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Figure 1. SaiNet: Inpainting behind objects using geometrically meaningful masks.

Abstract

In this work, we present an end-to-end network for
stereo-consistent image inpainting with the objective of in-
painting large missing regions behind objects. The pro-
posed model consists of an edge-guided UNet-like network
using Partial Convolutions. We enforce multi-view stereo
consistency by introducing a disparity loss. More impor-
tantly, we develop a training scheme where the model is
learned from realistic stereo masks representing object oc-
clusions, instead of the more common random masks. The
technique is trained in a supervised way. Our evaluation
shows competitive results compared to previous state-of-
the-art techniques.

1. Introduction
Image inpainting is the task of filling in the missing re-

gions of an image with perceptually plausible content. It
has many vital applications in computer vision and image
processing: the removal of unwanted objects (e.g. super-
imposed text), image and film restoration (e.g. scratches
or cracks), image completion (e.g. dis-occlusions), cinema
post-production, among others. Our work focuses on the
under-explored problem of stereo-inpainting. This lends it-
self to applications that need to see behind objects to gen-
erate reasonable image fillers, for example in novel view
synthesis of scenes, object removal in stereoscopic video,
3D animation of still images, and dis-occlusion in virtual
reality environments.

This paper focuses on applications of inpainting which
may improve view synthesis in media production, this re-
quires an approach that can take advantage of multiple cam-
eras, but doesn’t necessarily have the computer capacity of
other novel view approaches that reconstruct a whole 3D
scene representation. In addition, we want an approach that
can generalise well to unseen scenes and generate creative
content without human input, therefore we want to apply
CNNs that can single-handedly propagate structures and
textures reasonably.

In previous works, traditional monocular techniques
tried to achieve inpainting by propagating local image struc-
tures and textures or copying patches from the known ar-
eas of the image. This worked well for small or narrow
regions, but it was prone to generating visual inconsisten-
cies in more significant gaps. Early stereo techniques at-
tempted to equivalently generate consistent image output
by mechanically warping the available data from the other
views [30], or completing the disparity images [19, 20],
and then proceeding similarly to the monocular inpaint-
ing approaches. However, in recent years, Deep Learning
(DL) techniques have taken advantage of large-scale train-
ing data to create more semantically significant inpainting
outputs. Some works focused on learning embeddings of
the images [10, 22], while others developed different types
of convolutional layers to be able to handle more realistic
irregular holes [15, 33]. However, the only DL techniques
that address the stereo inpainting problem [4,16,17] to date
have focused on artificial or unrealistic inpainting regions,
or don’t enforce multi-camera consistency.
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In contrast, our approach focuses on inpainting one tar-
get image on geometrically meaningful masks while using
the information available from the other viewpoint. Our net-
work architecture is inspired by the 3D photography genera-
tion work of Shih et al. [27] using a Partial Convolution [15]
architecture, which optimises the use of irregular masks at
random locations. Furthermore, we improve the inpainting
task by adding colour edge information following the idea
by Nazeri et al. [21] in their work with EdgeConnect.

More importantly, we propose a novel stereo inpainting
training mechanism. Instead of using random image masks,
which usually represent the physical damage a picture can
suffer, we use meaningful and geometrically-consistent ob-
ject masks that are not necessarily bounded within the im-
age. We extend the 2D context/synthesis region approach
proposed by [27] to use a bank of geometrically-consistent
3D object masks. Ground-truth training examples are gen-
erated from random virtual 3D objects placed at random
locations in the foreground of the scene, allowing us to
have a fully self-supervised stereo training approach. This
data augmentation process addresses both the significance
of masked regions and the stereo data scarcity problem.
Furthermore, the resulting model is computationally effi-
cient and able to generalise to previously unknown scenes
and occluding objects.

In summary, the contributions of this paper are:

• A novel stereo-aware structure-guided inpainting
model suitable for efficient novel-view synthesis and
free viewpoint VR applications.

• First inpainting work to take full advantage of stereo-
context with geometrically-consistent object masks.

• A novel stereo consistency loss attempting to ensure
that inpainting results are consistent with disoccluded
information present in other views.

2. Background

Learnable inpainting With the advancements of Deep
Learning and the availability of large-scale training data,
deep Convolutional Neural Networks (CNNs) became a
popular tool for image prediction. Initial CNN mod-
els attempted to perform image inpainting by using fea-
ture learning with Denoising Autoencoders [32], transla-
tion variant interpolation [23], or exploiting the shape of
the masks [14]. Yet all these methods were only applicable
to tiny and thin masks and lacked semantic understanding
of the scenes. With the addition of Generative Adversarial
Networks (GANs) [8], CNN architectures were able to ex-
tract meaningful semantics from images and generate novel
content. Pathak et al. [22] used an encoder-decoder archi-
tecture to create a latent feature representation of the image,

which captured both the semantics and appearance of struc-
tures, but struggled to maintain global consistency. Iizuka
et al. [10] proposed using both local and global context dis-
criminators, which helped the local consistency of gener-
ated patches and still held image coherence in the whole.
Yu et al. [34] added a contextual attention layer to aid the
modelling of long-term correlations between the distant in-
formation and the hole regions.

Traditional vanilla convolutions depend on the hole ini-
tialisation values, which usually leads to visual artefacts.
Liu et al. [15] proposed the use of Partial Convolutions:
masked and re-normalised convolutional filters conditioned
only on valid pixels. Yu et al. [33] extended this idea
with Gated Convolutions by generalising to a learnable dy-
namic features selection mechanism. Previous works fo-
cused on centred rectangular holes, which may cause meth-
ods to overfit to this kind of mask. Masked convolutions al-
lowed models to handle more realistic irregular holes. Liu et
al. [15] studied the effects when the holes are in contact with
the image border and created a large benchmark of irregu-
lar masks with varying sizes and locations. Many of these
methods still fail to reconstruct reasonable structures and
usually over-smooth surfaces. Some approaches [21,24,29]
tackle this problem by trying first to recover structural infor-
mation to guide the inpainting of fine details and textures.
With a two-stage adversarial model, EdgeConnect [21] first
recovers colour edges, while StructureFlow [24] choose
edge-preserved smooth images as the global structure in-
formation.

Stereo Consistent Inpainting There is little research
done on stereoscopic image inpainting in the framework of
deep learning. Following a similar trajectory to monocu-
lar approaches, traditional patch-based methods [19,20,30]
find example patches from the available parts of the image
and fill the holes applying consistency constraints. Wang et
al. [30] simultaneously inpaint colour and depth images us-
ing a greedy segmentation-based approach, inpainting first
partial occlusions using warping, and total occlusions with a
depth-assisted texture synthesis technique. Morse et al. [19]
extend PatchMatch [1] to cross-image searching and match-
ing without explicit warping, using a completed disparity
map to guide the colour inpainting. Multi-view inpainting
techniques such as Gilbert et al. [7] create a dictionary of
patches from multiple available viewpoints that are then co-
herently selected and combined to recover the missing re-
gion.

The first stereo inpainting approach using deep learning
was made by Luo et al. [16]. They use a double reprojec-
tion technique to generate image occlusion masks from sev-
eral new viewpoints, then apply Partial Convolutions [15]
to inpaint the holes, and aggregate the results in a layered
depth image. This technique shows good visual results on
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Figure 2. Model overview: Edge guidance, stereo context and disparity loss.

their own Keystone B&W dataset, but they don’t take into
account multi-view consistency and rely on depth maps to
reconstruct the image. Other techniques take advantage of
both left and right views, like Chen et al. [4]. They use
an extension of Context Encoder [22]. They inpaint left
and right views simultaneously encoding both views and
aggregating them at the feature level. In addition, they in-
troduced a local consistency loss which helps preserve the
inpainting consistency at a pixel level. They applied this
model to inpainting regular holes at the centre of the image.
Ma et al. [17] use a similar architecture for two different
tasks: reconstructing missing objects in one view that are
available on the other view and coherently inpainting the
same holes in both views similar to [4]. To do this, they
use two different stereo consistency losses, a warping-based
consistency loss and a stereo-matching PSMNet-based [3]
disparity-reconstruction loss. However, because of a lack
of ground-truth data for object removal, they only train
their model on corruption restoration data. In contrast, our
approach uses realistic and geometrically consistent fore-
ground object masks to explore inpainting behind objects in
stereo scenes.

3. Approach

3.1. Model overview

An overall visualisation of our proposed model can be
seen in Figure 2. It consists of a deep neural network that
follows a UNet-like architecture [25] with partial convolu-
tions [15]. The network takes the context and synthesis ar-
eas of an object, where the context area is the background
surrounding the object. The synthesis area is the region be-

hind the object (hole) that the network will inpaint. In addi-
tion, the colour edges are fed into the network for structural
guidance. Finally, to enrich the inpainting and make the
network aware of the stereo view, a stereo-context image is
added to the input.

3.2. Object occlusion regions

An essential part of image inpainting specifies the type of
missing regions that the model needs to handle. Most pre-
vious approaches to inpainting have focused on randomly
shaped inpainting masks of limited complexity. This is
reasonable when dealing with image degradations such as
scratches or removing regions containing nuisance objects
in 2D. However, for stereo inpainting where we wish to
maintain crisp object boundaries, this approach no longer
makes sense. We need inpainting masks that represent real
image occlusions. Therefore we propose a self-supervised
approach where stereoscopic scenes are augmented with ge-
ometrically valid inpainting masks, based on a virtual 3D
occluding object. This object is hallucinated in a stereo-
consistent way over both images, which allows us to collect
“behind the object” ground-truth data. As such, the net-
work learns to fill in geometrically-meaningful holes with
background information, which can then be applied to ac-
tual object occlusions in novel view synthesis applications.

We generate these geometrically-valid masks from an
unrelated dataset of natural scenes with either ground truth
depth or object segmentations. As summarised in Algo-
rithm 1, we first detect depth discontinuities [27] along ob-
ject boundaries and generate context and synthesis regions
by propagating this boundary towards the background im-
age (context), and the foreground object area (synthesis)
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Figure 3. Data generation process. A collection of context/synthesis regions is created by extracting them from object boundaries in
images on the COCO dataset. Then they are randomly sampled, warped, and pasted onto different images, forming the training dataset of
ground truth context/synthesis regions

(See Fig. 3 for a visualisation of these areas). This way,
we create a geometrically-meaningful bank of masks for in-
painting.

These masks are varied and irregular, preventing our
model overfitting one type of mask. Furthermore, as op-
posed to most methods, our model doesn’t use the whole
image as context for the inpainting process, but just the
region closer to the object boundaries. Although this re-
duces the available information that the network can learn
from, it allows the network to narrow its attention to the
most relevant and meaningful area. However, this poses a
more challenging problem, as the context-to-synthesis area
ratio is smaller, and the masked regions are not necessarily
bounded by context on all sides.

3.3. Stereo awareness

Our approach aims to make inpainting consistent across
views in two different ways. One is by enriching the net-
work with extra available information. The other is by en-
forcing a disparity loss on the output of the network (as ex-
plained in Section 3.4). The main advantage of having two
(or more) cameras is the additional information we can ex-

Algorithm 1: Generation of geometrically-valid
masks

Input: N = {I : I is a natural image}
Output:M = {(Cobj ,Sobj) | ∀obj ∈ I,∀I ∈ N}
for I in N do

Find set of discontinuities
dI ≡ {dobjI | obj is an object in image I};

for dobjI in dI do
Propagate background around dobjI to
generate context mask Cobj ;

Propagate foreground around dobjI to
generate synthesis mask Sobj ;

end
end

tract to make the task of inpainting “unknown” areas easier.
For example, some colours or textures may be completely
occluded by the object in one view, but still be partially vis-
ible from the other view. In this case, the additional input
can provide strong cues for the network to inpaint the oc-
cluded region. We make our system stereo-aware by provid-
ing this extra information as input to the network by warp-
ing the context mask of each object based on its estimated
disparity value into the additionally available view (See Al-
gorithm 2). We use PSMNet [3] to estimate this disparity
and select the closest depth value to make sure the object
is situated at the front of all other objects in the scene. In
other words, we extract contextual information around the
boundary of the occluding object, in both views. Then we
feed this extra context into the network to learn to use it in
filling in the synthesis area. In this way, we aid the inpaint-
ing process by enriching the texture and colour information
available.

Several methods [21, 24, 29] have shown that structure-
guided inpainting performs better at reconstructing high fre-
quency information accurately. Since image structure is
well-represented in its edge mask, superior results can be
obtained by conditioning an image inpainting network on
edges in the missing regions. For this reason, we feed the
edge maps generated using Canny edge detector [2] along
with the colour information, as a bias to our network, fol-
lowing a similar process to Nazeri et al. [21]. At test time,
we estimate the edges using a pre-trained EdgeConnect [21]
model.

3.4. Stereo consistency Loss

Inspired by the work of Chen et al. [4], we propose a
local consistency loss which measures the consistency be-
tween the inpainted area in one view, and the ground truth
in the other view. In this way, we encourage the system
to use the stereo context; inpainting not just any perceptu-
ally acceptable background, but specifically the one consis-
tent with any partial observations. The loss is illustrated in
Fig. 2.
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Algorithm 2: Stereo-aware training set generator
Input: D = {(IL, IR) : stereo pair of images}
M = {(Cobj ,Sobj) | ∀ object obj}
Output: Training set = {(CCL,CSL,EL,CCR) | ∀(IL, IR) ∈ D}
for (IL, IR) in D do

1. Select random context and synthesis masks Cobj ,Sobj from the Mask Bank;
2. Select a random position x, y to situate the object at IL;
3. Crop image IL at x, y with mask Cobj to generate colour context region CCL;
4. Crop image IL at x, y with mask Sobj to generate colour synthesis region CSL;
5. Generate edge map EL = Canny(CCL + CSL);
6. Estimate depth map DL = PSMNet(IL, IR);
7. Crop image DL at x, y with mask Sobj to generate depth synthesis region DSL;
8. disp = max(DSL);
9. Reproject Cobj using disp value onto IR and crop to generate stereo colour context region CCR;

end

We compare a patch P (i) around every pixel i in the
inpainted area S � I against a patch centred on the corre-
sponding pixel on the other view. S is the binary mask in-
dicating the synthesis region, I is the inpainted image, and
� denotes the Hadamard product.

Ldisp =
1

|S|
∑

i∈S�I

←−−
cost (i) , (1)

←−−
cost (i) = 1− Φ

(
P (i) , P

(←−
W (i)

))
(2)

where
←−
W is the warping function corresponding to a change

from source to target view, using the disparity estimated
by PSMNet [3]. We use a Normalised Cross-Correlation
(NCC) as our stereo matching cost (Φ) which works well
with back-propagation.

Φ(X,Y ) =
‖X � Y ‖1,1
‖X‖F ‖Y ‖F

(3)

here ‖·‖1,1 and ‖·‖F are the 1-entrywise and Frobenious
matrix norms respectively.

3.5. Inpainting losses

In addition to the disparity loss, other per-pixel similarity
losses and losses based on deep features are used to enforce
perceptually realistic results. First, two per-pixel recon-
struction losses are defined over the synthesis and context
regions, these losses help guiding the inpainting of the miss-
ing areas, as well as making sure that context and synthesis
areas are recovered consistently and with smooth bound-
aries.

Lsynthesis =
1

NIgt

‖S� (I− Igt)‖1 , (4)

Lcontext =
1

NIgt

‖C� (I− Igt)‖1 (5)

where S and C are the binary masks indicating synthesis
and context regions respectively, NIgt is the total number
of pixels, I is the inpainted result, and Igt is the ground
truth image. In addition, we include two deep feature losses
from Johnson et al. [12], based on VGG-16 [28] embed-
dings, that measure high-level perceptual and semantic dif-
ferences. Firstly

Lperceptual =

P−1∑
p=0

‖Ψp (I)−Ψp (Igt)‖1
NΨp

(6)

where, Ψp(·) is the output of the p’th layer from VGG-16
[28], and NΨp is the total number of elements in the layer.
Secondly, the style loss is defined as,

Lstyle =

P−1∑
p=0

1

CpCp

∥∥∥Kp

[(
ΨI

p

)ᵀ
ΨI

p −
(
ΨIgt

p

)ᵀ
ΨIgt

p

]∥∥∥
1

(7)

where Kp = 1
CpHpWp

is a normalisation factor, and
Cp, Hp,Wp are the number of channels, height, and width
of the output Ψp(·).

These perceptual losses encourage the network to create
images with similar content and similar feature represen-
tations. The style loss ensures that the style of the output
images resemble the input in colour, textures, etc. Finally, a
total variation loss is used as a smooth regularization.

Ltv =
∑

(i,j)∈S

‖I(i, j + 1)− I(i, j)‖1
NIgt

(8)

+
∑

(i,j)∈S

‖I(i+ 1, j)− I(i, j)‖1
NIgt

(9)

where the S denotes the pixels in the synthesis region.
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Figure 4. Real dataset evaluation over Middlebury [11] using Canny edge detector. The zoomed-in crop of yellow area is visualised as
“Ground Truth”.

Similar to Liu et al. [15], we use the following weights to
combine all these losses to yield the final training objective:
λsynthesis = 6, λcontext = 1, λperceptual = 0.05, λstyle =
120, λtv = 0.1, λdisparity = 0.1. The same parameters are
used for all evaluations.

3.6. Datasets

Good quality, natural stereo datasets are very hard to
come by. This is a problem for training deep neural net-
works, which usually require a high number of images to
extract meaningful statistical information. Our approach
to data collection intrinsically performs data augmentation,
as the random sampling of context-synthesis areas makes it
possible to use different samplings of the same image with-
out overfitting.

For training we have used three different datasets:
SceneFlow [18]: FlyingThings3D, Driving, and Middle-
bury [26]. FlyingThings3D consists of 21,818 frames from
2,247 scenes, containing everyday objects flying around in
a randomised way. This is ideal for training CNNs due to
the large amount of data and variety of objects. Driving is a
more naturalistic-looking dynamic street scene resembling
the KITTI dataset [6]. It contains 4400 images from one
scene. On the other hand, the Middlebury dataset consists
of only 33 pairs of stereo images of natural scenes. Even
though this dataset is not big enough to train a Deep Learn-
ing model, we are able to perform transfer learning and gen-
erate pleasant results over real world data (See Fig. 4).

These datasets contain ground truth disparity maps, but
for our model we have included a disparity estimation step
using PSMNet so we don’t rely on existing ground truth
data. This makes it fairer to compare to other models that
use a similar approach, as well as being more relevant to
our application to media production, where we may have
several views from the same scene, but no depth informa-
tion.

3.7. Experiment setup

The network is trained using a batch size of 8 and
256 × 256 images. The model is optimised using Adam
optimiser [13] and a learning rate of 0.1. A model has been
trained for each different dataset. As FlyingThings3D is 3
to 5 times bigger than the other datasets, a transfer learning
approach has been followed where the model is trained on
FlyingThings3D first and then fine-tuned over Driving, and
Middlebury.

For fair comparison to the results of Chen et al. [4] and
Ma et al. [17], we have trained our Driving model using
128×128 square context masks and 64×64 centred synthe-
sis masks. Our baseline model is Shih et al. [27] 3D photog-
raphy colour inpainting network, which has been trained in
the same fashion as our model, and conditioned over depth
edges instead of colour as per their original pipeline.

For training, we generate edge maps using Canny [2]
edge detector following EdgeConnect [21] approach. At
test time, we apply pre-trained EdgeConnect models to gen-
erate the synthesis area edges, using the pre-trained model
over Places2 [36] for our FlyingThings3D, and Middlebury,
and a pre-trained model over Paris StreetView [5] for our
Driving.

4. Results and Discussion
In this section we show different evaluations and com-

paratives that demonstrate the value of our work. We train
our model on three different datasets as explained in Section
3.7, and we compare its accuracy and consistency against
state-of-the-art methods. We also perform an ablation study
to evidence the benefits of the different contributions of our
model.

4.1. Evaluation of Accuracy

There is no perfect numerical metric to evaluate image
inpainting outputs given the variety of possible valid re-
sults. For the purpose of quantifying how well our model
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Figure 5. Qualitative inpainting results for FlyingThings3D. Baseline is Shi et al. [27]. The zoomed-in crop of the yellow area is
visualised in the “Ground Truth” column.

Table 1. Quantitative results. Image quality & stereo consistency of different models. Bold is
best. ? values are from their paper.

Dataset Model PSNR↑ SSIM↑ LPIPS↓ DispE (%)↓

FlyingThings3D Shih et al. [27] 28.32 0.8589 0.0707 7.96
Ours 30.50 0.8643 0.0556 7.67

Driving
Shih et al. [27] 30.46 0.969 0.1141 9.94
Chen et al. [4]? 22.38 0.959 - 7.79
Ma et al. [17]? 23.20 0.964 - 4.72
Ours 34.94 0.977 0.0628 8.01

performs, we make use of several popular metrics that mea-
sure different characteristics of an image. To measure image
quality, we use Peak Signal-To-Noise Ratio (PSNR) [9] and
Structural SIMilarity (SSIM) [31] index. PSNR shows the
overall pixel consistency, while SSIM measures the coher-
ence of local structures. These metrics assume pixel-wise
independence, which may assign favourable scores to per-
ceptually inaccurate results. For this reason, we also in-
clude the use of a Learned Perceptual Image Patch Simi-
larity (LPIPS) [35] metric, which aims to capture human
perception using deep features.

The stereo consistency is quantified using the disparity
error metric from [17], which counts the erroneous pixels of
the PSMNet estimated disparity map of the inpainted image,
compared against the ground truth1. Given the inpainted
image I, for every pixel i we consider its estimated dispar-
ity diest to be erroneous iff the absolute error against the
equivalent pixel in the ground truth disparity image digt is
greater than p1 and its relative error greater than p2 (we use
p1 = 3 and p2 = 0.05). This is described in equation 10,
where N is the total number of pixels, and [ ] is the Iverson

1The definition of [17] has a typo where the absolute error
∣∣∣diest − digt

∣∣∣
is replaced by diest.

bracket.

DispE =
1

N

∑
i∈I

[(∣∣diest − digt∣∣ > p1

)
(10)

&

(∣∣diest − digt∣∣
digt

> p2

)]
(11)

4.2. Inpainting comparison

We perform a quantitative comparison of our inpainting
model against other state-of-the-art methods [4,17,27], fol-
lowing the experiment setup described in Section 3.7. Re-
sults can be seen in Table 1.

We can observe our model performs better across all
metrics compared with the baseline model of Shih et
al. [27]. Our model also performs competitively against
other stereo inpainting models [4, 17], showing a superior
image inpainting quality with an improvement on PSNR
values of 50%, and some improvement to SSIM. Due to
the nature of our mask generation process, our stereo con-
text information is quite narrow, limiting the visible area
that our network can learn from. Despite this, our model
accomplishes similar results to the stereo consistency of
Chen et al. [4]. The image quality of the inpainting is supe-
rior on the Driving dataset, which was trained using square
centred masks to match the experimental setup of [4, 17].
Meanwhile, the object-like occlusion masks used on the
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Table 2. Ablation study. Compare the accuracy of different stages of the model over all regions.
‘Baseline’ is the monocular inpainting model, ‘Stereo’ is the model + stereo context, ‘Disp’ is the
model + disparity loss, and ‘Full’ if the model with both stereo context and disparity loss. Bold
is best result. Blue are results in synthesis regions only.

Model PSNR↑ SSIM↑ LPIPS↓ DispE (%)↓
Baseline 28.32 (22.26) 0.8589 (0.5619) 0.0707 (0.0676) 7.96
Ours (Stereo) 29.41 (23.61) 0.8604 (0.5597) 0.0625 (0.0582) 7.68
Ours (Disp) 29.79 (24.00) 0.8619 (0.5684) 0.0570 (0.0569) 7.71
Ours (Full) 30.50 (24.70) 0.8643 (0.5771) 0.0556 (0.0539) 7.67

FlyingThings3D dataset, which are not fully bounded, are
much more challenging.

A qualitative example is shown in Figure 52. Despite
having access to depth edges, Shi et al. struggles to produce
sharp object boundaries in the inpainted region. Meanwhile
SaiNet is able to use stereo context to inpaint sharp bound-
aries using colour edge information. This is evidenced by
Shih et al. success recovering the green bar in the first ex-
ample, but failing on the colour edge of the second example.
However, as shown in the 4th example, our technique still
struggles to inpaint especially intricate structures which are
not visible through stereo context. Nevertheless it produces
sharper and more visually pleasing results.

4.3. Ablation Study

In the interest of proving the contribution of every stage
to the accuracy of the model, we have studied its perfor-
mance removing the key contributions. Results presented
in Table 2 show that every part of the model performs better
than the baseline, with the combination of all modules hav-
ing the best performance across all metrics. It is interesting
to note that the use of a disparity loss provides the largest
individual benefit in terms of stereo consistency.

5. Conclusion
We introduced a new stereo-aware learned inpainting

model that enforces stereo consistency on its output, trained
in a self-supervision fashion over geometrically meaningful
masks representing object occlusions. This technique im-
proved over state-of-the-art models by up to 50% PSNR,
and we demonstrated its performance over several diverse
datasets. As future work, it would be helpful to explore
how we could extend similar techniques to cope with the
challenges that wide-baseline non-parallel cameras would
provide.
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