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The development of industrial automation is closely related to the evolution of mobile robot positioning and navigation mode. 

In this paper, we introduce ASL-SLAM, the first line-based SLAM system operating directly on robots using the event sensor 

only. This approach maximizes the advantages of the event information generated by a bio-inspired sensor. We estimate the 

local Surface of Active Events (SAE) to get the planes for each incoming event in the event stream. Then the edges and their 

motion are recovered by our line extraction algorithm. We show how the inclusion of event-based line tracking significantly 

improves performance compared to state-of-the-art frame-based SLAM systems. The approach is evaluated on publicly 

available datasets. The results show that our approach is particularly effective with poorly textured frames when the robot 

faces simple or low texture environments. We also experimented with challenging illumination situations to order to be suitable 

for various industrial environments, including low-light and high motion blur scenarios. We show that our approach with the 

event-based camera has natural advantages and provides up to 85% reduction in error when performing SLAM under these 

conditions compared to the traditional approach. 
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1 INTRODUCTION 

In recent years applications of robots have transcended the industrial assembly lines, making unmanned 

factories or package delivery by robots a reality. An essential condition for intelligent robots to conduct industrial 

tasks is localization and navigation. To be specific SLAM (simultaneous localization and mapping) algorithms 

attempt to figure out the robot's motion in an unknown environment, and navigation its own path by observing 

the neighbourhood, while constructing a map of that environment. New sensors have historically changed the 

way we deal with these types of tasks. The emergence of cheap commercial depth sensors around 2010 led to 

a massive growth in computer vision research. More recently, new dynamic vision sensors called event cameras 

are beginning to emerge, which are activity-driven. Techniques have been proposed to use these sensors for 

feature detection and tracking [11], 3D reconstruction [12], object recognition [13], simultaneous localization 
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and mapping [14] and more. This paper will attempt to introduce the first formalism for undertaking line-based 

projective geometry using event streams, and demonstrate its applications to SLAM. 

Event cameras output compressed visual data in the form of a visual event stream. The data provides an 

increased temporal resolution and lower latency compared to conventional images. An event represents a 

brightness change for one pixel. They form a event stream which record the positions and the polarity of intensity 

changes across all pixels. The event camera also provides absolute intensity [9] and allows a longer waiting 

time between two coming events, which means it has better performance in low-light industrial environment 

than traditional camera. These characters make it possible to combine the benefits of traditional cameras with 

the unique properties of event-based sensors. This has huge potential for computer vision and high-speed 

robotics. In essence, visual information from event cameras is asynchronously acquired. Although it sends no 

information when there is no movement in the scene, it does not have to wait for the next frame before 

transmitting the signal when motion does occur. This paradigm shift means it has the advantages of high 

temporal resolution, low latency, high dynamic range and low power consumption. 

 

Figure 1: A comparison of a traditional frame-based output (top right) and asynchronous line detections. The scene 

comprises a black hexagon rotating on a disk. The normal camera outputs frames at a fixed rate, instead the event camera 

produces the stream of events responding to brightness changes from which asynchronous lines can be extracted. 

Traditional visual sensors like monocular, stereo and RGBD cameras have been extensively applied to visual 

odometry [1], [2], and SLAM [4] for many years. Efforts have been made to improve the efficiency of these 

approaches. However, the frame-based data acquisition places a fundamental limit on the computation cost. 

Many algorithms struggle to operate in complex and noisy scenes, on embedded robotics hardware. Standard 

cameras also can be affected by motion blur during fast movement. In contrast event cameras do not suffer 

from motion blur and have greatly reduced data bandwidth [10], which means event cameras are promising for 

visual odometry or SLAM tasks. In this paper we tackle the problem of line-based SLAM with event cameras in 

natural scenes and arbitrary 6-DoF motion. We integrate these alongside a low-speed visual point tracking in a 

framework inspired by PL-SLAM [17]. In contrast to most previous work using event cameras, we make full use 

of asynchronous data to produce line feature tracks with high temporal resolution (in Figure.1), by avoiding the 
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need to accumulate events into frames. To achieve this, we design a line feature extraction approach that works 

directly on the event streams. Contributions: In summary, our contributions are: 

⚫ A novel asynchronous line detection method based directly on the event stream. 

⚫ The first publicly available SLAM system built on event cameras, and the first event-only SLAM system 

built on asynchronous lines. 

⚫ An extensive experimental evaluation is conducted on asynchronous features compared with other 

SLAM methods on publicly available datasets, demonstrating that the system is computationally 

efficient, running in real-time on a standard CPU. 

2 RELATED WORK 

The advent of event sensors has the potential to revolutionize our approach to visual perception for mobile 

robots. This process is still in its early stages. Initial forays have been undertaken in many areas using Event 

cameras. However, there has been little opportunity for the field to iterate these ideas, and a lot of prior work 

still falls back on the frame-based aggregation approach. 

2.1 Feature-based SLAM/VO Using Traditional Cameras 

ORB-SLAM [18] is one of the most widely used traditional feature-based approaches to SLAM. Under normal 

operating conditions it can provide robust camera tracking and mapping. Subsequently ORB-SLAM2 [16] was 

proposed to improve performance by using bundle adjustment. Both approaches rely on fast and continuous 

tracking of ORB features. However, these traditional feature methods fail when the mobile platform comes to a 

poorly texture environment or suffers from motion blur. These issues led researchers to explore a more robust 

representation such as Edge SLAM [20]. This method detects edge points in frames and tracks them using 

optical flow for data association. This line-based approach is shown to work well in both low-textured and highly-

textured environments. In [21], direct lines are used to guide feature selection rather than key points which 

increase the efficiency. Both [22] [23] take feature points to get straight lines and perform position estimation in 

monocular VO. However, this idea is extended by using stereo camera in [19]. All of these line-based 

approaches are shown to have high computational efficiency. 

2.2 Event-based feature detection and tracking 

As shown above corner detection and tracking using frame-based cameras is fundamental to most visual 

odometry. As such, it is unsurprising that event cameras have primarily been applied to asynchronous feature 

point tracking, providing the benefits of high dynamic range and microsecond latency [24]. How to detect 

features using event data becomes the fundamental question. Significant research effort has been dedicated 

to reconstructing pseudo-frame-based images from event data, and then applying traditional frame-based 

features such as Harris on these event frames [25] [26]. This unfortunately introduces a synchronization delay 

that removes the primary benefit of the event camera. In contrast to this, [27] [28] extend the normal features in 

order to detect them directly on event streams. This was taken a step further by [29] [30] which also performed 

feature tracking on the event stream. [31] went beyond flow-based point tracking, and proposed a novel local 

region descriptor for corner-events with a corresponding tracker. [32] proposed the use of multiple pools of 

trackers, to track different visual features in real-time, while handling position variations, orientation and scale. 
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2.3 Event-based VO/SLAM 

As discussed above, there has been a great deal of work on feature point detection and tracking using event 

cameras. It is unsurprising that some of these techniques have been adapted for VO/SLAM. Similar to the 

traditional camera, these techniques cover both monocular event-based VO and stereo event-based VO. A 

ground breaking work on event-based visual odometry with the monocular DAVIS sensor was introduced in 

[37]. This work takes the approach of detecting features on the standard grayscale frames and tracking them 

asynchronously with event streams to complete the 6-DOF motion estimation of the sensor. Some researchers 

were able to reconstruct intensity images from the event stream through a combination of event-based feature 

tracking techniques and event-based 3D reconstruction techniques [38]. The work in [39] performs VO with 

stereo event-based cameras instead of one monocular event camera. There are fused event-based tracking 

algorithms with an inertial measurement unit (IMU) in [40], providing metric tracking of 6-DOF pose. All of these 

prior techniques focus on point-based features, which are sparse and hard to extract from event camera streams.   

Additionally, [43] proposed a novel event line-feature but achieved VO by fusing IMU sensor and event camera. 

However, there has been no work focusing on event-only line-based VO/SLAM to the date. Thus in this paper 

we demonstrate the first use of asynchronous line features within a SLAM pipeline shown in Figure 2. Unlike 

PL-SLAM, we used event lines to track and save the computation time of traditional line-feature. 

 

Figure 2: The scheme of ASL-SLAM is composed of three main threads: Data Extraction & Tracking, Local Mapping and 

Loop Closing. 

3 METHORD OVERVIEW 

The event stream is equivalent to a high-speed camera taking pictures at a rate of thousands of frames per 

second, with the additional benefit of far less redundant data [8]. The event camera has a higher temporal 

resolution because it responds to intensity changes in the environment independently and asynchronously for 

each pixel. The flow chart shows the working process of the event camera in Figure 3. The output of the event 

camera is a discrete representation of intensity change (log intensity) and the position of the corresponding 

pixel. The events have ON/OFF polarity which correspond to the increase and decrease of brightness. The 

threshold explained the details of events' trigger, the evolution of pixel’s voltage is 
pV  which can be roughly 

interpreted as the intensity of light received by the pixel over time. It shows the corresponding generation of ON 
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(voltage increases above change threshold) and OFF (voltage decreases) events, from which the change of 

pV  can be reconstructed. The event camera captures the events with a pixel array before formulating the event 

stream through the peripheral circuit and outputting the stream using a shared digital output bus. This route will 

take advantages from a kind of address event representation (AER) readout, which grantees a faster read 

speed. 

 

Figure 3: Working process of event camera. 

Our method illustrated in Figure 3 aims to estimate the camera motion by extracting line information from 

event streams. The pipeline of our system is inspired by the integrated point and line tracking of PL-SLAM, but 

using our asynchronously extracted event lines. The main idea behind the algorithm is to identify the coherent 

space-time event surfaces using the local SAE. These event surfaces are then used to define both the line 

features in the image and their motion. Local Bundle Adjustment is applied to optimize the pose of all lines after 

obtaining the initial line feature set, finally further correspondences can be established by projecting the local 

map onto the image. 

 

Figure 4: An event line is extracted from the SAE with line orientation and amplitude of motion defined by the orientation of 

the SAE. Line extremities are determined by the inlier points within the local SAE neighbourhood. 

3.1 Asynchronous Line Extraction 

We define the event stream as the set of all events  0 1  ,   ... Ne e e=Ε , where 3

ie R . Each event is constructed 

as  i , ,e x y t= , where  ,x y is the position of the event in the event frame coordinates at time t . For every 
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incoming event, we define an event neighbourhood which includes all events with a similar time and position. 

This SAE neighbourhood is used to provide an estimate of edge of orientation and motion as shown in Figure 

4. 

More formally, a spatio-temporal neighbourhood of events e  is defined as the set of all events falling within 

a window of size 2 2 2L L T    centered on event e : 

{ ,   ( , ),

          y ( , ),  ( , )}

ie j j i i

j i i j i i

e where x x L x L

y L y L t t T t T

 =  − +

 − +  − + 
  (1) 

We parametrize a space-time plane as ( )
T

a b c d = . We note that for any event 
ie  which lies on this 

plane, the following equality must satisfy:  [ , , ,1] 0x y t = . 

For each incoming event, we optimize the plane $\beta$ to extract the local Surface of Active Events. The 

optimization process is defined as: 

2
* argmin  [ , , ,1]

j ei

T

i i i
e

x y t


 


=      (2) 

Once the initial plane candidate has been computed, we extract the set of inlier events from the neighbourhood 

as: 

* { ,    [ , , ,1] ,  }
i i

T

e j i i i j ee where x y t e  =      (3) 

We then repeat equation 2 to refine the plane parameters on the inlier events set. We define the update size 

as 
*   = − , and iterate equations 2 and 3 until 

2   , at which point the local SAE has converged. 

3.2 Synchronous Data Association with Asynchronous Lines 

Although the asynchronous event information is discrete, the space-time planes computed above provide a 

continuous representation. This makes it possible to extract the corresponding line at any intermediate 

timestamp. As such it becomes possible to synchronize the asynchronous event lines with the visual feature 

points extracted from the frame-based camera. Intuitively we simply "slice" the SAE with a horizontal plane at 

the desired timestamp, and extract the line along the intersection of these planes. Thus we use a homogeneous 

definition of line / ,  / ,  /fl a d b d ct d=     where a,b,c,d are the parameters from the corresponding SAE plane 

and 
ft  is the timestamp of the frame which the line is being synchronized too. Any 2D point which lies on the 

2D visual line at frame 
ft  must then satisfy the equality:   ,  ,  1   0T

il x y = . 

Moreover, it can be inferred that all the events on the line should have the same velocity, and the velocity 

remains constant during this time interval. This provides the tracking for the lines. The velocity ,x yv v    can be 

obtained from the local SAE by computing the slope between the temporal axis and the spatial axes. After 

obtaining the parameters of the synchronized 2D lines, and their velocities, we compute the data association 

with the 3D line segments currently contained in the map. The 3D end points of these line segments are 
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projected into the image space. 
3,M NR are the extremities of the line segment. As in [15] we define, the 

algebraic point-line error 
plE  for a 3D point as: 

( , , ) ( ) ( , )
f f

T

pl t i i tE M l l M  =   (4) 

where the pose parameters { , }R t =  include the rotation and translation parameters which align the camera 

and the world coordinate systems, and   gives out 
3

R  which is the homogeneous projected 2D point. 

Furthermore the algebraic line segment error 
lE  is defined as the sum of squares of the two event-line errors 

for the 3D line segment endpoints: 

2 2( , , ) ( , , ) ( , , )
f f fl t i pl t i pl t iE M l E M l E N l  = +   (5) 

We associate the newly synchronized event lines with the closest line segment in the current map Μ , assuming 

the algebraic error is less than 
3 : 

3
[ , ]

argmin ( , , , ),  if ( , , , )
 

0,  otherwise

f f f f

t tf f

l t t i l t t i
M N

E M N l E M N l
l

  



⎯→



M   (6) 

3.3 Local Bundle Adjustment with Points and Synchronized Lines 

Once the synchronized event lines are associated with the line segments in the map, we combine them with 

frame-based point feature correspondences. To get the optimized results of the camera pose, a bundle 

adjustment (BA) of the local map is used. This constrains   to an (3)SE  pose for each keyframe(KF). After we 

associate the data with the 
thi  KF, let 

3RijX   be the generic 
thj  point of the map. The projection error 

ije  

represents the 2D distance between the observation 
ijx  of the 

thi  KF: 

( , ) ( , )p i j j iji j x X  = −    (7) 

For the event lines defined in the previous section the BA uses the same error function as that used for data 

association. Namely, we define the error function by the distances between the projected endpoints of the 3D 

line and its corresponding infinite line in the 2D image plane: 

( , )
( , )

( , )

T

ik j j
Tl

ik j j

l M
i k

l N

 


 

 
=  
 

   (8) 

where 
jM  and 

jN  refer to the 3D endpoints of the line segments in the world coordinate and 
ikl  is the 

equation of the 2D line in the corresponding 
thi  KF. Because of the unknown camera pose and the noise of 

observation, the problem is defined as a joint optimization over the camera pose , map points X  and map 

lines M : 

* * * 1 1

( , ) ( , )
, , 0 0 0

, , argmin [ ( , ) ( , ) ( , ) ( , )]
p l

K P l
T T

p i j p l i k l

k j i

i j u i j i k u i k 


    − −

= = =

= +  
X M

X M   (9) 
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where , ,K P L  represent the number of KF, points and lines respectively. 
1

ijeu −
and 

1

ikeu −
 are the covariance 

matrices for the keypoints and line endpoints. Given this definition the problem can be iteratively solved by a 

Damped Newton method which is more robust than standard Guassian Newton methods. 

3.4 Mapping With Points and Asynchronous Lines 

It is known that current frame-based SLAM methods sometimes fail when running in low texture environments 

which lack keypoints. In contrast to using points, event lines are more robust for map initialization between two 

frames. To initialize the frame relationship and further pose recovery, we make an assumption that the camera's 

angular acceleration is small between two times steps. This means for three consecutive poses, the rotational 

transition between each camera view is equal. After accounting for the change in camera orientation, the 3 

observations of the line should be colinear with each other. We can quantify this by checking that the cross 

product of any 2 of the lines must also be perpendicular to the third line. This constraint can be written as: 

1 1 1 1(( ) ( )) 0T

t t t t t t tl R l R l− → − + → + =    (10) 

Moreover, for this small rotation R  can be approximated as a skew symmetric matrix. For this 

parametrization, a polynomial solver which produces up to eight solutions is applied to solve three quadratic 

with three unknowns 
1r , 

2r  and
3r  after we have three matched lines. For each rotation candidate we can 

estimate the corresponding t  using the trifocal tensor equations [42]. Then one out of the eight possible 

solutions is selected to minimize R . 

4 EXPERIMENTS 

In this section we give the performance evaluation of the ASL-SLAM in several scenes from two different 

datasets. We compare our system with the current state-of-art frame-based SLAM methods, such as ORB-

SLAM and PL-SLAM by employing their open resource implementations. There are no publicly available 

monocular SLAM algorithms using event cameras which we can compare against. We assess the computation 

time of the detection and tracking for the asynchronous lines with other novel event feature algorithms. All 

experiments were conducted with an Intel Core i7-8700K (12$\times @ 3.70$GHz), Ubuntu 18.04, ROS melodic. 

4.1 Dataset and Parameter Settings 

In order to test the validity and efficiency of the asynchronous line extraction separately from the SLAM 

framework we use the event camera datasets proposed by [6]. It was generated using a DAVIS240C and 

provides the images, events, IMU estimations, and calibration with different sensors as well as ground truth 

obtaining by a motion-capture system. We use the shape ROS bag which has the rotation and translation of 

some typical shapes in order to show the detection result more clearly. The approaches work directly on event 

streams under two different scenes. In this part, we set 
1 0.001 = , 

2 0.05 = , 0.01T s = . 

To test the robustness of the full ASL-SLAM pipeline under varying illuminations, we use the VIVID (Vision 

for Visibility Dataset) [41]. This dataset captured unconventional visual data obtained from various lighting and 

motion conditions. The dataset provides normal and poor illumination sequences captured by RGB-D camera, 

and event data using DAVIS240C. They also provide moving sequence under robust motion as well as unstable 
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motion making it possible to detect the effects of motion blur. These four scenarios allow us to provide a broad 

comparison of our SLAM performance. The resolution of the RGBD image is 640 480 . 

4.2 Asynchronous Feature Extraction Benchmark 

There are four existing event features mentioned in section 2.2. For the first experiment we use these event 

corner detectors and our method to extract asynchronous event features from the event streams. Table 

\ref{table1} illustrates the average processing time in µs of one single event and the maximal event bandwidth 

in millions of events per second. It also shows the reduction rate, which explains the number of detected features 

over the number of input events. The results show that our ASL algorithm can detect a similar number of features 

to event corner detectors with a similar level of efficiency. According to the results, our method shows consistent 

performance under the different types of motion, and it can deal with the highest incoming event rate among 

the 5 methods. In fact, the neighbourhood of the incoming events are being processed jointly in our method. 

This is likely the reason why the max event rate of our method stays the highest. In addition, the number of 

lines is lower than feature points the efficiency of the following SLAM system is also improved. 

 

 

4.3 SLAM performance 

In this part we explore the robustness of our ASL-SLAM algorithm in VIVID dataset. Example frames from the 

four scenarios of the VIVID dataset are shown in Figure 5. We can see that the two global light images have 

brighter illumination than the local light do. At the same time, the frames from the dataset of unstable motion 

are more blurred than in robust motion which means tracking may lost when using traditional keypoints. Since 

there are no publicly available pipe line for event-based SLAM algorithm, we choose a common baseline method 

ORB-SLAM2 which is more stable and robust than ORB-SLAM3, and a state-of-art line-based method PL-

SLAM. 

The running time of each method is calculated, and tracking performance is shown in Table 2. It is obvious 

that our ASL method significantly outperforms the frame-based baseline ORB-SLAM2 and the line-based PL-

SLAM. The tracking time has decreased by more than 20% in comparison to the other two methods, despite 

the high rate of incoming events. It can be seen that under the global light condition, all three methods spent 

more time tracking which means there are more features when it is brighter in the room. Regardless of the light 

condition, our method only cares about the number of events. The Absolute Trajectory Error (ATE) is also 

utilized to compare the accuracies of the different techniques.  
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Figure 5: Frames of four different experimental conditions. Far left is local light and robust motion, centre left is global light 

and robust motion, centre right is local light and unstable motion, far right is global light and unstable motion. 

Before computing the error, all trajectories are aligned using a similarity warp and scaled by calculating the 

Euclidean distance between the estimated trajectory and the ground truth. We then evaluated the ATE by 

calculating its RMS (Root mean square) under all four scenes which is demonstrated in Table 3.  

 

It can be seen from the results that our method offers extremely robust performance under adverse light and 

motion. Under the easiest condition with low motion blur and strong lighting (global robust) ORB-SLAM2 is able 

to slightly outperform ASL-SLAM. Under any combination of adverse conditions ASL-SLAM is able to 

outperform competitors by 15\%-85\%. It can be inferred that the efficiency of our method results in less error 

than PL-SLAM does.   

In particular scenarios with motion blur are particularly challenging for previous approaches. Meanwhile ASL-

SLAM is able to make use of the increased event density resulting from unstable motions to continue extracting 

reliable line features. However, events can be obtained as long as the event camera moves, this also means 

the event lines can be detected. In this case, our ASL-SLAM can provide a more stable and robust localization. 
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5 CONCLUSION 

In this work, we propose ASL-SLAM, an event-based visual SLAM approach that covers both feature points 

and event lines simultaneously. Our SLAM architecture is able to operate with low latency line features at a high 

accuracy and data efficiency that can be suitable for industrial environments. It consistently outperforms the 

traditional feature point-based approaches in the presence of motion blur or low textured scenes. We also 

demonstrate our approach performs well in low-light situations, where traditional approaches are prone to failure. 

On the VIVID dataset this led to consistent improvement of up to 85% reduction in error compared to the current 

competing methods. For future work, further exploration of asynchronous line-based SLAM and incorporation 

of higher dimensional geometric primitives like planes could be fruitful. 
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