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Abstract

The motion field of a scene can be used for object seg-
mentation and to provide features for classification tasks
like action recognition. Scene flow is the full 3D motion
field of the scene, and is more difficult to estimate than
it’s 2D counterpart, optical flow. Current approaches use
a smoothness cost for regularisation, which tends to over-
smooth at object boundaries. This paper presents a novel
formulation for scene flow estimation, a collection of mov-
ing points in 3D space, modelled using a particle filter that
supports multiple hypotheses and does not oversmooth the
motion field. In addition, this paper is the first to address
scene flow estimation, while making use of modern depth
sensors and monocular appearance images, rather than tra-
ditional multi-viewpoint rigs. The algorithm is applied to an
existing scene flow dataset, where it achieves comparable
results to approaches utilising multiple views, while taking
a fraction of the time.

1. Introduction

Scene flow is the 3 dimensional motion field of an ob-
served scene, as opposed to optical flow which is the pro-
jection of this field onto the image plane. It is difficult to
estimate scene flow, as observations on image planes are
highly ambiguous. In this paper, inspiration is taken from
particle filtering, and the problem is solved using a compet-
ing collection of scene point hypotheses, combined with a
modern depth sensor.

Most current approaches to scene flow estimation as-
sume a stereo, or multi-view camera system, in which the
scene structure and motion is estimated simultaneously.
To date there have been few attempts at solving scene
flow estimation using direct depth sensors (such as time-
of-flight cameras, or structured light). In this paper a Mi-
crosoft Kinect™system is used to provide extremely accu-
rate scene structure, and three dimensional motion is esti-
mated from only a single image sequence.

When estimating motion fields over a sequence, the pre-

vious estimate is often used to initialise the next frame.
Thus a poorly estimated frame can have a negative impact
on the rest of the sequence. The approach adopted in this
paper, allows multiple hypotheses to be maintained, reduc-
ing this accumulation of errors. Additionally, oversmooth-
ing of the structure and motion fields is avoided, which is
the primary source of errors in contemporary scene flow al-
gorithms.

1.1. Related Work

The most common approach to estimating scene flow
is to perform an optimisation on a global energy function,
including brightness constancy matching, and some regu-
larisation. Some authors add additional elements to the
energy function such as estimating the camera extrinsics
[19] or additional constraints on stereo matching [22]. This
optimisation approach is generally slow, although Rabe et
al. achieved real time performance by using a gpu imple-
mentation [14]. The algorithm presented in this paper is
demonstrated to operate much faster than previous, non-
parallelised, implementations.

The regularisation required to constrain these systems,
causes oversmoothing of discontinuities (such as object
boundaries) in both the structure and motion estimate. It is
possible to reduce this effect, by segmenting the input im-
ages and applying smoothness constraints only within seg-
ments [10], however, such segments suffer projective dis-
tortions when being compared in a multi-camera setup, and
so the brightness constancy matching is less accurate.

Basha et al. showed [1] that estimation could be im-
proved, by formulating the problem as a point cloud in
3D space, rather than the commonly used 2D parameteri-
sations, where smoothness constraints are less applicable.
This representation allowed the system to be easily applied
to any number of cameras, in any setup.

A number of authors [12, 8, 4] make use of 3D formu-
lations, based on meshes rather than point clouds. How-
ever this approach limits the possible motions and structure,
making it appropriate for some applications, but less gener-
ally applicable than using point clouds.



Most approaches estimate dense motion fields, however
Devernay et al. performed a sparse scene flow estimation
[6]. The motion estimates were obtained from tracking sur-
fels, originally proposed by Carceroni and Kutulakos [3].
This leads to a tradeoff between precision and coverage in
the estimation.

The majority of previous work operates in either a stereo
or multi-view setup. Some authors [9, 21] attempt to use
state of the art depth reconstruction algorithms, to pro-
vide or initialise the structure underlying their motion field.
However, no work has previously been done making use of
direct depth sensors, or estimating scene flow from monoc-
ular appearance sequences, which is the focus of this work.

Spies et al. [18] incorporated a depth sensor into scene
flow estimation, by extending the constraints from the ap-
pearance domain. This allowed very sparse motion esti-
mation to be performed, which was then regularised to fill
unestimated regions. Lukins and Fisher [ 1] then investi-
gated the use of various colour spaces combined with depth
streams, and Schuchert et al. [16] investigated performance
in the presence of illumination changes.

The work in this paper is inspired, in part, by that of
Davison et al. where Simultaneous Location and Mapping
(SLAM) was performed with monocular sequences, by
spreading depth hypotheses along viewing rays and eval-
uating them in subsequent frames [5]. This was used to es-
timate structure sparsely, rather than the dense motion field,
and multiple hypotheses were only maintained briefly. Con-
versely, the algorithm presented here estimates the motion
field using a cloud of velocity hypotheses at each position
in the scene.

The work of Vedula et al. [20] also bears some similarity
to the techniques proposed in this paper. Voxel colorisation
was used to examine a coarse version of all possibilities in
the scene space, and find consistent regions based on back-
ground subtraction. Ruttle et al. [15] later expanded this
work, exploring the use of additional heuristics.

1.2. Paper Structure

In the rest of the paper, section 2 discusses general multi-
sensor scene flow estimation from a probabilistic viewpoint,
and relates it to the use of modern depth sensors. Section 3
describes the Scene Particle approach to performing this
estimation. The coverage of the estimated motion field is
discussed in section 3.2, and a variant of the algorithm is
presented which ensures dense estimation. In section 4.1
qualitative evaluation of the system is performed on a se-
quence recorded with a Kinect™. Quantitative results are
given in section 4.2, where the algorithm is applied to an
existing scene flow dataset, and finally future directions are
discussed, along with the conclusions of the paper in sec-
tion 5.

2. Scene Probability Space

When estimating a dense motion field, the intention is
to find the best 3D velocity vector v, for each structural
position r. The scene probability space defines, for every
combination of structure point and motion vector, the prob-
ability of existing in the scene. Given a set of observations i,
it is possible to represent the posterior probability p(r, v|i)
in terms of the likelihood and the prior probability distribu-
tions.

p(r; v[i) oc p(i[r, v)p(r, v) (1)

The prior probability p(r,v) can be obtained from the
posterior at the previous frame, in combination with a mo-
tion model. The likelihood p(i|r,v) is formulated using
2 separate terms, as the observations i include information
from both appearance and depth sensors.

The first likelihood term g(i|r, v) is formulated using
the brightness constancy assumption, found in most optical
flow and scene flow approaches. This assumption states that
the intensity of a world point is identical when viewed from
any angle. With a set of M cameras in any multi-view setup,
the input observation i is the set images I ps. If the cam-
eras have projection matrices IT; g, any true world point
r in the scene will satisfy the condition:

M

> Z Iy (Tgr) — Iy, (TLr) | =0 ©)

m=0 g=0

If each camera produces an image sequence of T frames
I}-T  then a scene point r with 3D velocity v can be related

between cameras and frames by the condition:

M
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These conditions generalise to any number of cameras,
in any setup. In contrast, the image plane and disparity
based formalisation often used, generally requires rectified
images and a parallel camera setup.

The Kinect™system contains one depth camera (with
projection matrix ITq, producing image sequence I}~7)
and one appearance camera (with projection matrix Il,,
producing image sequence I1-7). Positions in the scene
(r) are obtained by backprojecting values from the depth
images, using the reverse projection matrix IIq~*. The di-
vergence from equation 3 at each point in the scene proba-
bility space is defined as the cost c(i|r, v), with higher costs
indicating reduced intensity matching.

c(ijr,v)=| I{(TIJIFIEY) —I5 (T, (IS5 ) | 4)
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Finally the first likelihood term g(i|r, v) is determined
from c(i|r, v) using equation 5 with e = 0.001, which is a
smooth approximation of Ly (see [2]).
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The second element d(i|r, v) of the likelihood, is called
the structure conformancy term, and incorporates informa-
tion from the depth sensor at the previous frame. Each posi-
tion r in the distribution is flowed backwards by it’s motion
estimate v, and the distance is calculated to the closest point

r*~1 from the previous scene structure.

d(i|r,v) = ming, ((rf — vi) —rf 1. (6)

To more heavily favour close conformance, the exponen-
tial decay of d(i|r, v) is used, to produce the likelihood as
in equation 7.

p(ijr,v) = g(iJr, v)e~ (dlrv)) o

3. Scene Particle Algorithm

The maintenance of these high dimensional, continuous
probability distributions is obviously intractable. Instead
the Scene Particle algorithm represents the posterior distri-
bution p(r,v|i) as a population of N weighted particles.
Each particle p,, has an associated weight w,,, and is repre-
sented by a 6D vector consisting of the 3D position in the
world r, and a 3D motion vector v, and is referred to here
as a Scene Particle. Many Scene Particles may have the
same spatial position r, while maintaining separate motion
hypotheses at that scene position.

pn = (r,v) € RS )

A resampling stage is performed after each new obser-
vation. Each particle spawns a number of copies, which are
diffused by Gaussian noise. For a population of NV particles,
the number of children spawned by particle p,, is w,, < V.
Thus, areas of the scene space with high probability will
contain more particles, while areas of low probability will
become sparse. The drawback of this resampling is that
only a portion of the positions obtained from the depth sen-
sor will have Scene Particles estimating their motion. In
section 3.2 a variation of the algorithm ensuring fully dense
flow estimation is discussed.

It is important to note that in most particle based sys-
tems, each particle provides a complete solution to the task.
However, in the Scene Particle algorithm, a particle pro-
vides only a single element of the motion field. To obtain
an estimated flow field from the Scene Particle population,
the weighted average of all Scene Particles at each position
r, is calculated.

3.1. Iterative Estimation

As with several other scene flow approaches [9, 13], the
Scene Particle algorithm employs a coarse to fine strategy,
to reduce the effects of local maxima in the probability dis-
tribution. The input images from each view are converted
to a scale pyramid, each level is applied in turn to the Scene
Particles, as a new observation. The number of Scene Par-
ticles remains constant at all times, consequently smaller
images have more hypotheses per camera ray. Thus, each
level refines the previous estimate to finer spatial scale, with
fewer hypotheses per ray.

In addition to this coarse to fine approach, a second se-
ries of iterations is performed at each scale. The resam-
pled particles are diffused in a gaussian manner, and their
weights are updated. After each of these inner iterations, the
standard deviation of the diffusion Gaussian is halved. This
allows particles to begin with more exploratory behaviour,
and to then converge over time.

Within each iteration, Scene Particles are processed in-
dependently. As such, the algorithm is eminently suitable
for a parallelised implementation (such as on a GPU), but
such an implementation was not produced for the purposes
of this paper.

3.2. Scene Coverage

Particle filtering systems have an unfortunate tendency
to converge to the highest peak over extended periods (see
[17]). In many applications this is acceptable, as the global
maximum is desired. In the Scene Particle algorithm how-
ever, the required output comprises the set of all local max-
ima. The loss of Scene Particles representing these lo-
cal maxima, increases the sparsity of the estimated motion
field. Modifying the Scene Particle weight update equation,
as in 9, counters this effect, as it reduces the contribution
of information from previous iterations, based on the frame
separation. This allows greater scene coverage to be main-
tained over prolonged sequences.

s t—1
wt — p(l‘pn) + Wn (9)
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For most applications, this results in a semi-dense esti-
mate, which is sufficient. For other situations, an additional
modification termed Ray Resampling, is proposed. In the
Ray Resampling scheme every Scene Particle is grouped to
the closest ray from the camera (the pixel it projects to in the
appearance image). Resampling of the Scene Particle pop-
ulation is then performed separately for the sub-population
grouped onto each ray. Essentially this approach equates
to using a separate particle filter for each ray/pixel, and al-
lowing the motion models to move particles between filters
during frame transitions. This ensures that every structure



point from the depth sensor has it’s motion estimated by the
same number of Scene Particles.

4. Results
4.1. Kinect Sequence

Initial qualitative results were obtained on recordings
from a Microsoft Kinect ™, accessed using OpenNTI’s soft-
ware. Figure 1 shows the output of the sensors, and the re-
sultant estimation. The motion field has been downsampled
for ease of viewing. Original images were at 640x480 reso-
lution, whereas the displayed motion field contains 128x96
flows. Because of this downsampling, the algorithm is able
to operate without paralellisation in under 10 seconds on a
standard desktop machine.

The depth input, figure 1.A, is the Z distance at each
point from the depth sensor, reprojected to the appearance
camera. Lighter regions are further from the sensor, while
black regions could not be measured. Some unmeasured re-
gions are due to areas of the appearance image which are
occluded in the depth camera. The remaining unmeasured
regions are due to reflective surfaces interfering with the
depth sensor.

The motion field in figure 1.C, shows the velocity es-
timated at each structure point, as a flow line, starting at
the cyan vertex and moving to the white vertex. The back-
ground in the scene is stationary, and as such has little mo-
tion estimated in any dimension. Plausible motion estimates
can be seen on the leg and arm, with the fastest moving ar-
eas at the end of the leg and the foot.

Due to the single viewpoint used, it is possible to see the
“shadow” projected by the foreground subject on the rest of
the scene. Areas of background which were occluded in the
previous frame, such as those along the bottom of the leg
projection shadow, produce incorrect flow estimates. This
is due to the structure conformancy cost (equation 6) favour-
ing flows from neighbouring structure which was visible in
the previous frame.

Examining Figure 1.C, it is obvious that the standard
oversmoothing artifacts from regularized optimisation ap-
proaches are not present. Near occlusion boundaries, Scene
Particles initial position attach to one object or the other,
rather than averaging between them. Additionally Scene
Particle velocities on each side of boundaries are able to
maintain completely different directions. This is due to
Scene Particles being examined in isolation, without requir-
ing local consistency.

The scene flow estimation results, for the
full 280 frame sequence, can be viewed at
www.computing.surrey.ac.uk/personal/pg/S.Hadfield/sceneparticle

4.2. Middlebury Comparison

In order to perform a quantitative evaluation of the al-
gorithm, an existing scene flow dataset was used. In [1],
8-camera stereo datasets from Middlebury are used to sim-
ulate scene flow. The 8 images are rectified, the cameras are
parallel and equally spaced along the X axis. Using the im-
ages from camera 2 as the first frame, and camera 6 as the
second frame, is equivalent to a stationary camera in a scene
where every object moves along the x axis, with the same
velocity. This allows ground truth motion at every point in a
real, cluttered scene, facilitating comparisons with existing
techniques.

Scene Particles explore motion within certain bounds
(discussed further in section 4.3). This velocity range can
be set to the maximum observable velocity of the cameras
(based on the field of view and framerate), or can make use
of application specific knowledge, when available. In the
Middlebury datasets, the velocity at every position is iden-
tical (equal to the inverse of the camera velocity). However
this knowledge is not exploited for these experiments. Ve-
locities are explored between +/- half the maximum velocity
in each scene. This range is explored in all three dimen-
sions, despite no motion being present in Y and Z.

As in [1], parameters are estimated for the camera setup.
The disparity images are used to simulate the output of the
depth sensor (although they are far more coarsely quantised
than the Kinect). Estimated scene flow is then projected
back onto the image plane for comparison with the ground
truth (which is provided in terms of pixels per frame). The
motion field estimate at each pixel is taken as the weighted
average of all Scene Particles projecting to that pixel. As
an error measurement, the Normalised Root Mean Square
(NRMS) Error is measured, as described in [1]. This quan-
tifies the accuracy of estimated motion magnitude, scaled
by the ground truth, to be comparable between datasets.
In addition the Average Angular Error (AAE) is examined,
to determine the accuracy of motion direction. Finally the
listed coverage relates to the percentage of the input struc-
ture, represented by the motion field.

Table 1 shows the results, compared to the approaches
of several other authors. Unlike the Scene Particle algo-
rithm, these alternative approaches estimate scene structure,
as well as scene flow, but require multiple viewpoints. Ex-
periments were also performed, applying optical flow to the
appearance images, and then using depth data to infer the
3D flows. Similar to the Scene Particle algorithm this uses
a single viewpoint, and only estimates motion for a given
structure. The Gunnar Farneback [7] optical flow algorithm
was used, as implemented in OpenCV.

The Scene Particle algorithm consistently estimates mo-
tion magnitude, more accurately than previous approaches,
despite making use of fewer views. This proves true for
velocities in the image plane, and perpendicular to it. The
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Figure 1. Qualitative images from the Kinect sequence. (A) The output of the depth sensor. (B) The output of the appearance sensor. (C)
The motion vector field estimated, vectors start at the cyan end and move to the white end. Length of the vector indicates the magnitude.

Algorithm Dataset | Views Used | Optical Flow NRMSE | Stereo Flow NRMSE | AAE (deg) | Coverage
Scene Particle Cones 1 0.10 0.00 5.10 49%
Scene Particle + RR Cones 1 0.09 0.00 5.02 100%
Op. Flow + Depth Cones 1 0.22 0.38 4.63 88%
[1] Cones 2 3.07 0.03 0.39 100%
[1] Cones 4 1.32 0.01 0.12 100%
[9] Cones 2 5.79 8.24 0.69 100%
Scene Particle Teddy 1 0.10 0.00 5.10 50%
Scene Particle + RR | Teddy 1 0.11 0.00 5.04 100%
Op. Flow + Depth Teddy 1 0.31 0.29 12.33 68%
[1] Teddy 2 2.85 0.07 1.01 100%
[1] Teddy 4 2.53 0.02 0.22 100%
[9] Teddy 2 6.21 11.58 0.51 100%
Scene Particle Venus 1 0.08 0.00 5.50 51%
Scene Particle + RR Venus 1 0.09 0.00 5.44 100%
Op. Flow + Depth Venus 1 0.38 0.23 12.21 98%
[1] Venus 2 1.98 0.00 1.58 100%
[1] Venus 4 1.55 0.00 1.09 100%
[9] Venus 2 3.70 3.05 0.98 100%

Table 1. Results of Scene Particle motion estimation, using monocular appearance + depth. Compared with [1] and [9] using multiple
views to estimate structure and motion. Also compared to optical flow estimation, incorporated with depth data. (RR is ray-resampled).

approach also outperforms the dedicated optical flow algo-
rithm, showing that the incorporation of depth information
at an earlier stage, allows more accurate flow estimates,
even when reprojected to lie on the image plane.
Directional estimation accuracy is slightly lower than ex-
isting techniques. This is because, with a single view point,
small perturbations of the motion vector often have no effect
on the pixel projection of the particle. However, with more
viewpoints, smaller deviations can be expected to affect the
projection in at least one image, making it possible to dis-
tinguish between more finely separated motion hypotheses.
The optical flow and depth approach also suffers due to this.
Performance of the standard algorithm is similar to that
of the Ray Resampling variant. It might be expected that
the Scene Particles in the standard algorithm would con-
verge on areas of the scene with low ambiguity, and thus

estimate accuracy would be higher, with reduced scene cov-
erage. However this does not appear to be the case, with
Ray Resampling actually producing more accurate direc-
tional estimates on all 3 datasets (albeit with slightly worse
magnitude estimates).

The Scene Particle algorithm processed the middlebury
dataset on a single core desktop machine in under 10 min-
utes, as opposed to 5 hours for [9] (run time was not re-
ported in [1]). The optical flow and depth based approach
requires 6 seconds.

4.3. Precision vs Exploration

Scene Particles exist within a certain volume of the ve-
locity space. The smaller this search space is, the fewer
Scene Particles are needed to explore it at a given spatial
position. This means if application specific knowledge is
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Figure 2. Velocity search volume (as a fraction of maximum ve-
locity), against optical flow error, on the Cones dataset. [1] and [9]
are benchmark lines for comparison.

available to reduce the search space, application speed can
increase, at no cost to performance. Conversely by using
such knowledge, while keeping the number of Scene Parti-
cles (and hence the run time) constant, improved accuracy
can be obtained, as shown in figure 2.

With the number of particles used in the experiments,
the Scene Particle algorithm outperforms existing methods,
when exploring velocities up to 75% of the maximum visi-
ble velocity. Scene Particles moving at 75% maximum ve-
locity would cover % of the scene in a single frame, and
so are unlikely to be visible in the following frame. Explor-
ing velocities larger than this range would require additional
particles and hence more computation, to maintain top per-
formance (although the approach is still an order of mag-
nitude faster). For a given search volume, the Ray Resam-
pling approach slightly outperforms the standard algorithm,

when using the same number of Scene Particles.

5. Conclusions

A novel Scene Particle approach to 3D motion estima-
tion was proposed, and demonstrated to provide compara-
ble performance to the current current state-of-the-art, at a
fraction of the computational cost. The algorithm is also ca-
pable of operating on single viewpoint sequences unlike tra-
ditional approaches, making new applications viable. Fur-
thermore, it is one of the few scene flow estimation system
capable of making use of modern depth sensor technology
such as the Kinect ™, rather than relying on stereo match-
ing algorithms.

Future work is planned to develop the Scene Particle al-
gorithm for application in multi-view scenarios, including
classic multi-view appearance datasets, but also multi-view
depth and appearance data. It is expected that this will al-
low the estimation of the motion field direction to reach the
levels of existing techniques making use of several views,
while further increasing the accuracy of the magnitude esti-

mate. Also under consideration is a parallelised implemen-
tation, further improving runtime, with a view to real time
operation.
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