
Kick Back & Relax: Learning to Reconstruct the World by Watching SlowTV

Jaime Spencer
University of Surrey

j.spencermartin@surrey.ac.uk

Chris Russell
Oxford Internet Institute

christopher.m.russell@gmail.com

Simon Hadfield
University of Surrey

s.hadfield@surrey.ac.uk

Richard Bowden
University of Surrey

r.bowden@surrey.ac.uk

Image Ground-truth Ours Baseline [56]

Figure 1: Zero-shot Generalization. We present the first SS-MDE model capable of generalizing to a wide-range of complex environ-
ments. This is achieved by training on the novel large-scale SlowTV dataset. We outperform other existing self-supervised methods and
perform on par with recent supervised SotA [47, 46, 72].

Abstract

Self-supervised monocular depth estimation (SS-MDE)
has the potential to scale to vast quantities of data. Unfortu-
nately, existing approaches limit themselves to the automo-
tive domain, resulting in models incapable of generalizing
to complex environments such as natural or indoor settings.

To address this, we propose a large-scale SlowTV dataset
curated from YouTube, containing an order of magnitude
more data than existing automotive datasets. SlowTV con-
tains 1.7M images from a rich diversity of environments,
such as worldwide seasonal hiking, scenic driving and
scuba diving. Using this dataset, we train an SS-MDE
model that provides zero-shot generalization to a large col-
lection of indoor/outdoor datasets. The resulting model out-
performs all existing SSL approaches and closes the gap on
supervised SoTA, despite using a more efficient architecture.

We additionally introduce a collection of best-practices
to further maximize performance and zero-shot generaliza-
tion. This includes 1) aspect ratio augmentation, 2) cam-
era intrinsic estimation, 3) support frame randomization
and 4) flexible motion estimation. Code is available at
https://github.com/jspenmar/slowtv_monodepth.

1. Introduction

Reliably reconstructing the 3-D structure of the envi-
ronment is a crucial component of many computer vision
pipelines, including autonomous driving, robotics, aug-
mented reality and scene understanding. Despite being
an inherently ill-posed task, monocular depth estimation
(MDE) has become of great interest due to its flexibility
and applicability to many fields.

While traditional supervised methods achieve impressive
results, they are limited both by the availability and qual-
ity of annotated datasets. LiDAR data is expensive to col-
lect and frequently exhibits boundary artefacts due to mo-
tion correction. Meanwhile, Structure-from-Motion (SfM)
is computationally expensive and can produce noisy, incom-
plete or incorrect reconstructions. Self-supervised learning
(SSL) instead leverages the photometric consistency across
frames to simultaneously learn depth and Visual Odome-
try (VO) without ground-truth annotations. As only stereo
or monocular video is required, SSL has the potential to
scale to much larger data quantities.

Unfortunately, existing SS-MDE approaches have relied
exclusively on automotive data [18, 13, 24]. The limited di-
versity of training environments results in models incapable
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of generalizing to different scene types (e.g. natural or in-
doors) or even other automotive datasets. Moreover, despite
being fully convolutional, these models struggle to adapt to
different image sizes. This further reduces performance on
sources other than the original dataset.

Inspired by the recent success of supervised MDE [36,
47, 46], we develop an SS-MDE model capable of perform-
ing zero-shot generalization beyond the automotive domain.
In doing so, we aim to bridge the performance gap between
supervision and self-supervision. Unfortunately, most exist-
ing supervised datasets are unsuitable for SSL, as they con-
sist of isolated image and depth pairs. On the other hand,
existing SSL datasets focus only on the automotive domain.

To overcome this, we make use of SlowTV as an un-
tapped source of high-quality data. SlowTV is a television
programming approach originating from Norway consist-
ing of long, uninterrupted shots of relaxing events, such as
train or boat journeys, nature hikes and driving. This rep-
resents an ideal training source for SS-MDE, as it provides
large quantities of data from highly diverse environments,
usually with smooth motion and limited dynamic objects.

To improve the diversity of available data for SS-MDE,
we have collated the SlowTV dataset, consisting of 1.7M
frames from 40 videos curated from YouTube. This dataset
consists of three main categories—natural, driving and
underwater—each featuring a rich and diverse set of scenes.
We combine SlowTV with Mannequin Challenge [31] and
Kitti [18] to train our proposed models. SlowTV provides
a general distribution across a wide range of natural scenes,
while Mannequin Challenge covers indoor scenes with hu-
mans and Kitti focuses on urban scenes. The resulting mod-
els are trained with an order of magnitude more data than
any existing SS-MDE approach. Contrary to many super-
vised approaches [4, 72], we train a single model capable
of generalizing to all scene types, rather than separate in-
door/outdoor models. This closely resembles the zero-shot
evaluation proposed by MiDaS [47] for supervised MDE.

The contributions of this paper can be summarized as:

1. We introduce a novel SS-MDE dataset of SlowTV
YouTube videos, consisting of 1.7M images. It fea-
tures a diverse range of environments including world-
wide seasonal hiking, scenic driving and scuba diving.

2. We leverage SlowTV to train zero-shot models capable
of adapting to a wide range of scenes. The models are
evaluated on 7 datasets unseen during training.

3. We show that existing models fail to generalize to dif-
ferent image shapes and propose an aspect ratio aug-
mentation to mitigate this.

4. We greatly reduce the performance gap w.r.t. super-
vised models, improving the applicability of SS-MDE
to the real-world. We make the dataset, pretrained
model and code available to the public.

2. Related Work

Garg et al. [17] proposed the first algorithm for
SS-MDE, where the target view was synthesized using its
stereo pair and predicted depth map. Monodepth [19]
greatly improved performance by incorporating differen-
tiable bilinear interpolation [27], an SSIM-weighted re-
construction loss [64] and left-right consistency. SfM-
Learner [77] extended SS-MDE into the purely monocular
domain by replacing the fixed stereo transform with a train-
able VO network. DDVO [63] further refined the predicted
motion with a differentiable DSO module [16].

Purely monocular approaches are highly sensitive to
dynamic objects, which cause incorrect correspondences.
Many works have tried to minimize this impact by introduc-
ing predictive masking [77], uncertainty estimation [30, 69,
45], optical flow [70, 48, 35] and motion masks [23, 9, 14].
Monodepth2 [20] proposed the minimum reconstruction
loss and static automasking, encouraging the loss to opti-
mize unoccluded pixels and preventing holes in the depth.

Other methods focused on the robustness of the pho-
tometric loss. This was achieved through the use of pre-
trained [74] or learnt [53, 52] feature descriptors and se-
mantic constraints [11, 25, 29]. Mahjourian et al. [39] and
Bian et al. [6] complemented the photometric loss with ge-
ometric constraints. ManyDepth [65] additionally incorpo-
rated the previous frame’s prediction into a cost volume.

Complementary to these developments, other works pro-
posed changes to the network architecture, including both
the encoder [24, 22, 76], and decoder [44, 24, 68, 76, 38,
75]. Akin to supervised MDE developments [4, 5], John-
ston et al. [28] and Bello et al. [21, 22] obtained improve-
ments by representing depth as a discrete volume.

Finally, several works have complemented self-
supervision with proxy depth regression. These are
typically obtained from SLAM [30, 49], synthetic data [37]
or hand-crafted disparity estimation [60, 65]. In particular,
DepthHints [65] improved the proxy depth robustness by
generating estimates with multiple hyperparameters.

The works described here train exclusively on automo-
tive data, such as Kitti [18], CityScapes [13] or DDAD [24].
Recent benchmark studies [56, 54] have shown that this lack
of variety limits generalization to out-of-distribution do-
mains, such as forests, natural or indoor scenes. We propose
to greatly increase the diversity and scale of the training data
by leveraging unlabelled videos from YouTube, without re-
quiring manual annotation or expensive pre-processing.

3. SlowTV Dataset

SlowTV is a style of TV programming featuring uninter-
rupted shots of long-duration events. Our dataset consists
of 40 curated videos ranging from 1–8 hours and a total of
135 hours.

2



Figure 2: SlowTV. Sample images from the proposed dataset, featuring diverse scenes for hiking, driving and scuba diving. The dataset
consists of 40 videos curated from YouTube, totalling to 1.7M frames. Diversifying the training data allows our SS-MDE models to
generalize to unseen datasets.

Table 1: Datasets Comparison. The top half shows commonly
used SS-MDE training datasets. The proposed SlowTV greatly
diversifies training environments and scales to much larger quan-
tities. The bottom half summarizes the testing datasets used in our
zero-shot generalization evaluation.

Urban Natural Scuba Indoor Depth Acc Density #Img

Kitti [18, 61]† ✓ ✗ ✗ ✗ LiDAR High Low 71k
DDAD [24] ✓ ✗ ✗ ✗ LiDAR Mid Low 76k
CityScapes [13] ✓ ✗ ✗ ✗ Stereo Low Mid 88k
Mannequin [31]† ✓ ✗ ✗ ✓ SfM Mid Mid 115k
SlowTV (Ours)† ✓ ✓ ✓ ✗ ✗ ✗ ✗ 1.7M

Kitti [18, 61] ✓ ✗ ✗ ✗ LiDAR High Low 652
DDAD [24] ✓ ✗ ✗ ✗ LiDAR Mid Low 1k
Sintel [7] ✗ ✓ ✗ ✗ Synth High High 1064
SYNS-Patches [1, 56] ✓ ✓ ✗ ✓ LiDAR High High 775
DIODE [62] ✓ ✗ ✗ ✓ LiDAR High High 771
Mannequin [31] ✓ ✗ ✗ ✓ SfM Mid Mid 1k
NYUD-v2 [41] ✗ ✗ ✗ ✓ Kinect Mid High 654
TUM-RGBD [57] ✗ ✗ ✗ ✓ Kinect Mid High 2.5k

†Datasets used to train our networks.

We focus on three categories: hiking, driving and scuba
diving. Hiking videos target natural settings, including
forests, mountains or fields, which are non-existent in cur-
rent datasets. These videos were collected in a diverse set of
locations and conditions. This includes the USA, Canada,
the Balkans, Eastern Europe, Indonesia and Hawaii, and
conditions such as rain, snow, autumn and summer.

Existing automotive datasets tend to focus on urban driv-
ing in densely populated cities [18, 13, 26, 10, 24, 71, 8].
Our SlowTV dataset features complementary data in the
form of long drives in scenic routes, such as mountain and
natural trails. Finally, underwater is an otherwise unused
domain, which increases the diversity of the training data
and prevents overfitting to purely urban scenes. Figure 2
shows the variability of the proposed dataset, with addi-
tional examples and details in Appendix A.

Videos were downloaded at HD resolution (720× 1280)
and extracted at 10 FPS to reduce storage, while still pro-
viding smooth motion and large overlap between adjacent
frames. To make the dataset size tractable and reduce self-
similarity, only 100 consecutive frames out of every 250
were retained. Despite this, the final training dataset con-

sists of a total of 1.7M images, composed of 1.1M natural,
400k driving and 180k underwater. Table 1 compares exist-
ing datasets with those used in this publication.

Since our dataset targets self-supervised methods, the
only annotations required are the camera intrinsic param-
eters. We apply COLMAP [51] to a sub-sequence to es-
timate the intrinsics for each video. However, as dis-
cussed in Section 4.2, it is possible to let the network
jointly optimize camera parameters alongside depth and
motion. This improves performance and results in a truly
self-supervised perception and navigation framework, re-
quiring only monocular video to learn how to reconstruct.

4. Methodology
MDE is an alternative to traditional depth estimation

techniques, such as stereo matching and cost volumes.
Rather than relying on multi-view images, these depth net-
works take only a single image as input. From this image, a
disparity or inverse depth map is estimated as D̂t = ΦD(It) ,
where ΦD represents a trainable DNN, It is the target image
at time-step t and D̂t the predicted sigmoid disparity.

As SlowTV contains only monocular videos, we adopt
a fully monocular pipeline [77], whereby our framework
also estimates the relative pose P̂t+k between the target It
and support frames It+k, where k = ±1 is the offset be-
tween adjacent frames. This is represented as P̂t+k =
ΦP(It ⊕ It+k) , where ⊕ is channel-wise concatenation.
Pose is predicted as a translation and axis-angle rotation.

4.1. Losses

The correspondences required to warp the support
frames and compute the photometric loss are given by back-
projecting the depth and re-projecting onto each support
frame. This process is summarized as

p′
t+k = KP̂t+kDt(pt)K−1pt, (1)

where K are the camera intrinsic parameters, Dt is the in-
verted and scaled disparity prediction D̂t, pt are the 2-D
pixel coordinates in the target frame and p′

t+k are the re-
projected coordinates in the support frame. We omit the
transformation to homogeneous coordinates for simplicity.
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The warped support frames are then given by
I′t+k = It+k

〈
p′

t+k

〉
, where ⟨·⟩ represents differentiable

bilinear interpolation [27]. These warped frames are used
to compute the photometric loss w.r.t. the original target
frame. As is common, we use the weighted combination
of SSIM+L1 [19], given by

Lph
(
I, I′

)
= λ

1−Lssim
(
I, I′

)
2

+ (1−λ)L1
(
I, I′

)
, (2)

where λ = 0.85 is the loss balancing weight.
While Mannequin Challenge consists almost exclusively

of static scenes, Kitti and SlowTV contain dynamic objects,
such as vehicles, hikers, and wild marine life. Rather than
introducing motion masks [23, 9, 14], commonly requiring
semantic segmentation, we opt for the minimum reconstruc-
tion loss [20]. This loss reduces the impact of occluded
pixels by optimizing only the pixels with the smallest loss
across all support frames and is computed as

Lrec =
∑

p

min
k

Lph
(
It, I′t+k

)
, (3)

where
∑

indicates averaging over a set.
Finally, automasking [20] helps remove holes of infinite

depth caused by static frames and objects moving at similar
speeds to the camera. Automasking simply discards pixels
where the photometric loss for the unwarped target frame is
lower than the loss for the synthesized view, given by

M =

s
min
k

Lph
(
It, I′t+k

)
< min

k
Lph(It, It+k)

{
, (4)

where J·K represents the Iverson brackets. Additional results
showing the effectiveness of the minimum reconstruction
loss and automasking can be found in Appendix E.

This reconstruction loss is complemented by the com-
mon edge-aware smoothness regularization [19]. These net-
works and losses constitute the core baseline required to
train the desired zero-shot depth estimation models. To im-
prove existing performance and generalization, we incorpo-
rate several new components into the pipeline.

4.2. Learning Camera Intrinsics

As discussed in Section 3, we use COLMAP to estimate
camera intrinsics for each dataset video. Whilst this is sig-
nificantly less computationally demanding than obtaining
full reconstructions, it introduces additional pre-processing
requirements. Eliminating this step would simplify dataset
collection and allow for even easier scale-up.

We take inspiration from [23, 12] and predict camera in-
trinsics using the pose network ΦP. This is achieved by
adding two decoder branches with the same architecture
used to predict pose. The modified network is defined as

(a) Image (b) Ground-truth

(c) Base (δ.25 = 61.82%) (d) Distorted (δ.25 = 71.12%)

Figure 3: Generalizing to Image Shapes. The same model, at
different resolutions, can produce significantly different predic-
tions. Distorting the image (and resizing the prediction) can im-
prove performance, despite introducing artefacts. Note the im-
proved boundary sharpness in (d).

P̂t+k, fxy, cxy = ΦP(It ⊕ It+k) , where fxy and cxy are the
focal lengths and principal point.

Both quantities are predicted as normalized and scaled
by the image shape prior to combining them into K. The
focal length decoder uses a softplus activation to guarantee
a positive output. The principal point instead uses a sig-
moid, under the assumption that it will lie within the image.
All parameters—depth, pose and intrinsics—are optimized
simultaneously, as they all establish the correspondences
across support frames, given by (1).

4.3. Aspect Ratio Augmentation

The depth network is commonly a fully convolutional
network that can process images of any size. In practice,
these networks can overfit to the training size, resulting in
poor out-of-dataset performance. Figure 3 shows this effect,
where resizing to the training resolution improves results,
despite introducing stretching or squashing distortions.

Since both SlowTV and Mannequin Challenge
were sourced from YouTube, they feature the com-
mon widescreen aspect ratio (16:9). However, the objective
is to train a model that can be easily applied to real-world
settings in a zero-shot fashion. To this end, we propose an
aspect ratio augmentation (AR-Aug) that randomizes the
image shape during training, increasing the data diversity.

AR-Aug has two components: centre cropping and re-
sizing. The cropping stage uniformly samples from a set of
predefined aspect ratios. A random crop is generated using
this aspect ratio, covering 50-100% of the original height or
width. By definition, the sampled crop will be smaller than
the original image and of different shape. The crop is there-
fore resized to match the number of pixels in the original
image. Appendix B details the full set of aspect ratios used
and shows training images obtained using this procedure.

AR-Aug has the effect of drastically increasing the distri-
bution of image shapes, aspect ratios and object scales seen
by the network during training. As shown in Section 5.4,
this greatly increases performance, especially when evalu-
ating on datasets with different image sizes.
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5. Results
We evaluate the proposed models in a variety of set-

tings and datasets, including in-distribution and zero-shot.
Since the trained model is purely monocular, the predicted
depth is in arbitrary units. Instead of using traditional me-
dian alignment [77, 20], we follow MiDaS [47] and es-
timate scale and shift alignment parameters based on a
least-squares criterion. We apply the same strategy to ev-
ery baseline. Results using median alignment are shown
in Appendix F. Note that datasets with SfM ground-truth
(e.g. Mannequin Challenge) are also scaleless and would re-
quire this step even for techniques that predict metric depth.

5.1. Implementation Details

The proposed models are implemented in PyTorch [43]
using the baselines from the Monodepth Benchmark [56].
The depth network uses a pretrained ConvNeXt-B back-
bone [33, 66] and a DispNet decoder [40, 19]. The pose net-
work instead uses ConvNeXt-T for efficiency. Each model
variant is trained with three random seeds and we report
average performance. This improves the reliability of the
results and reduces the impact of non-determinism.

The final models were trained on a combination of
SlowTV (1.7M), Mannequin Challenge (115k) and Kitti
Eigen-Benchmark (71k). To make the duration of each
epoch tractable and balance the contribution of each dataset,
we fix the number of images per epoch to 30k, 15k and 15k,
respectively. The subset sampled from each dataset varies
with each epoch to ensure a high data diversity.

The models were trained for 60 epochs using
AdamW [34] with weight decay 10−3 and a base learning
rate of 10−4, decreased by a factor of 10 for the final 20
epochs. Empirically, we found that linearly warming up the
learning rate for the first few epochs stabilized learning and
prevented model collapse. We use a batch size of 4 and train
the models on a single NVIDIA GeForce RTX 3090.

SlowTV and Mannequin Challenge use a base image size
of 384 × 640, while Kitti uses 192 × 640. As is common,
we apply horizontal flipping and colour jittering augmenta-
tions with 50% probability. AR-Aug is applied with 70%
probability, sampling from 16 predefined aspect ratios. The
full set of aspect ratios can be found in Appendix B.

Since existing models are trained exclusively on auto-
motive data, most of the motion occurs in a straight-line
and forward-facing direction. It is therefore common prac-
tice to force the network to always make a forward-motion
prediction by reversing the target and support frame if re-
quired. Handheld videos, while still primarily featuring for-
ward motion, also exhibit more complex motion patterns.
As such, removing the forward motion constraint results in
a more flexible model that improves performance.

Similarly, existing models are trained with a fixed set of
support frames—usually previous and next. Since SlowTV

and Mannequin Challenge are mostly composed of hand-
held videos, the change from frame-to-frame is greatly re-
duced. We make the model more robust to different motion
scales and appearance changes by randomizing the separa-
tion between target and support frames. In general, we sam-
ple such that handheld videos use a wider time-gap between
frames, while automotive has a small time-gap to ensure
there is significant overlap between frames. As shown later,
this leads to further improvements and greater flexibility.

5.2. Baselines

We use the SSL baselines from [56], trained on Kitti
Eigen-Zhou with a ConvNeXt-B backbone. We minimize
architecture changes and training settings w.r.t. the base-
lines to ensure models are comparable and improvements
are solely due to the contributions from this paper.

We also report results for recent State-of-the-Art
(SotA) supervised MDE approaches, namely MiDaS [47],
DPT [46] and NeWCRFs [72]. MiDaS and DPT were
trained on a large collection of supervised datasets that
do not overlap with our testing datasets (unless otherwise
indicated). As such, these models are also evaluated in
a zero-shot fashion. We use the pre-trained models and
pre-processing provided by the PyTorch Hub. NeWCRFs
provides separate indoor/outdoor models, trained on Kitti
and NYUD-v2 respectively. We evaluate the corresponding
model in a zero-shot manner depending on the dataset cat-
egory. Despite predicting metric depth, we apply scale and
shift alignment to ensure results are comparable.

5.3. Evaluation Metrics

We report the following metrics per dataset:
Rel. Absolute relative error (%) between target y and pre-
diction ŷ as Rel =

∑
|y−ŷ| /y.

Delta. Prediction threshold accuracy (%) as
δ.25 =

∑
(max (ŷ/y, y/ŷ) < 1.25) .

F. Pointcloud reconstruction F-Score [42] (%) as
F = (2PR) / (P +R) , where P and R are the Precision
and Accuracy of the 3-D reconstruction with a correctness
threshold of 10cm.

Table 2: Model Complexity. Supervised SotA approaches make
use of computationally expensive transformer backbones. De-
spite being of equivalent complexity to the SSL baselines [56],
our model closes the gap to supervised performance.

Backbone MParam↓ FPS↑

KBR (Ours) ConvNeXt-B [33] 92.65 61.50

MiDaS [47] ResNeXt-101 [67] 105.36 51.38
DPT [46] ViT-L [15] 344.06 14.54
DPT [46] BEiT-L [3] 345.01 9.60
NeWCRFs [73] Swin [32] 270.44 21.61
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We additionally compute multi-task metrics to summa-
rize the performance across all datasets:
Rank. Average ordinal ranking order across all metrics as
Rank =

∑
m
rm, where m represents each available metric

and r is the ordinal rank.
Improvement. Average relative performance increase (%)
across all metrics as ∆ =

∑
m
(−1)lm(Mm − M0

m)/M0
m,

where lm = 1 if lower is better, Mm is the performance for
a given metric and M0

m is the baseline’s performance.

5.4. Ablation

We perform a “leave-one-out” ablation study, whereby
a single component is removed per-experiment from the
full model. This helps to understand the impact of each
proposed contribution. We report this ablation on Kitti
Eigen-Zhou, Mannequin Challenge and SYNS-Patches.

As shown in Table 3, the full model with all contribu-
tions performs best. Fwd P̂ represents a network forced to
always predict forward-motion. k = ±1 uses fixed support
frames, instead of the randomization in Section 5.1. Fixed
K removes the learnt intrinsics from Section 4.2, while No
AR-Aug removes the aspect ratio augmentation. It is worth
noting that none of these contributions increase the number
of depth network parameters. Learning the intrinsics results
in a negligible increase in the pose network, which is not
required for inference. Despite this, each contribution sig-
nificantly improves accuracy and generalization.

5.5. In-distribution

We compare our best approach—Kick Back & Relax
(KBR)—against existing SotA on the two training datasets
with ground-truth: Kitti and Mannequin Challenge. This
represents the most common evaluation, where the test data
is sampled from the same distribution as the training data.

As shown in Table 4 (In-Distribution), all variants of the
proposed models outperform the improved SSL baselines
from [56]. Even more surprising, our models also outper-
form most supervised baselines on Kitti, despite DPT-BEiT

Table 3: Leave-one-out Ablation. We study the contribution
of each proposed component. Randomizing the support frames,
learning camera parameters and augmenting the image shape all
contribute to improving overall performance.

Multi-task Kitti Eigen-Zhou Mannequin SYNS (Val)

R↓ ∆↑ Rel↓ F↑ δ.25↑ Rel↓ F↑ δ.25↑ Rel↓ F↑ δ.25↑

Full 2.20 0.00 6.16 57.60 95.52 14.39 17.67 82.23 20.34 17.08 69.88

Fwd P̂ 2.60 -0.08 6.18 57.47 95.47 14.36 17.52 82.22 20.24 17.20 69.52
k = ±1 2.30 -0.60 6.03 58.23 95.67 14.17 17.92 82.43 21.04 16.04 68.33
Fixed K 4.00 -1.46 6.30 56.93 95.38 14.95 17.11 81.00 20.46 17.11 69.56
No AR-Aug 4.50 -4.72 7.42 52.89 93.99 14.32 17.87 82.16 21.32 16.10 67.64
None 5.40 -5.52 7.47 51.83 94.19 14.62 17.01 81.29 21.21 16.72 67.03

Highlighted cells indicate zero-shot results.

being trained on it. NeWCRFs is the only supervised model
to outperform ours by a slight margin. This may be due
to the additional automotive data from SlowTV, which in-
creases the variety and improves generalization. Finally, our
model outperforms even the supervised SotA on Mannequin
Challenge F-Score.

5.6. Zero-shot Generalization

The core of our evaluation takes place in a zero-shot
setting, i.e. models are not fine-tuned. This demonstrates
the capability of our model to generalize to previously un-
seen environments. While several existing SS-MDE ap-
proaches provide zero-shot evaluations, this is usually lim-
ited to CityScapes [13] and Make3D [50]. These datasets
provide low-quality ground-truths and focus exclusively on
urban environments similar to Kitti. We instead opt for a
collection of challenging datasets, constituting a mixture of
urban, natural, synthetic and indoor scenes.
Outdoor. These results can be found in Table 4 (Outdoor),
where all evaluated models are zero-shot. Once again,
our models outperform the SSL baselines in every metric,
across all datasets. NeWCRFs is capable of generalizing to
other automotive datasets and provides good performance
on DDAD. However, our model adapts better to complex
synthetic (Sintel) and natural (SYNS-Patches) scenes. De-
spite being fully self-supervised and requiring no depth an-
notations during training, our model outperforms MiDaS
and DPT-ViT. DPT leverages expensive transformer-based
backbones and additional datasets to improve performance.
Indoor. Table 4 (Indoor) shows results for all indoor
datasets. Note that NeWCRFs was trained exclusively on
NYUD-v2, while DPT-BEiT used it as part of its training
collection. As such, this subset of results is not zero-shot.
As with the outdoor evaluations, our model provides signif-
icant improvements over all existing SSL approaches. This
is due to the focus on Kitti and the lack of indoor training
data, highlighting the need for more varied training sources.
However, the supervised models still provide improvements
over our method, likely due to the additional indoor datasets
used for training. Once again, we emphasize that our model
is fully self-supervised. Despite this, we close the perfor-
mance gap on complex supervised models.
Visualizations. We visualize the network predictions in Fig-
ure 4. As seen, the proposed model clearly outperforms the
best SSL baseline. This is most noticeable in indoor set-
tings, where the baseline treats human faces as background.
In many cases, our self-supervised model provides similar
or better depth maps than the supervised baselines. Once
again, these rely on ground-truth annotations and expensive
transformer-based backbones. Meanwhile, our model sim-
ply requires curated collections of freely-available monoc-
ular YouTube videos, without even camera intrinsics.
Failure Cases. Our approach does not explicitly use explicit
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Table 4: Results. Outdoor and Indoor represent zero-shot evaluations. We outperform all SS-MDE baselines [56] (top block). In many
cases, our model performs on par with supervised SotA (bottom block), without requiring ground-truth depth annotations for training.

In-Distribution Outdoor Indoor

Multi-task Kitti Mannequin DDAD DIODE Sintel SYNS DIODE NYUD-v2 TUM

Train Rank↓ ∆↑ Rel↓ F↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ F↑ Rel↓ F↑ Rel↓ δ.25↑ Rel↓ δ.25↑ Rel↓ δ.25↑

Garg [17] S 7.58 -38.52 7.65 53.28 27.63 9.08 26.93 7.80 39.60 44.15 39.41 31.93 26.05 15.17 19.18 70.54 22.49 59.60 23.53 62.82
Monodepth2 [20] MS 7.74 -38.34 7.90 50.50 27.44 7.97 24.31 8.25 39.53 44.71 40.09 29.49 25.31 14.83 19.40 70.42 22.41 60.09 23.50 62.36
DiffNet [76] MS 7.05 -36.84 7.98 49.60 27.46 7.76 23.03 9.43 38.87 46.14 39.93 28.77 25.09 14.64 19.11 70.94 21.82 61.30 23.21 63.08
HR-Depth [38] MS 5.95 -35.16 7.70 51.49 27.01 8.39 23.13 9.94 39.09 45.60 38.82 30.90 25.07 15.48 18.93 71.19 21.74 61.18 23.18 63.50

KBR (Ours) M 3.37 0.00 6.84 56.17 14.39 17.67 12.63 20.21 33.49 57.08 33.34 40.81 22.40 18.50 14.91 80.77 11.59 87.23 15.02 80.86

MiDaS [47] D 4.89 -11.84 13.71 33.44 16.96 12.62 16.00 15.41 32.72 59.04 30.95 39.55 26.94 14.69 10.71 88.42 10.48 89.59 14.43 82.35
DPT-ViT [46] D 3.32 -1.74 10.98 40.56 15.52 14.46 15.49 18.25 32.59 59.82 25.53 43.57 23.24 17.44 9.60 91.38 10.10 90.10 12.68 86.25
DPT-BEiT [46] D 1.84 11.12 9.45 44.22 13.55 16.58 10.70 22.63 31.08 61.51 21.38 46.46 21.47 17.73 7.89 93.34 5.40 96.54 10.45 89.68
NeWCRFs [72] D 3.26 1.03 5.23 59.20 18.20 15.17 9.59 23.02 37.01 49.66 39.25 32.43 24.28 16.76 14.05 84.95 6.22 95.58 14.63 82.95

Highlighted cells are NOT zero-shot results. S=Stereo, M=Monocular, D=Ground-truth Depth.
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Figure 4: Zero-shot SS-MDE. The proposed model adapts to a wide range of datasets and environments. It greatly outperforms the
updated self-supervised baselines from [56, 38] and performs on-par with SotA supervised baselines [47, 46, 73], whilst being more
efficient. Middle=Self-Supervised – Bottom=Supervised.

motion masks to handle dynamic objects. Instead, we rely
only on the minimum reconstruction loss and automask-
ing [20]. Whilst this improves the robustness, it can be seen
how dynamic objects such as cars can cause incorrect pre-
dictions (e.g. Kitti or DDAD). This represents one of the

most important avenues for future research. Further discus-
sions regarding these failure cases and additional visualiza-
tions can be found in Appendix G.

MDEC-2. The Monocular Depth Estimation Challenge [54,
55] tested zero-shot generalization on SYNS-Patches. We
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Figure 5: MDEC-2 [55]. Our submission (jspenmar2) was top of
the leaderboard in F-Score reconstruction. The challenge evalu-
ated zero-shot performance on SYNS-Patches for both supervised
and self-supervised approaches.

compare our model to all submissions from the latest edition
(CVPR2023). As seen in Figure 5, our method (jspenmar2)
achieves the highest F-Score reconstruction and is top-3 in
all metrics except AbsRel and Edge-Accuracy. Once again,
this illustrates the benefits of SlowTV, which contains large
quantities of natural data not present in other datasets.

5.7. Map-Free Relocalization

Map-free relocalization is the task of localizing a target
image using a single reference image. This is contrary to
traditional pipelines, which require large image collections
to first build a scene-specific map, such as SfM or training
a CNN. Recent work [59, 2] has shown the benefit of in-
corporating metric MDE into feature matching pipelines to
resolve the ambiguous scale of the predicted pose.

We evaluate all depth models on the MapFreeReloc
benchmark [2] validation split, serving as an example real-
world task. The feature-matching baseline [2] consists of
LoFTR [58] correspondences, a PnP solver and DPT [46]
fine-tuned on either Kitti or NYUD-v2. Since this bench-
mark requires metric depth but does not provide ground-
truth, we align all models to the baseline fine-tuned DPT
predictions using least-squares. We report the metrics pro-
vided by the benchmark authors. This includes translation
(meters), rotation (deg) and reprojection (px) errors. Pose
Precision/AUC were computed with an error threshold of
25 cm & 5◦, while Reprojection uses a threshold of 90px.

As shown in Table 5, our method has the best perfor-
mance across all SS-MDE approaches by a large margin.
Our performance is on par with the supervised SotA, with-
out requiring ground-truth supervision. This further demon-
strates the benefits of the proposed SlowTV dataset and
its applicability to real-world scenarios. Interestingly, we
find that the original DPT models perform better than their
fine-tuned counterparts, despite using these as the metric
scale reference. This suggests that the fine-tuning proce-
dure of [2] may provide metric scale at the cost of general-
ity. However, this highlights the need for models that pre-
dict accurate metric depth, rather than only relative depth.

Table 5: Map-free Relocalization [2]. We incorporate KBR into
a feature-matching pipeline for singe-image relocalization. We
once again outperform the SS-MDE baselines in every metric and
perform on par with supervised SotA.

Pose VCRE

Train Trans↓ Rot↓ P↑ AUC↑ Error↓ P↑ AUC↑

Garg [17] S 2.96 52.57 5.43 17.15 188.20 24.84 51.61
Monodepth2 [19] MS 2.95 52.92 5.50 17.22 189.67 24.38 50.63
DiffNet [76] MS 2.97 53.19 5.65 17.71 188.80 24.78 51.24
HR-Depth [38] MS 2.94 52.95 5.67 17.95 187.83 25.06 51.52

KBR (Ours) M 2.63 49.01 11.54 32.02 181.21 29.96 58.89

MiDaS [47] D 2.60 46.92 11.39 30.44 180.64 30.45 59.72
DPT-ViT [46] D 2.56 45.62 11.27 30.92 181.34 30.60 60.03
DPT-BEiT [46] D 2.49 44.99 12.56 32.48 181.67 32.46 62.03
NeWCRFs [72] D 2.89 51.92 6.69 20.77 184.63 25.89 52.93

DPT-NYUD [2] D+FT 2.67 47.66 9.17 26.46 184.53 28.68 56.87
DPT-Kitti [2] D+FT 2.66 49.21 10.86 29.99 178.49 28.37 56.86

Trans=meters, Rot=deg, VCRE=px, Precision=%, AUC=%.

6. Conclusion
This paper has presented the first approach to SS-MDE

capable of generalizing across many datasets, including
a wide range of indoor and outdoor environments. We
demonstrated that our models significantly outperform ex-
isting self-supervised models, even in the automotive do-
main where they are currently trained. By leveraging the
large quantity and variety of data in the new SlowTV
dataset, we are able to close the gap between supervised and
self-supervised performance. Additional components, such
as the novel AR-Aug, randomized support frames and more
flexible pose estimation, further improve the performance
and zero-shot generalization of the proposed models.

Future work should explore alternative sources of data
to incorporate even more scene variety. In particular, ad-
ditional indoor data may significantly reduce the remain-
ing gap between self-supervised and supervised approaches.
Another key direction is improving the accuracy in dynamic
scenes. A promising approach would be using optical flow
to refine the estimated correspondences. This could be in-
corporated in a self-supervised manner, without requiring
semantic segmentation or motion masks. However, it intro-
duces additional costs due to the increased computational
requirements from the new network.

Developing models capable of predicting metric depth
would further increase their applicability to real-world ap-
plications. Finally, as the diversity of training environments
increases, it will become crucial to further diversify the
benchmarks used to evaluate these models.
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[47] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE transactions on pattern analysis and machine
intelligence, 2020. 1, 2, 5, 7, 8

[48] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim,
Deqing Sun, Jonas Wulff, and Michael J Black. Competitive
collaboration: Joint unsupervised learning of depth, camera
motion, optical flow and motion segmentation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12240–12249, 2019. 2

[49] Rui, Stückler Jörg, Cremers Daniel Yang Nan, and Wang.
Deep Virtual Stereo Odometry: Leveraging Deep Depth Pre-
diction for Monocular Direct Sparse Odometry. In European
Conference on Computer Vision, pages 835–852, 2018. 2

[50] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3d:
Learning 3d scene structure from a single still image. IEEE

10



Transactions on Pattern Analysis and Machine Intelligence,
31(5):824–840, 2009. 6

[51] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-Motion Revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3

[52] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.
Feature-Metric Loss for Self-supervised Learning of Depth
and Egomotion. In European Conference on Computer Vi-
sion, pages 572–588, 2020. 2

[53] Jaime Spencer, Richard Bowden, and Simon Hadfield.
DeFeat-Net: General monocular depth via simultaneous un-
supervised representation learning. In Conference on Com-
puter Vision and Pattern Recognition, pages 14390–14401,
2020. 2

[54] Jaime Spencer, C Stella Qian, Chris Russell, Simon Hadfield,
Erich Graf, Wendy Adams, Andrew J Schofield, James H
Elder, Richard Bowden, Heng Cong, et al. The monoc-
ular depth estimation challenge. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 623–632, 2023. 2, 7

[55] Jaime Spencer, C. Stella Qian, Michaela Trescakova, Chris
Russell, Simon Hadfield, Erich Graf, Wendy Adams, An-
drew J. Schofield, James Elder, Richard Bowden, and Oth-
ers. The second monocular depth estimation challenge. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops, 2023. 7, 8

[56] Jaime Spencer, Chris Russell, Simon Hadfield, and Richard
Bowden. Deconstructing self-supervised monocular recon-
struction: The design decisions that matter. Transactions on
Machine Learning Research, 2022. Reproducibility Certifi-
cation. 1, 2, 3, 5, 6, 7

[57] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot
Systems (IROS), Oct. 2012. 3

[58] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
8922–8931, 2021. 8

[59] Carl Toft, Daniyar Turmukhambetov, Torsten Sattler, Fredrik
Kahl, and Gabriel J Brostow. Single-image depth predic-
tion makes feature matching easier. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part XVI 16, pages 473–492.
Springer, 2020. 8

[60] Fabio Tosi, Filippo Aleotti, Matteo Poggi, and Stefano Mat-
toccia. Learning monocular depth estimation infusing tra-
ditional stereo knowledge. Conference on Computer Vision
and Pattern Recognition, 2019-June:9791–9801, 2019. 2

[61] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity Invariant CNNs.
International Conference on 3D Vision, pages 11–20, 2018.
3

[62] Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo,
Haochen Wang, Falcon Z Dai, Andrea F Daniele, Moham-
madreza Mostajabi, Steven Basart, Matthew R Walter, et al.

Diode: A dense indoor and outdoor depth dataset. arXiv
preprint arXiv:1908.00463, 2019. 3

[63] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu, and
Simon Lucey. Learning Depth from Monocular Videos Us-
ing Direct Methods. Conference on Computer Vision and
Pattern Recognition, pages 2022–2030, 2018. 2

[64] Zhou Wang, A C Bovik, H R Sheikh, and E P Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 2

[65] Jamie Watson, Michael Firman, Gabriel Brostow, and Dani-
yar Turmukhambetov. Self-supervised monocular depth
hints. International Conference on Computer Vision, 2019-
Octob:2162–2171, 2019. 2

[66] Ross Wightman. PyTorch Image Models, 2019. 5
[67] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep
neural networks. Conference on Computer Vision and Pat-
tern Recognition, 2017-Janua:5987–5995, 2017. 5

[68] Jiaxing Yan, Hong Zhao, Penghui Bu, and YuSheng Jin.
Channel-Wise Attention-Based Network for Self-Supervised
Monocular Depth Estimation. In International Conference
on 3D Vision, pages 464–473, 2021. 2

[69] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cre-
mers. D3VO: Deep Depth, Deep Pose and Deep Uncertainty
for Monocular Visual Odometry. In Conference on Computer
Vision and Pattern Recognition, pages 1278–1289, 2020. 2

[70] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learn-
ing of dense depth, optical flow and camera pose. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1983–1992, 2018. 2

[71] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
2636–2645, 2020. 3

[72] Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and
Ping Tan. Neural window fully-connected crfs for monocular
depth estimation. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3906–
3915, 2022. 1, 2, 5, 7, 8

[73] Weihao Yuan, Yazhan Zhang, Bingkun Wu, Siyu Zhu, Ping
Tan, Michael Yu Wang, and Qifeng Chen. Stereo matching
by self-supervision of multiscopic vision. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 5702–5709. IEEE, 2021. 5, 7

[74] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,
Kejie Li, Harsh Agarwal, and Ian M. Reid. Unsupervised
Learning of Monocular Depth Estimation and Visual Odom-
etry with Deep Feature Reconstruction. Conference on Com-
puter Vision and Pattern Recognition, pages 340–349, 2018.
2

[75] Chaoqiang Zhao, Youmin Zhang, Matteo Poggi, Fabio Tosi,
Xianda Guo, Zheng Zhu, Guan Huang, Yang Tang, and Ste-
fano Mattoccia. Monovit: Self-supervised monocular depth
estimation with a vision transformer. International Confer-
ence on 3D Vision, 2022. 2

11



[76] Hang Zhou, David Greenwood, and Sarah Taylor. Self-
Supervised Monocular Depth Estimation with Internal Fea-
ture Fusion. In British Machine Vision Conference, 2021. 2,
7, 8

[77] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.
Lowe. Unsupervised Learning of Depth and Ego-Motion
from Video. Conference on Computer Vision and Pattern
Recognition, pages 6612–6619, 2017. 2, 3, 5

12


