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Appendix A: Implicit image decomposition

In this section we discuss the benefits of implicit image decomposition. We also show a
few examples of reflectance R and shading S maps generated by Gλ during the implicit
decomposition step, as well as the new shading maps Ŝ acquired by processing the original
shading map by generator G. The images are shown in Fig. 1.

As can be seen in the examples in Fig. 1, the new shading maps processed by generator
G do present a unified shading representation that differs from the original shading maps
which correspond to different input light directions. This aligns with our goal of translating
all images, regardless of initial lighting style, to the same domain. Additionally, we can
observe clear shadows in the input shading maps, particularly distinct in the bottom two
rows. This shows that the varying factors are recognised as such and correctly assigned to
the shading (‘changing-factors’) maps.

We note that the reflectance and shading images have a visible cyan tint, but, as demon-
strated by all examples shown in the main paper body, this is not reflected in the final,
lighting-corrected images. We believe this is due to the white balance of the indoor light-
ing and the multiplicative colour space. Regardless, we wish to reiterate that achieving top
performance in this domain was never our objective. We only care about performing de-
composition in a way that simplifies the lighting transfer task for the generator G and, thus,
improves the overall performance of our model (as shown in the ablation study).
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Input image Reflectance map R Shading map S New shading map Ŝ

Figure 1: Examples of inputs, their implicitly decomposed reflectance and shading maps,
and the new shading maps. Each row depicts a different scene and lighting direction.

Appendix B: Higher definition examples
The max. size of images used for training models discussed in the main body of the paper
was 786×512 pixels. In case of the Multi Illumination [4] data, the produced outputs were
additionally cropped to highlight the most interesting image areas. In this section, however,
we show that SILT (trained on the Multi Illumination dataset) can produce visually pleasing
results across different image sizes. We demonstrate this by applying SILT to a number of
higher quality images and then performing a sweep across different image resolutions. The
samples are presented in Fig. 2 and 3 and come from the OpenSurfaces [1] and Cityscapes
[2] datasets, respectively.

Even though SILT was trained on lower-definition images, the model can apply light-
ing changes to larger images without serious artefacts. In the largest re-styled images, the
titles of larger books (OpenSurfaces) and vehicle registration plates (Cityscapes) are still as
clearly visible as in the input image. In Fig. 2, the two smallest images have the most visible
artefacts, particularly in the top right corner. In Fig. 3, however, this effect appears to be
worse for the two larger images, where a road pole on the right hand side is surrounded by
white ‘haze’.

The pix2pixHD paper [5] recommends using a LocalEnhancer addition to the regular
generator, to allow for HD image processing. In case of 4k data, two of such enhancers would
need to be trained and finetuned with the best model. However, we find that even without
these add-ons our model does not visibly degrade the input image quality and performs well
regardless of input size.

Appendix C: Model complexity
We report the complexity of our SILT model, specifically - the number of total vs trainable
parameters, and GFLOPs. These are measured for both datasets and image sizes used for
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training SILT, and shown below in Table 1.

dataset + image size GFLOPs # model params (of which trainable)
Multi Illumination [4] (786×512) 2792.768 79,328,552 (66,383,592)VIDIT [3] (512×512) 1862.846

Table 1: SILT model complexity for Multi Illumination and VIDIT datasets and their corre-
sponding training image sizes.

Appendix D: Output similarity loss
In the main paper body we report the results obtained using the output similarity loss Los.
The loss is defined in Eq. 2 and composed of the standard L1 loss and the L1 loss between
spatial gradients calculated over the generated images (referred to as L1(sg) in Table 2).

Below we show that adding L1(sg) to the commonly used L1 error metric improves the
model performance. We start with just the core losses (i.e. GAN losses Lg and Ld and the
decomposition loss Ldcp). When we add the L1 loss, we can observe a significant decrease
across all performance metrics. When L1 is combined with L1(sg), the decline is smaller
and the PSNR value actually improves slightly.

# losses used SSIM ↑ PSNR ↑ VGG ↓
1 core 0.730 17.075 0.428
2 core + L1 0.632 15.352 0.547
3 core + L1 + L1(sg) 0.682 17.142 0.495

Table 2: Los: The effect of adding the L1(spatial gradient) sub-loss to the L1 error metric.
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Input 3600×2400 Output 3600×2400

Output 2400×1600 Output 1800×1200

Output 1200×800 Output 600×400

Figure 2: Lighting transfer results for an OpenSurfaces image re-styled using SILT trained
on the Multi Illumination dataset. The numbers next to ‘Output’ show the size of the input
image used to create the output image (of the same size).
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Input 2048×1024 Output 2048×1024

Output 1024×512 Output 512×256

Figure 3: Lighting transfer results for a Cityscapes image re-styled using SILT trained on the
Multi Illumination dataset. The numbers next to ‘Output’ show the size of the input image
used to create the output image (of the same size).
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