

especially in low-textured scenes with limited motion. Therefore, to address objective 3, a

new general SLAM framework will be developed which can estimate the camera motion by

extracting line information from event streams, as shown in Fig. 4.1. The pipeline of our

system is inspired by the integrated points and lines tracking of the PL-SLAM, but using our

asynchronously extracted event lines with dense image based feature points. The main idea

behind the algorithm is to identify the coherent space-time event surfaces using the local SAE.

These event surfaces are then used to define both the line features in the image and their motion.

Local Bundle Adjustment is applied to optimize the pose of all lines after obtaining the initial

line feature set, find further correspondences can be established by projecting the local map onto

the image.

4.1 Event Camera Feature Detection

Before discussing feature extraction for event cameras, we must provide basic background on

how event cameras themselves function. The event camera has a higher temporal resolution

31



32 Chapter 4. Asynchronous Line SLAM

Figure 4.1: The scheme of ASL-SLAM is composed of three main threads: Data Extraction

& Tracking, Local Mapping and Loop Closing. Event lines are extracted from the fitted plane.

Both lines and points are tracked between frames. Then camera position is estimated and the

new keyframes are chosen. Then, the latest keyframe information is added to the map and

optimized with BA during Local Mapping. The Loop Closing process keeps optimizing the map

and poses with the bag of words.

because it responds to intensity changes in the environment independently and asynchronously

for each pixel. Then the output of the event sensor is the representation of intensity change (log

intensity) and the position of the corresponding pixel. The log intensity has ON/OFF polarity

which indicates an increase or decrease of brightness.

Figure 4.2: Event camera and the principle of ON and OFF spike generation for DVS pixels[9]

The DVS is shown on the left in Fig. 4.2. The top right shows the details of triggered events, and
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the evolution of the pixel’s voltage Vp. This can be roughly interpreted as the intensity of light

received by the pixel over time. It shows the corresponding generation of ON (voltage increases

above change threshold) and OFF (voltage decreases) events, from which the change of Vp can

be reconstructed. The event camera captures the events with a pixel array before formulating

the event stream through the peripheral circuit [54] and outputs the stream using a shared digital

output bus. This route will take advantage of a kind of address event representation (AER)

readout, which grants a faster read speed [55]. The flow chart in Fig. 4.3 below explains how

light is converted into event data:

Figure 4.3: Working Process of Event Camera

Specifically, at time tk we define the brightness change between the latest event and current

event at pixel Xk = (xk, yk)
T as:

∆L(Xk, tk) = L(Xk, tk)− L(Xk, tk −∆tk) (4.1)

where ∆tk is the time interval since the last event.

An event ek[xk, yk, tk, pk] is then launched when ∆L(xk, yk, tk) exceeds a contrast threshold

C (with C > 0):

∆L(xk, yk, tk) = pkC (4.2)

where the polarity pk ∈ {+1,−1} indicates whether the brightness increased or decreased.

Here, a generator that has on-chip digitally-programmed bias can produce the pixel bias currents.

It set the speed and threshold voltages of a change detector on the right in Fig 3, and also decides

the contract sensitive threshold C.

4.1.1 Plane Fitting and Filtering

Firstly we define the event stream as the set of all events E = {e0, e1...eN}, where ei ∈ R3.

Each event is constructed as ei = [x, y, t, p], where [x, y] is the position of the event in the event

frame coordinates at time t. For every incoming event, we define an event neighbourhood which

includes all events with a similar time and position. This SAE neighbourhood is used to provide

an estimation of the orientation and amplitude of the event motion as shown in Fig. 4.4.
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Figure 4.4: An event line is extracted from the SAE with line orientation and amplitude of

motion defined by the orientation of the SAE. The extremities of Line l are determined by the

inlier points within the local SAE neighbourhood.

A spatio-temporal neighbourhood of events Ωe is defined as the set of all events falling within a

window of size 2L× 2L× 2∆T centred on event e:

Ωei = {ej , where xj ∈ (xi − L, xi + L),

yj ∈ (yi − L, yi + L), tj ∈ (ti −∆T, ti +∆T )} .
(4.3)

We parametrize a space-time plane as β = [a, b, c, d]. It is noted that for any event ei which lies

on this plane, the following equality must satisfied:

β[x, y, t, 1]T = 0. (4.4)

Here we use the Singular Value Decomposition (SVD) method to fit the plane to minimize the

error function 4.4, with the constraint:

a2 + b2 + c2 + d2 = 1 (4.5)

For each incoming event, we optimize the plane β to extract the local Surface of Active Events.

The optimization process is defined as:

β∗ = argmin
β

∑
ej∈Ωei

∣∣∣β[xj , yj , tj , 1]T ∣∣∣2. (4.6)
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Once the initial plane candidate has been computed, we extract the set of inlier events from the

neighbourhood as:

Ω∗
ei = {ej , where |β[xi, yj , tj , 1]

T | < λ1, ∀ej ∈ Ωei}. (4.7)

We then repeat equation 4.6 to refine the plane parameters on the inlier events set. We define

the update size as ϵ = ||β − β∗||, and iterate equations 4.6 and 4.7 until ϵ < λ2, at which

point the local SAE has converged. It is worth noting that for the current event ei, the inlier

neighbourhood Ω∗
ei should also contain itself, this means the error of the current point i needs to

be smaller than λ1. If this condition is not satisfied the plane candidate is discarded.

4.1.2 Event Line Flow

It can be inferred that all the events on the line should have the same velocity over a short

enough timeframe, and the velocity remains constant during this time interval. This makes it

possible to track the lines without resorting to appearance based descriptor matching which is

challenging for event cameras. The velocity [vx, vy] can be obtained from the local SAE via:

[vx, vy] =

[
−ac

(a2 + b2)/∆t
,

−bc
(a2 + b2)/∆t

]
, (4.8)

where ∆t is the time interval between two frames. After obtaining the parameters of the

synchronized 2D lines, and their velocities, we compute the data association with the 3D line

segments currently contained in the map.

4.2 Asynchronous Line Extraction and Synchronisation

After obtaining the plane, we then extract the lines using the current event. We synchronize

the lines to the frames and each other, so that batch data association can be achieved and there

will be enough information to reliably constrain the odometry. Although the event information

is asynchronous and discrete, the space-time planes computed above provide a continuous

representation of the feature over time. This makes it possible to extract the corresponding

visual line at any required timestamp. As such we can synchronize the asynchronous event lines
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with the visual feature points extracted from the frame-based camera. Based on equation 4.4,

we use a homogeneous definition of line li extracted around the neighbourhood of event ei:

li : aix+ biy + citf + d = 0, (4.9)

where tf is the timestamp of the frame which the line is being synchronized to. This line

describes the intersection of the SAE plane β with a horizontal plane at time tf . In this thesis

we set the length of every line for a fixed value 10, so the 2D coordinates of end points can be

obtained by the current event and the gradient of the line function.

Figure 4.5: The intersection of β with a tf plane.

4.2.1 Synchronous Data Association with Asynchronous Lines

After obtaining the parameters of the synchronized 2D lines, and their velocities, we compute

the data association with the 3D line segments currently contained in the map. The 3D end

points of these line segments are projected into the image space. M,N ∈ R3 are the extremities

of the 3D line segment. As in [33] we define, the algebraic point-line error Epl for a 3D point

as:

Epl(θ,Mtf , li) = (li)
Tπ(θ,Mtf ) (4.10)

where the pose parameters θ = {R, t} include the rotation and translation parameters which

align the camera and the world coordinate systems. Furthermore, the algebraic line segment

error El is defined as the sum of squares of the two event-line errors for the 3D line segment

endpoints:

El(θ,Mtf , Ntf , li) = Epl(θ,Mtf , li)
2 + Epl(θ,Ntf , li)

2 (4.11)
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We associate the newly synchronized event lines with the closest line segment in the current

mapM, assuming the algebraic error is less than λ3:

li ↔


argmin

[Mtf
,Ntf

]∈M
El(θ,Mtf , Ntf , li), if El(θ,Mtf , Ntf , li) < λ3

∅, otherwise

(4.12)

4.3 Local Bundle Adjustment with Points and Synchronized Lines

Once the synchronized event lines are associated with the line segments in the map, we combine

them with frame-based feature point correspondences. To get the optimized results of the camera

pose, a bundle adjustment (BA) of the local map is used. This constrains θ to an SE(3) pose

for each keyframe (KF). After we associate the data with the ith keyframe, let Xij ∈ R3 be the

generic jth point of the map. The projection error eij represents the 2D distance between the

observation xij of the ith keyframe:

eij = xij − π(θj , Xij) (4.13)

For the event lines defined in the previous section we use the same error function as that used

for data association. Namely, we define the error function as the distances between the projected

endpoints of the 3D line and its corresponding infinite line in the 2D image plane:

eik =

(Iik)Tπ(θj ,Mj)

(Iik)
Tπ(θj , Nj)

 , (4.14)

where Mj and Nj refer to the 3D endpoints of the line segments in the world coordinate

frame. The coefficients of detected line Iik estimated by Eq.(??) refers to the 2D line in

the corresponding ith keyframe. Because of the unknown camera pose and the noise of the

observation, the problem is defined as a joint optimization over the camera pose θ, map points

X and map linesM:

θ∗,X ∗,M∗ = argmin
θ,X ,M

K∑
i=0

 P∑
j=0

eTiju
−1
eij eij +

I∑
k=0

eTiku
−1
eik

eik

 , (4.15)

where K,P, I represent the number of keyframes, points and lines respectively. u−1
eij and u−1

eik

are the covariance matrices for the key points and line endpoints. Given this definition the

problem can be iteratively solved by a Damped Newton method which is more robust than

standard Gaussian Newton methods.
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4.4 Mapping With Points and Asynchronous Lines

It is known that current frame-based SLAM methods sometimes fail when running in low

texture environments which lack key points. Rather than using points, event lines are more

robust for map initialization between two frames. We make an assumption that the camera’s

angular acceleration is small between two time steps. This means for three consecutive poses,

the angular velocity (i.e. the rotational transition between each camera view) is constant. Thus

the three camera orientations can be represented as Rt−1 = RT , Rt = I , and Rt+1 = R, and I

is the 3 × 3 identity matrix. After accounting for the change in camera orientation, the three

observations of the line should be colinear with each other. We can quantify this by checking

that the cross product of any two of the lines must also be perpendicular to the third line. This

constraint can be written as:

ITt ((Rt−1It−1)× (Rt+1lt+1)) = 0. (4.16)

Moreover, for small rotations R, it can be approximated as:

R =


1 −r3 r2

r3 1 −r1

−r2 r1 1

 (4.17)

For this parametrization, a polynomial solver which produces up to eight solutions is applied to

solve three quadratic equations with three unknowns r1, r2 and r3 after we have three matched

lines. For each rotation candidate we can estimate the corresponding t using the trifocal tensor

equations [36]. To minimize 4.16, one out of the eight possible solutions is selected. Once the

rotation has been solved, two corresponding pairs are selected to establish line correspondences.

These line matches are sufficient for independently constraining the translation elements using

the trifocal tensor equations [45].
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Evaluation

5.1 Dataset and Parameter Settings

To realize Objective 3, we undertake a performance evaluation of ASL-SLAM in several scenes

from two different datasets. As we focus on low latency event features, the event-line detectors

mentioned in the last chapter is firstly compared with other event feature points. We also

compare our full SLAM system with current popular frame-based SLAM methods, such as

ORB-SLAM and PL-SLAM by employing their open-source implementations. We also compare

the computation time of the detection and tracking for the asynchronous lines with other event

feature algorithms. All experiments were conducted with an Intel Core i7-8700K (12×@

3.70GHz), Ubuntu 18.04, ROS melodic.

5.1.1 Dataset and Parameter Settings

In order to quantify the efficiency of the asynchronous line extraction we use the event camera

datasets proposed by [60]. It was generated using a DAVIS240C and also provides the images,

events, IMU estimations, and calibration with different sensors as well as ground truth obtained

by a motion-capture system. We use the shape rosbag which has the rotation and translation

of some typical shapes in order to show the detection results more clearly. In this part, we set

λ1 = 0.001, λ2 = 0.05, ∆T = 0.01s. The four approaches work directly on event streams

under two different scenes.

39
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Figure 5.1: Platform structure of the VIVID system

Our second experiment explores the robustness of asynchronous line extraction in varying

illumination conditions. To achieve this we use the ViViD (Vision for Visibility Dataset) [49]

that captured unconventional visual data obtained from varying lighting and motion conditions.

The dataset provides normal and poor illumination sequences which are called local light and

global light, captured by RGB-D camera, and event data using DAVIS240C as shown in Fig. 5.1.

They also provide sequences under robust motion and unstable motion. These four combinations

of data are ideal for our evaluation making it possible to test the robustness of the SLAM system

based on line features. The resolution of the RGBD image is 640× 480.

5.1.2 Asynchronous Feature Extraction Benchmark

Some researchers have compared the performance of a small number of event corner detectors

under some simple texture environments such as shapes, boxes and posts to test the detection

quality[52]. As described above we choose a pair of datasets with more complicated indoor

scenes including robust motion using local or global light. To make the code run easily on the

dataset, we use the Robotic Operating System (ROS) platform that can easily work with several

asynchronous processes together.

The corners detected under two light conditions by the frame-based and the event-based methods

are shown respectively below. The event points are shown on the image from the event camera

(which is 240×180 pixel greyscale) while the traditional features are shown on the normal

camera. First we compare the existing event features mentioned in Section 3.2 with our ASL
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extractor. We synthesized events and detected features within 30ms on the intensity images

(a) Normal global image (b) Global events (c) eHarris global event corners

(d) eFast global event corners (e) Arc* global event corners (f) Fa-Harris global event corners

(g) Global Harris corners (h) Global Fast corners (i) Global ORB corners

Figure 5.2: 5.2(a) shows the normal local image captured from RGB camera, 5.2(b)) shows

the events that event cameras detected,5.2(c)- 5.2(g) depict the corner-events detected (blue

and red dots) using eHarris, eFast, Arc* and Fa-Harris corner detector algorithms respectively.

5.2(g)- 5.2(i) depict the traditional corner detector of Harris, Fast and ORB respectively, all the

detection processes are under the global light environment.

for visualization. The colours represent the different polarities of events and event corners, red

and blue mean positive and negative polarity respectively. Fig.5.2 and Fig.5.3 are the corner

detection results under the global light condition and local light condition respectively for the 4

feature detectors.

We can tell obviously that the figures in Fig.5.2 are brighter than the figures in Fig.5.3, which
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(a) Normal local image (b) Local events (c) eHarris local event corners

(d) eFast local event corners (e) Arc* local event corners (f) Fa-Harris local event corners

(g) Local Harris corners (h) Local Fast corners (i) Local ORB corners

Figure 5.3: 5.3(a) shows the normal local image captured from RGB camera, 5.3(b) shows

the events that event cameras detected, 5.3(c) - 5.3(f) depict the corner events detected (blue

and red dots) using eHarris, eFast, Arc* and Fa-Harris corner detector algorithms respectively.

5.3(g) - 5.3(i) depict the traditional corner detector of Harris, Fast and ORB respectively, all the

detection processes are under the local light environment.

demonstrates that the event camera can still work well under low light environments. Fig.5.2(b)

- 5.2(f) and Fig.5.3(b) - 5.3(f) indicate that all of the four methods have significantly reduced

the number of events under both local and global illumination, compared to the original event

stream. All of the four methods have detected the corners on the checkerboard and tripod, which

means the intensity of these places has changed markedly. Moreover, of the three traditional

corner detectors, the Fast detector has detected much more features primarily along the edges of
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the scene. The ORB detector has detected the least feature points which are located in the place

where the brightness change is greater on the image.

Table 5.1.1: Performance of event feature detectors

Scene Algorithm eHarris Fa-harris eFast Arc* ASL

Indoor

Robust

Local

Reduction rate (%) 85.66 93.30 78.16 77.90 93.14

Time per event (us/ev) 5.92 0.90 1.88 0.19 2.32

Max. event rate (Mev/s) 0.17 1.11 0.53 5.29 10.71

Indoor

Robust

Global

Reduction rate (%) 94.24 98.3 94.19 91.60 95.52

Time per event (us/ev) 4.23 0.46 1.50 0.12 1.78

Max. event rate (Mev/s) 0.24 2.19 2.00 8.05 13.36

Table 5.1.1 illustrates the average processing time in µs of one single event and the maximal

event bandwidth in Millions of events per second (Meps) . It also shows the Reduction rate,

which explains the number of detected features over the number of input events. According

to the results, our method shows reliable and consistent performance under the different types

of motion, and it can deal with the highest incoming event rate among the 5 methods. It may

be that the reason the max event rate stays highest with our method is that, the lines in the

neighbourhood of the incoming events are being dealt with together in our method. In addition,

the number of unique lines is lower than corners meaning that we will deal with less information

than keypoint-based SLAM does. The time per event performance shows that it can detect

line features (which contain at least 4 events) with a similar level of efficiency. The number of

lines is less than feature points meaning that we will deal with less information than traditional

keypoints-based SLAM.

The above results have focused primarily on the efficiency characteristics of different feature

detectors. Unfortunately it’s hard to evaluate the reliability of the different feature detectors in

isolation. Therefore we will use the following tracking and SLAM evaluations to determine the

quality of the different detectors.
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5.1.3 Feature Tracking Results

Unfortunately there are no absolute evaluation criteria to identify the quality of detected feature

points, as there is no ground truth for what is and is not interesting. Instead we attempt to

evaluate the quality of the detected features, in an application specific manner, by testing their

suitability for tracking. To achieve this, traditional points and lines, event corners and our

proposed event lines acquired from the previous experiment can be used to match and track

camera motion.

(a) Harris corner local tracking (b) Harris corner global tracking

(c) Fast corners local tracking (d) Fast corners global tracking

(e) ORB corners local tracking (f) ORB corners global tracking

(g) LSD lines local tracking (h) LSD lines global tracking

Figure 5.4: Feature tracking using traditional frame-based feature

In this part, three traditional feature detectors, four event-based corner detectors as well as our
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asynchronous event line will be compared. We use LK optical flow [56] method to track frame-

based feature points directly. For event features we followed a similar approach, projecting the

features to the RGB camera and tracking according to optical flow. The features are then used

to estimate the epipolar geometry between the views via RANSAC. Because the events occur

continuously in time, we use all event corners that happen in 30ms between two frames and

compare the tracking result. For PL-SLAM features we track the extremities of line-features

and calculate the line distance to get good track.

(a) eHarris corner local tracking (b) eHarris corner global tracking

(c) Fa-Harris corners local tracking (d) Fa-Harris global corners tracking

(e) eFast corners local tracking (f) eFast corners global tracking

(g) Arc* corners local tracking (h) Arc* corners global tracking

Figure 5.5: Feature tracking using event-based feature

Fig. 5.4 and Fig. 5.5 show the performance of the traditional feature and event feature tracking
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under two different light condition referred to the previous experiment. Because of the real-

time detecting and tracking environment, both images are changed into grayscale pictures to

process the tracking tasks. Here we still show the traditional points on colour images and event

features on grayscale images in order to distinguishing them. Two continuous frames are used,

features(circles) are detected in the previous frame (left image) and corresponding points (blue

circle) are tracked on the next frame (right image). We can see that the successfully tracked inlier

points are largely correctly matched. We also note that some circles have not been linked which

Table 5.1.2: Feature tracking results based on frames and events

Feature Types
Local Light

Detection

Local Light

Tracking

Global light

Detection

Global light

Tracking

Traditional

Features

Harris 3153
84.64%

Successfully tracked
3298

85.29%

Successfully tracked

Fast 628
85.82%

Successfully tracked
687

85.58%

Successfully tracked

ORB 463
85.10%

Successfully tracked
498

87.35%

Successfully tracked

PL 372
89.92%

Successfully tracked
400

94.50%

Successfully tracked

Event

Feature

eHarris 158
81.01%

Successfully tracked
511

89.62%

Successfully tracked

Fa-Harris 62
88.71%

Successfully tracked
92

85.87%

Successfully tracked

eFast 242
88.43%

Successfully tracked
528

93.18%

Successfully tracked

Arc* 257
74.31%

Successfully tracked
565

98.58%

Successfully tracked

ASL 78
97.43%

Successfully tracked
136

100%

Successfully tracked

means the RANSAC has effectively removed the wrong or badly tracked points. The Harris

corner detector has detected much more corners than other traditional feature detectors because
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there are many close features that have been kept. Moreover, we can see that the Fast method

has detected the most features while Harris has detected some incorrect points in untextured

regions (although some of these are nevertheless tracked successfully).

Fig. 5.5 shows the results of event corner tracks. It is worth noting that the detected event

features do not lie in areas that we would normally expect to contain feature points. This is

because the events are aggregated over a period of time from a moving camera. Projecting

these points to either the first or last image frame is a simplification. The detection and tracking

performance is shown in Table 5.1.2. The Fa-Harris method has detected and tracked the least

number of points. We can see that the tracking rate of line features is higher than point features.

Additionally, the number of line features is less than points, which can save on computational

cost. It is interesting to note that eHarris and Arc* are are some of the best performing under

global lighting with near 100% tracking inliers. However, under local light tracking reduces

drastically compared to the other features. This suggests that the interest points targeted by

these detectors are susceptible to lack of contrast. Except that other event tracking results show

higher tracking rate than traditional features. The results indicate that although it is possible to

do traditional image-based tracking, for event-based feature detectors, this may not be optimal.

In particular because there is not a good correspondence between the high frequency events, and

the images, the points tracked do not exactly match those detected.

5.1.4 SLAM performance

To evaluate the robustness of the event-based SLAM algorithm, we still use the VIVID dataset

which can provide a comprehensive evaluation of our method against other approaches. The

image frames from the four rosbags of the VIVID dataset are shown in Fig. 5.6, we can see that

the two global light rosbag have brighter illumination than the local light ones. At the same

time, the frames from the dataset of unstable motion are more blurred than in robust motion

which means tracking may be lost when using the traditional keypoints tracking method. Since

there is no open source pipeline for event-based VO/SLAM, we choose to compare against the

highly effective ORB-SLAM2 (which is equivalent to our system without the asynchronous

lines) and a state-of-art line-based method PL-SLAM. We use the monocular demos to compare

fairly with our method. It is known that traditional feature-based SLAM would suffer significant
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Figure 5.6: Frames of four different experimental conditions.The top left is local light and

robust motion, the bottom left is global light and robust motion, and top right is global light and

unstable motion, bottom right is local light and unstable motion.

degradation from motion blur or low light conditions, which will result in tracking failure. We

evaluated our ASL system with the other two methods on the four sequences. The results are

shown in Table 5.1.3 and 5.1.4.

First we calculate the running time of each method under four scenarios, where tracking

performance is shown below in Table 5.1.3. It is obvious that our ASL method significantly

outperforms the frame-based baseline ORB-SLAM2 and line-based PL-SLAM. The tracking

time has decreased by more than 20% compared to the other two methods. It can be inferred

that there are more features for ORB-SLAM2 to deal with. We can see that under the global

light condition, all three methods spent more time tracking which means there are more features

when it is brighter in the room. This also shows that our methods will not be affected by the

light change of the environments

Then we used the metrics for the Absolute Trajectory Error(ATE) which is provided by the

evaluation script of the benchmark. Before computing the error, all trajectories are aligned
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Table 5.1.3: Comparison of tracking time for each method

Scene Tracking Time (ms) ORB-SLAM2 PL-SLAM ASL-SLAM

Local Robust
Median 0.0616 0.0629 0.0456

Mean 0.0627 0.0642 0.0496

Global Robust
Median 0.0662 0.0706 0.0481

Mean 0.0661 0.0702 0.0521

Local Unstable
Median 0.0553 0.0488 0.0381

Mean 0.0568 0.0503 0.0390

Global Unstable
Median 0.0501 0.0564 0.0437

Mean 0.0499 0.0572 0.0445

using a similarity warp and scaled by calculating the Euclidean distance between the estimated

trajectory and the ground truth. We evaluated the ATE by calculating its RMS which is illustrated

in Table. 5.1.4.

Table 5.1.4: Absolute Trajectory Error(RMS) [t:mm]

ORB-SLAM2 PL-SLAM ASL-SLAM

Local Robust 53.54 54.73 45.38

Global Robust 24.11 34.69 27.96

Local Unstable 526.53 498.72 321.3

Global Unstable 324.50 306.97 46.80

We can see from the Table. 5.1.4, our method outperforms all others, except for global robust

conditions. In particular our method shows robust performance under challenging light and

motion conditions. It can be inferred that the efficiency of our method results in less error than

PL-SLAM does. Though the ORB-SLAM has the best performance under the global robust

condition under any challenging scenario, it has an error almost twice that of the ASL-SLAM.

Fig. 5.7 displays the absolute trajectory error of each method. For the two figures on the left,

we can see that the distance error of our method has a lower peak and changes smoothly. It

can be inferred from the right bottom figure that, there are violent motion changes around 5s

and 15s, our ASL methods show lower error compared to the other two methods, especially for

ORB-SLAM2, which has a significant increase in error at that point. However, events can be
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Figure 5.7: Absolute Trajectory Error between Estimation and Ground Truth.

obtained as long as the brightness has changed, this also means the event lines can be detected

no matter how the camera moves. In this case, our ASL-SLAM can provide a more stable and

robust localization result.

5.1.5 Result Summary

Our results show that the proposed ASL-SLAM architecture is able to operate using low-latency

line features with high accuracy and data efficiency. Our method consistently outperforms the tra-

ditional feature point-based approaches when subject to significant motion-blur or low-textured

scenes with a low feature count. We also demonstrate our approach has a good performance

in low-light situations, where the traditional approaches are prone to failure. Additionally, the

pipeline is evaluated with the VIVID dataset and showed consistent improvement compared to

the current competing methods.
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Conclusions and Future Work

6.1 Conclusions

In the work of this thesis, we proposed ASL-SLAM, an event-based visual SLAM approach that

covers both feature points and event lines simultaneously. Pure event-based SLAM has some

limitations, so we presented an alternative way to take the advantage of both an event camera

and traditional camera. Their different properties (high dynamic range/ lack of motion blur and

distinctive visual descriptors respectively) lead to a strong combined system.

In the first chapter we introduced the general problem of positioning and localization. They

are mainly divided into two areas: relative localization and global localization. Many sensors

are commonly used during the positioning process such as GPS, cameras, lidars and IMUs.

However in this thesis we focused on the application of traditional cameras and event cameras.

For the second chapter, we generally introduced some recent SLAM/VO technologies and their

application to event cameras. Classic SLAM technologies can be divided into feature-based

methods and direct methods. The former is dependent significantly on the feature detector

and matcher. The latter relies on data association and can save time on feature detection and

matching, but the effect of motion blur is exacerbated. There are still open questions around the

best way to use event cameras for SLAM, and there is currently no definition for event-based

line tracking.

In the third chapter we discussed and analysed the characteristics and differences between

51
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traditional feature detection methods and the original event feature detection methods in detail.

This laid the groundwork to formalize our own novel contribution and also formed the baselines

for evaluation in later chapters.

In Chapter 4 we introduced the structure of ASL-SLAM. Firstly we proposed our event-line

detection method based on the SAE. We then synchronised our continuous event lines with the

traditional feature points to recover the 3D pose. Next we use BA to optimize our camera pose by

combining the frame-based feature points with our event lines. Finally after the correspondences

of points and lines are established, the camera rotation matrix can be recovered and the map

updated. For this chapter we tested our technique using a simple dataset of different shapes.

For the final chapter we undertook an evaluation of the outcomes from the other chapters. First

we compared our line features with other frame-based features and event-features. We then run a

complete SLAM system under different environments with local and global light conditions. The

results show that our ASL-SLAM architecture is able to operate with low latency line features at

high accuracy and data efficiency that can be suitable for industrial environments. It consistently

outperforms the traditional feature point-based approaches in the presence of motion blur or

low-textured scenes. We also demonstrate our approach performs well in low-light situations,

where traditional approaches are prone to failure. On the VIVID dataset, this led to consistent

improvement of up to 85% reduction in error compared to the current competing methods. For

future work, further exploration of asynchronous line-based SLAM and incorporation of higher

dimensional geometric primitives like planes could be fruitful.

6.2 Future Work

In this thesis we used both event information and traditional feature points to achieve SLAM.

Further exploration of the asynchronous line feature based SLAM such as pure event-based

SLAM with event line tracking may be valuable. It is possible to take advantages of event flow

to track lines directly in the event volume. Since the event camera can directly respond to the

edges of the scene, it would be easier to detect certain primitives such as corner and lines.

In addition the incorporation of higher dimensional geometric primitives like planes could be

applied to our SLAM algorithm. It can be inferred that, just as a line in the image becomes a
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plane in the 3D event volume; a 2D region in the image is a volume in the event cloud. Therefore

if a specific volume and the image frame are matched among the event points, the camera’s

pose can be obtained. We would expect that similarly to the findings of this thesis, these ”event

region primitives” would be significantly sparser than lines, but correspondingly more robust

and informative.

6.3 Directions for the Field

Event camera as a low latency high dynamic visual sensor has wide potential in fields such

as computer vision, robotics, aerospace technology etc. The fundamental problem of pure

event-based SLAM is how to track the events. The lack of any descriptors for data association

makes this a very challenging problem. One potential avenue may be [82] which takes the

relationship of events, lines and ego-motion of the camera to formulate a continuous constraint.

Another way to get a more accurate result is to fuse other sensors such as IMU. It is common

to use this simple and low-cost sensor in SLAM research.[47] proposed a IMU-DVS SLAM

system by optimizing the camera pose. The inertial representation was associated with each

event to minimize the distance between points and lines. In future research it may be possible

to use IMU measurements to estimate motion priors for higher level primitives. This may

assist with the event based line/region tracking problem. If these questions can be addressed

in future research, event based SLAM has incredible potential to revolutionise one of the most

fundamental aspects of robotics.
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