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Abstract. Existing shadow detection models struggle to differentiate
dark image areas from shadows. In this paper, we tackle this issue by
verifying that all detected shadows are real, i.e. they have paired shadow
casters. We perform this step in a physically-accurate manner by dif-
ferentiably re-rendering the scene and observing the changes stemming
from carving out estimated shadow casters. Thanks to this approach,
the RenDetNet proposed in this paper is the first learning-based shadow
detection model whose supervisory signals can be computed in a self-
supervised manner. The developed system compares favourably against
recent models trained on our data. As part of this publication, we release
our code on github.

1 Introduction

Shadow detection and its twin task of shadow removal are crucial for the de-
velopment of reliable computer vision systems. Such solutions can be used to
solve shadow-related problems in real-life domains such as farming [7], remote
sensing [24], autonomous driving [31], medical diagnostics [41], document de-
shadowing [15] or appearance correction in casual capture photos [43].

The vast majority of existing shadow detection solutions operate in a su-
pervised manner. The networks take in shadowed images and compare the es-
timated shadow masks with paired ground truth data. However, this approach
has a number of disadvantages: Firstly, the labels are obtained via laborious
hand-annotation, and are usually produced by multiple individuals with differ-
ent labelling behaviours. Secondly, the datasets [30,32,46] that are the de facto
standard in the image-based shadow detection literature lack diversity. They
depict predominantly pavements, grass, etc., and contain little texture varia-
tion, other objects and/or clutter. This means that shadow detection is often
posed simply as the task of detecting a darker region within the scene. Con-
sequently, when applied to general images, shadow detection models trained on
such datasets tend to mistake dark-coloured regions or objects for shadows. This
is unsurprising as differentiating shadows from dark regions is an ill-posed prob-
lem. Even in biological vision, the only way to solve this problem is through
context, and an understanding of scene structure. We visualise this in Fig. 1.

https://github.com/n-kubiak/RenDetNet
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Fig. 1: Examples of the common shadow vs dark region problem in shadow detection.
The examples come from the ISTD dataset [32] and the estimated shadow masks
(SMs) were generated using a SOTA shadow detection model [4]. This shows that even
some of the best available networks still struggle to distinguish between shadows and
dark image regions, and inspires us to develop a detection model with improved scene
understanding.

In this paper, we propose a completely new way to think about shadow de-
tection. Our model, RenDetNet, is trained without any hand-labelled shadow
masks. Instead, our system learns from synthetic rendered scenes, where it esti-
mates a shadow mask and a caster mask (i.e. a mask of the object casting the
shadow). We then use the caster mask to carve out the caster and re-render the
scene. If the (binarised) difference between the original render and the carved
render matches the estimated shadow and caster regions, it means the masked
caster was responsible for the detected shadow. Using this approach, our Ren-
DetNet learns not to predict shadows without credible casters.

In summary, the contributions of this paper are as follows:

1. We propose a weakly-supervised deep learning approach to shadow detection,
producing accurate caster masks and shadow masks corresponding to real
shadows; this includes cast and self-cast shadows (Fig. 3)

2. We present a self-supervised caster-aware dataset generation pipeline;
3. Our new model compares favourably against recent shadow detection meth-

ods on the new shadow-caster datasets presented in this paper.

2 Related work

Some shadow detection models treat the task as a preliminary step for shadow
removal [32, 42]. However, more relevant to our work are techniques which at-
tempt to distinguish between dark texture and shadow regions. scGAN [23] is
trained with tunable sensitivity and final masks created via multi-scale mask
aggregation. Le et al. [18] attenuate the strength of shadows in their dataset
to train a robust detector. Hu et al. [10] learn the direction-aware spatial con-
text (DSC) to estimate the lighting direction and thus the regions likely to be
shadows. BDRAR [47] refines the features by combining the contexts in adjacent
layers, and uses a bidirectional feature pyramid network to aggregate them across
the network. Wang et al. [38] use stacked parallel fusion branches to combine
the global context with the fine local features. DSDNet [44] actively tackles false



RenDetNet 3

positives and negatives in shadow detection by operating on multi-scale features.
Zhu et al.’s model [49] detects shadow and non-shadow areas, and leverages this
complementary information to reduce the frequency of misdetections. Jie and
Zhang [13] use shuffled multi-level features to provide good global and local con-
text simultaneously. FDRNet [48] extracts illumination-invariant and -variant
features, and combines them in a way that improves its robustness to brightness
changes. In FCSD-Net [28] the estimated masks are verified through shadow re-
moval. Similarly, SDDNet [6] models shadows and the backgrounds upon which
they fall (i.e. shadow-free areas) separately. Sun et al. [27] use adaptive map-
ping to adjust the detection process for raw images. SILT [40] tackles the noise in
shadow masks using shadow counterfeiting and self-teaching. Wang et al. expand
the problem of detection, and additionally match all shadow instances with their
casters [33–35]. The intuition behind these methods is similar to our approach,
but the models require full supervision and laborious annotation.

2.1 Reducing the supervision requirements

Unlike the previously discussed works, we strive to reduce the necessary super-
vision requirements to allow for shadow detection in more complex domains. A
few other papers explore this idea: A semi-supervised, multi-task MTMT-Net [4]
learns to estimate shadow regions, edges and count in a supervised way, and is
later finetuned using unlabelled data and a consistency loss. Chen et al. [5] and
Lu et al. [22] propose video shadow detection models trained on labelled im-
age data and unlabelled video data; Xing et al.’s method [39] uses labelled and
unlabelled videos. Although these approaches use fewer labelled samples, they
do not completely eliminate the need for ground truth. We could not identify
any deep learning solutions to shadow detection capable of operating in a fully
un- or self-supervised manner. However, some non-learning techniques exist, e.g.
that of paired regions. Such methods operate by finding a shadow-free match
for each shadowed pixel, based on reflectance consistency [8, 37]. The solutions
do not require training, but they also do not perform on par with recent deep-
learning models. Finally, while the idea of reducing supervision requirements has
not been as popular in shadow detection works, some examples can be found in
the tangential field of shadow removal [9, 14,17,21,29].

2.2 Summary

As illustrated above, there exists a wide range of shadow detection models.
Unfortunately, the supervision requirements of the available solutions are high -
the methods are at least semi-supervised. This necessitates a heavy supervision
workload for general applicability or, more realistically, leads to systems which
can only operate in a restricted domain. Therefore, in this paper we present a
novel weakly-supervised model where the necessary supervisory signal can be
obtained in a self-supervised manner and the training is guided by differentiable
scene carving and re-rendering in synthetic scenes.
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3 Methodology

In the following sections, we discuss the RenDetNet model and our approach to
weakly-supervised training. All elements of the proposed system are shown in
Fig. 2. At inference, only the parts in the dotted box are required.

3.1 Differentiable shadow caster verification with RenDetNet

The model proposed in this paper is a fully-convolutional network based on [36].
Our RenDetNet has a shared encoder E and 2 decoder heads – one for estimating
a shadow mask Dsm and one for a caster mask Dcm. Given a scene render I,
the process of obtaining a shadow mask SM and a caster mask CM can be
formalised as

SM = Dsm (E (I)) and CM = Dcm (E (I)) . (1)

The scene is rendered using the rendering function R that takes lighting ϕ,
camera κ and mesh µ data as arguments, i.e. I = R (ϕ, κ, µ) . The mesh data
can comprise a number of disconnected objects, not necessarily just one. The
mesh µ can be defined as a collection of N triangular faces {F} each of which
comprises a triplet of 3D vertices (v ∈ R3), i.e.

µ =
{
Fi

∣∣Fi = {vj}3j=1

}N

i=1
. (2)

To render the mesh, we need to project the 3D mesh vertices to 2D. To
this end, we use a projection function π such that 2D point v′ = π (v,Kκ,T)
where v, Kκ and T signify the 3D point coordinates, the intrinsics of camera
κ and camera extrinsics respectively. Therefore, the 2D-projected mesh can be
described as µ′ = {F ′

i}
N
i=1 with 2D faces

F ′
i = {π(v,Kκ,T) |v ∈ Fi } . (3)

Next, for our shadow caster verification, we need to check which vertices of
the foreground object(s) lie in the estimated CM. To do this, we pick all mesh
faces that have at least 1 vertex in this mask. More formally, the parts of the
mesh inside CM are defined as

µ′
cm = {F ′

i | (∃v ∈ Fi : π(v,Kκ,T) ∈ CM)} . (4)

Having identified the mesh faces identified by the caster mask, we remove them
to obtain a new, carved mesh

µ̂ = µ\{Fi|F ′
i ∈ µ′

cm}. (5)

Finally, we update the scene parameters with the new mesh data and re-render
the scene. The resulting image Î = R (ϕ, κ, µ̂) depicts the scene with some fore-
ground structures masked and correspondingly reduced shadows.
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Fig. 2: At train time, we take in lighting ϕ, camera κ and mesh µ param-
eters and render the scene I = R (ϕ, κ, µ). We push the render I through
our RenDetNet to obtain the shadow mask SM and the caster mask CM. We
then use CM to carve the mesh and re-render the scene, Î = R (ϕ, κ, µ̂).
At test time, only the region inside the dotted pink box is used.

3.2 The RenDetNet approach to supervision

To learn to estimate the shadow mask SM and the caster mask CM correctly,
we use a number of losses described below. The supervisory signals used for these
errors can be obtained at train-time in a self-supervised manner.

The key idea proposed in this paper is the shadow caster verification, i.e.
ensuring that shadows are only detected in the image if they have plausible
sources. To achieve this, we calculate the absolute difference between the original
render I and the carved mesh render Î. We then apply Otsu thresholding [25] to
calculate the threshold τ and turn this difference into a binary mask, represented
by the Iverson brackets J·K. The change area ∆I stemming from the mesh update
can be defined as ∆I = Jabs

(
I − Î

)
> τK. We can then use ∆I to calculate the

rendering loss Lren given as

Lren = ∥∆I − (SM ∪ CM)∥1, (6)

and use this signal to guide shadow and caster mask generation.
If ∆I and the masks differ, there are 2 possible explanations: Either a) the

portion of the scene we wished to carve was not a shadow-casting foreground
object and, thus, there was no ∆I change in this region, or b) the carved caster
removed a previously undetected shadow. Notably, as ∆I is compared against
the sum of the masks, Lren cannot distinguish between shadows and casters. In
other words, Lren can be trivially satisfied by placing both shadows and casters
in SM and leaving CM empty, or vice versa. To better control the masks, we
add two extra losses.

Firstly, we add an additional constraint on CM by observing the scene under
new lighting ϕ′ – constant emitter lighting. The resulting render is equivalent
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to the scene’s reflectance, i.e. its illumination-invariant characteristics, and ob-
jects viewed under such illumination will not cast any shadows or have any
self-shadows. If we threshold such a render with τ ′, we can very easily obtain
the object mask,

CMdiff = JR (ϕ′, κ, µ) > τ ′K, (7)

which can help to ensure that the estimated CM is fully contained within the
object region. We can then use this constraint to calculate the caster loss Lcm

given as
Lcm = BCE (CMdiff ,CM) , (8)

where BCE denotes the binary cross-entropy loss.
We also restrict the SM generation process in a similar, self-supervised man-

ner; this consists of two steps. Firstly, we consider the scene under 2 different
lighting conditions, with a point light flipped along the x-axis (denoted as −ϕ).
As before, I denotes the render with original illumination ϕ and now I′ repre-
sents the image with the new light setting, i.e. I′ = R (−ϕ, κ, µ). Under these
conditions, the shadow area in I will have a corresponding lighter, non-shadowed
region in I′ (and vice versa). If we subtract I from I′, we will get a positive dif-
ference in the I shadow area and a negative difference in the I′ shadow area.
Since we are only interested in the former, we only consider at the positive part
of the difference. We turn the described difference into a binary mask SMdiff1

defined as
SMdiff1 = J(R (−ϕ, κ, µ)− I) > 0K. (9)

Unfortunately, this way of supervising the SM only works if there is no overlap
between the shadows cast under ϕ and −ϕ. To remedy this, we add a second
constraint on this self-supervision method. We render our scene with the original
mesh µ and again with just the background (i.e. with an empty foreground mesh
R (ϕ, κ, ∅)). If we consider the difference between this background render and the
original, the region of change will correspond to the objects represented by the
mesh µ and their shadows. Knowing the caster mask estimate CMdiff (Eq. 7),
we can obtain the binary mask of just the shadow region,

SMdiff2 = Jabs(R (ϕ, κ, ∅)− I)K − CMdiff . (10)

Unlike the previous SMdiff1 estimation method, the SMdiff2 approach will
not show self-cast shadows (as they lie inside CMdiff ). However, this method
addresses the shadow overlap issue of the former solution. Therefore, we can
combine both techniques and get the full shadow supervision signal defined as

SMdiff = (Jabs(R (ϕ, κ, ∅)− I)K − CMdiff ) + J(R (−ϕ, κ, µ)− I) > 0K. (11)

Given SMdiff , we can constrain the shadow mask generated by our model.
We perform this using the shadow mask loss Lsm defined as

Lsm = BCE (SMdiff ,SM) . (12)
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The total loss used to guide the training of RenDetNet can be described as

Ltotal = Lrenλren + Lcmλcm + Lsmλsm. (13)

where the λs represent the weightings on all loss components. Empirically, we
set λcm = λsm = 1; λren is initially set to 0 and then its value increases to 1
after 1000 iterations.

To evaluate the performance of our model, only the RenDetNet part of the
described system (pink box in Fig. 2) is needed. This also means that at test time
no 3D data or other scene parameters are required – the inference is performed
solely on 2D image data.

4 Experiments

In the following sections, we discuss the datasets created as part of this publi-
cation and use them to evaluate the performance of a number of models.

4.1 The dataset

As previously discussed, capturing training datasets for shadow detection is a
challenge. Recently, Inoue & Yamasaki [11] proposed a pipeline for synthetic
shadow removal/detection dataset creation. In their setup, shadow masks are
used to cast shadows of varying intensity onto previously shadow-free scenes,
thus generating shadowed samples. While interesting, this approach does not
help to resolve the ‘dark vs shadow’ issue faced by the existing solutions.

To address this, we set out a few objectives for our data generation pipeline:
We want to include information about shadows and their casters. We do not
want to rely on any existing shadow masks (or shadow-filtered data) to run the
generation pipeline. Finally, we want to create the dataset in a fully automated,
self-supervised manner, without any human annotation. Hand-labelling datasets
limits their scalability, so learning with imperfect labels should be prioritised. A
number of learning-based solutions already get their (imperfect) masks from pre-
viously trained models, so we consider our physics-backed estimation approach
to be similarly viable while also being capable of adapting to new data.

To develop and demonstrate our idea, we rendered 2 datasets using Mitsuba 3
[12]; we refer to them as Datasets #1 & #2. Due to copyright reasons, the meshes
used to create Dataset #1 cannot be released. In the interest of reproducibility,
we created Dataset #2 using only publicly available components and we provide
the code used to create it.

Each dataset scene features between 1 and 3 textured meshes – human meshes
from 3D Virtual Humans (3DVH) [3] for Dataset #1 or a mix of BEDLAM [2]
humans and clutter objects [16,20] for Dataset #2. Dataset #1 features humans
in fixed poses. To maximise the cast shadow diversity, the humans in Dataset #2
are posed in a variety of ways using AGORA [26]. The objects (human or not) are
placed in a range of locations on patterned floors and in front of heavily textured
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backgrounds, the textures of which come from [1] and [19, 45] respectively. We
additionally vary the scene illumination, changing both the magnitude of the
constant emitter as well as the positioning and brightness of a point light. The
resulting datasets feature approx. 4.2k train / 900 test samples (Dataset #1)
and 9k train / 1k test samples (Dataset #2).

4.2 Evaluation metrics and experimental setup

The RenDetNet system was developed in Pytorch. The first version, with Dataset
#1, was trained for approx. 8k steps on a GeForce RTX 3090. More compact and
diverse Dataset #2 required approx. 12k steps on a single GeForce RTX 2080.
All variants of RenDetNet were trained in the Lab colour space unless otherwise
stated. The evaluations in the following sections are performed in terms of the
BER (Balanced Error Rate) score, defined as

BER =

(
1− 0.5×

(
TP

Ns
+

TN

Nns

))
× 100, (14)

where TP/TN symbolise the true positives/negatives and Ns/Nns describe the
total number of shadow/non-shadow pixels. We also cite the average shadow
region (S) and non-shadow region (NS) BER scores. In all cases, a lower BER
score signifies a better result. When quantitative data is reported, the best score
is shown in bold and the runner-up is underlined. All training and evaluation
runs were performed on full-size images, i.e. 512× 768 pixels.

4.3 Ablation study

First, we conduct an ablation study to demonstrate the impact of each of our
design choices. Specifically, we look at the impact of different training losses and
discuss the importance of choosing the right colour space for training a system
for lighting-related problems. At the end, we also demonstrate the shadow-caster
matching performance of RenDetNet.

Model losses study. In this study, we gradually add losses to our model
trained on Dataset #1 and measure their impact on RenDetNet’s performance.
The quantitative results of this evaluation are shown in Table 1. During the
experiments, we first train the most basic version of our model. As the rendering
loss Lren does not provide enough guidance to disentangle SM and CM on its
own, we consider our “bare minimum” scenario to operate based on Lren and
Lsm (line #1). We then add Lcm (line #2) to control both estimated masks,
which leads to slight improvements, particularly in the shadowed region. Next,
we consider the network trained with just Lcm and Lsm (line #3) and no shadow
caster verification. The resulting model is good at spotting shadows (lowest
BER(S)) but it struggles in the non-shadow regions (highest BER(NS)). We
attribute this to the dark/textured regions that are misclassified as shadows.
Finally, to combine the success of models #2 and #3, we adopt a staged training
mechanism: We start training the model with just the mask losses and add
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Lren after 1000 iterations. Around this time the SM and CM learning process
slows down, but the masks have become plausible enough to be constrained in
a physics-backed manner. The resulting system (line #4) has the lowest overall
BER score, which confirms the complementary nature of the previously discussed
losses.

Table 1: Loss ablation study - Dataset #1.

# Lren Lsm Lcm staged BER ↓ BER (S) ↓ BER (NS) ↓
1 ✓ ✓ 7.324 13.526 1.123
2 ✓ ✓ ✓ 7.182 13.103 1.261
3 ✓ ✓ 6.598 8.939 4.257
4 ✓ ✓ ✓ ✓ 6.344 11.010 1.679

Colour space study. Most shadow detection models are trained in the
RGB colour space. However, since shadows are lighting-related phenomena, we
experimented with training our model in the Lab colour space. In Lab, the L
channel corresponds to illumination and the colour information is captured by
the a and b channels. As demonstrated in Table 2, training RenDetNet on data
with such a representation is clearly advantageous.

Table 2: Colour space ablation study - Dataset #1.

Colour space BER ↓ BER (S) ↓ BER (NS) ↓
RGB 46.823 87.269 6.377
Lab 6.344 11.010 1.679

Input Estim. CM Estim. SM Input Estim. CM Estim. SM

Fig. 3: Examples of RenDetNet’s caster & shadow identification abilities - Dataset #2
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Shadow-caster pairing. As demonstrated in Fig. 3, aside from detecting
shadows, the proposed RenDetNet is also capable of identifying the shadows’
casters within the scene with high certainty and a good amount of detail.

4.4 Comparisons with existing models

For fair comparison with state-of-the-art solutions, we rendered all of our training
images and generated a shadow mask for each sample to create supervised 2D
versions of our datasets. Some of the recent shadow detection models rely on
false-negatives and false-positives pre-calculated based on the outputs of existing
models, e.g. [44], or require more data for different multi-task problems [4] or sub-
problems [33–35], which unfortunately makes them infeasible for our evaluation.
Therefore, for our comparisons, the compatible models – DSC [10], BDRAR [47]
and FDRNet [48] – were trained on our data using their publicly available code.
The results of this study are presented in Table 3 and Fig. 4.

The qualitative data shows the advantage of our caster verification step. In
the top row of Fig. 4 (Dataset #1) we can see that RenDetNet manages to find
the shadows, both cast on the ground as well as on the caster itself. FDRNet
performs similarly well yet loses some detail in the shadow cast on the floor.
BDRAR struggles to find any shadows while DSC finds the caster but also
estimates a large portion of the floor as shadow. We speculate this is due to the
clutter and variety of colours and textures in the scene. In the next two rows
(Dataset #2), DSC largely confuses the caster and the shadow, loosely covering
both areas. BDRAR correctly identifies the cast shadows, but completely ignores
any self-cast shadows. FDRNet captures more details and self-cast shadows than
BDRAR, yet, similarly to DSC, its shadow boundaries tend to spill. Our model
reconstructs the ground shadows to a similar degree as BDRAR, and preserves
more detail than FDRNet and DSC.

Numerically, our RenDetNet achieves a good balance in terms of BER(S) vs
BER(NS). This places it as the top performer (Dataset #1) or a close runner-up
(Dataset #2); nevertheless, visually, our method clearly outperforms the top-
performing FDRNet. Conservative in its shadow estimation, BDRAR tends to

Table 3: Performance in terms of BER - Dataset #1 (top) & #2 (bottom)

Dataset Model BER ↓ BER (S) ↓ BER (NS) ↓
#1 DSC [10] 14.716 19.256 10.176

BDRAR [47] 8.619 15.887 1.352
FDRNet [48] 7.276 10.714 3.839

RenDetNet (ours) 6.344 11.010 1.679
#2 DSC [10] 15.029 16.599 13.459

BDRAR [47] 15.415 30.359 0.472
FDRNet [48] 11.634 14.449 8.820

RenDetNet (ours) 11.992 21.347 2.638
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Input Ground Truth DSC [10] BDRAR [47] FDRNet [48] RenDetNet (ours)

Fig. 4: Qualitative results – row 1: Dataset #1; rows 2-3: Dataset #2.

be superior in terms of BER(NS), yet the system tends to underestimate the
shadows (high BER(S)). In contrast, FDRNet tends to overestimate the shadows,
which then leads to good precision in terms of shadow-area detection, but worse
BER(NS) performance. RenDetNet offers a happy medium.

5 Conclusions

In this paper, we have proposed a new weakly-supervised approach to physically-
verified shadow caster matching. The method allows us to accurately estimate
shadows, both cast on the external environment as well as self-cast shadows
which overlap the caster itself. Additionally, the proposed RenDetNet model can
be trained in a fully-differentiable setup with the supervisory signals calculated
on the fly, and requires no hand annotation or other human input. Finally, we
have presented a new self-supervised caster-aware dataset generation pipeline.
While developed on a particular set of images, meshes and textures, the same
idea could be applied to other sets of data.

As future work, it would be interesting to explore alternative training regimes
which can jointly exploit existing strongly supervised datasets alongside our
novel self-supervised data generation approach. It would also be productive to
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obtain a set of real-life images, perhaps with hand-annotated masks, to create
an improved validation set for shadow/caster estimation.
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