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Abstract
In this paper, we present a high-performing solution to the UAVM
2025 Challenge [24], which focuses on matching narrow Field-
of-View (FOV) street-level images to corresponding satellite im-
agery using the University-1652 dataset. As panoramic Cross-View
Geo-Localisation nears peak performance, it becomes increasingly
important to explore more practical problem formulations. Real-
world scenarios rarely offer panoramic street-level queries; instead,
queries typically consist of limited-FOV images captured with un-
known camera parameters. Our work prioritises discovering the
highest achievable performance under these constraints, pushing
the limits of existing architectures. Our method begins by retriev-
ing candidate satellite image embeddings for a given query, fol-
lowed by a re-ranking stage that selectively enhances retrieval ac-
curacy within the top candidates. This two-stage approach enables
more precise matching, even under the significant viewpoint and
scale variations inherent in the task. Through experimentation, we
demonstrate that our approach achieves competitive results - specif-
ically attaining R@1 and R@10 retrieval rates of 30.21% and 63.13%
respectively. This underscores the potential of optimised retrieval
and re-ranking strategies in advancing practical geo-localisation
performance. Code is available at github.com/tavisshore/VICI.
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The ground image building's distinctive multi-level structure with 

red/orange balconies matches the building visible in the center-left 

of the satellite, which has a similar tiered appearance and dark 

base. The grassy slope leading up to the building, the winding 

path, and the surrounding trees in the ground image are consistent 

with the landscape features around this building in the satellite 

image. The ground camera was likely positioned on the stairs or 

the path in the lower-left portion of the satellite image, looking 

northeast towards the building.

The ground image shows a brutalist concrete building surrounded 

by dense trees, with a sloped area and a grate-like structure on the 

left. The satellite image shows a building with a similar footprint 

and is heavily surrounded by dense trees, matching the ground 

image's environment. Crucially, the ground image's sloped area 

with the grate-like structure on the left corresponds to the solar 

panels visible on the sloped ground in the bottom left of the 

satellite image. The ground camera was likely positioned on the 

pathway or sloped area in the bottom left of the satellite image, 

looking northeast towards the main building.

Figure 1: VICI localisation example: Top left: query image,
Top right: top retrieved satellite image. Bottom: justification
for this satellite image being re-ranked to Top-1.
1 Introduction
Localisation is a fundamental requirement in mobile robotics, as
agents must ascertain their position before executing assigned tasks.
These generally rely on Global Navigation Satellite Systems (GNSS)
for localisation; however, this approach becomes unreliable in ur-
ban canyons or conflict zones, where signal obstruction, multipath
effects, or deliberate jamming degrade performance. Cross-View
Geo-Localisation (CVGL) offers a robust alternative to address this
issue by inferring the location of a street-level image by match-
ing it to a corresponding geo-tagged satellite image in which it
appears. In most existing works [2, 16, 32, 33, 38], limited Field-
of-View (FOV) ground query images are not fully explored due to
the extreme lack of contextual surrounding information. Instead,
existing methods primarily focused on panoramic imagery, lever-
aging its wide FOV to extract descriptive features and optimise
matching accuracy. However, the majority of mobile robots, from
autonomous vehicles to warehouse platforms, are equipped with
limited-FOV cameras, thereby impeding the practical deployment
of such systems [27, 34]. But, directly applying such a feature-
matching paradigm to limited-FOV images often introduces noise,
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making features less distinguishable, leading to a reduction in CVGL
performance [12, 17].

The recent emergence of Large Language Models (LLMs) and
Vision-Language Models (VLMs), including ChatGPT [13], Gem-
ini [20], and LLaMA [22], has showcased the strength of these
foundation models in image understanding [8], visual question an-
swering [5], and text-to-image synthesis [21]. One idea to alleviate
the above-mentioned problem is to leverage the reasoning capabil-
ity of such models to match the query image against the reference
satellite database, providing justification for the matching and off-
setting the loss of information. However, naively applying VLMs
on the whole reference database is costly and inefficient. To tackle
this issue, we propose VICI, VLM-Instructed Cross-view Image-
localisation, a novel two-stage VLM-powered CVGL model. The
first stage extracts visual features from both ground and satellite
views - predicting a coarse ranking for the ground query. To allevi-
ate the over-fitting issue, we incorporate drone images to augment
the satellite data. In the next stage, the Top-10 retrieved candidate
satellite images are re-ranked by a Vision-Language Model (VLM),
which also takes the query image and a curated prompt as input. In
this manner, VICI not only improves the localisation accuracy but
also maintains the computational overhead at a reasonable scale.
Furthermore, VICI not only re-ranks the predictions but also pro-
vides the justifications for the re-ranking decisions. One localisation
example with justifications is shown in Figure 1.

We achieve very competitive performance in the challenge [24],
attaining R@1 and R@10 retrieval rates of 30.21% and 63.13% re-
spectively.

In summary, our research contributions are:

• Introduction of VICI, a novel two-stage CVGL framework
that integrates VLMs to go beyond traditional feature similar-
ity methods. Our approach not only substantially improves
localisation accuracy but also introduces interpretable rea-
soning through language-based justifications.

• A novel data augmentation technique that incorporates high-
angle drone imagery within the satellite image branch to
enhance model robustness and generalisation.

• Extensive experiments demonstrate the competitive perfor-
mance of our VICI on the UAVM 2025 challenge [24]. We also
provide quantitative and qualitative evidence for the superi-
ority of the novel two-stage design, illustrating a potential
new research direction for the field of CVGL.

2 Related Work
Cross-ViewGeo-Localisation: The deep learning era of CVGL be-
gan with Workman and Jacobs [28], who demonstrated the efficacy
of Convolutional Neural Networks (CNNs) for correlated feature
extraction across different viewpoints. CVGL datasets primarily
consisted of panoramic street-level and satellite image pairs, includ-
ing CVUSA [29], CVACT [9], and VIGOR [37]. Recognising the need
to better model real-world scenarios, Shi et al. [16] introduced the
limited Field-of-View (FOV) crops into the CVGL research. Shore
et al. [19] proposed representing data as a graph, leveraging con-
nectivity information to enhance performance, and subsequently
[18] increasing discriminability by adding reference street-level

Figure 2: Street-level, drone, and satellite images from vari-
ous locations, illustrating how the drone imagery provides
feature continuity between the viewpoints.
images to this representation. More recently, to improve overall
generalisation and address limited dataset diversity, Huang et al.
released CV-Cities [6], encompassing a wider range of global city
scenes.

Backbone feature extractors play a vital role in CVGL. Recently,
transformers [23]were introduced to CVGL by two seminal works[30,
36]. Yang et al. [30] combined a ResNet backbone with a vanilla
ViT encoder. Zhu et al. [36] proposed a transformer that uses an
attention-guided non-uniform cropping to remove uninformative
areas. Zhu et al. [38] introduced an attention-based backbone, rep-
resenting long-range interactions among patches and cross-view
relationships with multi-head self-attention layers. Sample4Geo [2]
proposed two sampling strategies, sampling geographical sampling
and hard sample mining to improve CVGL accuracy. In GeoDTR
[32, 33], Zhang et al. decouple geometric information from raw
features, learning spatial correlations within visual data to improve
performance.
Vision-Language Models for Geo-localisation: VLMs are in-
creasingly being used in image localisation for their logical rea-
soning capabilities. Initially, they were fine-tuned to operate with
street-level images, combining viewed features to logically deter-
mine location. GeoReasoner [7] is a two-stage fine-tuned large VLM
that mimics human reasoning from geographic clues to accurately
predict locations from street-level images. Ye et al. [31] introduce
a text-guided CVGL method that retrieves satellite images using
natural language descriptions of street-level scenes, enabling lo-
calisation without requiring a query image. Dagda et al. propose
GeoVLM [1], using a Vision-Language Model to perform zero-shot
CVGL by re-ranking candidate satellite-ground image pairs using
language-based scene descriptions. Whereas [1] employs VLMs to
categorise specific features within images, our approach leverages
VLMs to directly compare image pairs, enabling them to re-rank
retrievals and provide justification for their decisions.

3 Methodology
The proposed method, VICI, operates in two stages: 1) Coarse Re-
trieval, extracting feature embeddings from input images - ranking
reference embeddings by similarity to the query, and 2) VLM Re-
ranking and Reasoning, re-ranking the candidates from step 1)
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Figure 3: Overview of the architecture: Features extracted by separate DINOv2 branches, references retrieved by descending
similarity, re-ranked and justified by passing through a VLM with a text prompt.

using a VLM prompted to focus on salient static features shared
across viewpoints. An overview of the proposed technique is shown
in Figure 3.

3.1 Stage I: Coarse Retrieval
In Stage I, we employ a Siamese network 𝑓 , without weight sharing,
parametrised by 𝜃 to minimise the domain gap between street-
level and satellite image features, generating embeddings 𝜂𝑡 where
𝑡 ∈ {𝑠𝑡𝑟𝑒𝑒𝑡, 𝑠𝑎𝑡}. All input images 𝐼 are in RGB space: 𝐼 ∈ R3×𝑊 ×𝐻 ,
and are resized to𝑊 × 𝐻,where 𝐻 =𝑊,𝑊 ∈ {224, 384, 448, 518}
for different backbone extractor configurations. Mathematically,
this process can be defined as follows,

𝜂𝑡 = 𝑓𝜃 (𝐼𝑡 ) , 𝑡 ∈ {𝑠𝑡𝑟𝑒𝑒𝑡, 𝑠𝑎𝑡} (1)
During inference, reference embeddings are precomputed and stored
offline, querying this database for retrievals during online opera-
tion.
DronePerspectiveAugmentation: The challenge dataset, University-
1652 [35], curates street, drone, and satellite views. Although this
challenge focuses on street-to-satellite CVGL, drone imagery pro-
vides intermediate, low-altitude oblique views that are significantly
more similar to street-level imagery than traditional nadir satellite
views. More specifically, unlike satellites that observe scenes from
near-vertical angles at high altitudes, drones capture structures and
terrain from oblique angles and much lower altitudes—typically
tens to hundreds of metres—making them closer in both scale and
viewpoint to ground-based images (as shown in Figure 2). Thus,
drone-view images can assist in bridging the domain gap between
ground and satellite viewpoints.

Inspired by this, during training, we randomly feed drone-view
images into the satellite branch in place of the satellite images

according to a probability 𝑃 , alongside their corresponding street-
level images. Experimentation demonstrates how the geometric and
visual similarities between drone and ground views help narrow
the domain gap between aerial and ground perspectives, enabling
more effective feature matching and correspondence estimation.
The improved alignment in perspective mitigates issues like occlu-
sion, foreshortening, and extreme viewpoint disparity. As a result,
drone-satellite fusion enhances spatial reasoning and improves
CVGL accuracy, particularly in dense urban or structurally complex
scenes.

3.2 Stage II: VLM Re-ranking and Reasoning
VLMs recently demonstrated strong performance in recognising
objects, interpreting scenes, and aligning visual content with nat-
ural language [8, 20]. In the second stage of VICI, we leverage
this capability by feeding the top-10 retrievals from the reference
database into a VLM along with a curated prompt and the query
street-level image. This prompts the VLM to logically reason about
the candidates, produce a more accurate ranking, and justify the
decisions. Below is a simplified version of the text prompt used to
re-rank the retrieved satellite images:
Given one ground image and 10 satellite images, identify which satel-
lite image matches the ground location. Summarise the ground image
and each satellite image, focusing on key features (streets, buildings,
etc.). Then, compare the ground image with each satellite image as
well as the summarisation. Rank these 10 satellite images by likelihood
[1–10]. Justify the top choice with matching features and estimated
camera position.
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After receiving the response, we extract the re-ranked results from
the VLM output, along with the justification for the top choice. For
the full prompt, please refer to our code.

3.3 Implementation Details
Stage I: The stage I of VICI is implemented in PyTorch [15] and
trained with InfoNCE loss [2] for 100 epochs and batch size of 32
using an AdamW [11] optimiser with an initial learning rate of 1e-5
and an exponential scheduler with gamma of 0.9. We employed a
wide variety of backbone feature extractors such as ConvNext [10],
ViT [3], and DINOv2 [14]. Training and testing of Stage I are con-
ducted on 4 AMD MI210 accelerators.
Stage II: The second stage of VICI for re-ranking and reasoning
is performed with Google’s Gemini 2.5 [4]. We chose two model
variants, Gemini 2.5 Flash and Gemini 2.5 Flash Lite, to balance
efficiency and cost. We set the temperature to 0 to have a fixed
output and better reproducibility. We leverage the structured output
functionally 1 to make the output follow a JSON structure. For more
details, please refer to the corresponding code.

4 Evaluation
Dataset: This challenge [24] utilises the University-1652 dataset
[35] for benchmarking purposes. This dataset contains image sets
of 1,652 unique university buildings: 701 for training and the rest for
testing. Each image set contains a single satellite image featuring
the building, 54 drone images captured with an ascending circling
trajectory, and a few street-level, limited-FOV images cropped from
street view panoramas. All images share the same resolution of
512× 512. To have a fair comparison and illustrate the power of the
proposed VICI under the case of limited training data, we did NOT
include extra training data, although it is allowed in this challenge.
Backbone Comparison: The first experiment aims to identify the
most effective feature extraction architecture for this challenging
limited-FOV CVGL task. We conducted a comprehensive evalua-
tion with uniform training conditions. The results are summarised
in Table 1. Although ConvNeXt has demonstrated promising re-
sults in previous work [2, 32], its performance on this challenging
limited-FOV dataset is the weakest among all evaluated backbone
architectures. This may be due to the limited capacity of ConvNeXt
to capture sufficient contextual information from narrow FOV im-
ages. We then experiment with two large-scale backbones, ViT
and DINOv2, observing that even with similar model structures,
ViT [3] is consistently worse than DINOv2 [14]. Interestingly, with
almost the same structure, DINOv2 consistently performs better
than DINOv2 on Base scale (“B”) and Large scale (“L”). This per-
formance increase might result from 1) the pre-trained knowledge
of DINOv2 on the LVD-142M dataset [14], and 2) the native input
image size contains more fine-grained details (as illustrated by the
different FLOPs). From this study, we selected DINOv2-L as the
stage I backbone for VICI.
Drone Perspective Augmentation: The second experiment eval-
uates the effectiveness of the drone perspective augmentation, as
summarised in Table 2. For each training sample, we design a prob-
ability 𝑃 to replace the satellite image with a randomly sampled
drone-view image from the same location. In this experiment, we
1https://ai.google.dev/gemini-api/docs/structured-output

Backbone Params (M) FLOPs (G) Dims R@1 R@5 R@10
ConvNeXt-T 28 4.5 768 1.36 4.34 7.95
ConvNeXt-B 89 15.4 1024 3.14 8.14 13.22

ViT-B 86 17.6 768 3.30 8.92 13.96
ViT-L 307 60.6 1024 9.62 23.42 32.73

DINOv2-B 86 152 768 17.37 36.14 46.96
DINOv2-L 304 507 1024 27.49 51.96 63.13

Table 1: Backbone capabilities evaluation.

set 𝑃 to 0, 0.1, 0.3, and 0.5, respectively. As we can see, by setting 𝑃
to 0.1 and 0.3, the model performance significantly improves - with
𝑃 = 0.3 achieving the best results. However, with 𝑃 = 0.5, perfor-
mance drops significantly and is similar to the non-augmented case.
Thus, we choose 𝑃 = 0.3 for the probability of drone perspective
augmentation during the training.

𝑃 R@1 R@5 R@10
0 24.47 48.16 60.99
0.1 26.98 51.34 61.92
0.3 27.49 51.96 63.13
0.5 24.89 52.03 62.66

Table 2: Drone augmentation with varying probability 𝑃 .

VLM Re-ranking: The top 10 retrieved results for each query
ground image are fed into stage II for VLM Re-ranking. To balance
computational cost and efficiency, we choose two different variants
of Google’s Gemini 2.5 model - Gemini 2.5 Flash and Gemini 2.5
Flash Lite. We also fix the thinking budget at 1024 for both models
to achieve the best efficiency. Results are summarised in Table 3.
By comparing the results with and without re-ranking utilising
Gemini 2.5 Flash, R@1 increases by 2.72% and R@5 increases by
1.08%, supporting the idea of leveraging VLMs to re-rank the coarse
retrieving results. To further investigate the VLM re-ranking perfor-
mance on small-scale models, we conducted the same experiment
on the Gemini 2.5 Flash Lite. However, performance is worse than
without re-ranking, illustrating that large-scale models with better
reasoning capabilities play a critical role in this task.

VLM R@1 R@5 R@10
Without Re-ranking 27.49 51.96 63.13
Gemini 2.5 Flash Lite 23.54 48.39 63.13
Gemini 2.5 Flash 30.21 53.04 63.13

Table 3: VLM re-ranking comparison.

Ablation and Summary of VICI: The ablation study of VICI and
comparison with two previous state-of-the-art methods are stated
in Table 4. As summarised, VICI substantially outperforms two
baselines [26, 35] on the University-1652 dataset. Also, the proposed
drone-view augmentation and VLM re-ranking demonstrate their
effectiveness in improving the performance on this benchmark.

5 Conclusion
In this paper, we present VICI, a novel VLM-powered CVGL model
that achieved outstanding performance on the UAVM 2025 chal-
lenge [25] without introducing any extra datasets. To boost the
coarse localisation performance of limited FOV query images, we in-
troduce the drone perspective augmentation strategy. Furthermore,
we prove that the reasoning capability of existing foundational
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Model R@1 R@5 R@10
U1652 [35] 1.20 - -

LPN w/o drone [26] 0.74 - -
LPN w/ drone [26] 0.81 - -

DINOv2-L 24.66 48.00 59.02
+ Drone Data 27.49 51.96 63.13

+ VLM Re-rank (Ours) 30.21 53.04 63.13
Table 4: Ablation study and baseline comparison.

VLMs significantly improves the localisation accuracy and pro-
vides fine-grained justifications for better interpretability, putting
forward a new localisation paradigm for future research.
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