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PEnG: Pose-Enhanced Geo-Localisation
Tavis Shore1, Oscar Mendez2, and Simon Hadfield1

Abstract—Cross-view Geo-localisation is typically performed
at a coarse granularity, because densely sampled satellite image
patches overlap heavily. This heavy overlap would make dis-
ambiguating patches very challenging. However, by opting for
sparsely sampled patches, prior work has placed an artificial
upper bound on the localisation accuracy that is possible. Even
a perfect oracle system cannot achieve accuracy greater than the
average separation of the tiles. To solve this limitation, we propose
combining cross-view geo-localisation and relative pose estimation
to increase precision to a level practical for real-world application.
We develop PEnG, a 2-stage system which first predicts the most
likely edges from a city-scale graph representation upon which a
query image lies. It then performs relative pose estimation within
these edges to determine a precise position. PEnG presents the
first technique to utilise both viewpoints available within cross-
view geo-localisation datasets, referring to this as Multi-View Geo-
Localisation (MVGL). This enhances accuracy to a sub-metre
level, with some examples achieving centimetre level precision.
Our proposed ensemble achieves state-of-the-art accuracy -
with relative Top-5m retrieval improvements on previous works
of 213%. Decreasing the median Euclidean distance error by
96.90% from the previous best of 734m down to 22.77m, when
evaluating with 90° horizontal FOV images. Code is available
here: github.com/tavisshore/peng.

Index Terms—Localisation, Vision-Based Navigation, Com-
puter Vision for Transportation

I. Introduction

LOCALISATION is vital in the majority of mobile
robotics applications. Common techniques such as Global

Navigation Satellite Systems (GNSS) provide absolute posi-
tioning data to clients. These are prone to failure in certain
environments. One example are dense urban canyons such as
New York City where tall buildings cause signal occlusions
& reflections, preventing successful satellite communication.
Another example are regions of conflict where malicious actors
purposefully disrupt positioning by spoofing signals, inserting
erroneous information.

Image localisation may provide a solution as agents can fully
self-localise using onboard sensors, removing requirements for
external communication. These techniques aim to relate an
agent’s query image with previously seen geo-tagged images,
determining an updated position according to feature and
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Fig. 1. PEnG Multi-View Stages: 1) City-scale satellite image with underlying
graph network, Cross-View Geo-Localisation (CVGL) estimates candidate
edges within city’s graph. 2) Relative Pose Estimation (RPE) along these
edges achieves refined geographic poses. Green denotes a query input, blue
and red display two known reference images.

positional similarities with these references. A large proportion
of mobile robots are already equipped with cameras, increasing
the viability of image localisation.

Cross-View Geo-localisation (CVGL) is an increasingly
popular branch of image localisation research, offering a
viable form of generalisable wide-scale image localisation. The
objective is to relate a street-level query image to a database
of reference satellite images - returning the geographic co-
ordinates of the highest correlating known satellite image.
Pose estimation is a related field that aims to determine the
pose of a camera within a scene. These techniques generally
operate on a smaller scale than CVGL, localising within a
few metres, rather than in whole cities. They generally operate
as continuous prediction, rather than retrieval problems, and
operate in N-Degrees of Freedom (DoF) as opposed to simple
geographic coordinates. Pose estimation has two primary sub-
fields - Absolute Pose Estimation (APE) and Relative Pose
Estimation (RPE). APE aims to determine the position and
orientation of a camera within a 3D world coordinate frame.
RPE aims to compute the same, but with respect to a reference
camera.

https://www.github.com/tavisshore/peng
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We propose leveraging the advantages of both techniques in
a single two-stage system to achieve high-precision city-scale
localisation, shown in top-down order in Figure 1. Taking as
input a street-level image, the first stage performs city-wide
CVGL, predicting the most recently observed road junction.
Operating the CVGL stage at the scale of the road junctions
helps to keep the reference set lean and discriminative, ensur-
ing efficient and accurate results of coarse location retrieval.

The second stage takes the CVGL sub-region predictions
and performs RPE along neighbouring roads, merging like-
lihoods from both stages to determine a final 3-DoF pose.
This novel combination of learned computer vision techniques
achieves a reduction in the median localisation error from
734m to 22.77m, evaluating with 90° crops of the StreetLearn
dataset [1].
In summary, our research contributions are as follows:

• Introduce the first technique for performing precise image
localisation in a city-scale by utilising information from
both image viewpoints in CVGL datasets, creating Multi-
View Geo-Localisation (MVGL).

• Introduce emulating a simple compass, filtering reference
embeddings according to a configurable yaw threshold,
greatly increasing localisation precision.

• Demonstrate strong generalisation to cities not seen in
training - localising with a median error of 22.77m within
the large dense region of Manhattan, considering an area
of 36.1km2.

II. Related Works
A. Camera Pose Estimation

RPE can be divided into two categories: feature matching,
and pose regression. More traditional camera localisation
techniques often utilise structure-based methods, representing
a scene with an explicit SfM or SLAM reconstruction [2, 3, 4].
This often requires a large number of images to have already
been captured within a scene, limiting generalisation.

Shotton et al. [5] introduce a novel method called Scene
Coordinate Regression Forest (SCoRe Forest) for inferring the
pose of an RGB-D camera relative to a known 3D scene using
a single image with decision forests. Kendall et al. propose
PoseNet [6], the first CNN designed for end-to-end 6-DOF
camera pose localisation, evaluating the network thoroughly
to prove the viability of deep learning for the field. In their
following paper [7], they apply a principled loss function based
on the scene’s geometry to learn camera pose without any
hyper-parameters, achieving state of the art (SOTA) results,
reducing the performance gap to traditional methods. Sattler
et al. [4] propose using a prioritised matching approach,
considering features more likely to yield 2D-to-3D matches,
terminating searches once sufficient matches have been found.
Brachmann et al. [8] propose DSAC, a differentiable coun-
terpart to RANSAC, replacing the deterministic hypothesis
selection with a probabilistic selection, deriving the expected
loss with respect to all learnable parameters. Applying this
to image localisation achieved higher accuracies than previ-
ous deep learning based methods. Clark et al. [9] propose
extending to sequential camera pose estimation, designing an

RNN which achieves smoothed poses and greatly reduced
localisation error. Sarlin et al [10] propose HFNet - performing
coarse-to-fine image localisation by predicting local features
and global descriptors for 6-DoF localisation simultaneously.

Map-free Relocalisation [11] introduces using a single photo
from a scene for metric scaled re-localisation, negating the
requirement to construct a scaled map of the scene. Rockwell
et al. [12] propose FAR, combining correspondence estimation
and pose regression techniques to utilise the benefits from
both to provide precision and generalisation. Wang et al.
[13] and Leroy et al. in the follow-up paper [14] propose
Dust3r and Mast3r respectively. Both are techniques for dense
unconstrained stereo 3D reconstruction of arbitrary image
collections, with no prior information. Mast3r achieves SOTA
performance in various fields including camera calibration
and dense 3D reconstruction. Moreau1 et al. [15] propose
CROSSFIRE - using NeRFs as implicit scene maps and
propose a camera re-localisation algorithm for this represen-
tation. CROSSFIRE achieves SOTA accuracy and is capable
of operating in dynamic outdoor environments.

Similar to how FAR proposed combining multiple pose
estimation paradigms to achieve SOTA performance in that
particular sub-field, we propose combining multiple image
localisation techniques to achieve high precision localisation
in large scale regions with different input modalities.

B. Cross-View Geo-Localisation
Current CVGL techniques primarily focus on embedding

retrieval - extracting reduced dimensionality representations
of reference satellite images, aiming to return geo-coordinates
from those most similar to query images. Techniques are being
increasingly proposed to improve performance by manipulat-
ing extracted features, [16], [17], [18].

Workman and Jacobs [19] first propose CNNs for learning
feature relationships across viewpoints. This was extended
by Lin et al. [20], treating each query uniquely, utilising
Euclidean similarities for retrieval. Vo and Hays [21] add
rotation information through an auxiliary loss, evaluating mis-
alignment impact. CVM-Net [22] add NetVLAD [23] to the
CNN, aggregating local feature residuals to cluster centroids.
Liu and Li [24] increase access to orientation information, im-
proving the latent space robustness. [16] computes feature cor-
relation between ground-level images and polar-transformed
aerial images, shifting and cropping at the strongest alignment
before performing image retrieval. L2LTR [25] developed a
CNN+Transformer network, combining a ResNet backbone
with a vanilla ViT encoder to increase performance over
SOTA.

In GeoDTR [17, 26], Zhang et al. separate geometric
information from the raw features, learning spatial correlations
within visual features to enhance performance. BEV-CV [18]
introduces Birds-Eye-View (BEV) transforms to the field,
reducing representational differences between viewpoints to
create more similar embeddings. Sample4Geo [27] propose
two CVGL sampling strategies, geographically sampling for
optimal training initialisation, mining hard-negatives according
to feature similarities between viewpoints. SpaGBOL [28]
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propose progressing the CVGL field from single and sequential
representations to graph-based representation, allowing for
more geo-spatially strong embeddings.

Fine-grained CVGL estimates the pose of a streetview image
within it’s known corresponding satellite image. Shi et al. [29]
propose utilising a differentiable Levenberg-Marquardt (LM)
to iteratively search for the optimal camera pose. In [30],
Lentsch et al. horizontally divide panoramas into slices and
apply cross-view attention to create a ground slice-specific
aerial feature map, learning the correlation between each slice
across viewpoints. Xia et al. [31] estimate a dense probability
distribution over the satellite image, capturing the underlying
multi-modal distribution - achieving results robust against
small orientation variation. In their subsequent work CCVPE
[32], they propose a translational equivariant encoder to learn
orientation-aware descriptors for localisation and orientation
estimation, achieving SOTA results.

Fine-grained CVGL methods provide computationally effi-
cient and robust results but heavily depend on prior knowledge
of the correct corresponding satellite image. We aim to over-
come the limitation of fine-grained techniques in distinguish-
ing between estimating a pose within the correct corresponding
satellite image and an incorrect one.

CVGL approaches to date have followed a retrieval
paradigm where the accuracy of results is limited by the
granularity of the geo-referenced database. Sparsely sampled
data can lead to higher retrieval rates due to greater feature
dissimilarities, while densely sampled data may enhance lo-
calisation precision but decrease performance, as overlapping
satellite image patches increase the likelihood of incorrect
retrievals.

III. Methodology
A. City-Scale Geo-Localisation Data Representation

We frame CVGL as a graph comparison problem, similar to
the technique demonstrated in SpaGBOL [28]. Where SpaG-
BOL established a lower bound on localisation precision by
only applying graph nodes at road junctions, we incorporate
orders of magnitude more nodes by placing secondary nodes
along existing edges, enhancing the density of data. These
graphs now have two classes of nodes, denoted primary nodes
N - representing road junctions, and secondary nodes Q -
captured along roads at varying intervals. This significant
increase in data density greatly increases the precision upper
bound. Figure 2 shows a section of this graph representation
of Manhattan.

We represent each region in the dataset i ∈
{Manhattan, ...} as a separate graph Gi = (N,Q,E)
with primary nodes Ni = {n1, n2, ..., nN}, secondary nodes
Qi = {q1, q2, ..., qQ}, edges Ei = {e1,2, e1,3, ..., eE}. Edges
ea,b represent roads connecting primary nodes a and b. Each
node in both classes has attributes - {Isat, Istreet, L,Ψ, B},
containing a panoramic streetview image and a satellite
image - both RGB: Ij ∈ R3×W×H , j ∈ {street, sat},
location L = {ϕ, λ} consists of geographical latitude and
longitude coordinates, Ψ ∈ R : {−180° ≤ Ψ ≤ 180°} is
the north-aligned camera yaw, and B = {β1, ..., βK} are

Fig. 2. Section of Manhattan graph with primary (orange) and secondary
(blue) nodes displayed. Most edges have a constant yaw, motivating the
utilisation of a compass.

north-aligned bearings to K neighbouring nodes - where
β ∈ R : {−180° ≤ β ≤ 180°}.

We limit the streetview image’s (Istreet) Field-of-View
(FOV) to increase the technique’s feasibility as a large propor-
tion of existing vehicles possess monocular cameras. Cameras
are assumed to be fixed to the vehicle in a forward-facing con-
figuration. We experiment with FOVs, Θ ∈ {70°, 90°, 120°}.

B. PEnG Procedure
Our proposed technique, PEnG, operates in two stages util-

ising multiple views, described in Figure 3: initially estimating
candidate primary nodes with graph-based CVGL (shown on
the left-hand side) before performing RPE relative to the
secondary nodes present along each candidate edge until a
threshold is met, or all candidate edges have been processed.
The main purpose of the first stage is to reduce the number of
reference images when performing relative pose estimation.
This enables city-scale pose estimation as without it, pose
estimation takes orders of magnitude longer.

1) Graph-Based Cross-View Geo-Localisation: We per-
form CVGL following the standard procedure as used within
previous works [18, 22, 16]. We implement a siamese-like
network of CNN feature extractors f with no weight sharing.
The network is parametrised by θ to produce similar embed-
dings ηt from corresponding streetview-satellite image pairs.
Creating a database of reference embeddings offline, querying
this database for retrievals during online operation.

ηt = fθ (It) , t ∈ {street, sat} (1)

In the first stage, CVGL retrievals are performed on primary
nodes Ni to provide efficient and accurate initial filtering.
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Fig. 3. Overview of PEnG MVGL technique. Features are extracted and sorted by cross-view Euclidean distance. Stage 1 determines a scaled distribution
of CVGL retrievals from only primary nodes, determining secondary nodes with a threshold. Stage 2 executes through edges consecutively until an error
threshold is met or completion. This stage has two sections: an initial estimate of position along edge to determine adjacent reference images before refining
the pose estimate against these. The pose error is the MSE between the estimate and the edge’s median pose.

Fig. 4. Example primary node (road junction) cross-view image pairs. Left-
hand side shows 90° crops from panoramas and the right-hand side shows
aerial images at zoom 20.

Retrieved embeddings are ordered by descending similarity
with the query. They are then min-max scaled, M, giving a
confidence score ci for each candidate node—concluding this
stage.

ci =M
(

ηqueryi · ηref

∥ηqueryi ∥∥ηref∥

)
(2)

Candidate nodes, Ck, are passed to the second stage depending
on the confidence threshold θc, and maximum number of
candidates k.

Ck = {ci|ci > θc or i < k} (3)

2) Pose Refinement: For each candidate node, c, we select
that candidate’s connected edges, Ec = {ei,j |i = c or j = c}.
We then filter these edges by matching the compass heading
and the edge’s yaw within the graph. For every remaining
candidate edge, we then perform RPE in two stages: first
estimating a coarse position of the query image along an edge
before refining this relative to the two neighbouring reference
secondary nodes. The calculation of median edge rotational
pose is displayed in Figure 5.

Inspired by [14], we determine the relative pose of query
images against each candidate edge’s secondary node, before
combining the poses across the entire edge. For each image
pair along an edge I1 & I2, we determine the set of cross-
image pixel correspondences. We then use a transformer
network based on Mast3r [14] to predict 3D pointmaps in
real-time as needed, X1,1, X1,2, from 2D points xi between
these images, expressed in the coordinate frame of I1. The
pointmaps are then compared X1,1 ←→ X1,2, computing
the relative poses with RANSAC & PnP [33] expressed in
equations 4 and 5.

The objective of PnP is to minimise the reprojection error
between the 3D points and their corresponding 2D image
projections:

xi = K(RXi + t) (4)

Where xi is the projected 2D point, Xi is the 3D world point,
K is the estimated camera intrinsic matrix, R & t are the
rotation and translation matrices. RANSAC randomly samples
4 points for PnP, optimising to estimate R and t.

We compute reprojection error ei = ||xi −K(RXi + T )||,
rejecting outliers based on a predefined threshold ϵ. We then
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Fig. 5. Pose estimates within each candidate edge are scored by their 3-
axis Euclidean distance with the mean rotational pose of the secondary
nodes. This is possible due to the known orientations of edges within graph
representations. N denotes the maximum number of RANSAC iterations in
the pose estimation.

maximise the number of inliers ei ≤ ϵ to achieve the best pose
estimate (R∗, t∗):

(R∗, t∗) = argmax
R,t

∑
i

1(ei ≤ ϵ) (5)

where (ei ≤ ϵ) is the indicator function - equals 1 if ei is
less than or equal to a predefined threshold ϵ, 0 otherwise.

Precomputation - All reference poses, P r, are estimated
prior to system operation, calculating a median 3-DoF rota-
tional matrix for each edge ζEr . As this is a preprocessing
step, a larger number of iterations, N , are used compared to
during inference. These pre-determined poses then initialise
optimisation processes during operation, reducing the required
number of iterations - leading to lower operating times without
effecting performance.

Operation - Algorithm 1 is executed for each query image,
until thresholds such as Maximum Rotational Error θre or No.
Candidate Nodes θn are achieved. Rotational error Rerr is the
3-DoF summed Euclidean distance between the query rotation
RQ and the median edge rotation ζEr . This is calculated with
an [X,Y, Z] axis weighting of [1, 0.25, 1] as roll has a smaller
impact on performance. Where a query has multiple pose
estimations and an L2 distance threshold has not been met,
each pose is given a confidence score - rotational errors are
summed and min-max scaled to between 0 & 1.

Algorithm 1 PEnG Algorithm
Require: Graph G = (N,Q,E), Reference Primary Node

Database ηsatN , Query and Reference images IstreetQ IsatR ,
Thresholds θx ∈ {θpe, θn, ...}, Reference Poses ζEr

Ensure: RQ

1: Stage 1 - CVGL
2: ηstreet = fθ(I

street)

3: S = N
((∑

k η
ref
ik ηqueryk )

)
4:
5: Stage 2 - Pose Estimation
6: i = 0
7: while thres(Rerr ≤ θx) do

Ecand = filter(N(Si),Ψ)
Ipairs = exhaustive(Ecand + Istreet)
tp = RPEposition(I

pairs)
(Ri, ti) = RPEpose(I

tp−1 , Itp+1)
Ri

err = simeuc(R
i, Ecand)

i = i+ 1

8:
9: return Absolute Pose Estimations RQ

Confidence scores from both stages are considered to deter-
mine a final pose estimation, calculated by scaling the relative
poses to between the edge’s ground truth limits.

IV. Results
A. Datasets

The feature extractors for both PEnG and previous works
are trained with the CVUSA dataset [34], cropping streetview
images to various FOVs, portraying front-facing road-aligned
monocular images. This dataset contains 35, 532 streetview-
satellite training pairs and 8, 884 validation pairs. CVUSA
satellite images have a resolution of 750× 750 and streetview
panoramas of 1232×224, both north-aligned. We evaluate with
the StreetLearn Manhattan dataset [1]. Example image pairs
are shown in Figure 4. Manhattan is selected for evaluation as
it qualifies as an urban canyon - an environment category that
often experiences GNSS failure. The city’s data are converted
from unconnected images into a graph representation. This
contains 53, 289 images, comprising 2, 622 primary nodes
and 50, 667 secondary nodes. The graph covers approximately
31.6km2. Satellite images are north-aligned with a resolution
of 0.20metres/pixel covering 50m2 (some images may have
been captured from drones and other aerial image sources).
Streetview images are yaw-aligned panoramas with a resolu-
tion of 1664× 832. The median distance between the primary
nodes is 116m, and the median distance between adjacent
secondary nodes is 9.83m. As both training and evaluation
datasets contain yaw values at image capture, we can produce
limited-FOV front-facing crops, emulating a monocular cam-
era - our expected input for real-world CVGL application for
autonomous vehicles.

B. Implementation Details
Image features are extracted with a ConvNext-T [35] pre-

trained on ImageNet-1K [36], producing 768-dimension em-
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Fig. 6. Cumulative Distribution Functions show the significant decrease in distance error achieved with PEnG. Some works are non-zero at x = 0 as there
is 0m error when they correctly retrieve the corresponding correct satellite image.

beddings. When evaluating against SpaGBOL [28] we in-
stead use their trained feature extractor - a combination of
a ConvNext-T CNN with a GraphSage GNN, generating low-
dimensional vector representations. We perform this second
evaluation with randomly sampled depth-first walks from the
graph. We filter candidate edges by emulating a compass
alongside the query, discarding incompatible graph edges. This
is possible due to the graph representation - with known
orientations between the primary node and it’s connected
edges.

All existing CVGL baselines are also augmented with this
compass filtering technique to ensure a balanced assessment.
The pointsmap extraction transformer is trained with the
InfoNCE loss and a simple mean distance loss function for
35 epochs. We use a median pose error threshold of 3°,
halting execution if a match is found with a weighted Eu-
clidean distance below this. In the rare case that all edge
pose estimates have an error larger than this threshold, the
estimate with lowest error is selected. The feature extractor is
trained with FOVs ∈ {70°, 90°, 120°} for 50 epochs using an
AdamW optimiser with an initial learning rate of 1e− 4 and
a ReduceLROnPlateau scheduler. The preset poses stored for
reference points are calculated offline with a learning rate of
0.1 and 400 iterations, which are refined when online with a
learning rate of 0.1 and 100 iterations.

C. Ablation Study
To verify the contribution of each constituent in the pro-

posed system, we display an ablation study in Table I. CVGL
shows the performance of the simple ConvNeXt-T feature
extractor, evaluated in the same method as previous works
- filtering by primary nodes initially to reduce the reference
set. 1 Pose performs pose estimation against an entire edge’s
reference images, determining a relative 2-DoF pose between
primary nodes. 2 Pose follows 1 Pose with a refined pose

TABLE I
Ablation Study

Config Med (m) Top-1m Top-5m Top-25m
CVGL 961 6.06 6.94 9.27
1 Pose 32.12 7.02 25.45 45.12
2 Pose 28.94 7.31 26.41 47.91

Pose Priors 22.77 9.12 29.18 51.37
Evaluated with 90° Crops

estimation relative to the 2 adjacent reference secondary nodes,
determined in the first pose estimation step - this enables a
high precision final estimate. Pose Priors is the addition of
estimating the pose of all secondary nodes prior to querying,
increasing the accuracy of reference poses and offloading a
portion of computation to an offline stage.

The ablation shows the vast decrease in median distance
error achieved by combining these two localisation techniques,
the median error decreases by an order of magnitude. Having
a pose refinement stage after the initial position estimation
further decreases median error by ≈ 3m. Finally, estimating
reference poses prior to operation increased accuracy relatively
by ≈ 10%.

D. Evaluation

We evaluate with distance-based Top-K accuracy, displaying
Euclidean distance errors as Cumulative Distribution Function
(CDF) plots in Figure 6. Table II shows these in discretised
metrics, defining estimates as successful if they are within K-
metres of the ground truth. All works follow the 2-stage pro-
cess of CVGL within the primary node set before estimating
position within the secondary node set. To demonstrate the
generality of the PEnG approach we present results with both
a traditional retrieval first stage, PEnG, and a graph-based first
stage, PEnG*.
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TABLE II
Evaluation

Model Type Med (m) Top-1m Top-5m Top-25m
FOV 70°

L2LTR [37] CVGL 826 6.48 7.55 10.03
GeoDTR+ [26] CVGL 903 5.19 6.03 8.47

Sample4Geo [27] CVGL 897 6.79 7.78 10.41
Beyond [29] FG 999 0.00 0.53 8.96
CCVPE [38] FG 843 0.08 0.50 12.36

PEnG MVGL 26.82 7.25 27.43 49.01
SpaGBOL [28] GB 634 6.37 7.70 10.56

PEnG* MVGL 29.31 6.86 26.16 47.75
FOV 90°

L2LTR [37] CVGL 750 6.64 8.01 10.64
GeoDTR+ [26] CVGL 854 6.06 7.25 9.80

Sample4Geo [27] CVGL 734 8.35 9.31 12.43
Beyond [29] FG 1032 0.00 0.34 9.34
CCVPE [38] FG 941 0.11 0.65 11.14

PEnG MVGL 22.77 9.12 29.18 51.37
SpaGBOL [28] GB 529 6.33 7.25 9.69

PEnG* MVGL 34.91 7.17 25.10 47.29
FOV 120°

L2LTR [37] CVGL 732 7.82 9.19 12.05
GeoDTR+ [26] CVGL 893 6.75 7.63 10.60

Sample4Geo [27] CVGL 703 9.50 10.68 14.42
Beyond [29] FG 977 0.04 0.46 8.05
CCVPE [38] FG 979 0.00 0.76 11.94

PEnG MVGL 37.72 4.04 21.21 44.93
SpaGBOL [28] GB 501 6.90 7.86 10.14

PEnG* MVGL 45.46 3.36 22.04 44.24
Stage 1 threshold = 0.9. Best CVGL result in bold, best graph-based
result in italic. CVGL denotes cross-view geo-localisation works, FG
shows fine-grained cvgl works, and MVGL denotes multi-view geo-
localisation.

To ensure a fair comparison when evaluating our two-stage
technique against previous CVGL works, we adopt the two-
stage retrieval approach to assist these prior works. We fist run
the first CVGL stage, selecting the final estimate by running
the CVGL system again on the collection of secondary nodes
and choosing the most similar retrieved secondary node. For
previous works, we retain the ground truth corresponding
satellite image, as seen in Figure 6, where the distributions
do not start from 0. In real-world applications, this would
be infeasible since the reference set cannot contain precisely
geographically aligned ground truth satellite images. However,
this approach provides a stronger baseline for comparison.
For fine-grained CVGL methods, we first applied our CVGL
network in the initial stage, followed by their pose estimation
techniques for the selected secondary nodes. The final estimate
is the one with the lowest error to the median pose, consistent
with the PEnG technique.

The evaluation shows that our proposal achieves signif-
icant improvements over current SOTA. With 90° images,
we achieve a 96.90%% reduction in median error, and an
approximate 213%% increase in Top-5m accuracy. We note
that using 90° FOV images achieves a relative decrease in
the median error of ≈ 4m compared to 70°. This is due to
the increase in information available to each stage. However,
further increasing the FOV to 120° yields a decrease in
localisation precision. This may be caused by the input image
dimensionality limitation of our model - due to the backbone
pre-training, the maximum image resolution for the system is
512× 384, placing an upper bound on how much information
can pass through the system. Another hindrance is experienced

from extracting perspective images from a 360° panorama.
When increasing the horizontal FOV beyond 90°, these crops
begin to display visibly distortion.

Within the discretised Top-Km metrics, PEnG performs
slightly worse than previous works where K < 5 due to the
inherent zero error bias in existing CVGL works. As K reaches
25m, performance is significantly higher across Fields-of-
View (FOVs). As precisely centred ground-truth corresponding
satellite images are known for each query streetview image
in CVGL, they tend to perform unrealistically well with
these Top-K metrics. This peculiarity of previous evaluation
protocols is visible in Figure 6 where at x = 0, previous works
start from a non-zero values.

V. Conclusion & Future Work
A. Conclusion

We successfully propose and demonstrate the utility of
combining graph-representations, CVGL, and relative pose
estimation techniques. This ensemble is proven to be a vi-
able strategy for progressing CVGL within a large city-scale
environment towards practicality, reducing median distance
errors from hundreds of metres down to often centimetre
level accuracy. PEnG achieves SOTA localisation precision
when evaluated within the Manhattan region of 36.1km2,
reducing the median error from Sample4Geo’s previous best of
734m down to 22.77m when operating with 90° FOV. In our
ablation studies, we thoroughly demonstrate the significance
of each portion of the 2-stage architecture, validating that
the combination results in the maximum precision possible
for PEnG. We release code for converting the StreetLearn
dataset into the graph representation outlined above, along with
PEnG technique’s code and corresponding pretrained weights,
enabling future works to build upon the technique and further
evaluate this ensemble.

B. Future Work
There are various limitations within the work and several

aspects which can be optimised to advance the field towards
real-world application. Firstly, storage requirements of PEnG
place a limitation on the system, more so than previous CVGL
system designs. However, as physical size and cost of storage
reduces tremendously over recent years, with 1TB MicroSD’s
available for less than £100, PEnG may be applied across
dense urban centres, potentially selecting which city represen-
tation with GPS, before communication becomes unreliable
inside the urban canyon, and switching to PEnG. Secondly,
the significant viewpoint disparity in CVGL means that the
performance of the first stage constrains the potential precision
of the second stage. A more probabilistic fusion approach
could help mitigate this limitation.
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