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1 Implementation details
We use COLMAP [10] to generate camera intrinsics and extrinsics at each frame while mask-
ing features from regions associated with dynamic objects [8] using off-the-shelf instance
segmentation [4]. We extract deep image features from the selected frames using a 2D CNN
network with 32 channels (first section of Table 1). These features are used to construct the
plane sweep volume [2] using 128 depth planes. These sweep volumes are then aggregated
into a variance-based cost volume. This is then processed into the geometry and motion vol-
umes as defined by the 3D CNN architecture on the second section of Table 1. These volumes
have the same architecture, only differing in the number of input channels (K = 8 key-frames
and N = 4 neighbours, respectively). The geometry and motion volumes do not share their
weights.

For the NeRF MLPs, we follow a similar setup to the original case [9]. We sample 128
points along each ray, with a ray batch of 1024. We also have two separate networks for the
static and dynamic parts, which do not share weights. We append the normalised time indices
in NSFF [8] to our dynamic network inputs. The MLP networks return the estimated colour c
and density σ , as well as blending weights b in the case of the Static MLP, and 3D scene flow
f and occlusion weights w in the case of the Dynamic MLP. We use an Adam optimiser [6]
with a learning rate of 5e−4. We use positional encoding (PE) [9] for the 3D location and
viewing direction before feeding them into the networks. For more detailed information about
the architecture, refer to the Table 2.
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Table 1: Encoding volumes architecture: g/m denote the geometry and motion
3D features respectively. k is the kernel size, s is the stride, d is the kernel di-
lation, and chns shows the number of input and output channels for each layer.
We denote CBR2D/CBR3D/CTB3D to be ConvBnReLU2D, ConvBnReLU3D, and
ConvTransposeBn3D layer structure respectively.

Layer k s d chns input

2D CNN

CBR2D0 3 1 1 3/8 I
CBR2D1 3 1 1 8/8 CBR2D0
CBR2D2 5 2 2 8/16 CBR2D1
CBR2D3 3 1 1 16/16 CBR2D2
CBR2D4 3 1 1 16/16 CBR2D3
CBR2D5 5 2 2 16/32 CBR2D4
CBR2D6 3 1 1 32/32 CBR2D5

E = CBR2D7 3 1 1 32/32 CBR2D6

3D CNN

CBR3D0 3 1 1 32+(K/N)∗3/8 E, I
CBR3D1 3 2 1 8/16 CBR3D0
CBR3D2 3 1 1 16/16 CBR3D1
CBR3D3 3 2 1 16/32 CBR3D2
CBR3D4 3 1 1 32/32 CBR3D3
CBR3D5 3 2 1 32/64 CBR3D4
CBR3D6 3 1 1 64/64 CBR3D5
CTB3D0 3 2 1 64/32 CBR3D6
CTB3D1 3 2 1 64/32 CTB3D0 + CBR3D4
CTB3D2 3 2 1 64/32 CTB3D1 + CBR3D2

g/m = CTB3D3 3 2 1 64/32 CTB3D2 + CBR3D0
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Table 2: MLPs architecture: g/m denote the geometry and motion 3D features
respectively. k and n are the original colours of the K key-frames and N neighbouring
frames, that are concatenated to the inputs. chns shows the number of input and
output channels for each layer. We denote LR to be LinearReLU layer structure. PE
refers to the positional encoding as used in [9].

Layer chns input

Static MLP

PE0 3/63 x
LR0 8+K*3/256 g,k
LR1 63/256 PE

LRi+1 256/256 LRi+LR0
σ 256/1 LR6
b 256/1 LR6

PE1 3/27 d
LR7 27+256/256 PE1,LR6

c 256/3 LR7

Temporal MLP

PE0 4/63 x, t
LR0 8+N*3/256 m,n
LR1 63/256 PE

LRi+1 256/256 LRi+LR0
σ 256/1 LR6
f 256/6 LR6
w 256/2 LR6

PE1 3/27 d
LR7 27+256/256 PE1,LR6

c 256/3 LR7
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2 Evaluation of accuracy
In order to assess the performance of our model, we employ a range of widely recognized
metrics that evaluate various aspects of an image. To measure image quality we make use
of the Peak Signal-To-Noise Ratio (PSNR) [5] and the Structural SIMilarity (SSIM) [11]
index. PSNR serves as an indicator of the overall consistency of pixels, while SSIM gauges
the coherency of local structures. We define PSNR as

PSNR = 10 · log10

(
MAX2

C

MSE
(
Ĉb(r),C(r)

)) (1)

MSE
(

Ĉb(r),C(r)
)
=

1
N ∑

r
[Ĉb(r)−C(r)]2 (2)

where MAXC is the maximum possible input value, and MSE
(
Ĉb(r),C(r)

)
represents the per-

pixel Maximum Squared Error between the predicted colour Ĉb(r) at ray r, and the original
colour C(r), in a batch of N rays.

On the other hand, SSIM is given by

SSIM(Ĉb,C) =
(2µĈb µC + k1)(2σĈbσC + k2)

(µ2
Ĉb +µ2

C + k1)(σ2
Ĉb +σ2

C + k2)
(3)

where k1 = 0.012 and k2 = 0.032 are variables to stabilise the operation. We use a window
size of 5 for the Gaussian kernel to smooth the images.

It is worth noting that these metrics assume independence among pixels, which can result
in favourable scores for visually inaccurate outcomes. Consequently, we also incorporate
the application of a Learned Perceptual Image Patch Similarity (LPIPS) [13] metric, which
endeavours to capture human perception by leveraging deep features. We use the default
settings for the implementation based on AlexNet [7].

For qualitative results, see Figure 1 in Section 3.
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3 Further results

NSFF [8] SVS [3] MVSNeRF [1] ZeST-NeRF (Ours) Ground Truth

Figure 1: Qualitative results on the Dynamic Scenes dataset [12]
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