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Abstract

Self-supervised learning is the key to unlocking generic computer vision systems.
By eliminating the reliance on ground-truth annotations, it allows scaling to much
larger data quantities. Unfortunately, self-supervised monocular depth estimation
(SS-MDE) has been limited by the absence of diverse training data. Existing
datasets have focused exclusively on urban driving in densely populated cities,
resulting in models that fail to generalize beyond this domain.
To address these limitations, this paper proposes two novel datasets: SlowTV and
CribsTV. These are large-scale datasets curated from publicly available YouTube
videos, containing a total of 2M training frames. They offer an incredibly diverse
set of environments, ranging from snowy forests to coastal roads, luxury mansions
and even underwater coral reefs. We leverage these datasets to tackle the chal-
lenging task of zero-shot generalization, outperforming every existing SS-MDE
approach and even some state-of-the-art supervised methods.
The generalization capabilities of our models are further enhanced by a range of
components and contributions: 1) learning the camera intrinsics, 2) a stronger
augmentation regime targeting aspect ratio changes, 3) support frame randomiza-
tion, 4) flexible motion estimation, 5) a modern transformer-based architecture.
We demonstrate the effectiveness of each component in extensive ablation exper-
iments. To facilitate the development of future research, we make the datasets,
code and pretrained models available to the public at https://github.com/
jspenmar/slowtv monodepth.

Keywords: Monocular Depth Estimation, Self-Supervised Learning, Zero-shot
Generalization, Large-scale Dataset Curation
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(a) Image (b) Ground-truth (c) KBR++(Ours) (d) KBR (Ours) (e) Baseline [1]

Fig. 1: Zero-shot generalization. Our SS-MDE models generalize to a wide range of com-
plex environments. These models are trained on the novel large-scale SlowTV and CribsTV
datasets and can match or even surpass supervised SotA.

1 Introduction

Reliably reconstructing the 3-D structure of the world is a crucial component in many
real-world applications, such as autonomous driving, robotics, camera relocalization
or augmented reality. While traditional depth estimation algorithms relied on corre-
spondence estimation and triangulation, recent research has shown it is possible to
train a neural network to reconstruct a scene from only a single image. Despite being
an ill-posed task due to the scale ambiguity, monocular depth estimation (MDE) has
become of great interest due to its flexibility and applicability to many fields.

Recent supervised MDE [2–5] approaches have achieved impressive results, but
are limited both by the availability and quality of annotated datasets. LiDAR data is
expensive to collect and frequently exhibits boundary artifacts due to motion correc-
tion. Meanwhile, Structure-from-Motion (SfM) is computationally expensive and can
produce noisy, incomplete or incorrect reconstructions.

Self-supervised learning (SSL) should be able to scale to much larger data quanti-
ties, since only monocular or stereo video is required for training. These models instead
leverage photometric constraints, using the predicted depth and motion to warp adja-
cent frames and synthesize the target image. However, in practice, existing SS-MDE
models [6–9] rely exclusively on automotive datasets [10–12]. This lack of variety sig-
nificantly impacts their generalization capabilities and results in failures when applied
to natural or indoor scenes. Moreover, despite being fully convolutional, these models
struggle to generalize to different image sizes.

We argue that the lack of diversity is due to the challenges of data collection, with
new datasets aiming to provide high-quality ground-truth annotations that can be used
for testing [13, 14]. Whist this is important to accurately evaluate the performance
of models, it also places strong limitations on the achievable scale for the training
splits. In this paper, we instead focus on creating datasets that specifically target self-
supervised learning, exploiting the fact that no ground-truth annotations are required.
Combined with our additional contributions, we train self-supervised models capable
of zero-shot generalization beyond the automotive domain. Our models significantly
outperform all existing SS-MDE approaches and can even match or outperform State-
of-the-Art (SotA) supervised techniques.

A preliminary version of this work [15] was published at the International Confer-
ence on Computer Vision. This paper introduced the SlowTV dataset, composed of
1.7M frames from 40 curated YouTube videos. These videos featured a wide diversity of
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settings, including seasonal hiking, scenic driving and scuba diving. SlowTV provided
our models with the general foundation for natural scenes, such as forests, mountain-
ous terrains or deserts. Our dataset was combined with Mannequin Challenge [16] and
Kitti [10], which targeted indoor scenes with humans and urban driving.

Our preliminary work introduced several contributions that further maximized
zero-shot performance, whilst not increasing the complexity and computational
requirements of the model. For instance, predicting the camera intrinsics prevented
performance drops resulting from training with inaccurate intrinsics estimated via
SfM. Meanwhile, the aspect ratio augmentation (AR-Aug) diversified the distribution
of image shapes seen during training and facilitated transfer across datasets.

This paper presents several significant extensions to Kick Back & Relax (KBR) [15]
and thus introduces KBR++. Despite performing on par with several supervised SotA
models, there was still a gap when evaluating on indoor datasets due to the exclusive
reliance on Mannequin Challenge as a source of indoor data. Following the design phi-
losophy of our original work, we introduce the CribsTV dataset. This is an extension
to SlowTV consisting of 330k images from curated YouTube real estate virtual tours.
As such, this new dataset focuses on bedrooms, living rooms and kitchens and is com-
plemented by gardens, swimming pools and aerial outdoor shots. This further reduces
the gap between supervision and self-supervision in indoor settings.

We complement this novel dataset with additional augmentation strategy experi-
ments. Since its inception [6, 7, 17], SS-MDE has restricted itself to simple augmen-
tations, such as color jittering and horizontal flipping. However, recent contrastive
SSL [18–20] research has shown the benefits of more aggressive augmentation schemes.
We demonstrate this is also the case in SS-MDE and incorporate RandAugment [21]
and CutOut [22] into the pipeline. Finally, we modernize the depth network archi-
tecture with the transformer-based backbones from DPT [3] and perform several new
ablation experiments that give further insight into the performance of our models.
Our updated models outperform all (self-)supervised approaches, except DPT-BEiT,
despite not requiring any ground-truth annotations.

The contributions of our works can be summarized as:

1. We introduce a novel SS-MDE dataset of SlowTV YouTube videos and complement
it with CribsTV, resulting in a total of 2M training images. This dataset features an
incredibly diverse set of environments, including worldwide seasonal hiking, scenic
driving, scuba diving and real estate tours.

2. We leverage SlowTV and CribsTV to train zero-shot models that generalize across
multiple datasets. We additionally apply these models to the task of map-free
relocalization, demonstrating their applicability to real-world settings.

3. We introduce a range of contributions and best-practices that further maximize
generalization. This includes: camera intrinsics learning, an aspect ratio augmen-
tation, stronger photometric augmentations, support frame randomization, flexible
motion estimation and a modernized depth network architecture. We demonstrate
the effectiveness of these contributions in detailed ablation experiments.

4. We close the performance gap between supervision and self-supervision, greatly
furthering the SotA in SS-MDE. We share these developments with the community,
making the datasets, pretrained models and code available to the public.
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2 Related Work

Instead of using ground-truth depth annotations from LiDAR or RGB-D sensors, self-
supervised monocular depth estimation relies exclusively on photometric consistency
constraints. The seminal approach by Garg et al. [6] combined the known baseline
between stereo pairs with the predicted depth to obtain correspondences and perform
view synthesis. Monodepth [17] complemented this with the virtual stereo consistency
loss. Performance was further improved by introducing differentiable bilinear interpo-
lation [23] and a reconstruction loss based on SSIM [24]. 3Net [25] extended the virtual
stereo consistency into a trinocular setting.

To extend this formulation to the monocular domain, it is necessary to replace
the fixed stereo baseline with a network to predict the relative pose between frames.
This was first proposed by SfM-Learner [7] and extended by DDVO [26], which intro-
duced a differentiable DSO module [27]. Purely monocular approaches are sensitve to
dynamic objects, as their additional motion is not accounted-for by the relative pose
estimation. This results in incorrect correspondences, which further lead to inaccu-
rate depth predictions. Therefore, future research aimed to minimize this impact via
predictive masking [7], uncertainty estimation [28–30], optical flow [31–33] or motion
masks [34–36].

Several works have instead focused on improving the robustness of the photo-
metric loss. One notable example is Monodepth2 [8], which introduced the minimum
reconstruction loss and static-pixel automasking. FeatDepth [37] applied the same
view synthesis to dense feature descriptors, which should be invariant to viewpoint
and illumination conditions. DeFeat-Net [38] learned the feature descriptors simulta-
neously, while Shu et al. [39] used intermediate autoencoder representations. Others
complemented the photometric loss with semantic segmentation [40–42] or geometric
constraints [43–45]. Finally, is is also common to introduce proxy depth label regression
obtained from SLAM [28, 46], synthetic data [47] or hand-crafted disparity [48, 49].

The encoder network architecture has been improved by introducing 3-D
(un)packing blocks, positional encoding [50], transformers [51] or high-resolution
networks [52]. Updated decoders have focused on sub-pixel convolutions [53], self-
attention [52, 54, 55] and progressive skip connections [9]. Akin to supervised
MDE developments [4, 56], Johnston et al. [54] and Bello et al. [50, 57] obtained
improvements by representing depth as a discrete volume.

So far, these contributions have only been tested on automotive datasets, such as
Kitti [10], CityScapes [58] or DDAD [12]. Recent benchmarks and challenges [1, 59, 60]
have shown that these models fail to generalize beyond this restricted training domain.
Meanwhile, recent supervised models [2, 3, 60] have leveraged collections of datasets
to improve zero-shot generalization. In this paper, we aim to close the gap between
supervised and self-supervised MDE in the challenging task of zero-shot generalization.
This is achieved by greatly increasing the diversity and scale of the training data by
leveraging unlabeled videos from YouTube, without requiring manual annotation or
expensive pre-processing.
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Fig. 2: SlowTV & CribsTV. Sample images from the proposed datasets, featuring diverse
scenes for hiking, driving, scuba diving and real estate. The datasets consist of 45 videos
curated from YouTube with a total of 2M training frames. Diversifying the training data
allows our SS-MDE models to generalize to unseen datasets. We make the list of URLs and
tools to process publicly available.

Fig. 3: SlowTV Map. We show the map location for each sequence in SlowTV. The
distribution of locations ensures that the training data is highly diverse. Green=Natural,
Red=Driving, Blue=Underwater.

3 Datasets

The proposed SlowTV and CribsTV datasets consist of 45 videos curated from
YouTube, totaling more than 140 hours of content and 2 million training images. As
shown in Table 1, this is an order of magnitude more data than any commonly used
SS-MDE dataset. SlowTV contains three main outdoor categories (hiking, driving
and scuba diving), while CribsTV focuses exclusively on real estate properties. When
combined, these datasets provide an incredibly diverse set of training scenes for our
models, allowing us to tackle the challenging task of zero-shot generalization.
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Table 1: Datasets Comparison. The top half shows commonly used SS-MDE training
datasets. SlowTV and CribsTV greatly diversify the training environments and scale to much
larger data quantities. The bottom half summarizes the testing datasets used in our zero-shot
generalization evaluation.

Urban Natural Scuba Indoor Depth Acc Density #Img

Kitti [10, 61]† ✓ ✗ ✗ ✗ LiDAR High Low 71k

DDAD [12] ✓ ✗ ✗ ✗ LiDAR Mid Low 76k

CityScapes [11] ✓ ✗ ✗ ✗ Stereo Low Mid 88k

Mannequin [16]† ✓ ✗ ✗ ✓ SfM Mid Mid 115k

SlowTV (Ours)† ✓ ✓ ✓ ✗ ✗ ✗ ✗ 1.7M

CribsTV (Ours)† ✓ ✗ ✗ ✓ ✗ ✗ ✗ 330k

Kitti [10, 61] ✓ ✗ ✗ ✗ LiDAR High Low 652

DDAD [12] ✓ ✗ ✗ ✗ LiDAR Mid Low 1k

Sintel [62] ✗ ✓ ✗ ✗ Synth High High 1064

SYNS-Patches [1, 13] ✓ ✓ ✗ ✓ LiDAR High High 775

DIODE [63] ✓ ✗ ✗ ✓ LiDAR High High 771

Mannequin [16] ✓ ✗ ✗ ✓ SfM Mid Mid 1k

NYUD-v2 [64] ✗ ✗ ✗ ✓ Kinect Mid High 654

TUM-RGBD [65] ✗ ✗ ✗ ✓ Kinect Mid High 2.5k

†Datasets used to train our networks.

Hiking videos target natural scenes, such as forest, mountains, deserts or fields,
which are non-existent in current datasets. Our driving split seeks to complement exist-
ing automotive datasets, which tend to focus on urban driving in densely populated
cities [10–12, 66–69]. The proposed split instead features videos from scenic routes,
traversing forest, mountainous or coastal roads with sparse traffic. We also feature a
variety of weather and seasonal conditions. Underwater scuba diving represents yet
another previously unexplored domain, which further increases data diversity. Finally,
real estate properties are a natural counterpart to the previous outdoor data. They
also complement the Mannequin Challenge [16], which primarily focuses on human
beings in indoor settings, rather than the indoor scenes themselves.

The proposed videos were collected from a diverse set of locations and conditions, as
illustrated in Figure 3. This includes the USA, Canada, the Balkans, Eastern Europe,
Indonesia and Hawaii, and conditions such as rain, snow, autumn and summer. Since
CribsTV contains a large number of individual properties, it is challenging to obtain
accurate information about each of their locations. However, they are predominantly
located in the USA. Figure 2 shows sample frames from each of the available categories,
illustrating the dataset’s incredible diversity.

Videos were downloaded at HD resolution (720 × 1280) and extracted at 10 FPS
to reduce storage, while still providing smooth motion and large overlap between
adjacent frames. In the case of SlowTV, only 100 consecutive frames out of every 250
were retrained. This reduces the self-similarity between training samples and keeps the
dataset size tractable. The final SlowTV contains a total of 1.7M images, composed
of 1.1M natural, 400k driving and 180k underwater.

Since we target SS-MDE, the only annotations required are the camera intrinsic
parameters, which can be estimated using COLMAP [70]. However, as discussed in
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Section 4.2, it is possible to let the network jointly optimize camera parameters along-
side depth and motion. We find that this is more robust and improves performance
compared to training with potentially inaccurate COLMAP intrinsics.

CribsTV instead consists of highly-produced cinematic house tours. In practice,
this means they include cuts between shots of different viewpoints or each room. Some
of these shots may also be unsuitable for SS-MDE, containing zooming/focusing/blur-
ring effects or static shots. As such, it was first necessary to split each video into its
individual scenes using an off-the-shelf scene detector [71]. We then performed a quick
manual check to filter out potentially invalid scenes based on their first frame. The
final dataset contains 330k training frames.

CribsTV also presents additional challenges when estimating the camera intrinsics.
Due to the short shot duration (on average 5 seconds) and lack of overlap between
scenes, COLMAP is unable to produce any reconstructions. This again motivates the
need for a more flexible depth estimation framework, capable of estimating camera
intrinsics. This reduces the complexity of dataset collection and allows us to train with
much larger quantities of diverse data.

4 Methodology

Monocular depth estimation aims to reconstruct the 3-D structure of the scene using
only a single 2-D image projection. However, additional support frames are required
in order to synthesize the target view and compute the photometric reconstruction
losses that drive optimization. In the case where only stereo pairs are used [6, 17],
the predicted depth is combined with the known stereo baseline to perform the view
synthesis. However, if only monocular video is available, such as YouTube videos from
SlowTV or CribsTV, is becomes necessary to incorporate an additional pose network
to estimate the relative motion between adjacent frames [7]. A key difference between
these forms of supervision is that stereo approaches can estimate metric depth, while
monocular approaches are only accurate up to unknown scale and shift factors.
Depth. The the depth estimation network ΦD can be formalized as D̂t = ΦD(It) ,
where D̂t is the predicted sigmoid disparity and It is the target image. Note that the
disparity map must be inverted into a depth map and appropriately scaled in order
to warp the support images.
Pose. Similarly, the pose estimation network is represented as P̂t+k = ΦP(It ⊕ It+k) ,
where ⊕ is channel-wise concatenation, It+k is the support frame at time offset k ∈
{−1,+1} and P̂t+k is the predicted motion as a translation and axis-angle rotation.

4.1 Losses

Supervised approaches such as MiDaS [2], DPT [3] or NewCRFs [5] require ground-
truth depth annotations, in the form of LiDAR, depth cameras, SfM reconstructions
or stereo disparity estimation. SS-MDE [6, 8, 9, 52] instead relies on the photometric
consistency across the target and support frames.
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Using the predicted depth Dt and motion P̂t+k, pixel-wise correspondences
between these images can be obtained as

p′
t+k = KP̂t+kDt(pt)K

−1pt, (1)

where K represents a camera’s intrinsics parameters, pt are the 2-D pixel coordi-
nates in the target image and p′

t+k are its 2-D reprojected coordinates onto the
corresponding support frame. The synthesized support frame is then obtained via
I′t+k = It+k

〈
p′

t+k

〉
, where ⟨·⟩ represents differentiable bilinear interpolation [23].

The reconstruction loss is then given by the weighed combination of SSIM+L1 [17],
defined as

Lph

(
I, I′

)
= λ

1−Lssim

(
I, I′

)
2

+ (1−λ)L1

(
I, I′

)
. (2)

As is common, the loss balancing weight is set to λ = 0.85.
It is well know that purely-monocular approaches [7] are sensitive to artifacts

caused by dynamic objects. This is due to the additional motion of the object
being unaccounted for in the correspondence estimation procedure from (1). Recent
research [34–36] aimed to solve these challenges using motion masks or semantic seg-
mentation maps. Whilst effective, the additional annotations and labeling required
makes these contributions unsuitable for the proposed framework. Instead we opt
for the simple, yet effective, contributions from Monodepth2 [8]. This includes the
minimum reconstruction loss and static-pixel automasking.

The minimum reconstruction loss reduces the impact of occlusions by assuming
only support frames contains a correct correspondence. This frame is obtained by
finding the minimum pixel-wise error across all support frames, defined as

Lrec =
∑
p

min
k

Lph

(
It, I

′
t+k

)
, (3)

where
∑

indicates averaging over a set.
Automasking instead reduces the effect of static frames and objects moving at

the same speed as the camera. These objects remain static across frames, giving the
impression of an infinite depth. Automasking simply removes pixels from the loss
where the original non-warped support frame has a lower reconstruction error that
the synthesized view. This is computed as

M =

s
min
k

Lph

(
It, I

′
t+k

)
< min

k
Lph(It, It+k)

{
, (4)

where J·K represents the Iverson brackets.
Whilst being simple to implement, Figure 4 demonstrates the effectiveness of incor-

porating these contributions. Finally, we complement the reconstruction loss with the
common edge-aware smoothness regularization [17]. These networks and losses consti-
tute the core baseline required to train the desired zero-shot depth estimation models.
The following sections describe additional contributions that help to further maximize
performance and generalization capabilities.

8



I
m

a
g
e

G
T

B
a
s
e
li
n
e

M
o
n
o
d
e
p
t
h
2

Fig. 4: Dynamic Object Robustness. Incorporating the contributions from Mon-
odepth2 [8] mitigates artifacts from dynamic objects and improves the sharpness of depth
discontinuities. This is achieved in a cost-effective manner, without requiring complex con-
sistency losses or additional annotations.

4.2 Learning Camera Intrinsics

Many datasets provide accurately calibrated camera intrinsic parameters. Unfortu-
nately, in crowd-sourced [72], photo-tourism [73] or internet-curated datasets (such as
SlowTV or CribsTV) these parameters are not freely available. Instead, it is common
practice to rely on SfM reconstructions obtained from COLMAP [70]. Unfortunately,
these reconstructions may be incorrect, incomplete or sometimes impossible to obtain.
As such, especially in the case of internet-curated datasets that may continuously
change or scale up in size, it would be extremely beneficial to omit these pre-processing
requirements.

We take inspiration from [34, 74] learn depth, pose and camera intrinsics simul-
taneously. To achieve this, two additional branches are incorporated into the pose
estimation network as

P̂t+k, fxy, cxy = ΦP(It ⊕ It+k) , (5)

where fxy and cxy represent the focal lengths and principal point, respectively. These
parameters are predicted as normalized and scaled accordingly based on the input
image size. The branch predicting the focal lengths uses a softplus activation to ensure
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(a) Image (b) Ground-truth

(c) Base (δ.25 = 61.82%) (d) Distorted (δ.25 = 71.12%)

Fig. 5: Image Shape Overfitting. The same model can produce significantly different
results with different resolution images. Distorting the image to the original training resolu-
tion can improve performance, despite introducing stretching/squashing artifacts. Note, for
instance, the improved boundary sharpness in (d).

a positive output. The principal point instead uses sigmoid, under the assumption
that it will lie within the image plane.

Incorporating these decoders results in a negligible 2MParam increase in the pose
estimation network, with no additional computation required for the losses. Instead,
we simply modify (1) to use the predicted intrinsics instead of the ground-truth
ones. Despite this, our ablations in Section 5.4 show that this increases performance
compared to training with intrinsics estimated by COLMAP.

4.3 Augmentation Strategies

Existing research [21, 75, 76] has shown the importance of incorporating more sophis-
ticated augmentation strategies. This is especially the case in SSL, which relies
exclusively on the the diversity of the available data. However, existing SS-MDE
(SS-MDE) approaches use only traditional augmentations such as color jittering and
horizontal flipping. This section describes the additional augmentations incorporated
into our training regime to further boost the generalization capabilities of our final
models.

4.3.1 Aspect Ratio

Dense predictions networks, such as the depth network used in this paper, can process
images of arbitrary shape. However, when trained only on a single dataset with a fixed
image size, it is common for them to overfit to this size, resulting in poor performance
on out-of-dataset examples. An example of this effect can be seen in Figure 5, where
first resizing the image to match the training aspect ratio results in better performance,
despite introducing stretching or squashing artifacts.

We overcome this by introducing an augmentation that randomizes the image
sizes and aspect ratios seen by the network during training. The proposed aspect
ratio augmentation augmentation (AR-Aug) consists of two components: cropping
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(a) Original (16:9) (b) 1:2

(c) 18:5

(d) 5:3

Fig. 6: AR-Aug. Sample training images generated using the proposed augmentation strat-
egy. This augmentation prevents overfitting to image shapes and increases the diversity of
images seen by the network.

and resizing. The first stage uniformly samples from a set of predefined common
aspect ratios1. A random crop is generated using this aspect ratio, covering 50-100%
of original image height or width. The resizing stage ensures that the final crop has
roughly the same number of pixels as the original input image. Figure 6 shows training
samples obtained using this procedure.

This augmentation is applied at the mini-batch level to ensure all images are the
same shape. If using ground-truth intrinsics, these are rescaled accordingly. AR-Aug
has the effect of drastically increasing the diversity of shapes and sizes seen by the
network and prevents overfitting to a single shape.

4.3.2 RandAugment

We additionally proposed to complement color jittering with RandAugment [21]. This
strategy sequentially applies a random combination of photometric and geometric aug-
mentations. Since MDE requires accurate re-projections across a sequence of images
we remove the geometric augmentations (e.g. translate, rotate and shear) and focus

1Portrait: 6:13, 9:16, 3:5, 2:3, 4:5, 1:1. Landscape: 5:4, 4:3, 3:2, 14:9, 5:3, 16:9, 2:1, 24:10, 33:10, 18:5.
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Fig. 7: Photometric Augmentations. Sample augmentations produced by RandAug-
ment [21] and CutOut [22]. The resulting model is highly robust to changing illumination
conditions and is capable of filling in masked regions from the surrounding context. This can
be seen in large regions of the ground-plane and connecting the tree trunk.

purely on photometric ones. The set of possible augmentations is thus reduced to: iden-
tity (i.e. no augmentation), auto-contrast, equalization, sharpness, brightness, color
and contrast. At each training iteration, a random subset of three augmentations is
chosen and applied to both the target and support frames. Sample augmented images
using this strategy can be found in Figure 7.

4.3.3 CutOut

Inspired by the recent success of transformer token-masking augmentations [20, 77, 78],
we additionally propose to re-introduce CutOut augmentations [22]. While CutOut
was originally used to boost holistic tasks like classification, it can also be applied to
dense prediction tasks. In this case, the objective is to teach the network to predict
the depth for a missing region in the image, based only on the context surrounding
it. As such, these models should learn to incorporate additional context cues and be
more robust to test-time artifacts such as reflections or highlights.

To further increase the variability of the augmentations, we implement various
fill modes for the masked-out regions: white, black, grayscale, RGB and random. A
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Table 2: Model Complexity. KBR retains the architecture from Monodepth Bench-
mark [1], while KBR++ matches DPT [3]. Despite being of equivalent complexity, our models
greatly outperforms the SSL baselines and can close the gap to supervised performance.

Backbone MParam↓ FPS↑

KBR (Ours) [15] ConvNeXt-B [79] 92.65 61.50

KBR++ (Ours) BEiT-L [20] 345.01 9.60

MiDaS [2] ResNeXt-101 [80] 105.36 51.38

DPT [3] ViT-L [81] 344.06 14.54

DPT [3] BEiT-L [20] 345.01 9.60

NeWCRFs [82] Swin [83] 270.44 21.61

different fill mode is randomly selected at each training iteration. Figure 7 shows
examples of applying this augmentation and the robustness of the model to it.

5 Results

We carry out extensive evaluations to demonstrate the effectiveness of the techniques
and datasets proposed in this paper. This includes the zero-shot experiments for the
final models, as well as detailed ablations on each proposed component. We addition-
ally evaluated our models in the challenging task of map-free relocalization [72] and
the MDEC-2 challenge [59, 60].

Since both KBR and KBR++ were trained exclusively on monocular data, it is
necessary to first align the predictions to the ground-truth metric scale. This alignment
is obtained using the least-squares procedure proposed by MiDaS [3] and is applied
equally to every baseline.

5.1 Baselines

The SotA self-supervised models were obtained from the Monodepth Benchmark [1],
which use a pretrained ConvNeXt-B backbone. These models were trained exclusively
on the Kitti dataset [7, 84] and are therefore also zero-shot on all other datasets.

We also compare our frameworks to current SotA supervised models, which require
accurate ground-truth annotations to train. MiDaS [2] and DPT [3] were trained on
a collection of 10/12 supervised datasets that do not overlap with our testing set
(unless otherwise specified). As such, these models are also evaluated in the challenging
zero-shot setting. We use the pretrained models provided in the PyTorch Hub.

NewCRFs [5] instead provides separate outdoor/indoor models trained on Kitti
and NYUD-v2 respectively. We evaluate the corresponding model in a zero-shot man-
ner depending on the dataset category. Even though NewCRFs [5] should be capable
of predicting metric depth, we apply the least-squares alignment procedue to ensure
that all results are comparable.

5.2 Implementation Details

The proposed models were implemented in PyTorch [85] and based on the Monodepth
Benchmark [1]. The original KBR [15] used a ConvNeXt-B backbone [79, 86] and a
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DispNet decoder [17, 58]. The pose network instead used ConvNeXt-T for efficiency.
As such, these models are comparable to the SSL baselines [1].

Table 2 shows a comparison between the computational complexity of the proposed
models and the supervised SotA. As seen, these models use larger transformer-based
backbones [20, 81, 83]. In order to make our results more comparable, KBR++ incor-
porates the same architecture used by DPT [3, 20]. Our ablation experiments in
Section 5.4 show the impact of different backbone architectures.

In our experiments and ablations, each model is trained using three different
random seeds and we report average performance. This improves the reliability of
the results and reduces the impact of non-determinism. We make the datasets, pre-
trained models and training code available at https://github.com/jspenmar/slowtv
monodepth.

The final KBR++ models were trained on a combination of SlowTV (1.7M), Crib-
sTV (330k), Mannequin Challenge (115k) and Kitti Eigen-Benchmark (71k). To make
the duration of each epoch tractable and balance the contribution of each dataset, we
fix the number of images per epoch to 30k, 15k, 15k and 15k, respectively. The subset
sampled from each dataset varies with each epoch to ensure a high data diversity.

The models were trained for 60 epochs using AdamW [87] with weight decay 10−3

and a base learning rate of 10−4, decreased by a factor of 10 for the final 20 epochs.
Empirically, we found that linearly warming up the learning rate for the first few
epochs stabilized learning and prevented model collapse. When training with DPT
backbones, finetuning the pretrained encoders at a lower learning rate was also found
to be beneficial. We use a batch size of 4 and train the models on a single NVIDIA
GeForce RTX 3090.

SlowTV, CribsTV and Mannequin Challenge use a base image size of 384 × 640,
while Kitti uses 192 × 640. We apply horizontal flipping and color jittering, along
with the proposed RandAugment [21] and CutOut [22] augmentations, each with 30%
probability. AR-Aug is applied with 70% probability, sampling from 16 predefined
aspect ratios previously described.

Since existing models are trained exclusively on automotive data, most of the
motion occurs in a straight-line and forward-facing direction. It is therefore common
practice to force the network to always make a forward-motion prediction by reversing
the target and support frame if required. Handheld videos, while still primarily featur-
ing forward motion, also exhibit more complex motion patterns. As such, removing the
forward motion constraint results in a more flexible model that improves performance.

Similarly, existing models are trained with a fixed set of support frames—usually
previous and next. Since SlowTV and Mannequin Challenge are mostly composed of
handheld videos, the change from frame-to-frame is greatly reduced. We make the
model more robust to different motion scales and appearance changes by randomizing
the separation between target and support frames. In general, we sample such that
handheld videos use a wider time-gap between frames, while automotive has a small
time-gap to ensure there is significant overlap between frames. As shown later, this
leads to further improvements and greater flexibility.
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Table 3: Learning Camera Intrinsics. Performance when training on a single dataset
(Kitti or Mannequin Challenge) and learning camera intrinsics. If the cameras are not per-
fectly calibrated, learning the intrinsics can improve accuracy.

Kitti Eigen-Zhou

Rel↓ F↑ δ.25↑

Baseline 5.69 60.88 95.89

Learn K 5.68 60.81 95.90

Mannequin

Rel↓ F↑ δ.25↑

Baseline 16.66 14.20 77.18

Learn K 16.12 14.77 78.40

5.3 Evaluation Metrics

We follow the original evaluation procedure outlined in [15] and report the following
metrics per dataset:
Rel. Absolute relative error (%) between target y and prediction ŷ as Rel =

∑
|y−ŷ| /y.

Delta. Prediction threshold accuracy (%) as
δ.25 =

∑
(max (ŷ/y, y/ŷ) < 1.25) .

F. Pointcloud reconstruction F-Score [88] (%) as F = (2PR) / (P +R) , where P and R
are the Precision and Accuracy of the 3-D reconstruction with a correctness threshold
of 10cm.

We additionally compute multi-task metrics to summarize the performance across
all datasets:
Rank. Average ordinal ranking order across all metrics as Rank =

∑
m
rm, where m

represents each available metric and r is the ordinal rank.
Improvement. Average relative increase or decrease in performance (%) across all
metrics as ∆ =

∑
m
(−1)lm(Mm −M0

m)/M0
m, where lm = 1 if a lower value is better,

Mm is the performance for a given metric and M0
m is the baseline’s performance.

5.4 Ablation

To demonstrate the effectiveness of each proposed component, we carry out a series
of ablation studies. These experiments generally use a more efficient architecture
(ConvNeXt-Tiny) and a smaller training dataset.
Learning K. Table 3 shows the benefits of learning the camera intrinsics, as outlined
in Section 4.2. We train models on either Kitti or Mannequin Challenge and test them
on the same dataset. If the dataset provides accurately calibrated intrinsics (Kitti),
this procedure provides comparable performance. However, in the case where these
were estimated by COLMAP [70], learning K results in a slight performance boost.
This highlights the flexibility of this contribution, which requires only a negligible
increase of 2MParams in the pose network, yet allows us to train without ground-
truth intrinsics. This further simplifies the process of data collection and results in a
framework the requires only uncalibrated monocular video to train.
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Table 4: Ablations. We carry out ablations for each component in our framework. From top to bottom: KBR [15] contributions, network
architecture, augmentations and datasets. In each case, the proposed contributions improve the zero-shot generalization of our models.

In-Distribution Outdoor Indoor

Multi-task Kitti Mannequin DDAD DIODE Sintel SYNS DIODE NYUD-v2 TUM

Rank↓ ∆↑ Rel↓ F↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ δ.25↑ Rel↓ δ.25↑

KBR 2.37 0.00 6.84 56.17 14.39 17.67 12.63 20.21 33.49 57.08 33.34 40.81 22.40 18.50 14.91 80.77 11.59 87.23 15.02 80.86

Fwd P̂ 2.79 -0.64 7.27 54.61 14.36 17.52 12.43 19.76 33.52 56.97 32.25 41.05 22.32 18.45 14.89 80.54 11.68 87.14 15.50 80.29

k = ±1 3.16 -1.18 6.79 55.92 14.17 17.92 13.66 19.18 33.75 56.56 32.30 41.14 23.05 17.90 15.00 80.82 11.73 86.94 15.66 79.91

Fixed K 4.00 -2.76 7.09 55.19 14.95 17.11 14.30 18.15 33.49 57.10 33.39 41.43 22.56 18.67 15.41 79.98 12.06 86.14 15.75 80.07

No AR-Aug 3.53 -3.86 8.32 50.15 14.32 17.87 14.75 16.90 34.49 55.82 33.25 40.51 23.38 17.33 14.58 81.69 11.24 87.77 14.61 81.76

None 5.16 -7.59 8.66 48.33 14.62 17.01 18.46 15.17 34.38 55.62 31.88 40.27 23.32 17.97 15.15 80.30 11.88 86.35 15.55 79.81

ConvNeXt-B 3.47 0.00 6.84 56.17 14.39 17.67 12.63 20.21 33.49 57.08 33.34 40.81 22.40 18.50 14.91 80.77 11.59 87.23 15.02 80.86

ViT-B-384 4.68 -3.17 7.41 54.31 14.80 17.05 14.47 16.31 33.37 56.99 33.00 39.15 23.08 17.55 14.19 83.09 11.58 86.83 15.41 81.65

ViT-L-384 2.53 0.41 7.29 54.70 14.02 18.10 14.38 16.88 33.02 58.18 30.68 42.01 22.51 17.83 13.72 83.98 10.60 88.96 14.07 83.24

BEiT-B-384 2.79 0.32 6.93 55.28 14.23 17.98 13.50 17.84 32.52 58.33 32.41 41.34 22.83 17.75 13.87 83.53 11.02 88.05 14.55 82.28

BEiT-L-384 1.53 3.91 6.91 55.60 12.78 20.37 14.39 17.75 32.57 58.73 30.21 41.22 21.76 18.92 13.53 84.65 9.63 91.05 13.60 85.81

No Aug 3.68 0.00 6.39 56.55 17.12 14.28 21.54 9.85 35.62 52.92 35.38 39.54 24.90 15.88 16.69 76.55 14.41 80.27 17.50 76.18

ColorJitter 3.00 1.30 6.31 56.38 16.95 14.36 19.72 10.71 35.65 53.08 35.16 38.73 24.47 16.16 16.63 76.93 14.25 80.59 17.58 75.62

CutOut 3.68 1.55 6.51 55.93 17.25 14.35 18.98 11.86 35.73 52.81 35.75 38.86 25.17 15.92 16.71 76.61 14.09 80.76 17.43 75.86

RandAugment 2.37 2.09 6.36 56.34 16.89 14.61 19.25 11.05 35.36 53.30 34.11 39.40 24.82 15.83 16.91 76.34 13.98 81.16 16.98 76.65

All 2.26 2.97 6.36 56.30 17.09 14.36 17.17 11.66 35.52 53.44 35.41 39.12 24.58 16.31 16.80 76.54 13.61 81.96 17.08 76.48

Base 2.47 0.00 6.49 55.87 16.62 14.95 18.59 12.09 35.15 54.00 36.01 39.42 24.69 16.20 16.44 77.08 13.52 82.54 16.87 77.22

No Kitti 3.05 -14.82 17.98 23.73 16.02 15.57 21.42 10.85 36.04 52.89 34.93 39.39 27.32 14.50 16.41 77.35 13.19 83.43 16.36 78.12

No Mannequin 3.89 -12.62 6.83 55.20 24.42 9.12 17.07 11.60 35.73 53.12 37.04 33.11 24.67 15.95 17.87 73.60 18.36 70.35 22.49 63.12

No SlowTV 3.79 -8.87 7.15 54.72 16.51 14.59 30.15 6.43 36.48 51.85 35.85 37.47 27.07 13.92 16.30 77.67 13.65 82.62 17.13 77.20

With CribsTV 1.79 0.58 6.67 55.33 16.36 15.09 19.41 12.59 35.07 54.25 34.68 38.90 24.84 16.02 16.12 77.79 12.76 84.21 16.81 77.14

Highlighted cells are NOT zero-shot results. S=Stereo, M=Monocular, D=Ground-truth Depth.



KBR. Table 4 (1st block) shows results when removing each component proposed
by the original KBR [15]. Fwd P̂ represents a network forced to always make a
forward-motion prediction. k = ±1 uses a fixed set of support frames, instead of the
randomization proposed in Section 5.2. Fixed K removes the learned camera intrin-
sics, while No AR-Aug removes the proposed aspect ratio augmentation. As expected,
the model with the full set of contributions performs best, while the model without
any contributions is worse by 7.6%. It is interesting to note that both learning the
intrinsics and AR-Aug provide the biggest performance boost. Furthermore, it is worth
remembering that none of the components (except learning K) results in a increase in
model complexity. However, when combined together, they significantly improve the
zero-shot generalization capabilities of our models.
Network Architecture. To make our models more comparable with the supervised
SotA, we modify our architecture to match the one from DPT [3]. These results
are shown in Table 4 (2nd block). All models start from an encoder pretrained on
ImageNet. Interestingly, we find that most transformer-based architectures do not sig-
nificantly improve upon the baseline (ConvNeXt-B [79]), which is much more efficient.
However, the largest version of BEiT [20] provides the best performance.
Augmentations. Table 4 (3rd block) shows the results of incorporating the more
advanced augmentation strategies from Section 4.3. All variants (except No Aug) addi-
tionally include horizontal flipping. As shown, the default color jittering augmentation
used by most existing models is slightly better than using no augmentations. However,
both CutOut and RandAugment provide larger improvements. Furthermore, the final
row (All) demonstrates that these improvements are cumulative and that the model
benefits from combining multiple augmentation strategies.
Datasets. The final ablation experiment explores the effect of removing or adding
each training dataset, shown in Table 4 (4th block). As expected, removing each
dataset results in a significant drop in performance. Whilst SlowTV seems to impact
performance the least, we believe this is due to the lack of natural data within our
evaluation set. This is supported by the fact that SlowTV has the most impact on
SYNS-Patches, which is the only dataset with natural scenes. Finally, incorporating
the CribsTV dataset proposed in this paper slightly increases the overall performance,
especially in indoor scenes. It is worth remembering this variant also includes Man-
nequin Challenge, which results in a less drastic improvement. Furthermore, training
on more varied data is likely to be more beneficial when combined with larger models
with better generalization capacity.

5.5 In-distribution

We compare our final models to the (self-)supervised SotA on the two datasets from
our training set with available ground-truth, namely Kitti and Mannequin Challenge.
This represents the evaluation procedure commonly employed by most papers, where
the test data is drawn from the same distribution as the training data.

These results can be found in Table 5 (In-Distribution). Both of our models out-
perform every (self-)supervised baseline on both datasets, excluding NewCRFs [5] on
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Kitti. This shows that SlowTV provides complementary driving data that can gener-
alize across datasets. Furthermore, the improved KBR++ increases performance on
Mannequin Challenge due to the additional indoor data provided by CribsTV.

5.6 Zero-shot Generalization

The core of our evaluation takes place in a zero-shot setting, meaning that mod-
els are not fine-tuned on the target datasets. This tests the capability to adapt to
out-of-distribution examples and previously unseen environments. Existing SS-MDE
publications sometimes include zero-shot evaluations. However, this is frequently lim-
ited to CityScapes [11] and Make3D [89], which contain low-quality ground-truth and
represent an urban automotive domain similar to the training Kitti. We instead opt
for a much more challenging collection of datasets, constituting a mixture of urban,
natural, synthetic and indoor scenes. Please refer to Table 1 for details regarding the
evaluations datasets and their splits.
Outdoor. These results can be found in Table 5 (Outdoor). Both of our models out-
perform the SSL baselines by a large margin. This is even the case on DDAD [12],
which is also an urban automotive dataset. Meanwhile, our model is capable of gen-
eralizing to urban [12, 63], synthetic [62] and natural [1, 13] datasets, performing
on par with the SotA supervised baselines. It is interesting to note that NeWCRFs
generalizes across automotive datasets and provides the best performance on DDAD.
However, it fails when evaluated in alternative domains and provides only minimal
improvements over the SSL baselines. Finally, even the more efficient KBR provides
impressive performance that matches more complex transformer-based backbones.
Indoor. Table 5 (Indoor) shows performance on all indoor datasets. Note that
NeWCRFs was trained exclusively on NYUD-v2, while DPT uses it as part of its
training collection. As such, this subset of results is not zero-shot. Our models outper-
form the SSL baselines by an even larger margin, due to the large shift in distribution
when moving from outdoor to indoor scenes. In this case, KBR++ provides a notice-
able improvement over KBR, thanks to the additional indoor training data provided
by CribsTV. This helps to further close the gap w.r.t. supervised approaches. Once
again, our model is now capable of performing on-par with all supervised models
except DPT-BEiT, despite requiring no ground-truth annotations.
Overall. To summarize, Table 5 (Multi-task) reports the multi-task metrics across all
datasets. Our models outperform the updated SS-MDE baselines from [1] by over 35%.
Meanwhile, the contributions from this paper further improve our original model [15]
by 4.5%. What’s more, KBR++ is the second-best model overall, outperforming super-
vised baselines such as NeWCRFs and DPT-ViT. It is worth emphasizing once again
that our model is entirely self-supervised, relying exclusively on the photometric con-
sistency across frames. Thus, we present the first approach demonstrating the true
capabilities of SS-MDE, which can leverage much larger and more diverse collections
of data freely available on YouTube.
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Table 5: Results. Outdoor and Indoor represent zero-shot evaluations. We outperform all SS-MDE baselines [1] (top block). Our original
model (KBR) performs on par with the supervised SotA, while the updated model from this paper (KBR++) outperforms every model
except DPT [3]. Our models do not required ground-truth annotations for training and instead leverage large-scale YouTube data.

In-Distribution Outdoor Indoor

Multi-task Kitti Mannequin DDAD DIODE Sintel SYNS DIODE NYUD-v2 TUM

Train Rank↓ ∆↑ Rel↓ F↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ δ.25↑ Rel↓ δ.25↑

Garg [6] S 7.58 -38.52 7.65 53.28 27.63 9.08 26.93 7.80 39.60 44.15 39.41 31.93 26.05 15.17 19.18 70.54 22.49 59.60 23.53 62.82

Monodepth2 [8] MS 7.74 -38.34 7.90 50.50 27.44 7.97 24.31 8.25 39.53 44.71 40.09 29.49 25.31 14.83 19.40 70.42 22.41 60.09 23.50 62.36

DiffNet [52] MS 7.05 -36.84 7.98 49.60 27.46 7.76 23.03 9.43 38.87 46.14 39.93 28.77 25.09 14.64 19.11 70.94 21.82 61.30 23.21 63.08

HR-Depth [9] MS 5.95 -35.16 7.70 51.49 27.01 8.39 23.13 9.94 39.09 45.60 38.82 30.90 25.07 15.48 18.93 71.19 21.74 61.18 23.18 63.50

KBR (Ours) [15] M 3.37 0.00 6.84 56.17 14.39 17.67 12.63 20.21 33.49 57.08 33.34 40.81 22.40 18.50 14.91 80.77 11.59 87.23 15.02 80.86

KBR++ (Ours) M 2.95 4.58 6.77 56.57 12.95 20.08 13.10 17.87 32.81 57.77 30.46 41.89 21.92 18.79 14.26 82.94 9.24 91.85 12.71 85.86

MiDaS [2] D 5.68 -11.84 13.71 33.44 16.96 12.62 16.00 15.41 32.72 59.04 30.95 39.55 26.94 14.69 10.71 88.42 10.48 89.59 14.43 82.35

DPT-ViT [3] D 3.84 -1.74 10.98 40.56 15.52 14.46 15.49 18.25 32.59 59.82 25.53 43.57 23.24 17.44 9.60 91.38 10.10 90.10 12.68 86.25

DPT-BEiT [3] D 2.11 11.12 9.45 44.22 13.55 16.58 10.70 22.63 31.08 61.51 21.38 46.46 21.47 17.73 7.89 93.34 5.40 96.54 10.45 89.68

NeWCRFs [5] D 3.84 1.03 5.23 59.20 18.20 15.17 9.59 23.02 37.01 49.66 39.25 32.43 24.28 16.76 14.05 84.95 6.22 95.58 14.63 82.95

Highlighted cells are NOT zero-shot results. S=Stereo, M=Monocular, D=Ground-truth Depth.
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Fig. 8: Zero-shot SS-MDE. The proposed KBR models generalize to a wide range of
scene types, greatly improving upon the SSL baselines. The contributions from this paper
further improve robustness to indoor scenes and the accuracy at thin structures. Middle=Self-
Supervised – Bottom=Supervised.

5.7 Qualitative Results

Visualizations. Sample predictions for each model and dataset can be found in
Figure 8. Our models are significantly more robust than the best SSL baseline [9],
which fails on all domains except the automotive. This is most noticeable in indoor
settings, where it treats human faces as background. Meanwhile, our model general-
izes across all datasets and environments, providing high-quality predictions. It can
also be seen how KBR++ improves over the base KBR, especially in thin structures
(DIODE Outdoors) and depth boundaries (TUM).
Failure Cases. Despite being a significant step forward for SS-MDE, our model still
has a few limitations and failure cases. We show these examples in Figure 9. The
main one is the lack of explicit modeling for dynamic objects. Whilst the minimum
reconstruction loss and automasking [8] can reduce their impact, there are still cases
where vehicles in front of the camera are predicted as holes of infinite depth. Another
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Fig. 9: Failure Cases. The proposed model occasionally produces holes of infinite depth or
texture-copy artifacts. However, complex regions such as foliage or object boundaries tend to
be challenging for all approaches. Finally, the upright prior in training data makes the model
sensitive to strong rotations. Middle=Self-Supervised – Bottom=Supervised.

common failure case is texture-copying artifacts, where textures from the original
image are incorrectly predicted as changes in depth. This can happen on objects
such as textured walls or pavements made with bricks or text on shirts and signs.
Finally, another interesting failure case are reflective or transparent surfaces, as they
do not violate the photometric constraints during training. However, these are also
challenging for supervised methods, as the data cannot be correctly captured using
LiDAR either.

5.8 Map-Free Relocalization

Following our preliminary publication [15], we report our results on the MapFreeRe-
loc [72] benchmark. Map-free relocalization aims to regress the 6DoF pose of a
target frame based only on the known pose of a single reference frame. This is con-
trary to traditional localization pipelines, which typically contain a map-building
or network-training phase that requires large-scale captures for each specific scene.
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Table 6: Map-free Relocalization [72]. The feature-matching MapFreeReloc base-
lines [72] can be improved with our novel SS-MDE models. These results are zero-shot,
without finetuning on the target dataset (which consists of portrait images). The improved
variants from this paper (KBR++) perform on-par with DPT-BEiT and outperform every
other (self-)supervised approach.

Multi-task Pose VCRE

Train Rank↓ ∆↑ Trans↓ Rot↓ P↑ AUC↑ Error↓ P↑ AUC↑

Garg [6] S 10.50 -21.84 2.96 52.57 5.43 17.15 188.20 24.84 51.61

Monodepth2 [17] MS 11.25 -22.32 2.95 52.92 5.50 17.22 189.67 24.38 50.63

DiffNet [52] MS 10.88 -21.70 2.97 53.19 5.65 17.71 188.80 24.78 51.24

HR-Depth [9] MS 9.38 -21.07 2.94 52.95 5.67 17.95 187.83 25.06 51.52

KBR (Ours) M 4.50 0.00 2.63 49.01 11.54 32.02 181.21 29.96 58.89

KBR++ (Ours) M 2.00 4.86 2.58 46.22 12.50 33.76 178.26 31.93 61.48

MiDaS [2] D 4.00 0.35 2.60 46.92 11.39 30.44 180.64 30.45 59.72

DPT-ViT [3] D 3.38 1.09 2.56 45.62 11.27 30.92 181.34 30.60 60.03

DPT-BEiT [3] D 1.75 5.32 2.49 44.99 12.56 32.48 181.67 32.46 62.03

NeWCRFs [5] D 8.00 -16.98 2.89 51.92 6.69 20.77 184.63 25.89 52.93

DPT-NYUD [72] D+FT 6.50 -6.61 2.67 47.66 9.17 26.46 184.53 28.68 56.87

DPT-Kitti [72] D+FT 5.88 -3.05 2.66 49.21 10.86 29.99 178.49 28.37 56.86

Trans=meters, Rot=deg, VCRE=px, Precision=%, AUC=%.

Recent research [72, 90] has shown that the scale ambiguity in map-free relocalization
feature-matching pipelines can be resolved by incorporating SotA MDE predictions.

The models are evaluated on the validation split of the benchmark, which consists
of 37k images from 65 small-scale landmarks. The data was crowd-sourced and col-
lected using mobile phones, meaning that it features an uncommon portrait aspect
ratio. This makes the task of zero-shot transfer even more challenging.

The feature-matching baseline [72] uses LoFTR [91] correspondences, a PnP solver
and DPT [3] fine-tuned on either Kitti or NYUD-v2. Metric depth for all evaluated
models is obtained by aligning the predictions to the baseline fine-tuned DPT pre-
dictions. We report the evaluation metrics provided by the benchmark authors. This
includes translation (meters), rotation (deg) and reprojection (px) errors. Pose Preci-
sion/AUC were computed with an error threshold of 25 cm & 5◦, while Reprojection
uses a threshold of 90px.

The results can be found in Table 6, along with visualizations in Figure 10. The
updated models from this paper (KBR++) outperform every (self-)supervised model,
except DPT-BEiT. This demonstrates the effectiveness of training with our diverse
datasets, as well as the improved robustness to image aspect ratios provided by
AR-Aug. Furthermore, it showcases the ability to incorporate SS-MDE into real-world
problem pipelines.

We find that the original DPT models perform better than their fine-tuned coun-
terparts, despite using these as the metric scale reference. This suggests that the
finetuning procedure of [72] may provide metric scale at the cost of generality. How-
ever, this highlights the need for models that predict accurate metric depth, rather
than only relative depth.
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Fig. 10: MapFreeReloc [72] Predictions. Our models are capable of adapting to the
challenging portrait images of the MapFreeReloc benchmark, allowing us to outperform other
(self-)supervised methods. Our predictions are sharper and more detailed that those provided
by the baseline, which requires a large collection of ground-truth annotations during training.

6 Conclusion

This paper has introduced KBR and KBR++, the first SS-MDE models that match
and even outperform SotA supervised algorithms. We demonstrated this in our chal-
lenging zero-shot experiments, which showcase the robustness and generalization
capabilities of our models. This was made possible due to our approach to data
collection, focusing on the scale of the training set and leveraging the lack of annota-
tions needed for self-supervised learning. We curated two novel large-scale YouTube
datasets, SlowTV and CribsTV, with a total of 2M training frames. These datasets
contain an incredibly diverse set of environments, ranging from hikes in snowy forests,
to luxurious houses and even underwater caves.

Performance and generalization were further maximized by introducing stronger
augmentation regimes (AR-Aug, RandAugment and CutOut), simultaneously learning
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the camera’s intrinsics, making the training more flexible and modernizing the network
architecture. Our extensive ablations demonstrated the benefits of introducing each
respective component.

The main limitation of the current models is their sensitivity to dynamic objects.
Whilst the contributions from Monodepth2 [8] alleviate some of these artifacts, a more
explicit motion model may be required to handle these scenarios. Introducing optical
flow constraints may be the most feasible way to achieve this in a self-supervised man-
ner. However, it is worth noting the increased computational requirements resulting
from training a new network and computing the required consistency losses.

Finally, estimating metric depth (for generic scenes) without ground-truth anno-
tations is an open research problem that could further increase the applicability of
SS-MDE to real-world tasks. By making the datasets and code freely available to the
public, we hope to further drive the SotA in SS-MDE and inspire future research that
addresses these challenging problems.
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