
Supplementary Material – Kick Back & Relax: Learning to Reconstruct the
World by Watching SlowTV

Jaime Spencer
University of Surrey

j.spencermartin@surrey.ac.uk

Chris Russell
Amazon

cmruss@amazon.com

Simon Hadfield
University of Surrey
s.hadfield@surrey.ac.uk

Richard Bowden
University of Surrey
r.bowden@surrey.ac.uk

A. SlowTV Dataset
Figure 2 shows a frame from each SlowTV video, while

Figure 3 shows their map location. Sequences [00-27] are
hiking scenes, [28-30] scuba diving and [31-39] driving. As
seen, this dataset provides an incredible diversity of envi-
ronments and locations, enabling us to train models capable
of generalizing to previously unseen scene types.

B. Aspect Ratio Augmentation
To make the models invariant to the training image size,

we propose to incorporate an aspect ratio augmentation. For
more information see Section 4.3 in the main paper. Sample
training images obtained using this procedure an be found
in Figure 1. The centre crop is uniformly sampled from a
set of predetermined aspect ratios:

• Portrait: 6:13, 9:16, 3:5, 2:3, 4:5, 1:1

• Landscape: 5:4, 4:3, 3:2, 14:9, 5:3, 16:9, 2:1, 24:10,
33:10, 18:5

C. Evaluation Datasets
Kitti Eigen-Benchmark [5]. (Test: 652) Subset of the com-
mon Kitti Eigen split with corrected LiDAR [18].
Kitti Eigen-Zhou [5]. (Val: 700) Subset of the Kitti
Eigen-Zhou val split with corrected LiDAR [18].
Mannequin Challenge [5]. (Test: 1k) Subset of the original
test split, using COLMAP [14] depth reconstructions.
SYNS-Patches [1, 17]. (Val: 400, Test: 775) Official val and
test splits consisting of dense LiDAR maps.
DDAD [8]. (Test: 1k) Subset of the official val split, featur-
ing LiDAR maps with an increased range up to 250m.
Sintel [5]. (Test: 1064) Official test split, consisting of syn-
thetic image & depth pairs from highly dynamic scenes
DIODE Indoors [19]. (Test: 325) Official val split with dense
LiDAR depth maps.
DIODE Outdoors [19]. (Test: 446) Official val split with
dense LiDAR depth maps.

(a) Original (16:9) (b) 4:5

(c) Original (16:9) (d) 5:3

(e) Original (16:9) (f) 2:1

(g) Original (16:9) (h) 1:1

Figure 1: AR-Aug. Additional augmentations used to diversify
the variety of image shapes and object scales seen by the network.

NYUD-v2 [10]. (Test: 654) Official test split collected using
a Kinect RGB-D camera.
TUM-RGBD [5]. (Test: 2.5k) Subset of dynamic scenes with
moving people also collected using a Kinect.



Figure 2: SlowTV Dataset. We show one frame per video from the proposed SlowTV. The dataset contains a diverse set of environments
in a range of environmental conditions. The final dataset has a total of 1.7M images, with 1.15M natural, 400k driving and 180k underwater.

D. Leaning Camera Intrinsics

Estimating the intrinsics parameters is required when
training with uncalibrated cameras. However, this pro-
cedure can be applied even if the camera parameters are
known. Table 1 shows results when training on either
Kitti Eigen-Benchmark or Mannequin Challenge. If the
dataset provides accurately calibrated cameras (Kitti), self-
supervised learning of the intrinsics is on par with using the
ground-truth parameters. However, when the ground-truth
parameters are estimated using COLMAP [14], learning the
intrinsics can slightly improve performance.

Table 1: Learning Camera Intrinsics. Performance when train-
ing on a single dataset (Kitti or Mannequin Challenge) and learn-
ing camera intrinsics. If the cameras are not perfectly calibrated,
learning the intrinsics can improve accuracy.

Kitti Eigen-Zhou

Rel↓ F↑ δ.25↑

Baseline 5.69 60.88 95.89
Learn K 5.68 60.81 95.90

Mannequin

Rel↓ F↑ δ.25↑

Baseline 16.66 14.20 77.18
Learn K 16.12 14.77 78.40



Figure 3: SlowTV Map. Distribution of locations in the proposed
dataset. Green=Natural, Red=Driving, Blue=Underwater.

E. Dynamic Objects
MDE models trained exclusively using monocular super-

vision are prone to artefacts from dynamic objects. For in-
stance, vehicles moving at similar speeds to the camera can
produce holes of infinite depth due to their static appear-
ance across images. Meanwhile, other dynamic objects can
result in underestimated depth when moving towards the
camera, or overestimated depth when moving away from
it. This is due to the additional motion causing incorrect
correspondences in the warping procedure.

Existing approaches that address these dynamic ob-
jects [7, 2, 3] rely on additional labels such as semantic or
instance segmentation. We instead opt for the losses pro-
posed by Monodepth2 [6] as a simpler proxy without in-
creased computation or label requirements.

We test the effectiveness of these constraints on a smaller
subset of all three training datasets. These results can be
found in Table 2 and Figure 5. Despite not explicitly mod-
elling dynamic objects, Monodepth2 drastically increases
the accuracy and robustness. This can be seen both in the
improved metrics and the reduction in visual artefacts.

F. Median Alignment Results
Table 3 shows results when applying median depth align-

ment between prediction and ground-truth. As expected,
this generally results in worse performance that estimating
both scale and shift parameters. This is particularly notice-
able for MiDaS, DPT and the SSL baselines.

G. Failure Cases
Whilst representing a significant milestone in SS-MDE,

our model still suffers from several failure cases. We show
these in Figure 6. For instance, Kitti shows a car estimated
as a hole of infinite depth, despite training with the mini-
mum reconstruction loss and automasking [6]. Several vi-
sualizations are also characterized by texture-copy artefacts.
In some cases, our models estimated incorrect relative ob-
ject positions (e.g. Sintel or DDAD). An interesting failure

(a) Val

(b) Test

Figure 4: MDEC-2 [16]. Our submission (jspenmar2) was top of
the leaderboard in pointcloud F-Score reconstruction. The chal-
lenge evaluated zero-shot performance on SYNS-Patches for both
supervised and self-supervised approaches.

case for all approaches are highly-reflective surfaces, such
as mirrors or TVs. These are challenging due to the fact
that they do not violate the photometric error and obtain-
ing LiDAR or Structure-from-Motion (SfM) ground-truth
is highly challenging. Finally, due to the strong prior for
upright images, our model struggles to adapt to extreme ro-
tations (TUM-RGBD). This could be mitigated by incorpo-
rating additional augmentations. Finally, it is worth point-
ing out that, in the vast majority of these cases, our model
outperforms the SSL baselines.

H. MDEC-2
The Monocular Depth Estimation Challenge [15, 16]

tested zero-shot generalization performance on
SYNS-Patches. The second edition of the challenge
was organized at CVPR2023 and was open to both
supervised and self-supervised methods.

Our submission was top of the leaderboard for both the
validation and testing splits, ranked based on the pointcloud
F-Score reconstruction [11]. Our model was top-3 in all
other metrics except Edge-Accuracy. Once again, this illus-
trates the benefits of SlowTV, which contains large quanti-
ties of natural data not present in other existing datasets.



Table 2: Monodepth2 [6] Losses. The minimum reconstruction loss and automasking from Monodepth2 serve as valuable proxies to
increase robustness to dynamic objects, while remaining simple and efficient.

Multi-task Kitti Mannequin DDAD DIODE Sintel SYNS DIODE NYUD-v2 TUM

Rank↓ ∆↑ Rel↓ F↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ δ.25↑ Rel↓ δ.25↑

Baseline 1.89 0.00 9.00 53.50 16.89 14.66 23.57 11.13 35.99 52.70 35.33 38.15 25.47 15.73 17.91 75.03 21.68 71.41 17.69 75.67
MinRec+Automask 1.11 7.01 6.50 55.62 16.96 14.48 18.49 11.64 35.62 52.95 34.97 38.83 24.44 16.25 16.85 76.50 14.27 80.54 17.23 76.23
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Figure 5: Monodepth2 Losses. Monodepth2 [6] reduces the presence of holes of infinite depth and dynamic object artefacts. The
sharpness of object boundaries are also improved due to the refined correspondences from the minimum reconstruction loss.



Table 3: Median-Scaling Results. This represents the common SS-MDE (SS-MDE) evaluation procedure [22]. Removing the shift
alignment reduces performance for all approaches. Our method still outperforms all existing SS-MDE models, and NeWCRFs (NeWCRFs)
in many cases.

In-Distribution Outdoor Indoor

Kitti Mannequin DDAD DIODE Sintel SYNS DIODE NYUD-v2 TUM

Train Rel↓ F↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ δ.25↑ Rel↓ δ.25↑

Garg [4] S 7.65 53.28 34.55 9.29 26.77 4.77 57.87 42.85 53.16 30.98 31.68 13.58 30.63 51.00 26.78 54.29 27.37 55.26
Monodepth2 [6] MS 7.90 50.50 35.88 8.18 25.46 4.77 57.61 43.21 54.40 30.11 30.05 13.28 33.51 47.49 29.87 50.08 30.59 49.82
DiffNet [21] MS 7.98 49.60 35.50 8.15 24.17 4.75 55.68 45.37 55.23 29.44 29.75 13.41 28.67 53.82 26.62 54.69 28.56 53.07
HR-Depth [9] MS 7.70 51.49 35.89 8.62 24.01 5.08 57.88 43.92 53.91 30.89 29.87 14.03 32.88 47.67 27.32 53.06 29.22 52.31

KBR (Ours) M 7.23 54.63 18.73 15.04 14.01 14.01 43.80 60.84 37.06 36.01 24.92 16.49 18.88 72.09 13.27 83.65 16.60 76.48

MiDaS [13] D 18.45 20.13 26.02 10.61 18.38 8.28 48.63 60.15 39.09 32.72 35.30 9.18 18.08 74.48 23.11 69.67 17.75 76.99
DPT-ViT [12] D 14.23 36.25 28.54 11.38 17.83 8.99 72.46 49.09 128.86 29.58 32.69 12.93 36.82 55.15 24.82 67.95 24.33 78.16
DPT-BEiT [12] D 18.20 37.46 30.79 12.58 15.39 11.78 70.30 50.03 60.20 29.54 31.09 13.76 51.07 53.11 75.32 42.91 25.27 83.07
NeWCRFs [20] D 5.55 56.45 22.15 13.68 11.87 13.44 50.52 51.16 48.42 32.30 27.79 14.50 16.15 79.52 7.00 94.44 14.93 80.63

Highlighted cells are NOT zero-shot results. S=Stereo, M=Monocular, D=Ground-truth Depth.
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Figure 6: Failure Cases. The proposed model occasionally produces holes of infinite depth or texture-copy artefacts. However, complex
regions such as foliage or boundaries tend to be oversmoothed by all approaches. Finally, the upright prior in training data makes the model
less robust to strong rotations. Middle=Self-Supervised – Bottom=Supervised.
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