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Abstract
Motion estimation algorithms are typically based upon the assumption of brightness

constancy or related assumptions such as gradient constancy. This manuscript evaluates
several common cost functions from the motion estimation literature, which embody
these assumptions. We demonstrate that such assumptions break for real world data, and
the functions are therefore unsuitable. We propose a simple solution, which significantly
increases the discriminatory ability of the metric, by learning a nonlinear relationship us-
ing techniques from machine learning. Furthermore, we demonstrate how context and a
nonlinear combination of metrics, can provide additional gains, and demonstrating a 44%
improvement in the performance of a state of the art scene flow estimation technique. In
addition, smaller gains of 20% are demonstrated in optical flow estimation tasks.

1 Introduction
Scene flow is the 3D counterpart to optical flow, describing the 3D motion field of a scene,
independent of the cameras which view it. This paper presents a simple solution to one of the
fundamental limitations in scene flow estimation, that of non-conformity to the underlying
assumption of brightness constancy. Motion estimation is a fundamental tool in computer
vision. Its 2D variant (optical flow) has long been studied, with multiple variants included
in most vision libraries. It forms the basis or pre-processing step for many other algorithms.
Estimation of scene flow is likely to become equally important in the future, given the rise
of commercial depth sensors and 3D broadcast footage.

However, dense motion estimation is difficult. It is well known that there are many sit-
uations in which the brightness constancy and related assumptions are invalid [33]. These
include non-Lambertian surfaces, occlusions, non uniform lighting and moving light sources.
Optical flow estimation attempts to mitigate these issues using separate subsystems (such as
occlusion estimation [30] and non local filtering [38]) to detect and ignore certain classes of
artifacts. However, optical flow has the fundamental advantage that when estimating the mo-
tion between frames, both images come from the same sensor. In scene flow estimation these
issues are exacerbated by the use of multiple sensors, with different response characteristics.

In this paper, an in depth analysis of many commonly employed motion estimation met-
rics is performed. A new “Intelligent Cost Function” (ICF) is then proposed, employing
machine learning techniques, and providing improved robustness. These Intelligent Cost
Functions (ICFs) are shown to provide performance gains of 44% in a state of the art scene
flow framework. This is possible, as the metric learns to penalize brightness inconsistencies
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which are indicative of motion estimation errors, while being less sensitive to scene artifacts
such as specularities.

2 Related Work
Motion estimation techniques can generally be separated into 3 categories. The first is local
approaches [18, 20, 42], inspired by the work of Lucas and Kanade [22], which estimate
motion independently at each point, making use of local contextual information. Gener-
ally in such approaches, a patch from the source image(s) is matched with a patch from the
target image(s), often with an intermediate warping step. This warping accounts for patch
deformations, due to motions which are not fronto-parallel. Such techniques are particularly
suitable for sparse motion estimation tasks, such as tracking a subset of salient points. How-
ever, local approaches provide poor performance in areas of the scene with little texture, as
there is insufficient contextual information to obtain a unique match. The second, and ar-
guably more common, category of motion estimation techniques are variational approaches
[6, 17, 27, 36], inspired by the work of Horn and Schunck [16]. These techniques perform a
global optimization for the motion across the entire scene, with regularization based on the
total variation within the estimate. As a result, such techniques are well suited to dense mo-
tion estimation tasks, and are able to “fill in” the motion in untextured regions, by smoothly
interpolating from the boundaries, so as to minimize the total variation. The third paradigm
in motion estimation is sampling based approaches, which are most frequently encountered
in the scene flow estimation literature [5, 14, 29, 37] due to the computational complexity of
variational approaches in the higher dimensional 3D estimation task. Unlike local and vari-
ational approaches, such schemes generally do not involve an optimization stage in order to
move along the motion field energy surface. Instead the energy surface is densely sampled
and a subset of consistent samples extracted.

One element is common to all these approaches, the encoding of constancy assumptions
within a validity metric. Depending on the motion estimation scheme, these metrics serve
to either guide energy minimization (locally or globally) or to identify samples which are
valid. There has been a rich history in the field of optical flow estimation, exploring var-
ious assumptions and related metrics. However, very little such work has been done for
scene flow, involving multiple sensors. The developments of optical flow metrics began with
a number of simple re-formulations of the initial quadratic cost of [16], including the l1
norm and robust variants such as the Charbonnier function [8, 9, 39] and the Gaussian Scale
Mixture model of Sun et al. [33]. Brox et al. then proposed supplementing the brightness
constancy assumption with gradient constancy [8], while Xu et al. utilize one of these two
assumptions on a per pixel basis [41]. Kim et al. [19] learn a cost function based on the
weighted combination of other standard cost function, while Sun et al. extended this idea
to response constancy, for a small number of 3× 3 linear filters [33]. One major limitation
of these previous works (highlighted in section 3) is that analysis is limited to visual error
statistics of true motion fields (i.e. modelling of scene artifacts). No analysis is performed
on the behaviour of these statistics, when the motion field is incorrectly estimated (which in
practice is when the matching metrics are most needed). Intuitively, this accurate modelling
of ground truth visual consistency ensures that correct motion fields are always recognised
as such (reducing “False negatives”), but it tells us nothing about the metrics ability to reject
erroneous motion fields (“False positives”). This is likely due to the decreased severity of
the issue in traditional optical flow scenarios, where sensor responses are at least consistent.

There has been much work focused on mitigating, rather than addressing, the shortcom-
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ings of these existing data matching metrics. Aodha et al. [24] developed an approach to
recognise the most vital areas to employ these mitigation techniques, The most common of
which are multi-scale coarse-to-fine estimation and iterative warping schemes [1, 8, 13, 17].
These are designed to avoid the local minima that are ubiquitous due to the extreme non-
convexity of the energy surfaces. In addition, “structure-texture decomposition” [2, 25, 35,
39] approaches have been developed, in order to remove scene artifacts such as specular-
ities and shadows. In contrast, Haussecker et al. attempted to explicitly model brightness
changes during estimation [15]. In section 5.2 we show that these mitigation techniques can
be complementary to the more robust ICFs.

The remainder of this paper is structured as follows. In section 3 the properties of a num-
ber of previously proposed motion estimation metrics are examined. Based on these observa-
tions, section 4 introduces and then analyses ICFs, exploiting machine learning techniques.
Finally section 5 examines how the use of these robust metrics affects the performance of
existing motion estimation techniques.

3 Matching Metrics
In order to discuss a range of different motion estimation metrics in the same framework,
some notation must be introduced. Assuming that a collection of M sensors produces image
streams III1..M , the pair of pixel positions from one camera associated with a particular motion
vector, is defined as Γm. If each sensor has an associated projection function ΠΠΠ1...M then the
pair of pixel positions from sensor m, which support a 3D motion vector vvv = (u,v,w) at 3D
location rrr = (x,y,z), is defined as

Γm = {(ΠΠΠm (rrr) , t) ,(ΠΠΠm (rrr+ vvv) , t +1)} . (1)

In other words, the pixels supporting the motion, are those obtained by projecting its start
point to every sensor at time t, and by projecting its end point to every sensor at time t +1 as
shown in figure 1.

Figure 1: The two supporting pixel positions in two consecutive frames from a single camera.

Given the pairs of supporting pixel locations Γ1..m from each sensor, the set of associated
pixel values Φ is obtained by indexing the relevant images

Φ = {IIIm(lll) | lll ∈ Γm∀m} . (2)

The sets of supporting pixel locations (Γ) and values (Φ), allow us to begin defining the
metrics under consideration. The simplest metric used to determine the validity of a motion,
is to calculate the deviation from brightness constancy according to some norm. Many such
approaches exist, using the l1 norm [27], the l2 norm [4, 8, 17, 18, 26, 35] or their various

Citation
Citation
{Macprotect unhbox voidb@x penalty @M  {}Aodha, Humayun, Pollefeys, and Brostow} 2013

Citation
Citation
{Anandan} 1989

Citation
Citation
{Brox, Bruhn, Papenberg, and Weickert} 2004

Citation
Citation
{Hadfield and Bowden} 2012

Citation
Citation
{Huguet and Devernay} 2007

Citation
Citation
{Aujol, Gilboa, Chan, and Osher} 2006

Citation
Citation
{Meyer} 2001

Citation
Citation
{Trobin, Pock, Cremers, and Bischof} 2008

Citation
Citation
{Wedel, Pock, Zach, Bischof, and Cremers} 2009

Citation
Citation
{Haussecker and Fleet} 2001

Citation
Citation
{Rabe, Müller, Wedel, and Franke} 2010

Citation
Citation
{Basha, Moses, and Kiryati} 2010

Citation
Citation
{Brox, Bruhn, Papenberg, and Weickert} 2004

Citation
Citation
{Huguet and Devernay} 2007

Citation
Citation
{Isard and MacCormick} 2006

Citation
Citation
{Papenberg, Bruhn, Brox, Didas, and Weickert} 2006

Citation
Citation
{Trobin, Pock, Cremers, and Bischof} 2008



4 HADFIELD, BOWDEN: INTELLIGENT COST FUNCTIONS

robust approximations such as the Charbonnier function [34, 39]. In our experiments we
found that the specifics of the norm make little difference. As such, for conciseness we
represent this class of cost functions in the paper as

SQ(Φ) = ∑
c∈Φ
|c− c̄|2, (3)

where c̄ is the mean value of the supporting pixels (Φ). This is the equivalent of calculating
the appearance variance across all the observations. See the supplementary material1 for full
results of all metrics using different norms.

Note that these metrics may be applied to RGB data, as well as greyscale, by creating a
separate set of supporting pixel values Φc for each input channel. This leads to a metric based
on the colour constancy assumption. In a similar vein, the input images may be replaced by
gradient images, leading to a set of supporting gradient values Φg, and associated metric

SQg (Φg) = ∑
cg∈Φg

|cg− c̄g|2, (4)

based on the Gradient Constancy Assumption [8, 17, 26].
A slightly more complex metric, which is commonly used, is the so called “optical flow

constraint” OFC [7, 10, 21, 23, 32]. The formulation of this metric is slightly different,
supporting pixels from time t +1 are not used directly. Instead they serve to create temporal
gradient image IIIt which is used in combination with the spatial gradient images IIIx and IIIy

OFC(Γ) =
M
∑

m=1
∑

lll∈Γm

{
0 if t +1 ∈ lll
IIIt (lll)+uIIIx(lll)+ vIIIy(lll) otherwise .

(5)

This metric equates to a linearised Taylor expansion of the brightness constancy assumption
(i.e. dropping terms of quadratic or higher power).

Distinguishing truth from errors
An ideal metric should provide a low cost for true motions and a high cost for incorrect mo-
tions. Indeed, ideally the cost should continuously decay as the error decreases. Figure 2(a)
shows the probability density function of responses for such an ideal metric, when applied to
a true, and highly erroneous motion field. In this ideal case the true motion field registers no
violation in the underlying constancy assumption (i.e. the PDF contains all responses at 0.),
while the incorrect motions strongly violate the assumption, leading to a PDF concentrated
at 1. Note that the responses are normalized between 0 and 1. The remainder of figure 2 il-
lustrates the actual response distributions found for each of the previously discussed metrics,
when applied to ground truth and high error motion fields from the Middlebury dataset [31].
For conciseness, this paper only presents results where the erroneous motion fields are cre-
ated by motion magnitude (i.e. End-Point) errors. Preliminary testing indicated that the
metrics exhibit similar behaviour under directional errors.

These results tell an unfortunate story. Most ground truth motions are assigned to the
lower 20% of the responses, with the occlusion and specularity effects seen previously being
the minority. However, similar responses are produced, even for the significantly erroneous
motions. Indeed the linearised brightness constancy metric OFC shows an 80% overlap

1personal.ee.surrey.ac.uk/Personal/S.Hadfield/icf.html
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(a) Ideal (b) SQ (c) OFC

(d) SQg (e) OFCg

Figure 2: Left: an ideal response PDF for ground truth and error motion fields. Right: the actual distribution of
responses for various motion estimation metrics, applied to the ground truth and error motion fields of a real scene.
Responses are normalized in the range 0 to 1.

between the two PDFs. For the gradient based metric SQg the erroneous motions distribution
is a heavier tailed version of the ground truth distribution. The best separation occurs for
the simple brightness constancy metric SQ, however performance is still quite poor, given
the large error under consideration. The overlap in the response distributions tells us that
most erroneous motions are indistinguishable, from cases where the scene does not obey
the constancy assumption (due to specularities, directional lighting etc). Thus, attempting
to minimize the metric response across the scene, results in almost as many correct motions
being discarded, as incorrect.

As mentioned earlier, we would ideally like the metric to provide a smoothly increasing
cost as the amount of error in the estimated motion increases. In figure 3 we show the
response of the metrics averaged over the whole scene as the amount of motion error is
varied. In other words the graphs illustrate how the center of mass of the PDFs from figure 2
change as we gradually move from the Erroneous to True motion field. On the x axis, a
position of 1 relates to the True motion field, while 0 relates to sever underestimation (i.e.
no motion), and 2 to severe over-estimation. It is useful to examine this behaviour, as the
optimization schemes used during motion estimation often rely on the gradient of the metric
response in order to locate minima (assuming that this also relates to a reduction in the
motion error).

The brightness constancy scheme SQ does display a general trend of reduced violation
towards the true motion, despite the significant overlap seen previously. In contrast, the lin-
earised brightness constancy constraint OFC always favours smaller motions, and on average
little tendency towards the correct motion. This demonstrates why multi-scale approaches
are so commonly employed, as an attempt to coerce the metric, into allowing larger flows.
The Gradient constancy metric SQg also performs poorly, with all motions more than 10%
different to the ground truth, producing roughly the same response. Thus, when such a met-
ric is employed for motion estimation, convergence occurs extremely slowly, if at all, unless
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Figure 3: A plot of assumption violation against motion noise for various metrics, including an “Ideal” metric.
Violation is averaged across the scene, while varying the motion error from underestimated (0) to overestimated (2).

the initialization is very close to the true value.

4 Intelligent Cost Functions
The previously discussed motion estimation metrics, propose either a simple linear or quadratic
relationship, between the deviation from appearance constancy, and the “quality” of the
match. However, it has been shown that many deviations occur due to the properties of
the scene, without necessarily reflecting errors in the input motion. These metrics do not
take into account any of these “acceptable” inconsistencies, and are thus unable to differen-
tiate motion errors from scene artifacts. To address this issue, the use of machine learning
techniques is proposed, to find an intelligent matching criteria, of unconstrained form, which
is robust to the appearance inconsistencies of real data, and sensitive to inconsistencies due
to motion errors. This matching criteria is represented as ρ (vvv|F), a function of the input
motion given some features F extracted from the supporting pixels Γ.

Learning such a nonlinear function, allows the metric to embody more complex be-
haviours. As an example, it may be expected that in very light or dark parts of the scene,
image contrast would be reduced. In this case, little variation may be expected naturally,
and any appearance deviations may be more significant. Such behaviour would serve to
flatten the exaggerated responses observed in underexposed regions. Alternatively, specular
effects may cause a large change in appearance across all colour channels, while a change in
appearance for only one channel is more likely to relate to an erroneous motion.

In this paper, a Gaussian Process (GP) [28] is employed to model the relationship be-
tween the input features and the level of motion error. The GP provides a non-parametric
means of fitting complex data, estimating a distribution across the infinite set of possible cost
functions. For all analysis in this and the following section, the GP model used an exponen-
tial kernel and was trained using 500,000 samples randomly extracted from a training set of
scene flow sequences [31], with testing performed on unseen sequences.

A range of different approaches to encoding visual information into the features F were
explored. The simple “baseline” approach referred to as Fvar contains only a single element,
which is equivalent to the output of the squared differences metric SQ from equation (3) (i.e.
the variance of the appearance)

Fvar (Φ) =

{
1
|Φ| ∑

c∈Φ
|c− c̄|2

}
. (6)

The second approach is to take the distance of each pixel value from the mean value,

Fdi f (Φ) = {|c− c̄| : c ∈Φ} , (7)
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Figure 4: Distribution of responses for various ICFs, applied to ground truth and erroneous motions.
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Figure 5: The distribution of responses for ICFs including contextual information.

which is equivalent to the input squared difference metric SQ. The third possibility consid-
ered, is allowing the ICF to learn directly from the raw pixel values

Fpix (Φ) = Φ. (8)

Figure 4 shows the performance of ICFs, based on these various input encodings. Again,
these results are also provided for a range of additional sequences as supplementary material,
demonstrating the generality of these findings across different types of scene. Note that
supplementary material results on KITTI [12] sequences are trained on greyscale versions of
the Middlebury sequences [31], showing generality across significantly different domains.

Using the Fvar features (i.e. learning a nonlinear mapping of the SQ metric), little addi-
tional separation is obtained between the classes. However, in the case of Fdi f encoding, the
ICF is able to exploit richer input features to greatly improve separation. This is due to it’s
ability to consider nonlinear combinations of inputs, rather than a simple remapping.

The raw Fpix encoding doesn’t allow ICFs to distinguish motions as well as Fdi f despite
theoretically including richer information. This is perhaps unsurprising, as the machine
learning within the ICF assumes independence of features, while in Fpix, most information
is contained within the correlation between features. To illustrate this point, note that for a
true motion, every difference feature Fdi f should be low, and may be examined in isolation.
However, for a true motion, the pixel features Fpix may take any value, as long as all features
relating to one colour channel are the same.

All 3 encoding schemes lead to learned metrics which display a reduction in the effect
of outliers. In the original metrics of section 3, the vast majority of motions (both true and
erroneous) fell within the bottom 20% of the response range, while the remaining 80% was
populated by a very small number of outliers. Even the Fvar based ICF offers this outlier
reduction, despite having little effect on class separation.

Local context
In addition to allowing complex nonlinear combinations of the information from supporting
pixels, it is trivial to include higher level information in an ICF. As an example, features
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Figure 6: Average response of ICFs with and without context information, against varying levels of motion error.
The best standard metric (SQ) is shown for comparison. Also shown is a rescaled version of SQ having a similar
area under curve (equivalent of ignoring the top 75% of outliers).

based on local context may be included, such as the local image contrast around each sup-
porting pixel (Fpv), which may be useful to distinguish motions at boundaries from motions
within objects. The local mean (Fpm) may also encode useful information about the lighting
around the supporting pixels, equivalent to a more robust version of the information present
in Fpix. We also evaluate (Fph) a coarse histogram of local intensities around each supporting
pixel. This encompasses both the other contextual features, and some additional information.

For our experiments we use a 7×7 window for local context features. Note that all these
contextual features are more general than direct “patch matching” techniques employed in
local motion estimation algorithms. The contextual information encoded here avoids spatial
information (i.e. no one-to-one correspondence is assumed between the pixels in the context
region). However, ICFs may also be employed within such schemes, by replacing the pixel-
wise comparison measure.

As can be seen in figure 5, the inclusion of the local variance feature Fpv provides little
benefit. This implies that knowing if the motion is on an object boundary is not useful when
determining its validity. The simplest contextual features Fpm, which are also the fastest to
compute, actually proves to be the most valuable. The peak of the “true motion” PDF is
closer to 0 deviation than for any other metric, while maintaining a similar overlap region.
The more complex local histogram features Fph actually prove slightly worse than both the
simpler methods for contextual encoding. It is likely that the larger number of features make
it difficult to determine the optimal costing function.

Figure 6 shows the average response of the learned metrics, across the scene, for varying
levels of motion error. The slope of the response is far greater than even the original bright-
ness constancy metrics. This suggests that ICFs will lead to much more rapid convergence
in optimization based motion estimation, in addition to the expected gains in accuracy. We
also show a rescaled version of the best brightness constancy metric, to bring the area under
the curve into the same range as the ICFs. This is the equivalent of dropping the top 75%
of outliers from the SQ metric (points with exceptionally high response), and using only the
lower regions of the response PDF for calculating the center of mass. We can see that this
artificially rescaled metric has a slope somewhat better than the standard ICFs, and roughly
the same as the context based ICFs. This re-affirms our earlier observation that ICFs provide
excellent robustness to outliers.

5 Motion Estimation with ICFs
The previous analysis has shown that standard motion estimation cost functions have some
significant flaws on real data, and that greater robustness may be obtained via ICFs. However,
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most motion estimation techniques already contain mechanisms such as multiscale estima-
tion and iterative warping, designed to mitigate the inadequacies of standard cost functions.
As such, it is important to examine whether the use of ICFs does in fact translate to more
accurate motion estimates.

5.1 Scene Flow Estimation with ICFs
To this end, a recent, publicly available, algorithm for scene flow estimation [14] (based on
the SQ cost function) is modified to exploit ICFs. For consistency, the resulting system is
evaluated using the procedure of [14], averaging performance across all pixels (including the
occlusion mask) in terms of the angular error (εae), the within plane motion error (εo f ), the
out of plane motion error (εs f ), and the structural reconstruction error (εst ). Results below
are averaged over all sequences from the Middlebury dataset in [14].

The results display similar characteristics to those observed earlier in the paper. This
demonstrates that there are significant gains to be made by employing ICFs, even in ex-
isting techniques which already account for the limitations of their cost function. Fvar of-
fers marginal improvement over the original formulation, confirming that a simple nonlinear
mapping is insufficient for this more complex task. The other ICFs all provide some degree
of performance gain, with the difference features providing the best individual performance.
Contextual information also seems to help with Fdi f +Fpm providing a 44% improvement
in magnitude accuracy, and 20% improvement in directional accuracy, coupled with a 30%
reduction in structural error.

The runtime using each of the metrics is also listed. The additional cost of querying the
ICFs proves inconsequential, and the simple feature encoding schemes such as Fpix actually
prove faster than the original formulation.

Metric Mode εo f εs f εst εae Runtime (secs)

SQ [14] Multiview 0.173 0.010 1.52 1.66 352
Fvar Multiview 0.164 0.021 1.53 1.63 389
Fdi f Multiview 0.111 0.009 1.04 1.41 363
Fpix Multiview 0.142 0.012 1.17 1.47 340

Fdi f + Fpv Multiview 0.100 0.005 1.10 1.50 440
Fdi f + Fph Multiview 0.134 0.008 1.14 1.59 560
Fdi f + Fpm Multiview 0.098 0.014 1.06 1.23 430

Table 1: Performance for scene flow estimation [14], based on the original SQ metric, and a range of ICFs. Also
shown is the runtime for a single frame estimation, using each metric.

5.2 Optical Flow Estimation with ICFs
The potential of intelligent metrics is not limited to scene flow estimation. To demonstrate
this, we also integrate specially trained ICFs into the non-local optical flow approach of Sun
et al. [34] (the only technique in the Middlebury benchmark to provide source code rather
than binaries). Note that in the case of optical flow, each motion vector has only 2 supporting
pixels, meaning very few features for the ICFs to exploit. Table 5.2 compares the ICF results
against the OFCg metric originally used in [34]. Errors in this case are measured using
the standard end-point-error (EPE) and angular error (εae) defined in [3]. Again, results on
additional sequences are supplied as supplementary material. The strength of ICFs is their
ability to learn nonlinear relationships, however this also precludes the use of linear solvers
as in [34]. To deal with this issue, without using expensive nonlinear optimisation, we instead
optimise a linear Taylor approximation of the ICF as used in standard (OFC) systems.
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Metric εae EPE Runtime
OFCg [34] 3.86 0.096 420 secs

Fvar 3.10 0.072 649 secs
Fdi f 3.02 0.071 672 secs
Fpix 2.87 0.053 660 secs

Fdi f + Fpv 3.12 0.064 757 secs
Fdi f + Fph 2.99 0.063 958 secs
Fdi f + Fpm 3.01 0.051 732 secs

Table 2: Performance for optical flow es-
timation, using the OFCg based approach of
Sun et al. [34], and a range of ICFs.

OFCg Fpix Ground truth
Figure 7: Example motion fields for one of the Mid-
dlebury sequences, comparing the original approach and
an ICF against the ground truth.

The results of the optical flow experiments are similar, albeit with more modest gains.
This is because, although ICFs provide a more robust cost function, there is no need to
generalize across the responses characteristics of multiple cameras. The simpler nature of
the task is also evident in the fact that the raw pixel features Fpix prove to be the most
effective encoding scheme, followed by the contextual approaches. However, the originally
used OFCg metric still proves the fastest to compute, at the cost of reduced accuracy.

Figure 7 shows estimated flow fields, note that the ICFs lead to patchier results due to
local minima. However, motion is better recovered in occluded regions, such as behind the
shell and regions in shadow such as the center of the D and the square background cutouts.

It is interesting to note that the original technique includes explicit modelling of occlu-
sions. However, the robustness of ICFs still brings significant performance gains, likely
due to other types of scene artifact. This raises an interesting possibility; when using ICFs
within a particular algorithm, it may prove valuable to employ bootstrapping techniques
during training. The ICFs may then be adapted to focus learning into areas which prove
problematic for the technique in question.

6 Conclusions
In conclusion, an extensive analysis has been performed for various motion estimation met-
rics in scene flow estimation. It has been shown that all previous metrics produce similar
response distributions, for both true and erroneous motions (i.e. the underlying constancy
assumption is almost as valid for incorrect motions, as it is for true motions). Motivated
by these observations, “Intelligent Cost Functions” were proposed, making use of machine
learning techniques. This was shown to provide a marked improvement in the separation of
true and erroneous motions, meaning a high response is far more likely to indicate a mo-
tion error, than a scene artifact such as a reflection. It was also shown that this translates to
improvements of 44% and 20% within existing scene flow and optical flow techniques.

As future work, the idea of ICFs may be extended to the smoothness term present in
many energy surfaces. This could lead to a joint framework, which embodies both the data
matching and smoothness behaviours of real data. In addition more complex patch based
metrics such as normalized cross correlation [40] and mutual information [11] may prove
valuable. It would also be interesting to examine if certain ICFs are better suited to particular
scenarios (e.g. high noise or strong differences between sensors). A higher level system
could then be used to determine which ICFs is most suitable for the current conditions.
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