
Using Reinforcement Learning to Design and
Control Free-Flying Space Robots

Lucy Jackson

Submitted for the Degree of
Doctor of Philosophy

from the
University of Surrey

Centre for Vision, Speech and Signal Processing
Faculty of Engineering and Physical Sciences

University of Surrey
Guildford, Surrey GU2 7XH, U.K.

October 2022

c© Lucy Jackson 2022

Abstract

Free-flying space robots have the potential to revolutionise space exploration by facilitating a
range of on-orbit operations. Whilst there have been some successful demonstrations of space
robot technologies, the systems remain large with mission concepts limited to rendezvous with
co-operative targets. However, the recent surge in small satellite technologies is changing the
economics of space and downsizing a space robot is now viewed as a technologically feasible
aim. Even with these advances, the design and control of a free-flying space robot is very
challenging. Without a fixed base, the robot experiences large dynamic coupling effects where
every motion causes counter-motions in other parts of the robot. These are influenced most
heavily by the space robot’s size and mass distribution as well as the employed control technique.
As such, successful operation is heavily tied to both physical design and control. In fact, this
coupling underpins all robotic systems since control and hardware design are intrinsically linked.
This thesis therefore investigates the relationship between hardware and control, looking at
how they impact each other and how this relationship can be exploited to improve performance.
Although this work uses the On-Orbit Assembly (OOA) of a large aperture space telescope
using free-flying space robots as a mission concept, the methods developed have applicability
across the entire field of robotics.

There exists no documented design technique for any space robot. In fact, the dimensions and
final design of successful missions are hard to find and never substantiated. This makes it hard
to understand how robotic design impacts performance. This thesis presents a transparent design
approach specific to free-flying space robots. A combined engineering approach is proposed,
considering the mechanics and dynamics of the integrated system in order to present a design
best suited for the OOA of a large aperture telescope. The feasibility of this space robot is
evaluated in simulation and in-depth results are presented. This analysis supports the hypothesis
that a small space robot is a viable solution for OOA and should be used as a starting point for
the design of future systems.

As with the majority of robot design techniques, the initial hardware centered design approach in
this thesis treats the control as immutable. Instead, simultaneous optimisation of hardware and
control parameters is likely to improve overall performance. This is demonstrated by reasoning
over both control and design in a Reinforcement Learning (RL) pipeline. The proposed method
forms a complex differential path through a trajectory rollout, allowing a vast amount of
information that was previously lost in the ‘black-box’ environment to be used. This means
refinements can be made to both the morphology and control parameters simultaneously. The
result is an efficient and versatile approach to holistic robot design. Performance improvements
are seen with the space robot and a number of benchmark tasks compared to just performing
hardware design optimisation.

While it is possible to modify robotic design in conjunction with control to improve performance,
in some instances the design maybe changed with no option to modify the control algorithm.
Data scarcity, brittle convergence and the gap between simulation & real world environments
mean that most common RL approaches are subject to overfitting and fail to generalise to unseen
environments. This means the replacement of parts with nonidentical components or the failure
of sensors or joints will most likely render the control algorithm useless. Hardware-agnostic
policies would mitigate this by allowing a single network to operate in a variety of test domains,
where dynamics vary due to changes in robotic morphologies. This thesis utilises the idea

that learning to adapt a known and successful control policy is easier and more flexible than
jointly learning numerous policies for different morphologies. It presents the idea of Hardware
Agnostic RL. In this approach, two control polices are combined and varied embodiments are
sampled using a novel adversarial loss function. This self-regulates morphologies based on their
performance. The result is a final control policy that is robust to changes in the environment as
well as degradation and failure of the robot.

Key words: Reinforcement Learning, Free-Flying Space Robot, On-Orbit Assembly, Robotic
Design

Email: lucy.jackson.309@gmail.com

WWW: https://www.linkedin.com/in/lucy-jackson-9208bb189/

Acknowledgements

I would like to thank all of the supervisors I had during this PhD. Firstly, Dr. Simon Hadfield
who took this project on under unusual circumstances and in doing so introduced me to the field
of RL. Thank you for your continued support, from teaching me the fundamentals of machine
learning when I was completely new to the field, to pushing me to achieve more than I ever
imagined. Not only would this thesis not be what it is without your help and guidance, but
truthfully it probably wouldn’t exist. Second, Dr. Celyn Walters whose patience in helping me
fix whatever machine or piece of software I managed to break was invaluable — as was teaching
me how to use apostrophe’s and commas. Finally, Prof. Mini Rai, thank you not only for your
guidance and support during my first year as a researcher, but also for sparking my interest in
the field of space robotics.

I would also like to thank everyone at CVSSP. Thank you for welcoming me with open arms,
even after a 1 year delay. Thank you for providing endless laughs, debates and sometimes lunch
breaks, be it in person or virtually.

This PhD was co-funded by Surrey Satellite Technology Ltd. I would like to thank Steve
Eckersley for his help throughout and everyone on the Missions Concept team for making my
placement so enjoyable.

Lastly I would like to thank my family. You got the pleasure of seeing me at my most stressed
points — convinced I wouldn’t finish or that something was not good enough. Thank you for
listening to me rant (sometimes politely), usually ignoring it, and then telling me that it would
be fine however many times I told you it wouldn’t.

vi

Contents

Nomenclature xi

Symbols xv

List of Figures xxi

List of Tables xxiii

Declaration xxv

1 Introduction and Motivation 1

1.1 Motivating Use Case . 4

1.2 Objectives . 6

1.3 Contributions . 7

2 Literature Review 9

2.1 On-Orbit Assembly Using Robotic Spacecraft 9

2.1.1 Optical Space Telescopes . 9

2.1.2 Past and Planned Robotic Missions 11

2.1.3 Robotic Technologies Specific to Telescope Architectures 13

2.1.4 Space Robot Control . 14

2.2 Classic Approaches to Robotic Hardware Design 15

2.2.1 Performance-Based Hardware Optimisation 15

2.2.2 Task-Based Hardware Optimisation 16

2.3 Multi-Objective Optimisation . 17

2.3.1 Priori Articulation . 18

vii

viii Contents

2.3.2 Posteriori Articulation . 19

2.3.3 No Articulation of Preferences . 19

2.4 Reinforcement Learning . 19

2.4.1 Q-Learning . 20

2.4.2 Policy Gradient Methods . 20

2.4.3 Actor-Critic Methods . 21

2.5 Simultaneous Design of Hardware and Control 21

2.5.1 Nonlinear programming . 22

2.5.2 Evolutionary Computation . 22

2.5.3 Machine Learning . 23

2.6 Robust Reinforcement Learning for Control 25

2.6.1 Domain Randomisation . 25

2.6.2 Multiple Policies . 25

2.6.3 Meta-Learning . 26

2.6.4 Adversarial Learning . 26

2.6.5 Other Approaches . 27

2.7 Summary . 28

3 Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope 31

3.1 Mission Concept . 31

3.1.1 Telescope Architecture . 33

3.1.2 Assembly Missions . 35

3.2 Space Robot Dynamic Model . 36

3.2.1 Spacecraft Definition . 37

3.2.2 Dynamic Coupling . 40

3.2.3 Force Definition . 40

3.2.4 Implementation . 41

4 Task Driven Automated Hardware Design 45

4.1 Problem Definition . 46

4.2 System Requirements . 46

4.3 Methodology . 46

Contents ix

4.3.1 Arm Optimisation . 48

4.3.2 Base Spacecraft Optimisation . 52

4.4 Results and Discussion . 55

4.4.1 Arm Optimisation . 56

4.4.2 Base Spacecraft Optimisation . 58

4.4.3 Design of Space Robot for On-Orbit Telescope Assembly 60

4.5 Conclusion . 65

5 Co-Optimisation of Hardware and Software using Reinforcement Learning 67

5.1 Methodology . 68

5.1.1 Reinforcement Learning Formulation 70

5.1.2 Parametric Control Optimisation . 72

5.1.3 Losses . 72

5.1.4 Parameter Co-Optimisation . 74

5.1.5 Differentiable State Transitions . 76

5.1.6 Implementation . 76

5.2 Experiments and Results . 77

5.2.1 Environments . 77

5.2.2 Baselines . 80

5.2.3 Gradient Flow Over Timesteps . 80

5.2.4 Performance Analysis . 82

5.2.5 Design Speed Analysis . 84

5.2.6 Final Designs . 85

5.2.7 Space Robot Design . 86

5.3 Conclusion . 91

6 Hardware Agnostic Control 93

6.1 Methodology . 94

6.1.1 Modification Network . 95

6.1.2 Adversary Network . 96

6.1.3 Implementation . 101

6.2 Experiments and Results . 103

x Contents

6.2.1 Environments . 103

6.2.2 Testing Parameters . 104

6.2.3 Modification Network vs Direct Learning 104

6.2.4 Adversarial Learning . 105

6.2.5 Normalising Flow Network Analysis 108

6.2.6 Failure Modes . 108

6.2.7 Robust Space Robot Control . 111

6.3 Conclusion . 112

7 Conclusions and Future Work 113

7.1 Conclusions . 114

7.2 Short Term Future Work . 116

7.3 Directions for the Field . 117

A Telescope Architecture 119

A.1 Introduction . 119

A.2 Optical Space Telescopes . 119

A.3 Standard Interface . 121

A.4 Primary Mirror . 122

A.5 Modular Back-Plane . 125

A.6 Secondary Mirror . 126

Bibliography 129

Nomenclature

AAST Autonomously Assembled Space Telescope

ADR Active Debris Removal

AI Artificial Intelligence

AOCS Attitude and Orbit Control Subsystem

API Application Programming Interface

BP Back-plane

CDF Cumulative Distribution Functions

CMA-ES Covariance Matrix Adaptation with Evolutionary Selection

CIRAS Commercial Infrastructure for Robotic Assembly and Services

c.o.m Center of Mass

COTS Commerical Off-the-Shelf

CSA Canadian Space Agency

DARPA Defense Advanced Research Projects Agency

DEOS Deutsche Orbitale Servicing Mission

DLR German Aerospace Center

d.o.f. Degrees of Freedom

DDPG Deep Deterministic Policy Gradient

DPG Deterministic Policy Gradient

DQN Deep Q-Network

EPOpt Ensemble Policy Optimization

ESA European Space Agency

xi

xii Nomenclature

ETS-VII Experimental Test Satellite VII

FoV Field of View

FREND Front-end Robotics Enabling Near-term Demonstration

GEO Geosynchronous Orbit

HARL Hardware Agnostic Reinforcement Learning

HARL-A Hardware Agnostic Reinforcement Learning through Adversarial Selection

HCP Hardware Conditioned Policies

HER Hindsight Experience Replay

HST Hubble Space Telescope

ISS International Space Station

iSSI Intelligent Space System Interface

JWST James Webb Space Telescope

KL Kullback–Leibler

LEO Low Earth Orbit

MAML Model-Agnostic Meta-Learning

MDP Markov Decision Process

MOO Multi-Objective Optimisation

MOST Microvariability and Oscillations of Stars

MSE Mean Squared Error

NASA National Aeronautics and Space Administration

NFN Normalising Flow Network

NN Neural Network

ODE Ordinary Differential Equation

OOA On-Orbit Assembly

OOO On-Orbit Operations

ORCHID Optimisation of Robotic Control and Hardware in Design

PID Proportional Integral Derivative

PM Primary Mirror

PPO Proximal Policy Optimisation

Nomenclature xiii

R&D Research and Development

RAMST Robotically Assembled Modular Space Telescope

RARL Robust Adversarial Reinforcement Learning

RL Reinforcement Learning

RNVP Real-Valued Non-Volume Preserving

R.P.M Revolutions per minute

RS Random Selection

TALISMAN Tendon-Actuated Lightweight In-Space Manipulator

Ta-DAH Design Task-Driven Automated Hardware Design

TD Temporal Difference

TRPO Trust Region Policy Optimisation

SM Secondary Mirror

SPIDER Space Infrastructure Dexterous Robot

SRMS Shuttle Remote Manipulator System

SSRMS Space Station Remote Manipulator System

TRL Technology Readiness Level

zero-g Zero Gravity

xiv Nomenclature

Symbols

A number of subscript symbols are defined that are used throughout this thesis in combination
with the other symbols. Two derivative symbols are also used in this work, both are defined
here.

Subscript Symbols

m Referring to the robotic manipulator

sc Referring to the base spacecraft

scm Referring to the coupling between the base and the mainpulator

d Desired location

t Referring to a time step

∗ The optimal version of that parameter (used as a superscript)

Derivative Definitions

˙ First derivative

¨ Second derivative

Introduced in Chapter 3

U CubeSat unit

dx Width of base spacecraft

dy Depth of base spacecraft

dz Height of base spacecraft

xv

xvi Symbols

m Mass of a rigid body

N d.o.f. of a system∑
B Reference frame fixed to the c.o.m of the base spacecraft∑
I Earth centered inertial reference frame∑
l Reference at frame the base of link

τ Forces applied to space robot system

fx Linear force applied to the base spacecraft in the x dimension

fy Linear force applied to the base spacecraft in the y dimension

fz Linear force applied to the base spacecraft in the z dimension

τα Torque applied to the base spacecraft about the x dimension

τβ Torque applied to the base spacecraft about the y dimension

τγ Torque applied to the base spacecraft about the z dimension

τ θ Torque applied to link joint

D Inertial properties of the system

C Centrifugal and Coriolis properties of the system

q State of system

x Linear position of base w.r.t. x-axis of
∑
I

y Linear position of base w.r.t. y-axis of
∑
I

z Linear position of base w.r.t. z-axis of
∑
I

α Rotation of base about x-axis w.r.t.
∑
I

β Rotation of base about y-axis w.r.t.
∑
I

γ Rotation of base about z-axis w.r.t.
∑
I

θ Rotation of link w.r.t.
∑
l

Introduced in Chapter 4

C Cost function

w Weights

F Objective function

Symbols xvii

J Total number of objective functions

v Design vector

V Design vector space

l Scalar link length

t Time step

J Jacobian matrix

I Inverse kinematic function

T Total time for manipulator to execute desired task

F Normalised objective function

A Wheel position within spacecraft

hR Torque provided by reaction wheels in spacecraft

mf Mass of fuel

Isp Specific impulse of fuel

Introduced in Chapter 5

a Action taken by a policy or agent

r Reward for taking an action from a given state

P Transition function

M Markov decision process

s State of an environment

P Probability function

S State space

A Action space

γ Discount factor

θ̃ Parameters of policy network

π General neural network

R Discounted return over an episode

Q Q-function

xviii Symbols

E Expectation

V Value function

ω̃ Parameters of critic network

kI Integral constant for PID controller

kP Proportional constant for PID controller

kD Derivative constant for PID controller

e Error

µ Mean

σ Standard deviation

R Reward function

Ja Loss for actor network

ε Clip parameter for PPO algorithm

A Advantage function

Jc Loss for critic network

N Gaussian distribution

JPID Loss for PID controller

Jv Design parameter loss function

Jvd Direct loss design parameter

La Learning rate for actor network

Lc Learning rate for critic network

Lv Learning rate for design vector

LPID Learning rate for PID control parameters

Introduced in Chapter 6

ε̃ Parameters of expert network

ψ̃ Parameters of modification network

δ̃ Parameters of the adversary network

¯ Referring to the modification network

Symbols xix

ˆ Referring to the expert network

◦ Referring to the adversary network

lp Learning potential

Lmod Learning rate for the modification network

LNFN Learning rate for the NFN network

p Target vector of numbers

q Original vector of numbers

f Flow function

J Jacobian

K Total number of flows

k Flow in question

DKL KL divergence

Jadv Loss for adversary network

Φ Any nonlinear activation function

S Scale function

T Translation function

Ec Episode count

N̊ Number of samples to train adversary network

w Weight applied to layer of NFN

xx Symbols

List of Figures

1.1 Comparison of different robotic agents . 2

1.2 Space Robot . 5

3.1 Telescope being assembled on-orbit . 32

3.2 Assembly of inner BP ring . 34

3.3 Novel breakdown of missions for OOA . 38

3.4 Reference frames used with the space robot 40

3.5 Example of tasks in python simulator . 42

4.1 Ta-DAH Design methodology . 47

4.2 Joint configurations . 48

4.3 Impact of link length on cost function . 56

4.4 Cost function for specific manipulator . 57

4.5 Dynamic coupling for different sized spacecraft 58

4.6 Behavior of different sized base spacecraft in the free-floating operation mode . 59

4.7 Control forces and torques required in the free-flying operation mode 61

4.8 Optimal Space robot designs . 63

5.1 Different options for optimising control and morphology 68

5.2 Comparison of ORCHID and standard RL gradient flow 69

5.3 Partial derivatives for v when t = 2 . 75

5.4 Comparison of timesteps in ORCHID . 81

5.5 Overall performance of ORCHID compared to baselines 83

5.6 Render of simulator during training . 87

6.1 Representation of HARL-A . 94

xxi

xxii List of Figures

6.2 HARL-A flow diagram . 95

6.3 Graphical representation of lp . 98

6.4 Performance in Bipedal Walker . 106

6.5 Performance in Cart Pole . 106

6.6 Variation of NFN over time for HARL-A with 1 dimension 109

A.1 Artist impression of a large aperture telescope 120

A.2 Primary mirror sub-assemblies . 123

A.3 Different views of the primary mirror sub-assembly 125

A.4 Dimensions and structure of back-plane . 127

List of Tables

3.1 Sub-mission components . 36

3.2 Simplified OOA tasks . 36

3.3 Trajectories for OOA . 37

3.4 Standardised form factor sizes and dimensions 39

4.1 System requirements . 47

4.2 Definition of selected objective functions . 49

4.3 Definition of selected conditions . 53

4.4 Properties of Reaction Wheels . 54

4.5 Power generated by different form factors . 55

4.6 Linear Thrusters . 56

4.7 Starting points for Ta-DAH Design . 62

4.8 Power requirements for sub-missionss . 64

5.1 Comparison of run times for ORCHID over different timesteps 81

5.2 Comparison of run times for ORCHID and all baselines 84

5.3 Comparison of final designs . 85

5.4 Space robot performance . 86

6.1 Testing ranges . 104

6.2 Comparison between HARL and baselines . 105

6.3 Performance with intelligent morphology sampling 107

6.4 Performance of failure modes . 110

6.5 Space robot performance with HARL-A . 111

A.1 Comparison of available standard interfaces 121

A.2 Mirror subassembly geometry comparions . 124

A.3 Mass of primary mirror sub-assemblies . 125

xxiii

xxiv List of Tables

Declaration

This thesis and the work to which it refers are the results of my own efforts. Any ideas, data,
images or text resulting from the work of others (whether published or unpublished) are fully
identified as such within the work and attributed to their originator in the text, bibliography or in
footnotes. This thesis has not been submitted in whole or in part for any other academic degree
or professional qualification. I agree that the University has the right to submit my work to
the plagiarism detection service TurnitinUK for originality checks. Whether or not drafts have
been so-assessed, the University reserves the right to require an electronic version of the final
document (as submitted) for assessment as above.

The work presented in this thesis is also present in the following manuscripts:

• Lucy Jackson, Chakravarthini M. Saaj, Asma Seddaoui, Calem Whiting, Steve Eckersley,
and Simon Hadfield. Downsizing an orbital space robot: A dynamic system based
evaluation. Advances in Space Research, 65(10):2247–2262, May 2020.

• Lucy Jackson, Celyn Walters, Steve Eckersley, Pete Senior, and Simon Hadfield. ORCHID:
Optimisation of robotic control and hardware in design using reinforcement learning. In
Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4911–4917, 27th September - 1st October, 2021. Virtual.

• Lucy Jackson, Celyn Walters, Steve Eckersley, and Simon Hadfield. HARL-A: Hardware
agnostic reinforcement learning through adversarial selection. In Proceedings of the 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3499–3505, 27th September - 1st October, 2021. Virtual.

• Lucy Jackson, Celyn Walters, Chakravarthini M. Rai, Steve Eckersley, and Simon Had-
field. Ta-DAH: Task driven automated hardware design of free-flying space robots. In
Proceedings of the 16th International Conference on Space Robotics and Automation
(ICSRA), 19th - 20th July, 2022. Virtual.

Signed:

Date: 10.10.2022

xxv

xxvi Chapter 0. Declaration

Chapter 1

Introduction and Motivation

From the introduction of the first commercial robot in 1958 to the more recent development

of surgical robots and personal assistant humanoids, many would argue that day-to-day life

would not be the same without robotic technologies. Initially used to improve efficiency

in farming, manufacturing and production via the automation of mundane and sometimes

dangerous tasks, more industries are starting to invest in robotics. While very prominent

in warehouses and medical settings, robots are less prevalent in situations that require more

complex or sophisticated behaviors such as on the roads or interacting directly with humans.

Success in these more dynamic environments involves the robot perceiving & making sense

of its surroundings, planning a suitable motion to complete a task, executing the motion via

the control of actuators and then monitoring its success to feedback into its plan. All of these

task components are highly complex problems to solve individually, let alone end-to-end in

a single system. While advances in computer vision have enabled intelligent perception, the

emergence of Reinforcement Learning (RL) provides a framework to solve the problem of

planning and executing actions. As such, it is becoming possible for robots to solve tasks of

higher complexity.

Deep RL is an emerging Artificial Intelligence (AI) technique used to allow robots to learn from

their environment through trial-and-error interactions. In recent years the field has seen huge

improvements, notably, beating world-class players at strategic board games, playing video

games to superhuman standards and controlling continuous robotic systems [149, 83, 86]. In

the area of robotic control, policies learned via RL have started to replace more traditional

techniques such as Proportional Integral Derivative (PID) and H∞ controllers, both of which

1

2 Chapter 1. Introduction and Motivation

(a) NASA’s Curiosity Rover on Mars. Image cour-

tesy of NASA.

(b) Underwater avatar [68].

Figure 1.1: Comparison of different robotic agents. Robots are usually designed for specific

tasks and as a result the hardware varies drastically based on the task at hand.

rely heavily on path planning algorithms. Unlike these traditional approaches, the use of RL

algorithms removes the need for an off-line planning phase and implementation requires lower

levels of domain knowledge.

In addition to control, the successful implementation of robotic systems relies on the physical

structure and hardware of the robot itself. Given the large range of possible applications

and operating conditions, there exists a large variety of bespoke robotic architectures. There

are custom-built robots designed specifically for space & deep sea exploration, search &

rescue missions and military operations. As an example, National Aeronautics and Space

Administration’s (NASA) Curiosity rover, shown in Figure 1.1a, was designed to explore Mars.

It is modeled around a buggy design with six wheels mounted on two rocker-bogie suspension

systems [160]. It hosts a number of perception sensors along with a rock vaporizing laser and

different drills, allowing it to perform exploration tasks in-situ. Conversely, an underwater

robotic avatar designed to explore marine life at depths of over 1 km, takes a very different

form. The avatar can be seen in Figure 1.1b. It has only thrusters as a form of propulsion and is

modeled around the human body. It hosts two 7 Degrees of Freedom (d.o.f.) arms with hands

capable of tactile sensing, allowing it to pick up items from the seabed. Even from this brief

overview, it quickly becomes apparent that neither agent would have any level of success if put

in the other’s setting, even though the aim of both is to explore an extreme environment.

Original approaches to robotic design involved trial-and-error prototyping evaluated by quanti-

fying the robot’s performance in the target task. This results in individual solutions following a

costly, time and resource intensive process. In an attempt to combat this, designs for different

3

agents with a similar or identical function can be modified and updated as opposed to restarting

the Research and Development (R&D) process. This is what happened with the Mars rovers

designed by NASA. To date, the agency has successfully operated 5 rovers on the planet.

While the overall design of the rovers stayed consistent, modifications and improvements were

made to different components e.g. the wheel diameter increased incrementally from the first

to the last design. A similar design approach can be seen with different groups of medical

robots. Almost all of those used for laparoscopic surgery take near identical forms but with

different end effectors and d.o.f. This ‘heritage’ approach to robotic design can speed up the

R&D process and lower costs by allowing for higher levels of technology transfer and ‘learning

from mistakes’. Yet, robotic design and R&D remains expensive and time-consuming. Even

with prior knowledge, the development of the most recent rover took 11 years and cost upwards

of $2.4 million [76]. This thesis will therefore explore techniques to accelerate and streamline

hardware design through automation. Automating the design process will aid in cutting the

costs and lead times of robotic design projects by removing the need to manually produce,

evaluate and test different design options. The automated design process developed in this

thesis should encode and leverage prior knowledge in a compact and meaningful way in order

to facilitate information transfer. In addition to improving the R&D process, there is potential

for the successful implementation of an automated design technique to improve the overall

performance by finding a design that would not have been discovered via systematic human

iteration.

Just as important as the correct physical design for a robot’s successful operation is the employ-

ment of the correct control technique. A well-designed robot is useless if it is not capable of

actuating itself, or being actuated in a manner that will facilitate the successful accomplish-

ment of tasks. It quickly becomes apparent that successful operation of any robotic system is

heavily tied to both its physical design and control. Unfortunately, in practice, it is impossible

to decouple what constitutes a good hardware design from the control policy used. This is

because of the intrinsically coupled physical laws that underpin motion. A biological example

of the interconnectedness of mechanical design and motor skills can be seen in human athletes.

Sprinters aim to develop stronger hip muscles and a technique that involves higher frequency,

shorter strides, while long distance runners require stronger ankle muscles and longer strides at

a lower frequency [45]. Most approaches to hardware design optimisation generally adopt a

simplistic control scheme since it is inefficient and time-consuming to fine-tune a controller or

4 Chapter 1. Introduction and Motivation

train an RL agent for each design iteration. This means that once the hardware design is finalised

and a more specialised control policy is developed, the previously chosen hardware may no

longer be optimal. As a result the design process could be improved if a combined approach was

taken whereby the physical design and control of the agent are reasoned over simultaneously.

This thesis explores ways of co-optimising the control and design of a robotic agent. Such a

process would remove the need to iterate between physical design and control, improving the

final performance while also providing a more time efficient and less costly design process.

Although a co-optimised design will likely function better than one designed in a disjointed

manner, the result is a control scheme suitable for use with only that robot. During training an

RL agent implicitly learns the kino-dynamics of the exact system on which it was trained. Since

the kinematics and dynamics of a system are functions of the physical hardware, it means that

any changes to the robot’s form will induce a change in this model. As such, hardware changes

are likely to render a trained RL agent or other rudimentary control technique ineffective. Taxing

data requirements, brittle convergence and hyperparameter sensitivity in the RL domain makes

the training of agents a volatile and long process. Training a new agent for each iteration of

robotic hardware therefore requires excessive additional time and compute. To combat this, the

control of multiple agents with differing kino-dynamics using a single control policy will be

investigated. Policies capable of operating on a range of different robots would increase the

longevity of systems due to robustness to dynamic changes as a result of robot degradation or

failure.

To summarise, it is the aim of this thesis to explore a number of avenues related to the intercon-

nectedness of a robot’s hardware and control. This includes approaches for automated design,

simultaneous reasoning over hardware design & control and approaches to control that are

robust to changes in hardware.

1.1 Motivating Use Case

The work presented in this thesis is inspired by the use of space robots to carry out the On-Orbit

Assembly (OOA) of a large aperture space telescope. In this thesis a space robot is defined as

a robotic manipulator attached to a base spacecraft, a representation of which can be seen in

Figure 1.2. Note that the manipulator can have any number of d.o.f.

1.1. Motivating Use Case 5

Figure 1.2: Space Robot. As defined in this thesis a space robot consists of a manipulator of

any number of d.o.f. mounted on a base spacecraft of any size [62].

Until recently OOA has been limited to large national missions, such as the assembly of The

International Space Station (ISS), with bespoke components and oversized robotics. However,

a new space era is approaching in which low-cost autonomous robotic assembly systems are

commercially viable and therefore applicable to smaller missions and a wider market. Current

technologies in the field are reaching their physical limits and the advantages of designing

and launching a larger space telescope are extensive. Not only will the imaging distance and

the resolution of images improve, but it will demonstrate that it is possible to build large

structures in space using OOA. Initially telescopes reached a maximum size due to an inability

to manufacture monolithic mirrors above a certain diameter. In response to this, deployable

segmented mirrors and other structures were developed — such as the James Webb Space

Telescope (JWST). However, even in its stowed configuration the JWST exceeds the size of any

vacuum chamber on Earth, meaning the usual pre-flight tests could not be carried out. Instead,

its deployment in-situ had to be monitored extensively and modified as engineers saw, for the

first time, how it reacts in the super-cold, Zero Gravity (zero-g) environment. This design

already pushes the feasible size limit for a deployable telescope in space and new technologies

must be developed.

The tasks required to assemble a structure in space are extensive and will likely require a

multitude of highly dexterous space robots, known as a swarm. The high level of dexterity

6 Chapter 1. Introduction and Motivation

required means that the robots must be small enough to achieve fine accurate motion and

compliant enough to handle small and fragile components, yet also be large enough to manipulate

heavy payloads. In addition to this, systems should be capable of manoeuvering relative to

the telescope without collision and with high precision. In practice, it is therefore likely that

a number of different sized spacecraft will be needed, where each spacecraft in the swarm is

optimal for a different task.

Each space robot must be designed for its specific task while also being able to overcome

the effect of dynamic coupling. This phenomenon is the result of the combination of the

conservation of momentum and microgravity operating conditions. It means that any controlled

or uncontrolled motion of the arm will induce a destabilising force on the base spacecraft and

vice versa. This effect increases as the difference in inertia between the manipulator and the

base spacecraft increases. If the manipulator is downsized too much it will lack dexterity and

reach, resulting in a small workspace and diminished capability. However, a bigger arm will

need a larger base in order to ensure system stability, ultimately leading to higher launch costs

and lower mission flexibility. Pivotal to solving this problem is understanding the coupled,

highly non-linear dynamics of the arm and the base spacecraft and how it can best be designed

and controlled. This use case therefore provides strong motivation for the investigation of the

interconnectedness of control and hardware design presented in this thesis.

1.2 Objectives

The overall aim of this thesis is to investigate the relationship between robotic hardware and

control and how each impacts performance. The challenges and context discussed in the previous

section provide a number of distinct objectives and aims for this thesis:

1. To explore the automation of hardware optimisation techniques as a way of improving the

performance of a small space robot carrying out OOA.

2. To develop an automated design methodology that will reason over hardware and software

simultaneously, rather than using a disconnected two stage approach.

3. To develop RL task-based control solutions for generalisation to different robotic hard-

ware.

1.3. Contributions 7

It is important to note that the work contained in this thesis has general applicability in the wider

field of robotics, not only the target OOA application. While the first contribution addresses this

use case directly, there is a running theme of evaluating the other developed techniques across

multiple scenarios. It is hoped that this work has interest for robotic design and control within

the space sector and beyond.

1.3 Contributions

In order to address the defined objectives a number of distinct and interrelated pieces of work

are presented. Chapter 3 provides context to this work by defining the architecture of a modular

space telescope that is suited to OOA. It also outlines a suitable mission concept and details on

the space robot simulator used throughout this work. Specifics on the exact telescope design can

be found in the appendix.

Chapter 4 presents Task-Driven Automated Hardware Design (Ta-DAH Design) [66] — an

automated design technique for a space robot, thus addressing Objective 1. This approach uses

Multi-Objective Optimisation (MOO) to determine the optimal sizing of a robotic manipulator,

based on a dynamic system evaluation [63]. A systematic approach is then employed to size

the base spacecraft. Throughout, designs are evaluated with a simplistic control scheme. This

results in some designs having lower performance than expected. As mentioned previously, high

performance can only be expected if the hardware and software are designed simultaneously.

Chapter 5 addresses this problem, and in doing so, Objective 2. It presents Optimisation of

Robotic Control and Hardware in Design (ORCHID) [64] — a technique that simultaneously

optimises a robot’s hardware and control policy. This is achieved by utilising differentiable

dynamic simulators to increase the amount of information that can be leveraged during training.

However, as with other RL architectures, ORCHID overfits to the single optimised design.

While this gives desirable behavior in the short-term, it means that any changes to robotic

hardware render the control policy useless.

As a solution, chapter 6 presents Hardware Agnostic Reinforcement Learning through Adver-

sarial Selection (HARL-A) [65], which addresses Objective 3. HARL-A is an RL architecture

that allows for a more general control policy to be learned. It is specifically tailored to learn a

8 Chapter 1. Introduction and Motivation

policy over changing robotic embodiment or a number of failure modes. This provides a level

of redundancy and robustness to finalised robotic systems.

Chapter 7 provides a summary of the thesis findings and suggests a number of directions for

future work in the field. In summary, the main aim of this thesis is to investigate the relationship

between the physical design and control of a range of robots.

Chapter 2

Literature Review

This chapter introduces existing methods and topics related to the work in this thesis. Initially

different space telescope missions and architectures are outlined, as well as past missions

involving OOA and the robotic technologies used. Then both classic and more modern design

approaches for robotic manipulators are discussed, including those that involve RL. The chapter

ends by covering different approaches to achieve robust, hardware-agnostic control.

2.1 On-Orbit Assembly Using Robotic Spacecraft

2.1.1 Optical Space Telescopes

The first optical telescope in space was Hipparcos — a scientific satellite destined for Geosyn-

chronous Orbit (GEO), launched by European Space Agency (ESA) in 1989 [120]. It was

a reflective Schmidt telescope with a spherical primary mirror measuring 29 cm [172]. This

mission was considered successful having obtained results about 1.5 to 2 times better than the

original aims [79, 120].

One year after the launch of Hipparcos, the Hubble Space Telescope (HST) launched — a joint

venture between NASA and ESA. The Primary Mirror (PM) in the HST had a diameter of 2.4 m

making it much larger than the previous ESA mission, and one of the largest mirrors in space [99].

Yet the performance of the HST was lower than expected as it suffered from spherical aberration.

The PM was equipped with 24 force actuators in two concentric circles, designed to flex the

9

10 Chapter 2. Literature Review

mirror’s surface to account for this aberration. However, the actuators were undersized compared

to the mirror diameter and did not have sufficient range to correct the large and unexpected

difference in focal length [24]. This reduction in performance highlighted one of the biggest

challenges when designing and launching large mirrors for space telescopes. Following this,

it wasn’t until 2003 that another space telescope was launched. This was Microvariability and

Oscillations of Stars (MOST), developed by The Canadian Space Agency (CSA) [8]. Classed as

a microsatellite at less than 50 kg, no new large mirror technologies were required, and instead

this mission addresses challenges at the opposite end of the spectrum [26]. Following this a

number of smaller systems became operational. However, as with MOST these all involved

much smaller mirrors and are therefore not discussed as they hold little relevance to the context

of this thesis.

The Kepler space telescope, which launched in 2009, is the next telescope of interest in the

context of this work. It uses a reflective Cassegrain-Schmidt design, with a primary mirror of

1.4 m in diameter, making it the second-largest mirror of any optical space-based observatory

after the HST [19]. Although launching almost 20 years apart, the Kepler Telescope’s PM and

the HST’s PM are manufactured from the same material and are of very similar geometry [10].

Of interest is that no new phasing technologies were launched to account for the performance

reduction seen by the HST. Instead, the size of the mirror was reduced. The optical space

telescope design in this thesis utilises similar sized mirrors to those used on the Kepler Telescope.

The JWST was the first of a new generation of mirror concepts, being the first to employ a

segmented PM [10]. The motivation for this approach was the need to launch a PM of 6 m in

diameter in a launch vehicle fairing of 4.5 m. Although not strictly an optical telescope since

imaging will occur in the infrared wavelengths, the deployable design is of great interest. The

PM is made of 18 hexagonal beryllium segments, and its Secondary Mirror (SM) sits at the end

of a tripod-like structure [108]. Each segment is 1.32 m flat-to-flat, making them more similar

in size to the mirrors used on the Kepler Telescope, and much smaller than those on the HST

[52]. In order to ensure these segments act as a single mirror once deployed, each is equipped

with a 7 d.o.f. actuator — 6 d.o.f. for rigid body motion and an additional d.o.f. for the radius of

curvature [52]. Having launched in 2021 the JWST is the largest telescope currently in-orbit.

This segmented mirror design hosts some issues, most of which are as a result of needing to

accurately position the segments relative to each other. However, at present it is the most suitable

design for the OOA of large mirrors [104, 106]. The PM is split across three different structures,

2.1. On-Orbit Assembly Using Robotic Spacecraft 11

two of which are deployed once the JWST reaches its desired location. This requires a high

number of automatic motor-driven motions for the telescope to be fully operational, with only

built-in redundancy as failure back-up. As such, the mission concept presented in Section 3

proposes the use of free-flying space robots to assemble the mirror components. Not only does

this limit the number of mechanisms required in the design, but also allows for replacement if

any module or component were to fail.

2.1.2 Past and Planned Robotic Missions

The first robotic system used in space was the Shuttle Remote Manipulator System (SRMS),

which was deployed from the cargo bay of the Space Shuttle in 1981 and aided in the assembly

of the ISS [50]. It was a 15.2 m long, robotic manipulator, with 6 d.o.f. [129]. Since then more

bespoke robotic manipulators have been developed. ESA have developed the European Robotic

Arm which operates on the Russian segment of the ISS, and the CSA have upgraded the SRMS,

now named the Space Station Remote Manipulator System (SSRMS) [20, 137].

Free-flying robotic manipulators were introduced as a more versatile solution to carry out tasks

on-orbit. The first technology demonstration mission was in 1997, when the Experimental Test

Satellite VII (ETS-VII) launched. The manipulator in this mission had 6 d.o.f. and a reach of

2 m. It was mounted on a 2.5 t chaser satellite that was able to rendezvous with a cooperative

target spacecraft [111]. This mission came to an end when time delays in the control system

meant the reaction forces, as a result of the dynamic coupling, could not be counteracted quickly

enough causing the system to become unstable [119]. Improvements in control theory and

sensing capability meant this was not an issue for the Orbital Express mission. This was a joint

effort between Boeing and Defense Advanced Research Projects Agency (DARPA). Launched

in 2007, it was designed to validate the feasibility of rendezvous and autonomous refueling

[100]. This mission proved much more successful than its precursor, although the hardware

remained large, with the base spacecraft weighing 1 t [51].

Following this, technology demonstrations of free-flying space robots capable of operating in-

orbit remain in the conceptual stage. German Aerospace Center (DLR) developed the Deutsche

Orbitale Servicing Mission (DEOS), which aimed to demonstrate the feasibility of maintenance

and servicing, but never progressed beyond the preliminary design definition stage [128]. This

program was renamed as the Front-end Robotics Enabling Near-term Demonstration (FREND),

12 Chapter 2. Literature Review

with the aim of servicing satellites not built to enable robotic interaction [39]. This technology

has been fully tested at laboratory level but is yet to launch [50]. The manipulator developed in

the FREND concept has since been suggested for use in a range of other servicing missions,

including DARPA’s PHOENIX mission and NASA’s OSAM-1 (formerly Restore-L) [105, 127].

The OSAM-1 spacecraft will host an additional payload named Space Infrastructure Dexterous

Robot (SPIDER). This payload includes a lightweight 5 m robotic arm, designed to assemble 7

elements of a communication antenna [1]. The OSAM-1 mission was due to launch in 2020.

NASA also developed the Tendon-Actuated Lightweight In-Space Manipulator (TALISMAN)

in house, which was the first system designed exclusively for OOA [44]. This hardware was the

cornerstone for NASA’s Commercial Infrastructure for Robotic Assembly and Services (CIRAS)

project, developed to demonstrate the ability of space-based robotic assembly by attaching

and detaching solar arrays [21, 132]. However, most of these technologies remain large, with

the FREND manipulator weighing 78 kg, and the TALISMAN manipulator weighing 36.2 kg

[39, 44]. In addition to this, none of the literature expands on how or why design choices were

made, making the transfer of knowledge hard.

With the increasing appeal of both OOA and Active Debris Removal (ADR) industries beyond

government organisations are starting to invest in robotic space technologies. The Kraken

manipulator is a commercial project developed by Tethers Unlimited, it is a 4.2 kg, 7 d.o.f.

manipulator [163]. No further information in relation to the performance metrics or operating

conditions of the system are available and it is unclear if development has moved beyond the

mission concept. Although, Tethers Unlimited are on the payload team for the OSAM-1 mission,

so it is possible that there is a technology cross over between the two mainpulators. Airbus are

also developing the VISPA arm which is designed to be reconfigurable and versatile, with the

aim of performing a wide range of On-Orbit Operations (OOO). The VISPA arm has a reach of

1.8 m and an estimated mass of 14.5 kg [91].

Although there is a clear commercial demand and a certain degree of Technology Readiness

Level (TRL) for a small space robot mission there currently exists no immediate planned

technology demonstrations. The implementation of a downsized system is a challenging task

with problems arising from scaling down both the manipulator and base spacecraft. The trade-off

when downsizing the manipulator is to reduce its mass and power consumption, while still

maintaining a sizable dexterous workspace and high payload capacity. The preservation of

the arm’s dexterity is paramount since the tasks required for the assembly of the telescope

2.1. On-Orbit Assembly Using Robotic Spacecraft 13

presented in Section 3 involve fragile components. The design approach presented in Section 4

addresses these issues by encoding the dynamic model of the system and solving a complex cost

function using MOO. In doing so, it outlines the full design procedure for a small space robot,

something that is not currently addressed in the literature. Instead, work in the field focuses on

the presentation of the finalised designs, as is summarised in this section.

2.1.3 Robotic Technologies Specific to Telescope Architectures

There are only a handful of mission concepts that explore and outline the robotic architectures

necessary to facilitate the OOA of large aperture space telescopes. Such proposals exist only in

the literature with no investment for later phase development.

The earliest study of such a mission concept presented Autonomously Assembled Space Tele-

scope (AAST), a 10 m Cassegrain focus telescope [14]. This telescope uses hexagonal mirror

segments of up to 2.5 m in size. It highlights the development of suitable robotics as the priority

for the next stage of the study [13]. However further work is not available and it is unclear if the

feasibility study was taken further. Similar to the AAST study, Feinberg et al. present a modular

telescope to be assembled on-orbit [48]. This design hosts a larger PM at 20 m, but again, does

not address what robotic technology would be appropriate for the assembly process.

The first study including both telescope design and robotic technology presents Robotically

Assembled Modular Space Telescope (RAMST). Their work outlines a general purpose, tethered

hexapod robot that can assemble a telescope with a 100 m spherical primary mirror [78]. While

the study demonstrates the use of force-control with a stereo vision system to perform some

the of required tasks on Earth, it does this with only a dual-arm system [78]. Conversely, the

proposed robotic agent suffers from complexity issues, with 6 legs each having 7 d.o.f. that need

to be individually controlled by numerous mechanisms in an extreme space environment.

Another approach to robotic OOA involves fixed based robots. Roa et al. present such a robot,

which is designed to assemble hexagonal mirror tiles [133]. Unlike the architecture used in the

RAMST concept, the study specifies more details on how the telescope components have been

designed specifically for OOA. While the work focuses on the assembly of the primary mirror,

details on the additional assembly tasks (SM and structural components) are missing, as is an

in-depth look at the operation and control of the robotic arm used in the assembly process.

14 Chapter 2. Literature Review

Following the suggestion of a fixed base agent Nair et al. suggest the use of a 12.5 m, 5 d.o.f.

end-over-end walker to assemble a 25 m aperture telescope [104]. They outline the required

movement patterns of the walker. This arm remains fixed to the base spacecraft throughout

operation and was inspired by the European Robotic Arm which operates on the ISS [20]. The

main advantage of this architecture is the low complexity and higher mobility compared to a

fixed base robot. However, the use of a free-flying robot, such as that presented in Section 3

would remove the requirement for an arm of this length since the satellite could re-position

itself relative to the payload. Another issue that a free-flying robot would mitigate is a potential

obstruction of either a sensor’s Field of View (FoV) or the FoV of the actual telescope. This is

a design aspect that would need to be very carefully considered when locating docking points

with an end-over-end walker or the robot itself in the case of a fixed base system. The main

drawback of the free-flying space robot is the complexity of both the hardware design and the

control. The problem of designing such a system is addressed in two different ways in this work.

Section 4 explores a hardware centered design approach to small free-flying space robots, while

Section 5 presents a system driven by deep RL to learn the best physical design and control

policy pair.

2.1.4 Space Robot Control

The control of a space robot is a well explored topic with methods generally fitting into two

main categories — free-floating and free-flying. Free-floating control is when the Attitude and

Orbit Control Subsystem (AOCS) is not used on the base spacecraft. While this is fuel-efficient,

it results in an undefined workspace and dynamic singularities [147]. Conversely with a free-

flying space robot, the base is fully stabilised during arm motion. A number of well-established

approaches exist for both types of control dependent on the specific use case [98, 147, 152, 161].

However, these approaches rely first on an offline trajectory planning stage prior to online

tracking. This makes implementation slow and solutions lack versatility.

The use of deep learning will aid in integrating the path planning stage into the control algorithm,

producing more robust solutions. As such, this thesis explores the use of RL to control the space

robot. Hovell and Ulrich implement such a method by using RL in 2D rendezvous problems,

named Deep Guidance [59]. Their network learns the correct velocity commands and feeds

these to a conventional controller to allow for rendezvous between a chaser and a target. Wu

2.2. Classic Approaches to Robotic Hardware Design 15

et al. employ a similar approach and use RL to learn to plan feasible trajectories for a space

robot, which they demonstrate with both fixed and moving targets [173]. Hao et al. also use

deep learning to look more specifically at how OOA could be achieved using a manipulator [54].

They present a ground-based hardware in the loop robotic demonstrator that simulates in-orbit

manipulation. They use computer vision and AI to estimate the pose and position of the target

object. Again, this work does not utilise RL to control the manipulator itself. Further work

by Hao et al. looks at the control of the manipulator but this is achieved by learning optimal

trajectories off-line by encoding trajectories as a Gaussian probabilistic distribution [55].

2.2 Classic Approaches to Robotic Hardware Design

Finding the optimal geometry of a robotic manipulator is one of the most complicated problems

in robot kinematic design [74]. The area of terrestrial robotic hardware design optimisation has

been extensively researched and there exists numerous varied solutions to the design problem.

Contrary to this, the process of designing a free-flying space robot is under-explored and

undocumented. As such, this section outlines a number of important terrestrial design solutions

that can be utilised and manipulated to design a space robot.

Approaches to terrestrial design broadly fit into two groups, task-based and performance-based

hardware optimisation. Task-based approaches aim to find a set of design parameters that best

satisfy task requirements [70]. Whereas, with performance-based control, the robotic designs

are evaluated on simple tasks where the emphasis is on ensuring that a high level of general

performance can be achieved.

2.2.1 Performance-Based Hardware Optimisation

The very first robots were all designed via intuition and experience requiring experts with

extensive domain knowledge. The majority of methods used to evaluate these early designs

involved looking at where the manipulator could reach and how easy it was to change the position

and orientation of the end-effector [177]. These initial approaches lead to the definition of a

quantitative measure of these two qualities — named workspace and manipulability [178, 75].

Kucuk and Bingul optimsed the design of a 3 d.o.f. manipulator using a combination of both of

these performance parameters [73]. They first maximise the robot’s workspace, given mechanical

16 Chapter 2. Literature Review

constraints and then evaluate its performance. This was done by ensuring that the kinematic and

dynamic characteristics are satisfactory using a combination of the manipulability measure and

condition number. Li and Dai implement a similar method where they use the workspace of a

manipulator to determine its reachable points [82]. These points are then evaluated to optimise

the link lengths of a three-link manipulator for a given set of trajectories.

Manipulability is derived from the Jacobian Matrix. This matrix is fundamental in understanding

the motion of the end-effector of a robotic manipulator and underpins a lot of early design

approaches. Stucco et al. use the Jacobian to evaluate the performance of robots designed for

different applications, ensuring that each is well conditioned to limit singularities [154]. They

present an approach to bespoke robot design by integrating application specific requirements

into a general performance function. This performance function is constrained by the desired

workspace. However, most Jacobian based performance indices suffer from very significant

limitations driven by scale dependence, non-homogeneity and dimensional dependence and

therefore its direct use is now usually avoided [117].

While this type of design approach values good general performance and well-conditioned

systems, there is less focus on the performance on any one task. As such, task-based approaches

have started to appear. These generally build on the performance-based approaches by using the

same metrics but evaluating success and fine tuning designs on specific tasks.

2.2.2 Task-Based Hardware Optimisation

One of the first approaches to task-based hardware design constructed the framework known

as ‘Progressive Design’. This breaks the full design task was down into kinematic design,

planning, and control [69]. The kinematic design was solved by optimising design parameters

to fit the task specification, in this case, a reachability constraint, singularity constraint, and

joint angle constraint. Park et al. built on the ‘Progressive Design’ approach by introducing the

Grid Method to improve the efficiency of the kinematic design stage [115]. They apply this

optimisation technique to the design of a 2 d.o.f. planar manipulator for a nuclear power plant,

where the task again provides a number of optimisation constraints.

Al-Dois et al. formed a multi-objective weighted function consisting of the task-time and joint

torques to optimise the robot’s trajectory, link lengths and mass [3]. They used this to optimise

2.3. Multi-Objective Optimisation 17

a 3 d.o.f. manipulator subject to kinematic and dynamic constraints based on the required task —

arc or spot welding.

Kivela et al. moved away from the traditional task-based optimisation approach by arbitrarily

setting the robot parameters and cycling through a number of task points to calculate the total

error for the given configuration [70]. They found the optimal link lengths for a redundant

6 d.o.f. manipulator by finding the configuration that lead to the minimal total error between

the end effector position and a number of task points. As with all task-based approaches, this

requires an in-depth knowledge of the tasks the robot needs to carry out.

Carlone and Pinciroli proposed a design method that instead approaches from a subsystem level,

therefore requiring less specific task knowledge [25]. They look at the optimal design of a robot

subject to cost constraints and performance maximisation. They reduced the problem into one

involving non-continuous variables. This was done by parameterising the design into a number

of modules (i.e. motors, sensing, frames), each with a performance and cost value. Designs

were then formed using a stack of modules constrained by overall cost.

While a range of solutions exist, by far the most popular approach to the task-based optimisation

of terrestrial robots is to use a multi-objective cost function [101, 116, 138, 181]. Each selects

a variation of performance and kinematic design parameters specific to the desired task. The

design parameters are then optimised using the MOO framework. A summary of common

terrestrial robot performance parameters can be found in [117]. In the approach presented in

Section 4, the space robot manipulator is optimised using MOO. To this end, a set of objective

functions will be defined based on the performance parameters pivotal to the successful operation

of the space robot.

2.3 Multi-Objective Optimisation

A MOO problem is defined as the process of optimising systematically and simultaneously

a collection of conflicting objective functions [33]. The issue when solving MOO problems

comes from the fact that the search space becomes partially ordered and Pareto fronts are not

necessarily convex, meaning solutions may be locally optimal as oppose to globally optimal

[2]. There is rarely a single global optimal solution to such a problem and instead a number of

Pareto-optimal solutions exist [93]. A Pareto-optimal solution is a solution that is not worse in

18 Chapter 2. Literature Review

any of the objectives and better in at least one [2]. An entire set of such optimal points is then

known as the Pareto optimal set, and can be joined to make the Pareto optimal front. The Pareto

front is very hard to define for a multi-objective problem. Extensive research has been done into

MOO methods, with a number of summaries available in the literature [93, 47, 67, 34]. Methods

to solve these problems can be categorised into three groups, those that require information as an

input (priori articulation), those that require the user to select from a number of optimal designs

(posteriori articulation) and those that require no user input (no articulation of preferences)

[93].

2.3.1 Priori Articulation

Priori articulation methods allow a user to specify preferences in terms of goals or relative

importance of the different objectives. One of the first approaches to solving MOO problems

is the global criterion method. The aim is to minimise the sum of all objective functions/goals

thereby finding a decision vector that is as close to the optimal solution as possible [32].

However, this method quickly came under scrutiny for not providing truly optimal results and

being reliant on knowledge of a near optimal decision vector [174].

The weighted sum method builds on the idea that it is unlikely for a single solution to optimise

all objective functions simultaneously [92]. First introduced in 1963 by Zadeh, it has been

prominent in the field ever since [180]. This method follows a similar approach to the global

criterion method but objective functions each have a weighting allowing for consideration of

user preferences [93]. General use of this approach provides an acceptable Pareto optimal

solution, and the weighted sum method is presented as a tool in the literature [92]. The drawback

of this method is that it reduces a multi-dimensional problem to a single objective, meaning the

complexity of the decision space may not be fully captured.

The weighted min-max method can also be used but this involves the calculation of a Utopian

objective vector [93, 27]. This vector is calculated by subtracting a small positive scalar from

the ideal objective function, which itself represents the lower bound of the Pareto optimal

set; therefore making the Utopian vector unattainable in the feasible region [95]. The process

of calculating both of these vectors is not only computationally expensive, but requires prior

knowledge; it is therefore avoided. The Lexicographic method can be used to solve MOO

problems. A pre-defined order is used to solve all objective functions in order of importance

2.4. Reinforcement Learning 19

[153]. This method is computationally expensive and was shown to not satisfy typical optimality

conditions [130].

2.3.2 Posteriori Articulation

Methods with posteriori articulation allow the user to view options in the Pareto optimal set

before making a decision, meaning there is no need to consider which objective function is

of more or less importance. Das and Dennis presented the Normal Boundary Intersection

Method that finds several Pareto optimal points for general nonlinear MOO problems [37]. As a

collection, these points capture a number of different trade-offs within the problem, however this

was later shown to skip some optimal points [93]. Following this, Messac et al. developed the

Normal Constraint Method [94]. This improved on the Normal Boundary Intersection Method

by only producing Pareto optimal points.

2.3.3 No Articulation of Preferences

In the instance in which no user preferences can be defined, no articulation of preference

methods are employed. These methods are mostly simplifications of Priori articulation methods

with the exclusion of decision parameters [103]. One such example is to use the weighted-sum

approach where all weights are set to 1 [93].

The modified classic design approach presented in Section 4 uses the Priori articulation method,

more specifically the weighted sum approach. This is because the required input information can

be inferred from the tasks outlined in Section 3. Methods with posteriori articulation are also

utilised in order to select which d.o.f. system is desirable. Any other posteriori selections are

avoided since they rely on intricate knowledge of how each design parameter will affect system

performance. This is often infeasible due to the undocumented, non-linear, non-holonomic

behavior of the system.

2.4 Reinforcement Learning

RL is the process by which an agent learns a behavior through trial and error interactions in

a dynamic environment. Early approaches to solving RL problems include Temporal Differ-

20 Chapter 2. Literature Review

ence (TD) learning, Monte Carlo methods and Dynamic Programming [156]. However, these

approaches generally lack scalability and are limited to low dimensional problems. The advent

of deep learning and Neural Networks (NNs) has significantly impacted the field, and most

popular RL methods now use NNs as powerful function approximators — known as deep RL.

Deep RL algorithms can be split into three main groups, Q-learning methods, policy gradient

methods and actor-critic methods.

2.4.1 Q-Learning

With Q-learning the aim is to learn or estimate how good any state-action pair is and then select

actions accordingly. The field of deep RL was really set in motion with the introduction of Deep

Q-Network (DQN) [97]. This algorithm was the first example of an artificial agent that was

capable of learning to succeed at a range of tasks from minimal inputs (only pixel and game

scores), using the same network architecture and training algorithm.

DQN was improved upon via the introduction of Double DQN, in which a second state-action

value approximator was introduced to prevent the over estimation seen with DQN [167]. Both

of these methods use a replay buffer to store experiences that is then sampled from during

training. A number of techniques have been introduced that improve on this sampling method.

Prioritised experience replay ranks these experiences and means more important ones can be

sampled more frequently [141]. Hindsight Experience Replay (HER) modifies inputs in the

replay buffer such that they represent a successful tuple, therefore helping with the problem of

insufficient exploration [5].

2.4.2 Policy Gradient Methods

Policy gradient methods work by directly learning the optimal policy that will lead to success

in a task. From evolutionary strategies to direct searches, a broad range of approaches to

finding the optimal policy exist [83]. The REINFORCE rule underpins the first widely used

policy gradient methods [171]. It was used to learn stochastic policies that were capable of

tracking images and capturing objects [143, 175]. Silver et al. proposed the Deterministic Policy

Gradient (DPG) as a method that allowed for learning of continuous action spaces [150]. This

outperformed stochastic policy methods in a number of benchmark problems. However, this

algorithm sometimes suffered from overfitting and unstable updates.

2.5. Simultaneous Design of Hardware and Control 21

Schulman et al. then introduced the idea of trust regions and presented Trust Region Policy Op-

timisation (TRPO) [144]. This approach constrained the Kullback–Leibler divergence between

the new and old policy to prevent large policy updates and ensure monotonic improvement

of the stochastic policy. Proximal Policy Optimisation (PPO) followed the development of

TRPO, showing similar results but with much simpler implementation [145]. It was shown

to outperform current online policy gradient methods and to find a balance between sample

complexity and train time.

2.4.3 Actor-Critic Methods

Actor-critic methods involve learning both a value function and a policy, therefore combining

the advantages of policy search and Q-learning methods. This makes them a sub-set of policy

methods [7]. Note that a system learns the value of a state and the Q value of a state-action

pair. A2C and A3C were introduced by Mnih et al. in 2016, named advantage actor-critic and

asynchronous actor-critic respectively [96]. For Atari games, A3C was shown to run much

faster than DQN but final performance was no better [83].

Lillicrap et al. advanced DPG by combining it with DQN, named Deep Deterministic Policy

Gradient (DDPG), therefore making it an actor-critic method [86]. They showed success in

20 different environments and outperformed planned control algorithms that had access to

the dynamics of each system. Actor-critic methods is are now widely employed with the

introduction of a value network to methods such as PPO and TRPO showing higher levels of

performance.

2.5 Simultaneous Design of Hardware and Control

Co-optimisation of morphology and control has been of interest for decades in the field of

robotics with approaches falling into three broad categories — evolutionary algorithms, nonlin-

ear programming and machine learning.

22 Chapter 2. Literature Review

2.5.1 Nonlinear programming

Nonlinear programming approaches use a full set of dynamic equations to solve for both the

morphology and control. Park et al. first presented the idea of optimising a two link manipulator

along with PID control parameters [114]. They solved the problem using a form of gradient

descent and showed how the settling time of the system could be drastically reduced. Since this

a number of different approaches to the co-optimisation of design and control using nonlinear

programming have been presented, although the overarching techniques remain the same

[126, 4, 81, 121].

More recently, Avila Belbute-Peres et al. proposed an approach to directly optimise robotic

morphologies and solve simple control problems [38]. They achieve this by redefining systems

using differentiable mathematical concepts on a case-by-case basis (similar methods are shown

in [84, 40]). While the idea of this work is to integrate such blocks into an RL pipeline, this

is not demonstrated in their work, and instead, a form of nonlinear programming is used to

demonstrate the applicability of their environments. However, use of their method is limited

since they require differentiable reward functions, which are typically sparse step functions

based on the final state of a system and almost universally hold no information about the robotic

morphology.

While the results of nonlinear programming approaches are somewhat promising, they rely

on explicit knowledge of system dynamics and how these relate to the physical parameters.

This becomes non-trivial for any complex system and is impossible to implement in the more

common model-free scenario.

2.5.2 Evolutionary Computation

The idea of evolutionary computation for the co-optimisation of design and control was first

proposed in 1994 by Sims [151]. This work, inspired by biological evolution, maintained a

population of agents all with different morphologies and sensor placements. Over time these

were mutated, and their performance evaluated until no mutation would further improve perfor-

mance. In general, the field of evolutionary computation has received more attention compared

to nonlinear programming, and is now a common approach for solving the co-optimisation

problem [9, 110, 170]. While the results are promising these methods are computationally

2.5. Simultaneous Design of Hardware and Control 23

expensive, data inefficient and encoding dependent. Hornby et al. addressed the problem of

encoding, presenting a method that allowed for more complex agents to be expressed [58]. At

each mutation stage they ‘build’ an agent, allowing it to reuse modules or add new ones — this

is referred to as generative representation. In addition to this, these approaches are generally

limited by the mutation of control parameters. As standard, each design and control pair is

mutated once, and it is unlikely that this mutated controller will perform well on the new design.

As such, it is typical for evolutionary approaches to fall into local minima.

More recently, ideas have combined evolutionary methods with an inner control loop usually

optimised via machine learning. Wang et al. use the idea of evolutionary computation and

formulate the automatic robot design problem as a graph search problem using neural graph

evolution[169]. They use a graph NN as the control policy and set each design parameter

as a node on a graph. They then search and mutate this graph to discover more optimal

designs. Throughout policy training they allow the sharing of weights to increase efficiency and

performance. Their method is capable of designing new configured robots as well as fine-tuning

human-engineered results. However, due to the nature of their approach, environments must be

re-defined and the computational demand is high.

Hejna et al. propose a combination of evolutionary algorithms and machine learning, named task

agnostic morphology evolution [61]. While not strictly co-optimisation of control and hardware

since pre-defined motion primitives are used, performance of their algorithm shows good results

compared to those trained with task specific algorithms. They evaluate performance-based

on the robot’s ability to reach diverse states and the causality of their actions. The causality

metric is the fitness function used in the evolutionary optimisation loop. However, performance

evaluation is unrepresentative of real world tasks and is only tested in situations where the

predefined motions can be used e.g. walking in a given direction.

2.5.3 Machine Learning

Ha bridged the gap between evolutionary computation and RL by using a population based

policy gradient method to sample the optimal robot-agent pair [53]. Although their method

yielded a higher reward in fewer training iterations when compared to the ‘out-of-the-box’ agent,

the method is computationally expensive since a population of designs must be maintained

throughout training. Schaff et al. propose a similar approach where they treat the parameterised

24 Chapter 2. Literature Review

design as an additional input to the control policy [139]. Throughout training they maintain a

distribution of designs and continually shift this distribution towards higher performing regions

of the design space. Fundamental to the success of their method is that their control policy

maintains generalisation over morphologies in the distribution — a widely documented challenge

in the field of RL [89]. Schaff et al.’s later approach for more general agent design suffers from

the same limitation of needing to maintain performance over a range of morphologies [140].

Luck et al. noted the need to maintain a distribution of designs as a limitation and instead de-

compose the problem as a bi-level optimisation [88]. They alternate optimising the morphology

and the control policy. By learning Q-values over the design distribution and using this to

pre-evaluate agent performance prior to testing, they reduced the size of design distribution that

must be maintained. This method is reliant on learning Q-values over a wide distribution of

robotic designs, or risk missing out on the optimal design due to poor function approximation.

More recently, HWasp was presented. In this approach the effects of the robotic hardware

needing to be optimised are re-defined separately from the rest of the environment as a differ-

entiable computational graph [30]. The control policy and hardware policy are then optimised

in a standard RL framework. This approach lacks generality since it requires a redefinition of

the action space, unique to each problem, as well as the inclusion of bespoke computations

for the graph implementation. HWasp also suffers from an inability to fully optimise changes

in morphology or link dimensions. Instead, modifications are made to kinematic structure

(inclusion of a mass damper system at either end of a link) in order to allow for the necessary

modifications to the action space to be implemented. The approach proposed in Section 5 does

not suffer from such limitations and the physical dimensions of robots can be optimised directly

using back-propagation.

Bolland et al. employ a similar method to HWasp by parameterising the systems reward

function, in addition to the transition function and the policy [18]. They assume that all are

differentiable with respect to their parameters. They solve the co-optimisation problem by

iteratively approximating the gradient of the expected return via Monte Carlo methods, and

taking gradient ascent steps in the environment and policy space. In contrast, the method

proposed in Section 5 does not require a differentiable reward function, which as discussed

previously can be considered a limiting requirement — shown by the simple task settings in

which Bolland et al. evaluate their work [18].

2.6. Robust Reinforcement Learning for Control 25

2.6 Robust Reinforcement Learning for Control

One issue in the field of RL is a lack of generality to other robotic embodiments. Lundell et

al. show how a system trained to execute the ball in cup task, via RL, for a specific string length

is unsuccessful for any other string length [89]. This issue falls under the overarching issue of

generalisation or robust RL. Generalisation looks at the ability of a robot to operate successfully

in an environment beyond that which it was trained in [112]. In the context of this thesis, the

changes in environment of interest are triggered by a change in embodiment.

2.6.1 Domain Randomisation

Training via domain randomisation has been shown to improve the ability of a policy to operate

in a range of target environments. Domain randomisation has had most success in the field of

sim-to-real transfer, whereby agents are trained in simulation and then successfully deployed

on a physical robot [159, 136, 28, 118]. Tan et al. train a quadruped robot on randomised

environments, showing that this produces a more robust policy [157]. In a similar approach,

Stulp et al. show how domain randomisation can make an agent robust to state estimation

uncertainties [155]. However, success of any domain randomisation approach is dependent on

the correct knowledge of acceptable randomisation range otherwise and agent may never learn a

useful policy [179]. Dai et al. show a comparison between different RL agents and how they

perform under visual domain randomisation [36]. They show how specific algorithms are not

necessary and most RL algorithms show increased robustness when trained in this manner.

2.6.2 Multiple Policies

The idea of using multiple policies to achieve a level of generalisation falls most closely to

evolutionary methods and therefore exhibits similar limitations. Yu et al. propose using multiple

policies with varying behaviors, where each is optimised for a particular dynamic vector [179].

At the search stage, the highest performing policy is selected using co-variance matrix adaptation.

Devin et al. also explore the idea of having multiple trained networks that they draw from based

on the task at hand [41]. They decompose neural network policies into ‘task-specific’ and ‘robot-

specific’ modules, where ‘task-specific’ modules are shared across tasks and ‘robot-specific’

modules across different robots. The recombination of these modules after training allows for

26 Chapter 2. Literature Review

different tasks to be carried out on different robots. However this requires training across options

simultaneously, and tasks cannot be learned in sequence.

2.6.3 Meta-Learning

Meta-learning is the concept of learning to learn and allows the system to learn to adapt to

new situations [142]. By nature, these techniques all require some experience in the target

environment, therefore not displaying zero-shot transfer. The RL2 algorithm is an example

of such a technique. This algorithm exploits a recurrent neural network set up with value and

policy functions [46]. The trajectory at each layer, along with the current state, is used as the

input to the next layer. RL2 works with a model-free RL algorithm. Despite this, multiple tests

of this algorithm have shown that it is no better at generalising than standard RL algorithms

[46, 112].

Following this work, Finn et al. developed the Model-Agnostic Meta-Learning (MAML) al-

gorithm [49]. This algorithm identifies sensitive parameters that allow for a small number of

gradient updates to facilitate fast learning on a new task. Early evaluation of this algorithm

shows that it can adapt to new environments much better than standard RL algorithms, only if

changes do not affect the dynamics of the system. Tests were carried out by varying the goal

velocity and direction of a half-cheetah system.

Anne et al. address the limitation that meta-learning is only used for multi-task learning and

present a meta-learning control policy that can achieve fast adaptation to changing dynamic

conditions [6]. They train a context vector that parameterises the physical state of the robot

along with the initial weights of the controller. Finding the optimal controller weights for all

context vectors means that as the dynamic situation of the robot varies the controller is able to

quickly adapt.

2.6.4 Adversarial Learning

Adversarial learning is a popular framework used to train robust RL control policies. It works on

the basis of modeling environmental changes as adversarial disturbances. Mandlekar et al. show

how policies can be trained using adversarial examples to generate robust control for use on

real systems [90]. However, all evaluation tests are carried out on the same robotic system

2.6. Robust Reinforcement Learning for Control 27

since the aim is to make agents robust to malicious attacks. Rajeswaran et al. proposed the

Ensemble Policy Optimization (EPOpt) algorithm [125]. This dual-step approach consists of

policy optimisation using samples from a batch of tasks whereby the distribution of tasks is

updated using the lowest performing experiences. This algorithm was designed to be robust to

perturbations, where changes in the agent’s environment were modeled as such disturbances.

This was achieved by varying the torso mass and friction damping in a 2D hopper task. It was

shown that the EPOpt trained policy was able to generalise to a range of hopper models carrying

out the same task each time. However, further research into this algorithm showed that its

performance, in both interpolation and extrapolation, was comparable to that of standard deep

RL algorithms [112].

Pinto et al. propose an approach where the system is robust to changes in the dynamics, named

Robust Adversarial Reinforcement Learning (RARL) [122]. They modeled uncertainties as

an adversarial agent that disturbs the system. They evaluate the generalisation of the learned

policy by training it with certain mass and friction values and test it with different values. Their

algorithm proved more robust than the random baseline policy in a third of all test cases, leaving

much room for improvement.

Shioya et al. propose two modifications to the RARL architecture, the first introduces a penalty

term to the adversary’s loss function for sampling training examples that fall far from the current

state [148]. The second utilises sampling from a memory bank of adversary networks. Both

of these methods aimed to tackle the problem outlined by Bansal et al. , whose experiments

showed that always using the hardest environment can hinder the training of the agent [11]. The

use of a Learning potential (lp) in Section 6 accounts for Bansal et al.’s findings.

2.6.5 Other Approaches

Tasse et al. employ logical composition within an RL framework to train an agent that can

determine if it can solve a new task with existing knowledge or if a new skill must be learned

[158]. If the latter, their method generates an estimate of the optimal policy in order to speed up

learning. This guarantees a level of generalisation over an unknown task distribution, however

no generalisation exists over changing robotic morphologies. By nature this also does not

employ zero-shot transfer.

28 Chapter 2. Literature Review

Chen et al. propose a method that is considered current state-of-the-art in the context of hardware-

agnostic policies [29]. They augment a physical parameter vector with the environmental

observation and use this as the agent’s observed state. During training the physical parameter

vector is randomly selected from a discrete distribution of 7 possibilities. Testing is then carried

out on these 7 possibilities plus 1 more. While they report strong results compared to DDPG

with HER, the scope of operation of their agent is limited by the training distribution. On top

of this, some policies are fine-tuned in the test environment. While this is not as laborious as

re-training, zero-shot transfer is required for policies to be truly hardware-agnostic. They also

show that their explicit method falls short in situations when the task policy is dependent on

agent dynamics.

The method for training hardware-agnostic policies presented in Section 6 builds on the approach

suggested by Chen et al. [29]. It improves upon the random sampling of embodiments during

training via the introduction of an intelligent, adversarially inspired network. It learns a

distribution over embodiments on which the system can learn but currently has low performance.

The use of a Normalising Flow Network (NFN) allows this distribution to be learned and

sampled from without prior knowledge of its complexity or shape [71]. Additionally, the system

in Section 6 is set-up to utilise ‘expert’ knowledge allowing the system to adapt already learned

behavior as opposed to trying to distill multiple different experts.

2.7 Summary

This chapter first introduced a wide variety of space telescope architectures and space robot

technologies. While the recent launch of the JWST was a vast leap for on-orbit mirror technolo-

gies, more innovative ideas need to be developed in order to launch even large space telescopes.

This is apparent in the push to start designing modular telescopes that can be assembled on-orbit.

There exists a number of different approaches, although little work looks into the design of a

telescope suitable for OOA with space robots or the design of the space robot itself.

This chapter then introduced methods for jointly learning the control and morphology of robotic

systems. While there exist a number of different approaches, most do not involve actual co-

optimisation with the morphology and control being optimised in an iterative manner. Methods

presented in this thesis overcome this by allowing for simultaneous reasoning over hardware

2.7. Summary 29

and control. In addition, the majority of current methods require high computational demand

and are not easy to implement.

Finally, this chapter investigated current approaches to robust control under changing environ-

mental dynamics. While many solutions exist to robust control under varying tasks and other

parameters, few focus on varying dynamics, with even fewer displaying zero-shot transfer. The

work in this thesis is the first to provide this robustness and zero-shot generalisation to changing

environments.

30 Chapter 2. Literature Review

Chapter 3

Mission Concepts for the On-Orbit

Assembly of a Large Aperture

Telescope

A well designed free-flying space robot will have applications in a wide range of missions,

including aiding in the assembly of large structures, servicing of active satellites and ADR.

While the scope for such a system is vast, only one concept is investigated in this thesis. However,

the findings of this research can be applied to other on-orbit missions and feasibility studies. The

selected mission looks at the OOA of a large aperture modular telescope using free-flying space

robots. The mission is expanded and investigated in this chapter in order to provide quantifiable

requirements for the control and design of the spacecraft.

This chapter starts by providing details of the overall mission concept, and the corresponding

tasks that are required to achieve successful OOA. It then outlines how the simulator used to

model the tasks and space robot were defined.

3.1 Mission Concept

The assembly mission will take place in GEO. This orbit has been selected for a number of

reasons, all of which stem from the fact that the effects of atmospheric density and gravity

are negligible at this altitude. Firstly, zero-g conditions are easier to model compared to

31

32 Chapter 3. Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope

Figure 3.1: Telescope being assembled on-orbit. The docked transport satellite is attached

to the main telescope hub. Also visible are a number of different space robots carrying out

assembly tasks. The wire type structure is the assembled BP and the yellow parts are PM

segments. The pink appendages at the rear are solar panels.

microgravity, making the dynamic model of the system more accurate. Secondly, the lack of

atmosphere means that drag on the space robot and telescope components is also negligible. As

a result, orbital maintenance manoeuvres will not be required and components should remain

at a constant altitude for an extended period of time. This limits the fuel requirements of the

space robot and overall complexity of the mission. In addition to this, in GEO the telescope and

space robot will experience only very short eclipse periods which will improve power generation

capability.

In GEO the telescope will always be observable from the same ground station. While teleoper-

ation will not be used, observability is still important to ensure that real-time monitoring and

aborts can take place. These attributes would not be guaranteed if the telescope were to be

assembled in Low Earth Orbit (LEO). The disadvantage of the assembly taking place in GEO is

the increased fuel requirements. However, in an attempt to combat this, the space robots will be

on a ‘piggy-back’ launch, as will other components where possible.

3.1. Mission Concept 33

3.1.1 Telescope Architecture

The telescope is designed using as many available technologies and previous missions as possible

in order to maximise TRL and lower costs. Therefore, the design is a combination of previous

work with a number of small modifications. As such, only a summary is provided here and

a detailed design case is presented in Appendix A. The telescope is built around a main hub

which will be the first component of the system to launch. The hub itself does not require any

assembly. Instead, three main parts require assembly or deployment and these are the drivers of

this mission concept:

1. Segmented PM assembly: The PM is the main light gathering surface on a reflective

telescope. Since resolution is dependent on how much light the telescope can collect, the

size of this mirror governs the overall performance of the telescope.

2. Modular Back-plane (BP): This is the structure that supports the PM modules and acts

as the contact between the PM and the main telescope housing.

3. SM: This is a smaller mirror that is used to redirect and refocus the light reflected from

the PM.

These components are shown in Figure 3.1. Following the launch of the main telescope hub,

the BP is the first structure to be assembled. The BP modules are attached in two rings around

the hub — named the inner and outer ring. Each BP module is made of struts and nodes that

deploy into a hexagonal structure. These modules make a main structure onto which the PM

segments are mounted. The inner ring can be seen in Figure 3.2, and the outer ring attaches

directly to this in a concentric manner. Also visible in Figure 3.2 are a number of Intelligent

Space System Interface (iSSI) modules — a standard interface used to connect components.

The use of a standard interface is paramount to the assembly process in order to minimise

complexity and demand on the space robot. All components connect using this hardware and

grasping of each is achieved via the same interface. As such the robotic manipulator needs only

to know how to grasp and connect a single interface, reducing complexity in the end effector

architecture and control. The robotic manipulator’s end effector is one of these interfaces. This

particular standard interface was chosen since it provides strong mechanical properties and

hosts a self-alignment mechanism. This removes the burden on the space robot to mechanically

34 Chapter 3. Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope

Figure 3.2: Assembly of inner BP ring. This shows the inner BP ring attached to the main

telescope hub (light blue). The iSSI modules are shown as grey dots and the storage satellite is

shown in purple.

latch components, an operation that is known to be complex. The BP modules will be launched

on a transport satellite in their stowed configuration This satellite will dock with the main

telescope hub. While this adds complexity to the storage satellite it means that the space robot

is able to operate between two bodies with no relative motion. The space robot will grasp

and then transport each of the BP modules to their correct location then aid and monitor their

deployment. Note that the BP modules themselves have no level of intelligence and are not able

to communicate.

Following the assembly of the BP structure, a second transport satellite containing the PM

segments will launch. Like the first transport satellite this will dock to the main hub. The

space robot then attaches each PM module in-place over the fully assembled BP structure.

Upon completion this satellite will un-dock, leaving scope for the delivery of spare parts to the

telescope when needed. Once all the PM segments have been attached, each mirror will undergo

phasing. This ensures that the final telescope can take accurate and high quality images. This

part of the assembly does not require the space robot. Finally, the SM will be deployed. This

mirror extends beyond the PM structure and as with the phasing does not require assembly.

3.1. Mission Concept 35

At this stage there is no specific timeline for the mission. Delays are possible between the

launch of the storage satellites. However, upon docking, the space robot should begin and finish

the assembly as soon as possible. The choice of GEO means that both the telescope and space

robots can remain in a ‘dormant’ orbit while waiting for the launch of the next components with

little fuel expenditure.

3.1.2 Assembly Missions

A number of different missions are required to achieve the full telescope assembly. This work

employs a novel end-mission design approach whereby the full assembly process is broken

down into a number of missions. These are then further broken down into sub-missions,

which are parameterised by different payloads and success requirements. The advantage of

designing the mission in this innovative way is that the robot can complete the full telescope

assembly through a combination of several sub-missions. This minimises the complexity of

the control, as optimisation/training can be performed on easily achievable and well-defined

manoeuvres. Each sub-mission is made of a requirement, a payload and a task. The different

options for these components are shown in Table 3.1. The tasks defined here correspond to

the desired motion. When intelligent control is employed this motion is learnt and therefore

is not explicitly encoded. However, in the absence of an intelligent controller, trajectories are

provided that capture the desired motion for each task. Each trajectory is defined by a start and

end system configuration and a high order polynomial is used to determine the intermediate

joint angles. This overall motion is summarised in Table 3.2, the exact joint values are included

in Table 3.3 for 3 options of d.o.f. While these are arbitrary estimations they act as a good basis

for optimisation. The full telescope assembly can then be carried out by manipulating sets of

task + payload+ requirement or in the case of the pre-defined trajectories, task + payload.

This is because the requirements are encoded in the trajectories and instead performance is

evaluated by assessing how well the robot was able to achieve the desired motion.

Figure 3.3 shows how these smaller, lower level sub-missions are combined to allow for full

telescope assembly. What is not captured in the task+payload+ requirements is the starting

conditions of the robot, payload and other components. These are instead captured in the

missions themselves, where a mission here refers to a number of sub-missions in series. The

three missions highlighted in Figure 3.3 are the inner BP assembly mission, outer BP assembly

36 Chapter 3. Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope

Table 3.1: Sub-mission components. In order to assemble the proposed telescope a number of

tasks, success requirements and payloads are defined. These can be combined in different

ways to make a sub-mission.

Tasks Payloads Requirements

Fine manipulation PM module Connect iSSI module

Grasp BP module Disconnect iSSI module

Relocation Nothing Move within any specified distance of a target location

Table 3.2: Simplified OOA tasks. Defined here are the motions that correspond to the tasks

outlined in Table 3.1 .

Task Desired motion

Fine manipulation A small end effector motion, starting with the arm in its ‘zero’ position and

moving away from its Center of Mass (c.o.m). The base should remain stable throughout.

Grasp Large manipulation of the arm with a stable base. The arm should

start away from its ‘zero’ position and move back towards this.

Relocate No movement of the arm with a large motion of the base. The arm

should be kept in its initial position throughout base motion.

mission and the PM assembly mission — where each represents the assembly of a single module

in a single location. In practice multiple of these missions would occur with slightly varying

start and finish states. Since the motion of the robot will be the same in each case only the

outlined missions are evaluated in this work.

3.2 Space Robot Dynamic Model

In order to investigate the behavior of the space robot an accurate model of the dynamic system

is needed. As prescribed by the nature of work in this thesis, this model must be parameterised

by the space robot’s physical hardware. This makes the implementation different to that already

available in the literature. An in-depth derivation is not included here since it is an amalgamation

of prior work tailored to this particular use case in this work. Instead, an overview of the required

3.2. Space Robot Dynamic Model 37

Table 3.3: Trajectories for OOA. The final poseof each d.o.f. of the system for a number of

different tasks are given here. First three terms of the start and final pose are in m while the rest

are in ◦.

Task Start Pose Final Pose

5
d.

o.
f.

Fine manipulation 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0,−5, 5,−20,−30, 90

Grasp 0, 0, 0, 0, 0, 0, 5,−5, 0,−45,−90 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Relocate 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

6
d.

o.
f.

Fine manipulation 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0,−5, 5,−20,−30, 20, 90

Grasp 0, 0, 0, 0, 0, 0, 5,−5, 0,−45,−20,−90 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Relocate 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

7
d.

o.
f.

Fine manipulation 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0,−5, 5,−20,−30, 20, 5, 90

Grasp 0, 0, 0, 0, 0, 0, 5,−5, 0,−45,−20,−30,−90 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Relocate 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

equations is given. The final equations used match those presented by Seddaoui et al. [146].

These equations are valid based on the following assumptions:

• Each link acts as a rigid body.

• Either payload capture hasn’t occurred, or it has occurred and the payload is modeled

as an additional rigid body at the end of the manipulator. Contact dynamics are not

considered.

• The spacecraft has suitable sensing capability.

• When the arm is not actuated, the system will orbit with the expected characteristics of a

standard rigid body.

• Arm actuation time is short, so orbital effects are negligible during operation.

3.2.1 Spacecraft Definition

As defined in Section 1.1, a space robot is a robotic manipulator attached to a base spacecraft.

The robotic arm is made up of a number of different links, with joints connecting successive

38 Chapter 3. Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope

Collect BP
module

from
storage
satellite

Dock
storage
satellite

with
telescope

hub

Connect
BP

module to
telescope

hub

Is inner
ring

complete?

yes

no

Connect BP
module to inner

ring

Collect PM
module from

storage
satellite

Connect
PM module

to BP
module

yes

no

Align
PM

Deploy
SM

Inner BP assembly

Collect BP
module from

storage
satellite

Is BP
assembly

complete?

no

Outer BP assemblyyes

Is inner
ring

complete
?

PM assembly

(a) Full Assembly Mission

Relocate

<1m from
storage
satellite

Nothing BP module

Grasp

Connect
iSSI

BP module

Relocate

< 1m
from main

satellite

BP module

Fine
Manipulation

Connect
iSSI on BP

to main
satellite

Ta
sk

Pa
yl

oa
d

R
eq

ui
re

m
en

t

Time

Nothing

Fine
Manipulation

Disconnect
EE iSSI

(b) Inner BP Assembly Mission

Relocate

<1m from
storage
satellite

Nothing BP module

Grasp

Connect
iSSI

BP module

Relocate

< 1m
from

inner ring

BP module

Fine
Manipulation

Connect
iSSI on BP

to inner
ring

Ta
sk

Pa
yl

oa
d

R
eq

ui
re

m
en

t

Time

Nothing

Fine
Manipulation

Disconnect
EE iSSI

(c) Outer BP Assembly Mission

Relocate

<1m from
storage
satellite

Nothing
PM

module

Grasp

Connect
iSSI

PM
module

Relocate

< 1m
from

desired
BP

PM
module

Fine
Manipulation

Connect
iSSI to on
PM to BP
module

Ta
sk

P
ay

lo
ad

R
eq

ui
re

m
en

t

Time

Nothing

Fine
Manipulation

Disconnect
EE iSSI

(d) PM Assembly Mission

Figure 3.3: Novel breakdown of missions for OOA. Different combinations of task +

payload + requirement are needed to achieve all the sub-missions required for the full

telescope assembly. This shows a breakdown of how these are combined in order to achieve

assembly of the inner and outer BP rings and the PM.

3.2. Space Robot Dynamic Model 39

Table 3.4: Standardised form factor sizes and dimensions. The size of the base spacecraft is

defined using the CubeSat standard. The form factor is the number of units used to make the

base spacecraft. The dimensions are given here, where dx, dy and dz are the width, depth and

height of the base and msc, its mass. A mass range is given since this is hardware dependent.

Form Factor 3U 6U 12U 18U 24U 27U

msc

(kg)
4 < ... ≤ 8 8 < ... ≤ 16 16 < ... ≤ 24 24 < ... ≤ 30 30 < ... ≤ 35 35 < ... ≤ 40

dx, dy , dz

(m)
0.1, 0.1, 0.3 0.2, 0.1, 0.3 0.2, 0.2, 0.3 0.3, 0.2, 0.3 0.4, 0.2, 0.3 0.3, 0.3, 0.3

links with an end effector as the last link. The base spacecraft will take the form of a box which

can house a number of required sub-systems.

Throughout this thesis, the base spacecraft is defined using the CubeSat standard, where

satellites are made from a number of units (U). Units are 0.1 m× 0.1 m× 0.1 m , each of which

is estimated to weigh 1.33 kg [123]. Table 3.4 summarises the dimensions and mass of a number

of different form factors, where dx is the width of the base, dy is the depth and dz is the height,

all in m. msc is the mass of the base in kg. A mass range is given since the exact mass depends

on the selected subsystems. For all form factors, the base spacecraft has N sc = 6, where N sc is

the total number of d.o.f. of the base. Rotations and translations are measured by the movement

of the body fixed reference frame (
∑
B) w.r.t. the inertial reference frame (

∑
I). Figure 3.4

shows the discussed reference frames.

The robotic manipulator can have any number of d.o.f., where the total number is denoted as

Nm. Nm can take any value from 0 to∞, although Nm = 6 is sufficient for full arm dexterity.

Any additional d.o.f. will add complexity and redundancy into the system. The total d.o.f. of the

system (N) is therefore,

N = N sc +Nm. (3.1)

The manipulator is made of a number of links, with each link referred to in turn as i. Each has

its own reference frame at the joint (
∑
li) which is used to define the rotation of that d.o.f. or

link — these are shown in Figure 3.4.

40 Chapter 3. Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope

Figure 3.4: Reference frames used with the space robot. The base position is defined as a

movement of
∑
B.
∑
I is the inertial reference frame. The position of each link is described

by the rotation of
∑
li, which is fixed to the base of the corresponding link. Also shown here is

the definition of the base spacecraft faces.

3.2.2 Dynamic Coupling

When operating in-situ, the space robot will experience dynamic coupling. This is a result of the

microgravity operating conditions and the conservation of linear and angular momentum [31].

It means that any controlled or uncontrolled movement of the manipulator will induce a force in

the base spacecraft and vice versa. If this induced force is large enough it will cause the base

spacecraft to deviate from its desired position. It is possible for the AOCS to counteract this,

but this is reliant on the subsystem being sized correctly as well as having accurate predictions

of the induced motion that needs to be accounted for. This is a particular issue for downsized

space robots as this mechanism is more prominent when the mass and inertia of the manipulator

and payload are not negligible in comparison to the base [176].

3.2.3 Force Definition

The equation used to calculate the general forces in the system is defined as follows:

τ = Dq̈ + Cq̇ (3.2)

where,

q =
[
x y z α β γ θi · · · θNm

]T
. (3.3)

3.2. Space Robot Dynamic Model 41

q ∈ RN is the state vector of the system, making q̇ ∈ RN the corresponding velocities and

q̈ ∈ RN the accelerations. In Equation 3.3, the first 3 terms represent the linear position of

the base (x, y, z) and the next 3 terms represent the attitude of the base (α, β, γ), all w.r.t.
∑
I .

The next Nm terms in the state vector represent the displacement of each joint of the robotic

manipulator w.r.t. to that link’s reference frame —
∑
li.

The D ∈ RN matrix represents the inertial properties of the system:

D =

 Dsc Dscm

Dscm
T Dm

 , (3.4)

where the subscript m relates terms to the manipulator, sc to the spacecraft and scm to the

coupling between the base and manipulator. The same subscripts apply to the C ∈ RN matrix

although this matrix represents the Coriolis and Centrifugal properties:

C =

 Csc Cscm

Cscm
T Cm

 . (3.5)

τ is defined as the forces acting on each d.o.f. of the system,

τ =
[
fx fy fz τα τβ τγ τ θi · · · τ θNm

]T
, (3.6)

where each element corresponds to that in state vector q, making all but the first three elements

torques.

In order to control the space robot, it is possible to apply a force to any of the N d.o.f. In order

to determine the resultant motion of this applied force, and therefore the behavior of the space

robot under control, Equation 3.2 must be solved for q̈,

q̈ = DT (τ − Cq̇) (3.7)

this is done either using a system of Ordinary Differential Equations (ODEs) or Simulink.

3.2.4 Implementation

In order to successfully model the behavior of the space robot the dynamic model is integrated

into a semi-realistic simulator. The simulator is used throughout this thesis, both in an RL

pipeline and as a standalone system. A Simulink implementation is used when individual

trajectories are used to quantify tasks, and a Python implementation is utilised when an RL

pipeline is employed in order to exploit auto-differentiation.

42 Chapter 3. Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope

(a) Connect PM module (b) Grasp PM

module

(c) Relocate for outer BP

Figure 3.5: Example of tasks in python simulator. Demonstration of render function in python

space robot simulator. Three different task and payload combinations are shown.

Simulink Implementation

Simulink was selected for use since it is well suited to solve systems of differential equations,

such as Equation 3.7. The dynamics were encoded as a block diagram with the space robot

hardware parameters, control forces and start & final positions as inputs. The block diagram

was set up to calculate q̈ which was then integrated twice to give q̇ and q — making up the

state vector. The starting point for integration was taken as the value from the previous timestep,

or the start state when t = 1. Each simulation was run over 200 timesteps, with integration

occurring over a dynamic range of 1 to 0.001 timesteps, decided internally at run-time. No

render function was used and instead, introspection was done via extraction and plotting of

intermediate states. Due to the nature of trajectory modeling in this simulator, no collisions need

to be handled.

Python Implementation

The dynamic system was also implemented in Python. This system was modelled around the

OpenAI gym Application Programming Interface (API) and uses a differentiable ODE solver to

solve Equation 3.7 [23]. Integration occurs over a fixed timestep of 0.01 using the Runge-Kutta

4th order method. Episodes have a maximum run time of 200 timesteps. The simulator is

set up to include the different tasks outlined in Section 3.1.2. The Pandas3D physics engine

is used to model collisions between payloads and the space robot as well as handling the task

3.2. Space Robot Dynamic Model 43

completion requirements. The Pandas3D package also provides a render function that allows for

introspection of each episode, an example can be seen in Figure 3.5. Photorealistic rendering

is not needed since training occurs via the state space rather than the pixel space. The state

space is made up of the q, q̇, the payload’s location in
∑
I , its size, and its mass — giving a

dimension of 2N+10. The action space has dimensions N , allowing a control over all d.o.f.

A reward scheme is required in this environment in order to facilitate RL training. The same

shaped reward scheme is used for all tasks. The per-timestep reward is the negative of the

magnitude of the positional error between the end effector and the target location. A final reward

of +1000 is given for successful completion of the task with various penalties for undesirable

behavior. This includes a penalty of −30 for exceeding the limits of the actuators mounted on

the arm, any collisions, and going over the allowable time limit. The magnitude of the final

base velocity is given as a penalty in the final timestep in order to encourage the system to

complete the task in a controlled manner. As such, the maximum achievable reward depends on

the starting position of the space robot relative to the target payload.

44 Chapter 3. Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope

Chapter 4

Task Driven Automated Hardware

Design

In this chapter, Ta-DAH Design is presented — a method to improve the performance of a space

robot via hardware optimisation. It also combats the slow speed of hardware design via the

implementation of an automated design approach — thus addressing Objective 1. The proposed

solution utilises a novel cost function in an iterative, automated, task aware pipeline. The design

approach is driven by simulation-based statistics, therefore leveraging prior knowledge and

facilitating the faster output of optimal designs.

The approach is applied to the task of optimising a small space robot for the OOA of the large

aperture telescope outlined in Section 3.1. The motivation for designing a smaller space robot is

to provide a low cost alternative to the large, bespoke systems currently available. It is not a

replacement for such systems, but instead a solution to the problems that cannot be solved with

a larger system. This work provides new insight into the physical implications of the dynamic

coupling effect, something which is yet to be covered in the literature, although its theory has

been investigated extensively by researchers. While it is possible to tailor this automated design

process to a number of different applications, this is outside the scope of this chapter.

This chapter first defines the problem area, before outlining the automated design process used.

Analysis of Ta-DAH Design is provided as well as the optimal designs for the OOA tasks. The

chapter ends with a conclusion that motivates the next chapter of this work.

45

46 Chapter 4. Task Driven Automated Hardware Design

4.1 Problem Definition

While the benefits of downsizing a space robot are numerous, it is a challenging task with

problems arising from scaling down both the manipulator and base spacecraft, as discussed in

Section 1.1. The trade-off when downsizing the manipulator is to reduce its mass and power

consumption while still maintaining a sizable dexterous workspace and high payload capacity.

Reducing the mass of the arm will lower launch costs, and reducing its power consumption will

limit demand on the base spacecraft. The preservation of the arm’s dexterity is paramount since

some assembly tasks involve fragile components and the connection and disconnection of joints

is an arduous task; yet to be carried out on-orbit.

4.2 System Requirements

A number of system requirements are defined to ensure the optimisation process captures

the desired attributes, these are summarised in Table 4.1. This table does not encapsulate all

subsystem level requirements, but those that apply in the context of this dynamic, task based

design approach. For example, capability for intelligent perception or up-link and down-link

rates do not affect the dynamic interaction between the arm and base and are not considered at

this time.

4.3 Methodology

Ta-DAH Design for space robot hardware optimisation is a two-step process. It first addresses

the size of the manipulator and then the size of the base. Figure 4.1 shows the full process. The

size of the manipulator is determined using a constrained weighted sum optimisation approach,

which is solved in two separate steps. First, a coarse exhaustive search identifies the most

promising region of the design space and then the Nelder-Mead Simplex search method is used

to refine the design [77]. Constraints are set by the system requirements and target tasks. The

size of the base spacecraft is optimised to ensure that the system can operate successfully. This

is done by mounting the chosen manipulator on the smallest form factor and evaluating its

performance. The size of the base spacecraft is increased until a number of conditions are met.

This design approach puts emphasis on outputting the smallest operational system possible.

4.3. Methodology 47

Table 4.1: System requirements. The system requirements for the full space robot system.

These drive the design optimisation process. FR denotes a functional requirement. PR denotes

performance requirement and DR a design requirement.

Requirement Description

FR 01 System will be able to independently manipulate a payload.

FR 02 System will operate in the free-flying mode.

PR 01 System will be able to manipulate the BP and PM modules.

PR 02 End effector will apply forces greater than 50N .

PR 03 Manipulator will have a length of < 1m.

PR 04 End effector will have accuracy of at least ± 2mm

DR 01 Base spacecraft mass will not exceed 100kg.

DR 02 Manipulator will weigh less than 10kg.

Move to larger
form factor

No

YesWill a larger AOCS fit in
the same base?

No

Yes

Is base deviation
zero?

Does required torque
exceed limit?

Yes Yes Is there sufficient
power and fuel

available?

Yes

Move to larger
AOCS

Optimal system
has been found.

No No

Compare cost
functions and

determine starting
location for fine

tuning.

Fine tune to find
optimal arm
parameters

Initiate smallest form
factor option with

chosen manipulator.

Start

Actuate arm through
desired trajectory,

saving intermediate
results.

Calculate cost
function and store

Determine upper and
lower limits for each

link on the arm.

Initiate first
configuration

Initiate next
configuration

Have all
configurations been

tested?

YesNo

Run full system
though desired

trajectory, in free
flying mode

Figure 4.1: Ta-DAH Design methodology. The full optimisation process for the space robot is

shown here. Highlighted in red is the section that relates to the optimisation of the arm while

the green part highlights the base optimisation procedure. Each part is expanded and explained

in the following section.

48 Chapter 4. Task Driven Automated Hardware Design

(a) 6 d.o.f. system (b) 7 d.o.f. system

Figure 4.2: Joint configurations. Different d.o.f. manipulators are considered in this work,

however the overall schematic remains the same. Joint 1 and 2 act at the same location to

replicate a single joint having 2 d.o.f. Additional Joints are added after Joint Nm-1. All Joints

other than 1 and Nm rotate about their z-axis.

A PID controller is used in the Ta-DAH Design pipeline. This controller works by outputting

the required forces to reduce the error (e) between the current state of the system (q) and the

desired state of the system
(
qd
)
,

τ t = kP et + kI

∫
et + kD

det
dt
. (4.1)

It is constrained by the tuple (kI , kD, kP). In order to implement this controller a target trajectory

is needed. qd is given in Table 3.3. In order to optimise the system for each specific task, the

space robot is actuated through the corresponding trajectory and the resulting motion and forces

are used for evaluation. The same controller is used throughout.

4.3.1 Arm Optimisation

The principle of the weighted sum MOO problem is to determine a set of parameters in order to

minimise a cost function (C), where

C =
J∑
j=1

wjFj (v) . (4.2)

Here, v ∈ V is a design vector from the design space, Fj represents each objective function,

and wj is the weight given to the corresponding function. J is the total number of objective

4.3. Methodology 49

Table 4.2: Definition of selected objective functions.

Definition

F1 (v) Reach of the Manipulator

F2 (v, q(t)) Manipulability of the manipulator configuration

F3 (v, q(t)) Error between the CoM of the end effector and the desired location

F4 (v, q(t), q̇(t), q̈(t)) Forces and torques applied to the base during arm actuation

F5 (v, q(t), q̇(t), q̈(t)) Torque required at each joint to move the arm at a given velocity and acceleration

functions used. At this stage in the Ta-DAH Design pipeline the design vector is defined as,

v =
[
l1 l2 ... lNm

]T
, (4.3)

where l1..Nm
represents the length of each link in the manipulator. The same joint configuration

is adapted for use with a manipulator of any d.o.f., as seen in Figure 4.2. Regardless of how

many d.o.f. the manipulator has, joint 1 and 2 operate at the same location, mimicking l1 = 0

and providing rotation about two axes at this point. The other joints provide rotation about

that link’s z-axis and additional d.o.f. are added as joints prior to Joint N -1. Changes are

made directly in the system model to account for rotations between the link frames themselves,

e.g. between joint 1 and 2. Additional d.o.f. are not added by the end effector due to the use of a

standard interface — details can be found in Appendix A.

The objective functions selected for use with Ta-DAH Design represent fundamental parameters

necessary for successful operation of the space robot for specific tasks. All the functions are

summarised in Table 4.2 and are discussed and formalised in turn.

Objective 1

Objective function 1 relates to the system’s pseudo-workspace. Workspace is not directly

considered since, due to their nature, space robots have only an ‘attitude confined’ workspace.

This becomes a function of path history, and therefore the selected orbit [162]. This means

orbit corrections could be used to satisfy workspace demands. As a result, workspace is a ‘soft’

constraint. The overall reach of the manipulator is fundamental instead, since this constrains

close proximity and rendezvous capability for any given orbit. F1(v) is the sum of the link

50 Chapter 4. Task Driven Automated Hardware Design

lengths, which in this case is the sum of the design vector components,

F1 (v) =

Nm∑
i=1

li. (4.4)

Objective 2

Manipulability is a measure of the capability of a robot to execute a specific task in a given

configuration and is a function of the dynamics and kinematics of the robot. This property

governs objective function 2. Manipulability is a way to quantify the ability of a manipulator to

move and orientate its end effector within a given workspace. This quantifies the dexterity and

prevalence of singularities within the workspace. F2(v,q (t)) is defined as

F2 (v,q (t)) =

√
det
[
J (v,q (t)) J (v,q (t))T

]
. (4.5)

J is the Jacobian of the manipulator and q is the state vector of the system, defined in Sec-

tion 3.2.3. F2(v,q (t)) is a local metric, meaning it is posture and therefore time dependent. In

each case this will be calculated for the final position of the manipulator.

Objective 3

The error between the c.o.m of the end effector and the desired location, defined by the task, is

objective 3:

F3 (v,q (t)) = I
(
v,qd (t)6:Nm

)
− I
(
v,q (t)6:Nm

)
. (4.6)

The subscript 6:Nm
denotes that only the forces applied to the arm are used here. I is used

to represent the inverse kinematics of the system and is used with the desired and actual arm

configuration. t is the time step in the simulation. Again, this is a local not global metric and the

objective function is time dependent. This is avoided as it adds another level of dimensionality

to an already complex problem. Instead, F3(v,q (t)) is redefined to capture the worst case value

for the given trajectory,

F3 (v,q (t)) = max
t

[
I
(
v,qd (t)6:Nm

)
− I
(
v,q (t)6:Nm

)]
. (4.7)

4.3. Methodology 51

Objective 4

Pivotal to the performance of the space robot is its ability to remain stable throughout operation.

The effect of dynamic coupling can be quantified by looking at the torques and forces applied

to the base spacecraft during arm actuation. This will be used as objective function 4 which is

defined as

F4 (v,q (t) , q̇ (t) , q̈ (t)) = [D (v,q(t)) q̈ + C (v,q(t), q̇(t)) q̇]1:6 . (4.8)

F4 is a local metric and must be modified to account for the total effect of the dynamic coupling

throughout the manipulator’s trajectory:

F4 (v,q (t) , q̇ (t) , q̈ (t)) =
T∑
t=0

[D (v,q(t)) q̈ + C (v,q(t), q̇(t)) q̇]1:6 , (4.9)

where T is the total time for that task.

Objective 5

Due to the nature of the satellite, body-mounted solar panels will be used. Combining this with

the idea of making the system as small as possible presents the issue that power will be a finite

resource. Power consumption is therefore considered when defining the objective functions.

Objective function 5 is defined as the power required to actuate the arm and its payload,

F5 (v,q (t) , q̇ (t) , q̈ (t)) = [D (v,q(t)) q̈ + C (v,q(t), q̇(t)) q̇]6:Nm
. (4.10)

Again, this is time-dependent and is modified to account for the total power required throughout

actuation;

F5 (v,q (t) , q̇ (t) , q̈ (t)) =
T∑
t=0

[D (v,q(t)) q̈ + C (v,q(t), q̇(t)) q̇]6:Nm
. (4.11)

Final Cost Function

It is necessary to normalise each of the objective functions. This is done prior to the summation

to ensure they are non-dimensional. If Fj represents the normalised function then,

Fj =
Fj

| Fjmax |
. (4.12)

52 Chapter 4. Task Driven Automated Hardware Design

The maximum value
(
Fjmax

)
corresponds to the maximum value for any configuration in the

testing range. This produces an upper bound of 1, with no lower bound, also acting to scale

the objectives and provide equal weighting. A normal weighted sum cost function contains a

number of functions to minimise. However, in this case, some of the objective functions quantify

characteristics to maximise, such as the manipulability and reach. As a result, these objective

functions are added to the final cost function. The final cost function for use in the optimisation

is therefore defined as

C = −w1F1 − w2F2 + w3F3 + w4F4 + w5F5. (4.13)

Setting all wj=1 will give all the objective functions the same governance over the results due to

the normalisation. As such, this work does not alter the weightings, however it should be known

that these can be tuned if a designer is looking for any particular quality from the system. For

example, setting w2 = 2 will output a more dexterous robot of a bigger size for the same task.

At this stage it is impossible to optimise over d.o.f. and instead this must specified manually. It

is suggested that this is achieved by optimising the design of 5 to 7 d.o.f. manipulator systems

and comparing final performance.

4.3.2 Base Spacecraft Optimisation

The previous section illustrates how the optimisation of terrestrial robotic manipulators can

be adapted for use with a space robot manipulator. However, no similar technologies exist in

relation to the base spacecraft, and as such, no techniques are available for modification. Instead,

a new approach is taken in the Ta-DAH Design pipeline, whereby the smallest size of the system

that is capable of supporting the arm during successful operation is determined. The form factor

can take a number of discrete sizes, unlike the manipulator which inhabits a continuous design

space. The options considered in this work are shown in Section 3.2.1.

Ta-DAH Design starts with the smallest form factor and evaluates its performance with the task

optimal manipulator. If this meets a number of conditions then it is optimal, but if that base

cannot support the arm then a bigger one is selected and performance is re-evaluated. This

process continues until an optimal system has been found. This requires a clear definition of the

requirements that make the system operational. Since the aim of this work is to design a system

for a given task, not to optimise a full mission concept, a number of conditions are excluded

4.3. Methodology 53

Table 4.3: Definition of selected conditions. Summary of the conditions used to optimise the

base spacecraft in the Ta-DAH Design pipeline.

Condition Description

1 Zero deviation during free-flying mode

2 Sufficient power is available to run all the required subsystems

3 Sufficient fuel is avaliable to perform arm manouvers

here, for example up-link and down-link capability. It has been determined that the spacecraft

will be operational if all the conditions in Table 4.3 are met, these are driven by the system

requirements.

Condition 1

Condition 1 states that the AOCS should maintain zero deviation along the desired trajectory.

Throughout arm actuation the AOCS must apply the equal and opposite force induced by

the dynamic coupling in addition to the required control forces for base motion. A larger

manipulator relative to the base will increase the dynamic coupling and therefore the demand

on the subsystem. In addition to this, a smaller base will be unable to house a more powerful

AOCS. This condition will be checked by analysing the required torque for zero deviation and

comparing it to what is available from the appropriately sized AOCS.

The torque required from the AOCS can be calculated based on the configuration of the reaction

wheels in the spacecraft and the force needed to rectify the position of the base. If matrix A

dictates the reaction wheel position in the spacecraft, the torque requirement for each reaction

wheel
(
hR
)

can be calculated using

hR = A ·
[
τα τβ τγ

]T
. (4.14)

If one reaction wheel is mounted in each axis matrix A is defined as

A =


1 0 0

0 1 0

0 0 1

 , (4.15)

54 Chapter 4. Task Driven Automated Hardware Design

Table 4.4: Properties of Reaction Wheels. A number of COTS reaction wheels have been

selected. Each have different torque and size properties [15, 107, 22, 57, 134].

System Max Torque (mNm) Max Speed (R.P.M) Required Form Factor

UniSat-7 3.7 7000 12

SatBus 4RW0 5.9 6500 12

RSI 12-75 90 7500 24

HoneyBee Robotics

Microsat CMG array
112 12000 24

Bradford RW 265 4000 27

and solving Equation 4.14 gives

hR =
[
τα τβ τγ

]T
. (4.16)

Equation 4.16 is then used to determine the required torque for zero-deviation. This is compared

to available hardware in order to determine if condition 1 can be satisfied with the current

manipulator and base spacecraft pair. A number of AOCS subsystems are proposed for use,

these are summarised in Table 4.4. Commerical Off-the-Shelf (COTS) components are selected

in order to keep manufacturing costs to a minimum. The torque quoted can be applied in each

of the three axes.

Condition 2

The second condition requires the spacecraft to generate sufficient power to operate. The satellite

will generate power using body mounted solar panels since deployable panels would limit the

space in which the system could operate. The power available for each of the different form

factors was calculated using the method outlined in [35]. It is assumed that the panels will be

mounted on the +/ − Y , −X and the +Z face, where the Y faces are perpendicular to the

velocity vector and the +Z face is space-facing — as seen in Section 3.2.1. This leaves the

forward-facing panel (+X) free to mount the arm and the Earth-facing panel (−Z) free to

mount antennae and other required hardware. The spacecraft is assumed to be in a GEO at

around 35 786 km. The corresponding orbital average powers can be found in Table 4.5, these

are compared to the power required from the AOCS, manipulator joints and linear thrusters to

4.4. Results and Discussion 55

Table 4.5: Power generated by different form factors. Average orbital power output by each

of the form factors.

Form Factor Average Power (W)

3U 4.76

6U 8.97

12U 9.52

18U 13.7

24U 17.9

27U 14.28

achieve the defined tasks. In practice the power draw will be considerably higher than this from

running additional subsystems, however an on-board battery will supplement the power supply.

Condition 3

This condition specifies that the system must have sufficient fuel to facilitate zero-deviation

from the desired trajectory for the given task. This requires the propulsion system to output

sufficient thrust. Isp is the specific impulse of the fuel being used in N s kg−1 and mf is the

mass of fuel in kg that must be expelled.

mf =
t
∑3

c=1 τ c
Isp

(4.17)

Equation 4.17 is then used to determine the required mass of fuel. A solid fuel is not suitable

for use as it cannot be throttled and therefore a variable control force cannot be applied. Instead,

a liquid or gas fuel will be used as this can be throttled and re-started. Electric propulsion is

also not considered due to the already high power demands and long ‘burn’ times. A cold gas

system will be used since it is small and simple to implement. Information on the linear thrusters

considered for use during optimisation can be found in Table 4.6.

4.4 Results and Discussion

Prior to optimising the system for the OOA of a large aperture telescope using Ta-DAH Design,

a number of simulations were run to generate and analyse statistical, quantifiable information

56 Chapter 4. Task Driven Automated Hardware Design

Table 4.6: Linear Thrusters. Comparison between cold gas linear thrusters. Some values are

approximated [166, 164, 165].

Isp
(
Ns kg−1

)
Wet mass (g)

Max Power

Consumption (W)

NASA’s C-Pod Micro 40 1244 5

CuSP 70 690 11

AFRL Propulsion Unit 70 1005 15

Li
nk

 2
 (m

)

Link 3 (m)

(a) Link 2 and 3 varied

Li
nk

 3
 (m

)

Link 4 (m)

(b) Link 3 and 4 varied

Figure 4.3: Impact of link length on cost function. Contour plot showing impact of varying

link lengths on the cost function. In both cases the link not in question is held at a constant.

on the implication of different sized space robots. The aim of this is to provide usable metrics

and outcomes for future space robotic missions.

4.4.1 Arm Optimisation

Exhaustive Search of Design Space

In order to investigate the shape of the design space, initially the dimensionality of the prob-

lem was reduced. The cost function was evaluated over two varying inputs in the design

space. Figure 4.3 shows the emergence of both local and global minima, at differing locations,

demonstrating the complexity of the design space.

4.4. Results and Discussion 57

(a) Varying payload mass (b) Varying base spacecraft size

Figure 4.4: Cost function for specific manipulator. Representation of the local minimas in

the design space for a 5 d.o.f. manipulator with varying payload mass and base spacecraft size.

The position in the design space is arbitrarily assigned for the figure axis.

An exhaustive coarse grid search was carried out for a range of feasible options in the design

space and the cost function was plotted (Figure 4.4a). This is not the proposed solution for

solving the problem but is used to visualise the position of local and global minima. Each

link was evaluated from 0.1 m to 0.3 m at 0.05 m increments. It can be seen that there are a

number of local minima in the cost function, these occur around the point at which link 2 is at

its maximum. This search was carried out for 100 randomly generated trajectories, and it was

found that, for a 5 d.o.f. system, 75% of the trajectories displayed local minima where link 2 was

at its maximum. For a 6 d.o.f. system this was 64% and for 7 d.o.f., 58%. The same exhaustive

search was carried out for arms mounted on different sized bases and with different payload

masses. It was found that this had no effect on the location of the local minima (Figure 4.4b).

The continuity in the position of these local minima in the design space is exploited in the

Ta-DAH Design pipeline. In the first design stage, link 2 is fixed to its maximum length and a

coarse grid search of the rest of the design space is carried out. The maximum length of link 2 is

determined using the maximum reach (as defined in Table 4.1) divided by the number of links

in the manipulator. The result of this initial search locates the starting point for the fine-tuning

phase of the Ta-DAH Design process, which optimises the link lengths around the ‘best’ local

minimum for that task. This two-stage approach means that the solution is more likely to be

globally optimal — it also reduces computation time.

58 Chapter 4. Task Driven Automated Hardware Design

(a) 3U base spacecraft (b) 27U base spacecraft

Figure 4.5: Dynamic coupling for different sized spacecraft. Error in arm trajectory and the

resulting base spacecraft deviation is shown here. This occurs if the dynamic coupling is not

counteracted in the control system.

4.4.2 Base Spacecraft Optimisation

Prior to optimising a full system for the OOA of the large aperture space telescope, in the

Ta-DAH Design pipeline, the behavior of the base spacecraft as a result of arm actuation was

investigated. Of interest are the forces induced in the base, which are quantified by looking

at the base’s change in position, as a result of arm actuation. The other area of interest is the

forces and torques required to counteract these induced forces since this will govern the system’s

stability.

The initial hypothesis tested was if increasing the size of the base spacecraft, in comparison to

the arm, decreases the impact of dynamic coupling. An arbitrarily sized arm was mounted onto

a 3U and then a 27U spacecraft and actuated through a single trajectory with the base operating

in the free-floating mode. The final position of the base and the arm was used to illustrate the

magnitude of the dynamic coupling — shown in Figure 4.5, The base deviation and resulting

positional end effector error is larger when the base is smaller, this is because of the decreased

arm to base inertial ratio.

4.4. Results and Discussion 59

0.00

0.50

1.00

1.50

2.00

2.50

A
tti

tu
de

 D
ev

ia
tio

n
(ra

d)

Form Factor and Corresponding Axis

1

2

3

4

5

6

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
3U 6U 12U 18U 24U 27U

(a) Attitude

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

Li
ne

ar
 D

ev
ia

tio
n

(m
)

Form Factor and Corresponding Axis

1

2

3

4

5

6

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
3U 6U 12U 18U 24U 27U

(b) Translation

Figure 4.6: Behavior of different sized base spacecraft in the free-floating operation mode.

Maximum base deviation for a range of form factors in the free-floating operation mode for

each of the 6 random trajectories.

Knowing that a smaller base will experience larger deviation under the same manipulator motion,

this relationship was further investigated using an arbitrary 5 d.o.f. manipulator, where l1 =0 m,

l2 =0.2 m, l3 =0.2 m and l4 =0.1 m. The simulation was run with each form factor for 6

random trajectories, where the arm is controller with a PID controller and no AOCS is used

for base control. The maximum linear and attitude deviation was extracted, the results are

shown in Figure 4.6. These graphs show the modulus of the maximum deviation value for

the entire trajectory. Both the linear and rotary deviation decrease in an exponential manner

with increasing form factor, as expected, due to the change in inertial ratio. Although the exact

60 Chapter 4. Task Driven Automated Hardware Design

numbers from this analysis are dependent on the size of the chosen manipulator, the trend holds

for any small space robot. The exponential decay means that beyond a certain ratio, the effect of

dynamic coupling becomes negligible — something that is utilised by the large robotic systems

already in-orbit.

Although the effects of dynamic coupling are larger with a smaller base, it is possible that this

does not translate into needing larger forces to rectify the effects. This is because first principles

state that a system with smaller inertia will require less force to move. In order to evaluate

this performance metric the spacecraft is operated with a PID controller aiming to maintain the

base’s position. It does this by applying the forces required to counteract the disturbance caused

by the dynamic coupling — the same forces that trigger the behavior quantified in Figure 4.6.

The same size arm and 6 trajectories used in Section 4.4.1 are used again. The maximum

required forces to preserve this position, can be seen in Figure 4.7. For all options of form factor,

across all missions, the resultant base deviation was approximately zero, and very small control

torques are required.

The control torques increase only very slightly with form factor. This is counter to the deviation

needed to be overcome. It can be concluded that a base with higher inertia needs higher control

forces than a smaller one to move the same amount — in keeping with fundamentals. The

design implication of this is that increasing the base spacecraft does not reduce the required

control forces, although it does reduce the effects of the dynamic coupling.

Conversely, the linear control forces are seen to increase with form factor. It was expected that

these forces remain constant/decrease with increasing form factor since the linear deviation

needing to be corrected falls. However, this is not the case, and in practice the larger base

requires much higher forces to achieve the same motion compared to a smaller craft. This means

that increasing the size of the base spacecraft to counteract the effects of dynamic coupling will

put a higher demand on the linear control subsystem. It is therefore a trade-off between trying

to limit the base disturbance due to arm manipulation and reducing the AOCS requirements.

4.4.3 Design of Space Robot for On-Orbit Telescope Assembly

Following the exploration of the design space of the space robot with 6 random trajectories,

Ta-DAH Design was used to optimise a space robot for the OOA of a large aperture telescope.

Since the current set-up does not allow for optimisation over d.o.f., three different options are

4.4. Results and Discussion 61

0.00000

0.00010

0.00020

0.00030

0.00040

0.00050

0.00060

0.00070

C
on

tro
l F

or
ce

 (N
m

)

Form Factor and Corresponding Axis

1 2 3 4 5 6

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
3U 6U 12U 18U 24U 27U

(a) Attitude

0.000

0.002

0.004

0.006

0.008

0.010

0.012

C
on

tro
l F

or
ce

 (N
)

Form Factor and Corresponding Axis

1 2 3 4 5 6

X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z
3U 6U 12U 18U 24U 27U

(b) Translation

Figure 4.7: Control forces and torques required in the free-flying operation mode. Maxi-

mum control forces required for a range of form factors in the free-flying operation mode for

each of the 6 random trajectories.

analysed, these are a 5, 6 and 7 d.o.f. manipulator, mounted on a 6 d.o.f. base, giving a system

with 11, 12 or 13 d.o.f.

As stated in Section 3.1.2, three different missions are required for the full assembly, these

are the inner BP, outer BP and PM assembly — each of which is made up of task + payload

pairs. It is necessary to design a single space robot to achieve each of the three missions. This

was done by actuating the robot through all the desired task + payload sub-missions within

a mission in Ta-DAH Design as opposed to just through a single trajectory. The cost function

is summed across all task + payload pairs. The 7 d.o.f. manipulator was not stable for any

62 Chapter 4. Task Driven Automated Hardware Design

Table 4.7: Starting points for Ta-DAH Design. Optimal arm configurations following the

coarse grid search (denoted by ‘Pre’) are given for the 5 and 6 d.o.f. manipulators. These are

then further optimised using the Nelder-Mead Simplex search method with the results quoted as

‘Final’. All lengths are in m.

Task d.o.f.
Link Length (m) Total Reach

Final Cost
2 3 4 5 (m)

Inner BP

5
Pre 0.3 0.25 0.05 - 0.6 436

Final 0.298 0.252 0.052 - 0.602 424

6
Pre 0.25 0.15 0.2 0.15 0.75 6685

Final 0.246 0.158 0.21 0.151 0.765 1673

Outer BP

5
Pre 0.3 0.25 0.05 - 0.6 436

Final 0.298 0.252 0.052 - 0.602 424

6
Pre 0.25 0.15 0.2 0.15 0.75 6685

Final 0.246 0.158 0.21 0.151 0.765 1673

PM

5
Pre 0.3 0.15 0.05 - 0.5 500

Final 0.315 0.151 0.049 - 0.615 439

6
Pre 0.25 0.15 0.15 0.15 0.7 4270

Final 0.263 0.151 0.151 0.139 0.704 1475

mission, this was because the linear PID controller was not capable of functioning with such

a complex highly non-linear system. This manifested in a highly erratic motion with a large

deviation from the desired trajectory. This system is therefore discounted and not discussed

or evaluated further. The starting designs for the final optimisation and the final designs are

shown in Table 4.7, along with the corresponding final cost of each design. Figure 4.8 shows a

schematic of each of the final designs. For all systems, the final optimisation step drastically

reduced the cost of each design, with the smallest improvement in the 5 d.o.f. system when

carrying out either task involving the BP. This mission is one with the absolute lowest cost

anyway, this is followed by the same system with the PM assembly mission. For all missions,

the 5 d.o.f. manipulator has a much lower final cost than the 6 d.o.f. system. For all missions

4.4. Results and Discussion 63

Inner BP Outer BP PM
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lin
k

Le
ng

th
 (m

)

24 27 24 27 27 27

Link 2 Link 3 Link 4 Link 5
5 d.o.f 6 d.o.f

Figure 4.8: Optimal Space robot designs. Schematic of the optimal space robot designs for

each of the three missions required for the OOA of the large aperture telescope. The number

above each schematic is the optimal form factor.

the selected reaction wheel was the HoneyBee robotics system and the selected linear propulsion

system was the AFRL prop unit.

Figure 4.8 shows that for all missions the 6 d.o.f. manipulator is the longest and always requires

the largest form factor — 27U . The 5 d.o.f. arm requires a smaller form factor for the inner

and outer BP assembly, where a 24U base is optimal. The larger form factor is optimal with

the heavier payload (PM module) and with the manipulators with higher d.o.f. This is because

both the extra joints and the larger payload increase the dynamic coupling effects. As seen

in Figure 4.6, the effect of this increase is minimised by having a larger base. However, as

explained previously, increasing the size of the base increases the required control forces, even

though the effect of the dynamic coupling is reduced. Table 4.8 shows that the power required

for control is in fact, higher with the larger spacecraft for the same mission and d.o.f. system.

Table 4.8 shows drastically higher power requirements compared to what is available from

any of the proposed form factors. Although this was set as a condition for base optimisation,

it was found that for these missions, none of the form factors could provide sufficient power.

64 Chapter 4. Task Driven Automated Hardware Design

Table 4.8: Power requirements for sub-missionss. The power required for each task within

the sub-mission for the optimal design of all systems.

Sub-task Relocate Grasp Relocate Fine Manipulation

Power Fuel Power Fuel Power Fuel Power Fuel

(W) (kg) (W) (kg) (W) (kg) (W) (kg)

In
ne

rB
P Payload None None BP BP

5 d.o.f. 297 5.9 94 0.3 297 4.2 73 0.2

6 d.o.f. 441 2.1 26418 16.5 441 2.4 309650 10.63

O
ut

er
B

P Payload None None BP BP

5 d.o.f. 297 5.9 94 0.3 297 4.2 73 0.2

6 d.o.f. 441 2.1 26418 16.5 441 2.4 309650 10.63

PM

Payload None None PM PM

5 d.o.f. 297 6.3 89 0.2 297 4.5 272 0.18

6 d.o.f. 441 2.5 33034 11.9 442 1.83 755890 10.59

As such this condition was removed and the form factor was optimised independently of this.

Instead, a battery will be used to supplement power generation during these missions. Even

with this modification, it can be seen that for all missions with the 6 d.o.f. manipulator, the

power requirements are orders of magnitude larger than with the 5 d.o.f. arm. This is due to

the control system trying to counteract instabilities caused by the increase in complexity due

the extra joint and longer reach. It is unclear at this stage if this could be mitigated through

controller refinement, such as that in Section 5. In contrast to this, it can be seen that the fuel

requirements are, on average, higher across the missions with the lower d.o.f. arm. This is not

an issue since the selected linear thruster has sufficient capability for the mission.

Across both the 5 and 6 d.o.f. arms, for the same d.o.f., each manipulator is shorter when a

heavier payload is used i.e. the PM module. This is because with a shorter arm, the overall

inertia when transporting a payload is lower, which reduces the effect of the dynamic coupling

— one driver of the cost function. For all missions, with this controller the optimal design is the

lower d.o.f. system — 11 d.o.f. There exists two optimal systems, one when the BP module is in

4.5. Conclusion 65

question and one when the PM module is. These designs were selected based on the drastically

lower costs across all missions.

4.5 Conclusion

This chapter presented Ta-DAH Design, an automated design process tailored to optimise the

hardware of free-flying space robots. Designing a space robot is a challenging problem with

many dimensions not present in terrestrial robotic design. However, the suitable design of such

a system will have huge benefits in the industry via the automation of previously unattainable

OOO, including OOA, ADR and other servicing missions.

The design process presented in this work uses a weighted cost function to optimise the link

lengths of a robotic manipulator and then iterates over pre-defined form factors to optimise the

size of the base spacecraft. The objective functions used to size the manipulator quantify a

number of important performance parameters and are all defined and expanded in this work.

The base spacecraft is sized by ensuring that the on-board subsystems can perform the required

maneuvers for the given tasks. Ta-DAH Design successfully optimised different space robots

for use with the large space telescope design outlined in Appendix A. It was determined that

a 11 d.o.f. system (6 d.o.f. base + 5 d.o.f. manipulator) should be used for all missions where

the base sizing and link lengths vary based on the task at hand. This system is optimal for the

controller and tasks defined in this section.

While the technique presented in this work hosts a number of benefits, mainly streamlining

the design process of a complex robotic system and showing that hardware optimisation can

increase overall performance, some improvements could be made. The system requires in-depth

knowledge in relation to the mission scenario. This is because a top level mission, such as

grasping a BP module, must be broken down into parameters accepted by the optimisation

pipeline. In addition to this, all designs are evaluated using a PID controller. The 12 d.o.f.

system was discounted in part due to the excessive power draw and instabilities. However, it is

impossible to determine if this is due to a sub-optimal controller or poor physical design. While

control parameters could be re-tuned for each design and task pair, this is a time-consuming

process with no easy solution. Instead, this problem motivates the control approach in the next

chapter, where RL is used to co-optimise the control and hardware of the system simultaneously.

66 Chapter 4. Task Driven Automated Hardware Design

In addition to this, the disjointed manner in which Ta-DAH Design approaches the optimistion

of the base and manipulator is likely to impact the quality of the final design. This again provides

motivation for holistic design approach presented the next chapter.

Chapter 5

Co-Optimisation of Hardware and

Software using Reinforcement

Learning

The space robot designed in the previous chapter highlighted the implications of not optimising

a control scheme for each specific hardware design. As discussed in Section 2, this decoupled

approach to designing robotic systems is standard in the majority of design techniques. This

leads to suboptimal results as the successful performance of any agent in a given environment is

dependent on both its physical design and control capabilities. In some cases a poor mechanical

design may result in an impossible control problem, such as a walker with legs too short to reach

a target, see Figure 5.1a. In this case, no amount of training can overcome a fundamentally

flawed hardware design. In less extreme cases, designs may be inefficient, with excess material

or joints, leading to high energy consumption and/or poor movement patterns. In the opposite

scenario, optimising only the hardware of a robotic agent with a simplistic control algorithm is

unlikely to lead to optimal performance, as shown in Figure 5.1b. It is this aspect that impacted

the final designs using the Ta-DAH Design process.

This chapter addresses this design disconnect. It presents Optimisation of Robotic Control

and Hardware in Design (ORCHID) — an RL pipeline that simultaneously co-optimises the

hardware and software of a robotic agent. The result is an efficient, versatile approach to holistic

robot design, that brings the final system nearer to optimality.

67

68 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

(a) Agent changing its control policy to try and complete a task.

(b) Agent changes its morphology, rendering the control policy useless.

(c) Agent is able to complete the task by changing both its morphology and control

policy.

Figure 5.1: Different options for optimising control and morphology.

This chapter first outlines the methodology of ORCHID. Before giving the results from a

number of experiments demonstrating the advantages of this pipeline. A detailed look at the

design of the space robot for OOA is also given before the chapter is concluded.

5.1 Methodology

ORCHID is a unified approach to hardware and software co-optimisation, where a single RL

pipeline optimises both the morphology and control policy of a robot simultaneously. This

method takes inspiration from the concept that fundamentally underpins all forms of deep

learning – hierarchical partial differentiation. The approach works by forming a complex

differential path through a trajectory rollout, meaning a vast amount of information can be

leveraged. In typical RL pipelines this information is lost in the ‘black-box’ environment.

5.1. Methodology 69

ACTOR

CRITIC

Action Loss

Value Loss

AGENT

ENVIRONMENT

(a) Standard RL training loop

ACTOR

CRITIC

Action Loss Value Loss

ACTOR

CRITIC

Action Loss Value Loss

CRITIC

Action Loss Value Loss

ACTOR

(b) ORCHID training loop

Figure 5.2: Comparison of ORCHID and standard RL gradient flow. In both images the

forward pass is shown in black and the backward pass in red. Non-differentiable paths are

shown with a dotted line.

Figure 5.2a shows a standard RL feedback loop for training of an actor-critic architecture based

on experiences in an environment for all time steps in T . Visible in red is the simple differential

path required for network updates to improve agent performance. This is dependent only on

the action taken (at) at time t and the subsequent reward (rt), leaving the agent with little

information to exploit during updates.

Figure 5.2b shows three time steps in an environment following ORCHID. The use of a

differentiable transition function (P) hugely expands the capability of the system, via the

introduction of a complex differential path throughout the rollout. From this, it becomes

apparent how information on the impact/quality of a change to the morphology parameters will

70 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

impact performance — these parameters are defined as v, as seen in Section 4. Exploiting this

information makes it possible to quantify the coupled relationship between physical design and

control of a robot-agent pair. During training updates are made to v and/or the agent parameters

in a way that best improves overall performance. The exact robotic morphology parameterisation

vector is environment specific and is sized by the number of designable parameters, i.e. if the

mass and width of each leg on a quadrouped robot is to be optimised: v ∈ R8×1.

5.1.1 Reinforcement Learning Formulation

Deep RL is a branch of AI that utilises neural networks to understand and exploit unstructured

environments. A neural network acts as a control policy that dictates what actions a robot should

take in the environment. The network learns to map input states to optimal actions. In this work,

agent is used to describe the full RL system. For an actor-critic method this consists of a policy

and an additional network named the critic which is discussed later. Throughout training the

policy and critic are optimised using experiences collected by the agent in the environment.

The agent takes at, based on the policy and state (st), for each t. This changes the state of the

environment to st+1, the state includes the agent’s physical location. rt is received at each time

step based on how good the action was from that state. These experiences are processed to

determine a loss which is used to update the policy via back propagation. The policy aims to

maximise the reward over a sequence of steps.

The standard convention for solving an RL problem in a fully observable environment is to

formulate it as an Markov Decision Process (MDP) —M. The Markov property states that the

agents next state
(
st+1

)
is dependent only on its current immediate state and not everything that

came before it, such that a state is only Markov if,

P
[
st+1|st

]
= P

[
st+1|s1, ..., st

]
. (5.1)

An MDP is then an environment where every state displays the Markov property and state

transitions can occur either randomly or via an agent taking an action. This means that in every

state there is some probability that the state will change without the agent taking an action. An

MDP is represented by the tuple:M=(S,A,P, r, γ), where s ∈ S is any state in the state space

and a ∈ A is an action in the continuous action space. P
(
st+1|st, at

)
is the state transition

function that represents the dynamics of the environment, dictating how each state changes

5.1. Methodology 71

to the next. γ is the reward discount rate. This is used to give more distant rewards a lower

weighting than immediate rewards.

ORCHID uses the PPO algorithm which is an actor-critic method. This approach uses two

networks during training − an actor network and a critic network. The actor network is the

control policy, parameterised by θ̃ which is defined as a number of weights and biases. The actor

maps st at time t to at, denoted as: π
θ̃
(at|st). The optimal policy, given by the optimal values of

θ̃ = θ̃∗, will maximise the expected return (R), over experiences induced by the control policy.

Note that optimality cannot be proven in the case of RL and here optimal policy is used to mean

better than any baseline. Where,

R (aT , sT) =

T∑
t=0

γtr (at, st) , (5.2)

Here r(at, st) is the expected reward of taking at from state st. This is approximated by the

Q-value (Q (at, st)), where Q is calculated as,

Q (aT , sT) = E
s∼P ,a∼π

θ̃

[
T∑
t=0

γtr (at, st)

]
. (5.3)

The optimal values of θ̃ = θ̃∗ are estimated by solving,

θ̃∗ = arg max

θ̃

E
s∼P ,a∼π

θ̃

R (a, s) . (5.4)

Solving this equation can be done in a number of different ways, depending on the method used

to sample s and a. With PPO, experiences are collected in the environment and these are used to

calculate an average R. This is used to calculate a loss function and then back propagation is

used to optimse θ̃.

The role of the critic is to learn the value of each state. The critic is also an NN and is

parameterised by ω̃. This network takes input st and outputs the quality/value (V (s)) of that

state: πω̃(V t|st). The optimal values of ω̃ = ω̃∗ are determined by solving:

ω̃∗ = arg max
ω̃

E
s∼P ,a∼π

θ̃
,V ∼πω̃

(R (a, s)− V (s))2 . (5.5)

The learned value of each state is used to stabilise learning.

72 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

5.1.2 Parametric Control Optimisation

Although implemented with PPO in this work, ORCHID is agnostic to the control policy archi-

tecture — given it is differentiable and can be parameterised. To demonstrate this, experiments

are carried out with two different control policies. The first is a classical PID controller, where

the policy is defined as:

at = kP et + kI

∫
et + kD

det
dt
, (5.6)

and parameterised by (kI , kD, kP), where et is the positional error i.e. the difference between

st and a reference vector. This tuple acts as the control policy and a neural network is not used

in this setting, instead kI , kD, kP are optimised.

The second controller is a deep multi-layer-perception control network parameterized by θ̃. All

networks used in this chapter have 3 hidden layers, each with 64 nodes. The input and output

dimensions of each are dependent on the environment and use case of the network. The input

dimension of the actor is governed by the dimension of the state space, and the output by the

dimensions of the action space. Contrary to this, the input dimension of the critic is the same as

the actor, while the output will always be 1. The outputs of the actor network are stochastic with

the network predicting a mean (µ) and standard deviation (σ) for each action, this distribution

is sampled from at run time. The Tanh activation function is used on all but the output layer to

ensure non-linearities between layers. Outputs corresponding to σ are clamped to a minimum of

0.001.

5.1.3 Losses

Throughout training, different losses are used to optimise the various trainable parameters.

These losses quantify the performance of the system.

PPO

The PPO algorithm works by ensuring that policy updates are stable and do not cause the new

policy to move too far from the old policy. It does this by utilising the advantage function (A),

At (at, st) = Q (at, st)− V (st) , (5.7)

5.1. Methodology 73

and hyperparameter ε, which clips the size of an allowable update. The use of the advantage

during actor updates reduces variance and acts to normalise batch data during training in a way

that stabilises learning and prevents exploding gradients. The loss function used to constrain θ̃

is therefore,

Ja
(
θ̃
)

= − E
s∼P ,a∼π

θ̃

[
π
θ̃t

(a|s)
π
θ̃t+1

(a|s)
A (a, s) , clip

(
π
θ̃t

(a|s)
π
θ̃t+1

(a|s)
, 1− ε, 1 + ε

)
A (a, s)

]
.

(5.8)

The critic network is updated using the Mean Squared Error (MSE) between its output for a

given state (V (s)) and the expected return for that same state. The critic loss (Jc) is defined as,

Jc (ω̃) = E
s∼P ,a∼π

θ̃

([
R (a, s)− πω̃ (s)

]2)
. (5.9)

This network therefore learns to output the same expected return as gained from actual experi-

ences in the environment.

PID

The values for kI , kD and kP are sampled from a distribution
(
kI ∼ N (kIµ, kIσ)

)
at the start

of each episode. A full episode is run with the sampled values and the final reward is calculated.

The loss function for the PID controller (JPID) is then a function of the probability of the

selected constants given their distribution, and the resulting episode reward,

JPID(K) = E
s∼P ,a∼K

A (a, s) , (5.10)

where K = [kIµ, kIσ , kDµ, kDσ , kPµ, kPσ] which are the parameters to be optimised. With

this controller a critic network is still required. This uses the loss defined in Equation 5.9 with

the actions drawn from K as oppose to π
θ̃

.

Design Parameter

ORCHID aims to modify the design parameter such that if the policy were to take the same

action from the same state the resultant state with the new embodiment will give a higher reward

than pre-modification. The quality of a state is quantified via V (s). The design parameter loss

(Jv) is therefore an average of the sum of the state value over an episode,

Jv (v) = E
s∼P

(∑T
t=0 V (st)
T

)
. (5.11)

74 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

Since V (s) is a learned parameter, a ‘direct’ loss (Jvd) is also introduced that captures the true

reward of an episode. This ensures that a delay in learning by the critic network does not hinder

optimisation of the design parameter. As with JPID the direct loss utilises the fact that the

design parameters are sampled from a distribution where,

Jvd(v) = E
s∼P ,a∼π

θ̃

(logprob(v)R(a, s)) . (5.12)

Note that this equation is for the PPO controller. For the PID controller actions are instead

drawn from K. Since a distribution over designs is used during optimisation, the mean is taken

as the final optimal design.

5.1.4 Parameter Co-Optimisation

Optimising parameters θ̃, v and ω̃ is nontrivial. Both are highly nonlinear with numerous

complex inter-related functions. To deal with this, the entire system is formulated as a chain

of partial derivatives — excluding the reward function. Different compositions of these partial

derivatives allow the system to calculate the direction in which each parameter should be

updated. Updates are done in a way to minimise or maximise the respective losses defined in

Section 5.1.3.

The introduction of v into the optimisation results in a number of new partial derivative terms,

compared to the standard formulation: ∂s
∂v , ∂s

∂a , ∂V
∂s and

∂st
∂st−1

. ∂s
∂a and ∂V

∂s can be solved

explicitly from the forward pass, while ∂s
∂v and

∂st
∂st−1

require the use of a differentiable transition

function. In order to implement this, the environment is split into two components — P and a

reward functionR, shown in Figure 5.2. This modification does not affect the optimisation of θ̃

or ω̃ as the partial derivative paths remain the same:

∂Ja
∂θ̃

=
∂Ja
∂a

∂a
∂θ̃
, (5.13)

∂Jc
∂ω̃

=
∂Jc
∂V

∂V

∂ω̃
, (5.14)

and for kI , kP and kD,

∂JPID
∂(kI , kP , kD)

=
∂JPID
∂a

∂a
∂(kI , kP , kD)

. (5.15)

A similar path can be formed to update the design vector using both losses for an isolated time

step,
∂Jv

∂v
+
∂Jvd

∂v
=
∂Jv

∂s
∂s
∂v

+
∂Jvd

∂v
. (5.16)

5.1. Methodology 75

ACTOR

CRITIC

Action Loss Value Loss

ACTOR

CRITIC

Action Loss Value Loss

CRITIC

Action Loss Value Loss

ACTOR

(a) Full path

ACTOR

CRITIC

Action Loss Value Loss

ACTOR

CRITIC

Action Loss Value Loss

CRITIC

Action Loss Value Loss

ACTOR

(b) Partial path

ACTOR

CRITIC

Action Loss Value Loss

ACTOR

CRITIC

Action Loss Value Loss

CRITIC

Action Loss Value Loss

ACTOR

(c) Partial path

ACTOR

CRITIC

Action Loss Value Loss

ACTOR

CRITIC

Action Loss Value Loss

CRITIC

Action Loss Value Loss

ACTOR

(d) Partial path

Figure 5.3: Partial derivatives for v when t = 2.

However, ∀t≥2, there exists a complicated and unique partial derivative sum. Taking t= 2 as

76 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

an example, there are now 3 different information flows, as illustrated in Figure 5.3. The full

chain of derivatives is therefore,

∂Jv2

∂v
+
∂Jvd2

∂v
=
∂V 2

∂s

(
∂s2

∂v
+
∂s2

∂a
∂a1

∂s
∂s2

∂v
+
∂s2

∂s
∂s1

∂v

)
+
∂Jv2

∂v
(5.17)

Indeed the number of routes for gradient flow grows exponentially with the length of the rollout.

This creates huge computational demand and drastically slows down the training of the system.

Instead, it is possible to limit the gradient flow between time steps. For example applying

Equation 5.16 independently at all timesteps would ensure that information flows across a single

timestep. Meanwhile applying Equation 5.17 independently at every timestep would limit the

system to 2 steps of information flow. The use of different derivatives is explored.

5.1.5 Differentiable State Transitions

ORCHID requires that the environment must have a differentiable transition function as detailed

above. Although this could theoretically preclude certain environments, the advancement of

differentiable simulators means behaviors such as collisions, grasping and soft deformable

structures can now be modelled using fully differentiable functions [60, 84]. All environments

in this thesis have been modified to have a differentiable P following the method outlined in

[40]. ORCHID does not require the reward function be differentiable and as such this is not

modified. Usually P is defined as:

P
(
st+1|st, at

)
, (5.18)

however, after modification, it becomes a function of v,

P
(
st+1|st, at, v

)
. (5.19)

This is captured in the definition of the environments used to evaluate ORCHID in this work.

5.1.6 Implementation

During robotic hardware design it is normal to have bounds on the allowable values of parameters.

These may be due to physical limitations, such as non-negative weights and lengths or known

environmental stipulations such as storage or operating facility sizes. ORCHID implements

5.2. Experiments and Results 77

such constraints by passing parameters through a smooth differentiable bounding function such

as CELU [12],

CELU(v, α) =

v, if v ≥ 1

α exp
(
v
α

)
− 1, otherwise

. (5.20)

Depending on which controller is required a different combination of losses are used to update

the control parameters and design vector. Algorithm 1 shows the training loop when the PPO

controller is used, where La, Lc and Lv are the learning rates for the optimisation of θ̃, ω̃ and v

respectively. In this implementation the following losses are used: Jv, Jvd, Jc and Ja. In this

set-up, o denotes the total number of updates to the system, p the number of steps to carry out

per update, q the number of iterations over one batch of data. The same values were used for all

experiments in this chapter, with o = 4000, p = 2500 and q = 4. Two different learning rates

were used where La Lc = 7e− 4 and Lv= 7e− 2.

Algorithm 2 shows the training loop when the PID controller is used, where LPID is the learning

rate of the PID parameters which is also 7e− 4. The required losses in this implementation are

JPID, Jc, Jv and Jvd.

5.2 Experiments and Results

The generality of ORCHID is demonstrated by evaluating performance across four control

problems. Three of these are OpenAI gym environments [23]. Unless stated otherwise motor

specifications and material choice/density are kept the same as the default. In all cases, updates

to the morphology maintained the symmetry of parts and the overall configuration of the robots.

CartPole and Pendulum are demonstrated with both the PPO and PID controllers. The other

two environments are not, since this would require a path planning component.

5.2.1 Environments

Cart Pole

The task in this environment involves balancing a pole above a cart attached to an un-actuated

joint where motion occurs along a friction less track. A reward of +1 is given for each time step

78 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

1: Randomly initialise parameters θ̃, v and ω̃

2: for o = 1, 2, . . . total number of updates do

3: Initialise memory M ← ∅

4: Sample starting state: so0 ∼ S

5: Sample starting morphology: vo

6: for p = 1, 2, . . . number of steps per update do

7: Sample action: ap ∼ πθ̃(ap|sp)

8: Determine next state: sp+1 = P(sp+1|ap, sp, vo)

9: Determine reward: rp = R(sp+1, ap, vo))

10: Store transition: M ←M ∪ (sp, ap, rp, vo, sp+1)

11: end for

12: Calculate Jv

13: Calculate Jvd

14: v← v + Lv∇ (Jv + Jvd)

15: for q = 1, 2, . . . number of PPO epochs do

16: Sample mini-batch from M

17: Calculate Ja

18: Calculate Jc

19: θ̃ ← θ̃ + La∇Ja

20: ω̃ ← ω̃ + Lc∇Jc

21: end for

22: end for

23: return θ̃, v and ω̃

Algorithm 1: Implementation of ORCHID with PPO controller

that the pole remains above the cart (±15◦). In this task setting the mass of the cart and length

of the pole make up v. The maximum number of timesteps that the pole can remain upright is

1000.

Pendulum

In this environment the goal is to swing the pendulum so that it remains in an upright position.

A reward is given based on the angular position and velocity of the pendulum, and the force

applied at each step. A less negative reward is given for a stationary upright pendulum achieved

using minimal force. As such, a reward of zero is optimal, although not actually possible. In this

setting the mass and length of the pole are optimised independently. This replicates a change in

both the material and size of the pole.

5.2. Experiments and Results 79

1: Randomly initialise parameters in K, v and ω̃

2: for o = 1, 2, . . . total number of updates do

3: Initialise memory M ← ∅

4: Sample starting state: so0 ∼ S

5: Sample starting morphology: vo

6: Sample: kI , kD and kP

7: for p = 1, 2, . . . number of steps per update do

8: Calculate action using Equation 5.6

9: Determine next state: sp+1 = P(sp+1|ap, sp, vo)

10: Determine reward: rp = R(sj+1, ap, vo))

11: Store transition: M ←M ∪ (sp, ap, rp, vo, sp+1)

12: if episode end then

13: Sample kI , kD and kP

14: end if

15: end for

16: Calculate Jv

17: Calculate Jvd

18: Calculate JPID

19: Calculate Jc

20: v← v + Lv∇ (Jv + Jvd)

21: K ← K + LPID∇JPID

22: ω̃ ← ω̃ + Lc∇Jc

23: end for

24: return K, kI , kP , kD , v and ω̃

Algorithm 2: Implementation of ORCHID with PID controller

Mountain Car

This environment requires a cart which starts at the bottom of two ‘mountains’, to drive up the

right hand side to reach the goal. The engine is not strong enough to do so immediately, so

instead the cart must build up momentum by cycling between the mountains. A negative reward

is given for all engine output and a sparse reward of 0 when the goal is reached. In this setting

only the mass of the car is optimised.

80 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

Space Robot

This experiment uses the python implementation of the space robot simulator, defined in

Section 3.2.4. The link lengths form factor and base spacecraft mass of the 11 d.o.f. system are

optimised using the ORCHID pipeline, meaning v is defined as,

v = [l2, l3, l4, dx, dy, dz,msc] . (5.21)

For a single instance of the space robot to complete all the sub-missions in a mission, it is

necessary to implement a form of hard gating, inspired by Progressive NNs [135]. A separate

actor and critic network are implemented for each of the sub-missions, where each is only

trained on its corresponding task. The system is able to select the relevant network for the

current sub-mission. The optimisation of the morphology, via ORCHID, is done across all the

sub-missions, meaning a single robot is optimised for mission, as in Section 4.

5.2.2 Baselines

The performance of ORCHID is compared against three different baselines. The same baselines

are used for the PPO and PID control options. The first is a grid search, where each different

design option is trained for 1× 106 timesteps. In the second, the morphology is optimised using

Covariance Matrix Adaptation with Evolutionary Selection (CMA-ES), where the control policy

is optimised using RL for each design option [87]. This inner loop also runs for 1× 106 time

steps and 20 trials are used for morphology optimisation. The third uses Random Selection (RS)

to optimise the morphology where again, the control policy is optimised using RL — 20 trials

of 1× 106 steps are used. Each experiment is run 10 times and all results are given. The designs

used in the grid search are used as the starting points for the 10 runs with ORCHID. Morphology

initialisation for CMA-ES and RS was left to the respective algorithms.

5.2.3 Gradient Flow Over Timesteps

As discussed in Section 5.1.4 it is possible to limit the gradient flow between time steps in the

ORCHID pipeline. Using more timesteps leads to far greater memory usage and computational

load, but allows the system to consider how it’s changes will impact more distant future states.

In order to determine the optimal number of timesteps over which information should flow

5.2. Experiments and Results 81

PPO

300

400

500

600

700

800

900

Re
wa

rd

1 3 5 10 all

(a) Cart pole (b) Pendulum

PPO

70

60

50

40

30

20

10

0

Re
wa

rd

1 3 5 10 all

(c) Mountain car

Figure 5.4: Comparison of timesteps in ORCHID. Comparison of different numbers of

timesteps over which information can flow for morphology updates in ORCHID, where ‘all’

corresponds to a full episode in the environment.

Table 5.1: Comparison of run times for ORCHID over different timesteps. Times quoted

are an average of the 10 different runs carried out.

Run time (hrs:mins)

Time Steps 1 3 5 10 Full episode

Cart Pole 5:06 5:27 11:18 16:59 25:52

Pendulum 6:48 5:07 16:16 15:48 25:43

Mountain Car 4:54 4:06 11:22 12:25 21:51

82 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

for morphology updates, a number of different options were evaluated. The results are shown

in Figure 5.4. From this it can be seen that performance is actually better when information

propagates over fewer timesteps, with the worst performance occurring when gradients flow

back over an entire episode. For both cart pole and mountain car, performance for all timesteps

less than the full episode show fairly similar results, with a bigger variance appearing in the

lower timestep runs in the pendulum environment. Following the derivative definition, it is

known that there exists a single path for 1 timestep with a more complex path for 3, 5, 10 and

the whole episode. Although stretching back over more steps, no additional derivative terms are

introduced between 3, 5, 10 and the whole episode. It is therefore concluded that the value of the

information must degrade over timesteps. This is potentially due to increased noise from more

passes through the stochastic transition function, and weakened correlation with future events.

Also of importance at this stage of evaluation is the time taken for each of these experiments,

which is given in Table 5.1. This table shows that the run time for 1 or 3 steps is fairly consistent

across all experiments, with a large jump up to those over 5 or 10 steps and a further increase for

the full episode. Given the shorter run time and higher results, information flow over a single

timestep is used in the rest of this chapter.

5.2.4 Performance Analysis

A comparison between the final performance of designs chosen by ORCHID and the three

baselines for both the PID and PPO controller is given. Figure 5.5 shows a box and whisker plot

for each of the experiments, excluding any involving the space robot which are discussed later.

The implementation of ORCHID shows the highest maximum performance across all experi-

ments and control policies, excluding in the case of mountain car with PPO control, in which

performance is comparable. This demonstrates the need for true design co-optimisation since

the exceptional rewards cannot be reached when the morphology is optimised independent to

the control, as with the grid search, CMA-ES and RS. The largest improvement was seen in

the pendulum environment with PPO control. ORCHID optimised the pole to be very long

and made of a light material, the exact parameters on which the length converged exceeded

the allowable limits of all the baselines. This shows the ability of ORCHID to converge upon

designs which a human designer may never have considered. The optimal pole length was over

45 units for 6/10 of the ORCHID experiments, where the other baselines were capped at 40.

5.2. Experiments and Results 83

PID PPO

200

400

600

800
Re

wa
rd

Grid search RS CMA-ES ORCHID

(a) Cart pole

PID PPO
800

700

600

500

400

300

200

100

0

Re
wa

rd

Grid search RS CMA-ES ORCHID

(b) Pendulum

PPO

35

30

25

20

15

10

5

0

Re
wa

rd

Grid search RS CMA-ES ORCHID

(c) Mountain car

Figure 5.5: Overall performance of ORCHID compared to baselines.

While these limits could have been increased this would have drastically increased an already

long run time since the baseline methods evaluate designs across the defined space. Converse

to this, ORCHID intelligently explores promising regions of a potentially infinite space. This

experiment shows ORCHID’s capability of discovering new morphologies that may not have

been considered during initial design iterations.

In the case of mountain car with PPO control, the maximum reward of ORCHID is on a par with

the other optimisation techniques. This is due to the baselines already achieving near maximum

rewards, meaning that little improvement to robotic design was needed.

Smaller improvements are seen between ORCHID and the other baselines with the PID con-

troller across all environments. In addition to this, overall performance is lower with the PID

84 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

Table 5.2: Comparison of run times for ORCHID and all baselines. Times quoted are an

average of the 10 different runs carried out. The exception is the grid search for which a sum

over the 10 runs is given. This is because each individual run holds little value independent to

the others.

Run time (hrs:mins)

Control Grid Search CMA-ES RS ORCHID

Cart Pole
PID 9:06 8:12 8:03 4:59

PPO 10:48 9:26 8:54 5:06

Pendulum
PID 19:42 15:43 16:18 6:31

PPO 20:24 13:37 15:43 6:48

Mountain Car PPO 20:06 12:55 13:31 4:54

controller compared to with the use of a more complex policy. This is due to the limitations

of using a simpler architecture to learn a complex policy. In all cases ORCHID + PID has the

highest mean and maximum performance compared to all baselines, again highlighting the need

to allow for hardware design optimisation.

5.2.5 Design Speed Analysis

Another advantage of ORCHID is the acceleration of the design cycle, and sample efficiency of

training. This speed improvement manifests in a number of ways. Firstly only 1 run is required

in ORCHID in order to optimise the full system, compared to the multiple trials needed for

all the other baselines. This leads to an approximate factor of 3 increase in the runtime for

these baselines, as shown in Table 5.2. On top of this, the implementation of all other baselines

require maintaining the distribution of control policies and results over multiple runs, leading to

high memory requirements.

ORCHID also converged in a similar time frame or slightly slower than just refining the control

policy alone. This is surprising since this joint approach is strictly more complex and higher

dimensional. It would therefore be natural to expect that more samples would be needed to

account for the increased number of parameters. However, since the additional parameters are

meaningful and directly impact performance, it did not cause a noticeable delay in convergence.

5.2. Experiments and Results 85

Table 5.3: Comparison of final designs. The standard deviation across all runs with each of

the algorithms is quoted. The smallest is shown in bold with the next smallest in italics.

PID PPO

v CMA-ES RS ORCHID CMA-ES RS ORCHID

Cart Pole
Pole length 11.4 8.7 2.0 11.1 9.6 4.3

Cart mass 9.7 6.6 0.4 5.6 8.7 0.4

Pendulum
Pole length 12.1 11.6 2.8 5.9 12.4 20.9

Pole mass 11.1 9.07 0.2 7.1 8.9 0.2

Mountain Car Car mass n/a 8.4 9.5 5.95

5.2.6 Final Designs

The idea of ORCHID is to find optimal robot-agent pairs, meaning that the system cannot be

expected to converge on a single design across all runs given variation in the optimal control

parameters. However, looking at the final optimal designs, where the standard deviation across

runs can be seen in Table 5.3, it can be seen that ORCHID outputs the most similar designs. Note

that the starting points of the ORCHID optimisation varied, matching those of the grid search,

while the starting points of CMA-ES and RS were determined by the relevant algorithms.

In all cases other than the pole length for the pendulum with PPO control, the ORCHID designed

agents had the smallest standard deviation, where a clear difference was seen in the mass of the

components. This shows how ORCHID converges on much more similar designs than the RS

and CMA-ES. This is because the system leverages information from the environment, meaning

that updates to the morphology are made based on system dynamics and are therefore somewhat

grounded in physics. Conversely, the other baselines were only able to optimise the morphology

by trial-and-error, with no knowledge of the relationship between the changes and the physics

of the system. Some variation in the final designs is present due to the distribution maintained

during training, in addition to noise throughout the training pipeline. The final design is taken

as the mean since, in some cases the standard deviation does not converge to a low value.

86 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

Table 5.4: Space robot performance. Scores achieved by the Ta-DAH Design robot and the

robot designed using ORCHID for each of the sub-missions.

Sub-mission Relocate Grasp Relocate Fine Manipulation

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

In
ne

rB
P

A
ss

em
bl

y Payload None BP BP BP

Ta-DAH Design -425.1 -380.3 922.2 1074.8 -185.6 -146.8 -63.8 -40.1

ORCHID -172.2 -166.7 -30.6 -30.4 -133.8 -129.5 -33.5 -31.4

O
ut

er
B

P

A
ss

em
bl

y Payload None BP BP BP

Ta-DAH Design 1185.0 1188.7 905.7 1061.7 -95.8 -88.6 -86.2 -42.4

ORCHID 985.2 1048.8 1066.2 1079.5 883.8 1073.7 -37.8 -37.7

PM

A
ss

em
bl

y Payload None PM PM PM

Ta-DAH Design -158.8 -144.1 335.1 1056.1 -1125.2 -351.5 -59.1 -57.6

ORCHID 985.8 1016.8 -29.4 -2.2 -90.6 252.7 -49.6 -37.2

5.2.7 Space Robot Design

Following the improvements that ORCHID made compared to the baselines, the method was

employed to design the space robot, discussed throughout this work. Results for the different

missions are given in Table 5.4. As outlined by the reward scheme in Section 3.2.4 interest

extends beyond just if the mission was completed or not, and into how efficiently this was done.

As such, performance values are given — these are an average of 100 episodes. The baseline

used is the optimally designed space robot from Section 4, trained with a PPO controller, and

this is compared to the performance of the ORCHID designed system. While performance is

not exceptional, ORCHID outperforms Ta-DAH Design in 9/12 sub-missions. It is important

to highlight that the RL controller component is run without any additional aids for improving

performance. As such, this is considered as a high achievement given the complexity of the

tasks and high dimensionality of the input and action space.

5.2. Experiments and Results 87

(a) Relocate for inner BP (b) Grasp BP module (c) Move with BP module (d) Connect BP module

(e) Relocate for outer BP (f) Grasp BP module (g) Move with BP module (h) Connect BP module

(i) Relocate for PM (j) Grasp

PM module

(k) Move with PM mod-

ule

(l) Connect PM module

Figure 5.6: Render of simulator during training. Capture of each sub-mission needed for the

full assembly process.

Inner BP Assembly

The optimal robot design output by the ORCHID system for this task had design vector

v = [0, 0, 0.5, 0.8, 0.8, 0.3, 97].

ORCHID drastically increases the mass and dimensions of the base spacecraft, pushing them

beyond the standard form factors initially considered. In addition to this it reduced the apparent

d.o.f. of the system to 2 by making all but one link length 0 m.

The ORCHID optimised design performs better than the Ta-DAH Design on 3 out of 4 tasks,

with the average score for the initial relocate task increasing by 59.49% and around 21.69%

88 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

for the fine manipulation task. While these increases are not due to sub-mission completion,

they show that the re-sized agent is able to operate in a more controlled manner. The ORCHID

agent did not learn to capture the BP module during the grasp task, explaining the low score.

Figure 5.6a to Figure 5.6d show images from the simulator for the corresponding sub-missions.

Outer BP Assembly

The next set of sub-missions allows the robotic agent to assemble the outer ring of BP modules

— shown in Figure 5.6e to Figure 5.6h. Unlike the previous mission, the Ta-DAH Design agent

is capable of relocating to the correct location in space, scoring highly on the initial relocate

sub-task. This is because the inclusion of the already assembled inner BP ring means that the

agent does not need to traverse as far as with the previous task. In addition to this, the space robot

is capable of reliably grasping the required payload with a very high average and maximum

score, but shows lower performance on the last two sub-tasks. The higher performance of this

robot configuration gives credence to the Ta-DAH Design process.

Running ORCHID on this set of sub-tasks outputs an optimal configuration of

v = [0.4, 0.4, 0.1, 1.3, 1.1, 0.7, 80].

As with the optimised hardware design for the previous task, ORCHID specifies a space robot

with a much larger base, both in mass and dimensions. Unlike with the optimal design for the

inner BP assembly ORCHID outputs a manipulator of total length 0.9 m, where all d.o.f. are

utilised.

The ORCHID optimised design performs equally or at higher levels than the Ta-DAH Design

robot in all but one task — the initial relocate task. However this decrease is negligible since

both the average and maximum scores for the ORCHID designed agent are so high. The biggest

improvement, of 1022.55% is seen in average score for the relocate task, where the BP module

is being manipulated as the agent is now able to reach the target.

PM Assembly

The final mission that the space robot must carry out is the assembly of the PM — an illustration

of the sub-missions is given in Figure 5.6i to Figure 5.6l. The space robot designed using

5.2. Experiments and Results 89

Ta-DAH Design showed very low levels of success across all but one of the necessary sub-tasks.

The agent achieved the highest performance on the grasp task, although the average score is still

comparatively low.

After running ORCHID, as with the previous missions, a bigger robotic agent was designed

which facilitated higher success across most of the sub-missions. The design vector output by

ORCHID was

v = [0.6, 0, 0, 1.5, 1.8, 1.3, 81].

As with the sub-mission of assembling the inner BP ring the optimal manipulator mimics having

2 d.o.f. with only 1 link having a length bigger than 0 m. As well as this, the optimal base

is much larger and heavier than any of the standard form factors initially considered. The

ORCHID designed agent achieved increased performance in three out of four tasks, with an

increase of 276.34% in the average score. However, as with the inner BP grasp sub-task the

ORCHID designed system reports lower performance than the Ta-DAH Design robot.

Discussion

Looking at the optimal robotic design output by the ORCHID system for all the tasks required

to assemble the large-aperture telescope on-orbit, it is clear to see that a bigger and heavier

base leads to increased performance. Although not all tasks output the same size or mass base,

all are > 80 kg with no single dimension < 0.3 m. In fact, the standard form factors initially

considered are insufficient, with the largest, 27U , weighing a maximum of 40 kg. A standard

form factor is therefore not assigned to any of the designs in this chapter. The increase in mass

and dimensions of the base increases its inertia, this in turn decreases the perceived effects of the

dynamic coupling which acts to destabilise the motion of the satellite. As a result the system is

able to move in a more controlled and stable manner, in addition, demand on the control scheme

is reduced since it no longer needs to overcome these effects.

The magnitude of the dynamic coupling forces are somewhat dependent on the ratio between

the payload’s inertia and the system’s inertia which characterises the distribution of mass.

While mass alone is not enough to quantify the dynamic coupling it can act a starting point

for comparison and give a rough guideline as to what size robot might be required. The

Ta-DAH Design space robot for the tasks involving the BP had a base to payload ratio of 3 : 1,

and 2 : 3 for those involving the PM. For the ORCHID designed agents, the three optimal

90 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

designs give base to payload mass ratios of around 10 : 1 and 8 : 1 for the inner BP, outer BP

tasks respectively and 4 : 3 for the PM mission. However for the latter mission, the dimensions

of the base are considerably bigger, therefore increasing its inertia independent to increasing

its mass. The drawback of this change in design is that the larger systems have higher fuel and

power requirements. Countering this however, is the increase in space available to store bigger

batteries and more propellant.

Less clear in the results is a general trend as to what size manipulator is most appropriate for the

missions in this work. This conclusion in itself is in keeping with previous work stating that the

sizing of such systems will be heavily dependent on the task at hand. The total length of the

manipulator for each of the three tasks varies even though, in some cases, the payloads are the

same. This highlights the fact that designs must be dependent on other mission parameters such

as the required trajectories, governed by object location. For example, the inner BP assembly

requires a manipulator of total length 0.5 m, while the outer BP assembly requires one of length

0.9 m. This is not as a result of payload variation, but instead the motions required in either

scenario. For the inner ring assembly, the agent must traverse longer distances, requiring the

base of the spacecraft to travel further. The shorter arm aids in maintaining stability over bigger

trajectories since it brings the c.o.m of the full system closer to the c.o.m of the base spacecraft.

If these are misaligned it introduces an additional moment arm since the AOCS applies forces

to the base’s c.o.m but motion occurs around the entire system’s c.o.m. This amplifies forces in

addition to introducing non-linearities and higher levels of complexity in the controller. One

potential solution to this problem would be to use two manipulators on a single agent and

transport two payloads simultaneously, therefore bringing the system c.o.m back inline with the

base c.o.m.

Also noticeable in two of the optimal designs is a reduction in d.o.f. of the manipulator. This

design characteristic was optimal for the inner BP assembly task, in which the agent is required to

traverse the largest distance. It also occurred with the PM assembly which requires manipulation

of the heaviest payload. In both of these designs, only one link has length of > 0 m. It is thought

that ORCHID favored fewer d.o.f. in these tasks since it reduces the effects of the dynamic

coupling, which is a function of the number of places in which a system is articulated. This

lowering in dynamic coupling facilitates more stable motion, contributing to higher levels of

performance.

5.3. Conclusion 91

Comparing the results for all tasks there only exists two sub-tasks in which performance of the

ORCHID designed agent is not higher or equal than that of the Ta-DAH Design agent. The two

tasks that show lower performance are the grasp sub-task for the inner BP and the PM assembly.

It is thought that this low performance is due to the reduction in d.o.f. of the manipulator, making

the success of dexterous tasks very hard. In fact, for dexterous manipulation to occur, as is

required with the grasp task, it is necessary for the robot manipulator to utilise all available

d.o.f. ORCHID was therefore run again, this time optimising over only the grasp sub-task for

the inner BP ring. This led to an optimal design vector of

v = [0, 0.5, 0.5, 0.5, 0.4, 1.5, 0.3, 102]

and gave an average score of 1033.6 and a maximum score of 1080. This exceeds the perfor-

mance of the Ta-DAH Design robot and highlights that more d.o.f. are beneficial for certain

tasks.

5.3 Conclusion

This chapter presented ORCHID – the first RL approach to jointly optimise robotic morphology

and control policies where changes can be made to the robot’s kinematics. This method

addressed two main problems in prior research. The first being the need to store a number

of control policies and robotic designs throughout the optimisation process and the second

being the iterative way in which state-of-the-art algorithms optimise the control and hardware

design separately. ORCHID overcomes both of these issues by proposing a unified optimization

scheme which simultaneously updates the control parameters and design parameters. The use

of a differentiable transition function that allows gradient flow throughout a rollout, led to

improvements in performance for every combination of environment and control policy. In

addition to finding the jointly optimal control policy and hardware pairs, ORCHID boasts the

added benefit of greatly increasing design speed when compared to naive brute force search

methods.

Specific results were given when using ORCHID to design a small space robot for the OOA of a

large aperture telescope. The resulting designs showed improvements compared to the systems

designed by Ta-DAH Design in Section 4. Although they are not considered to be final designs,

inspection of the results proved to be an effective tool that uncovered a number of concepts

92 Chapter 5. Co-Optimisation of Hardware and Software using Reinforcement Learning

which may not have been apparent to a human designer without lengthy prototyping. These

included reducing the d.o.f. when large distances need to be traversed by the system and the

need for a considerably larger base. In addition to numerous ways to mitigate the de-stabilising

effect of dynamic coupling. This chapter approximated a base to payload mass ratio of 9 : 1 to

be acceptable, which is in keeping with previous work in the same field.

While multiple runs of the ORCHID architecture provided less variance in designs compared

to the baselines, a range was still apparent. This shows that a range of different sized agents

maybe suitable for the same task. However, as discussed in Section 2, the same control policy

cannot be used across multiple well-designed agents. This motivates the next chapter, where the

robustness of control to changing physical parameters is investigated.

Chapter 6

Hardware Agnostic Control

The result of any co-optimised design approach is a control scheme that is suitable only for use

with that robot. While this provides good performance in a single situation, the drive for general

AI requires more versatile and robust systems. Unless specific training has taken place, RL

agents tend to be highly sensitive to the specifics of the simulator or robotic hardware used during

training. This creates a huge demand for data collected using real-world hardware, something

that is costly, time inefficient and in some cases dangerous. Even worse, data collected in one

lab using one robot cannot easily be utilised elsewhere, unless training is to occur on the exact

same robot in the exact same configuration. Even then, differences in the calibration of the

robots are likely to hurt reproducibility.

Hardware-agnostic policies would allow a single network to operate in a variety of test domains,

where dynamics vary due to changes in robotic morphologies or internal parameters. In addition

to this, they will increase robustness to failure and degradation of the robot hardware. This

chapter presents HARL-A, an RL pipeline capable of training hardware-agnostic policies, a

representation of which can be seen in Figure 6.1. It exploits the fact that learning to adapt a

known and successful control policy is easier and more flexible than jointly learning numerous

control policies for different morphologies. Unlike standard approaches to multi-robot transfer

learning, the proposed method increases the scope of the agent’s ability during the learning

phase, as opposed to utilising it after data collection or training. The result is a general policy that

is capable of operating on semi-identical robots with zero-shot transfer, meaning no fine-tuning

is required on new embodiments.

93

94 Chapter 6. Hardware Agnostic Control

Figure 6.1: Representation of HARL-A. Here a single agent can successfully operate on a

range of different robots, whose configuration has been determined via adversarial selection.

6.1 Methodology

HARL-A learns a single policy that successfully works on all morphology vectors drawn from

the continuous distribution: v∈V . The architecture follows the structure shown in Figure 6.2,

where three different systems are used:

1. Expert Network (πε̃) — corresponding parameters are shown by a ˆ accent.

2. Modification Network, made up of an actor (π
ψ̃

) and a critic (πω̃) — corresponding

parameters are shown by a ¯ accent.

3. Adversary Network (π
δ̃

) — corresponding parameters are shown by a ◦ accent.

Note that any parameters with no overhead symbol are those related to the environment or all

three of the HARL-A components, e.g. s, r. The three systems interact in two different loops

during training. The per-trajectory training loop is shown in red in Figure 6.2. In this loop,

whole episodes are condensed into a single event and these are used to calculate lp and update

the adversary parameters. In blue is the per-step training loop, in which every step is stored and

used to update the modification network.

The expert network is pre-trained to work on a single morphology, v̂ = constant. It is trained

using PPO, the implementation, and training loss of which is the same as that outlined in

Section 5.1.1. During subsequent training of the modification network, v is sampled from the

adversary network at the start of each episode, hence vT . This is combined with the environment

6.1. Methodology 95

Expert
Network

NFN

Modification
Network

per-trajectory training loop

Environment

per-step training loop

Figure 6.2: HARL-A flow diagram. Split of training loops used in the HARL-A pipeline. In

red is the per-trajectory loop used to update the adversary parameters. In blue is the per-step

loop that is used to update the modification network. The expert network is queried at every

step, but its weights are fixed during the training of HARL-A

observations (s), and the action that the canonical expert network (â) would have taken given

that observation. This extended state (s̄) is the input to the modification network, which outputs

a modified action (ā), suitable for the robot with vT .

6.1.1 Modification Network

The aim of the modification network is to learn policy: π
ψ̃

(āt |̄st), parameterised by ψ̃, that can

maximise the expected reward for any s̄ ∈ S̄. Unlike in a standard RL setup, the modification

network leverages information from a pre-trained expert network and is conditioned on the

current morphology. This is achieved by utilising a more complex network input, as previously

outlined: s̄ = vT ⊕ st ⊕ ât, where ⊕ denotes concatenation. Expanding the expression for

π
ψ̃

, gives π
ψ̃

(āt|vT , st, ât). As with ORCHID (Section 5), the introduction of variable v,

not only introduces an additional input for the modification network, but also that means the

corresponding environment’s transition function becomes P
(
st+1|st, vT

)
. This is still an MDP

since vT is constant throughout an episode. ψ̃ should therefore be updated according to,

ψ̃∗ = arg max

ψ̃

E
s∼P ,a∼π

ψ̃

[
R(a, s)|πε̃(s)

]
. (6.1)

Equation 6.1 is solved using PPO with loss function Ja, where π
θ̃t

(a|s) is replaced with

π
ψ̃

(āt|vT , st, ât), as seen in Equation 5.8. This requires training of πω̃ which is done using

96 Chapter 6. Hardware Agnostic Control

Equation 5.9. However, there exists a number of different approaches to deal with the added

dimension introduced by the expectation over V . This chapter first proposes a solution of

sampling v randomly from a pre-defined design space — referred to as Hardware Agnostic

Reinforcement Learning (HARL). The limitation of this approach is that a significant amount

of time is wasted training on samples that already perform well or on which learning may be

impossible. The second proposed approach is the full HARL-A approach. This mitigates these

issues by intelligently selecting low performing, challenging, but achievable, training samples.

The training of the modification network still relies on a critic network, since the losses used

are derived from PPO. Since π
ψ̃

(āt|vT , st, ât) is dependent on vT , the critic is conditioned on

vT , in order to stabilise learning. The input to the critic network becomes st ⊕ vT , meaning:

πω̃ (V t|st, vT).

6.1.2 Adversary Network

The role of the adversary is to sample morphology vectors for the modification network to train

on when the full HARL-A system is implemented. It does this by learning a mapping from an

input distribution to an output distribution, where the latter characterises the performance of the

modification network across the design space V . This distribution mapping is achieved by using

a NFN as the adversary network — defined as π
δ̃

, and parameterised by δ̃.

Intuition says that the modification network should train on the lowest performing morphology

vectors, in order to improve its performance in the domain of V . In this case, the adversary

network should learn to represent the distribution of exact performance over V . However,

preliminary experiments with such an adversary network demonstrate poor performance. This

is because, when dealing with high dimensioned, continuous design spaces there are inevitably

morphologies on which the agent can never learn to ‘complete the task’. In a standard adversarial

set-up, since these samples have the lowest performance, they would continually be selected for

training, wasting valuable resources. Instead, the concept of learning potential (lp) is introduced

and the adversarial NFN learns to model the distribution of lp across V .

6.1. Methodology 97

Learning Potential

lp quantifies the agent’s ability to learn a more effective policy for a given v. It is calculated as

the change in performance over a set number of training epochs,

lp =
d
∑T

t=0 γ
trt

d Ec
, (6.2)

where Ec is the episode count. Intuitively this indicates the rate of change of network perfor-

mance against training episodes with a fixed morphology. It is possible to calculate lp for a

given morphology vT . This is done with a new copy of the modification network. A number

of training epochs are run with the copied network and this fixed vT . The total reward for

each episode during this training loop is maintained (blue loop in Figure 6.2) and a 1st order

polynomial is fit to the points, as seen in Figure 6.3. This data is used to solve Equation 6.2 for

the chosen morphology. This approach provides a more reliable estimate of lp by averaging

over a number of episodes, therefore giving a stable estimation. Morphologies on which the

modification network is most able to learn will have a large lp. Once the NFN network has been

trained to model this distribution, such morphologies will be sampled more frequently by the

adversary.

Normalising Flow Networks

An NFN embodies a transformation of a simple distribution to a more complex distribution

via the composition of a number of invertible and differentiable mappings [71]. Each of these

mappings are parameterised with trainable variables and the result is a complex distribution

which can be sampled from or used to determine the probability of a pre-selected sample. Such

a network architecture is used for the adversary network since it maps the simple random sample

used by HARL the distribution of lp over V . Sampling from π
δ̃

can then provide morphologies

on which the modification network can improve its performance.

The underlying principle of NFNs is to express vector p as a function (f) of real vector q with

probability distribution Pq(q),

p = f (q) where q ∼ Pq (q) and p ∼ Pp (p) . (6.3)

f represents a warping of the real number space in order to map Pq(q) to Pp(p), where Pp(p) is

the unknown, desired target distribution. In the instance of HARL-A this is the distribution of lp

over v. Pq is the input distribution, usually a diagonal-covariance Gaussian [113].

98 Chapter 6. Hardware Agnostic Control

(a) lp = 0.73 (b) lp = 2.2

(c) lp = 1.04 (d) lp = -0.29

Figure 6.3: Graphical representation of lp.

Parameterising f and Pq(q) with δ̃1 and δ̃2, respectively induces a warped distribution over p,

giving

p = f
(

q : δ̃1

)
where q ∼ Pq

(
q; δ̃2

)
. (6.4)

For the implementation of flow models, f must be both differentiable and invertible, meaning

Pp(p) can be defined by a change of variables:

Pp (p) = Pq (q)
∥∥∥det Jf (q)

∥∥∥−1
, (6.5)

where
∥∥∥det Jf (q)

∥∥∥ is the absolute of the determinant of the Jacobian of f at q [17]. The

determinant of the Jacobian characterises the change in volume around a sample, q, w.r.t. f .

Since f is invertible and differentiable, the successive composition (denoted by ◦) of many

functions will result in a new, complex function, for which Equation 6.5 still applies [131]. It

6.1. Methodology 99

follows that:

(f2 ◦ f1)−1 = f−1
2 ◦ f

−1
1 , (6.6)

and

det Jf 2◦f 1
(q) = det

[
Jf 2

(f1 (q))
]
× det

[
Jf 1

(q)
]
. (6.7)

A Normalising Flow is made up of any number (K) of transforms: fK =
{
fk ◦ ... ◦ f1

}
.

Given the definition of fK Equation 6.5 becomes,

Pp (p) = Pq (q)
K∏
i=1

∥∥∥det Jf i−1
(qi−1)

∥∥∥−1
. (6.8)

The optimal NFN will learn δ̃ such that Equation 6.8 ≈ the optimal target distribution
(
P∗q (q)

)
.

To achieve this, their divergence should be minimised. The most popular way of quantifying

the divergence between the two probability distributions is using the Kullback–Leibler (KL)

divergence [71]. There exists two different manipulations of the KL divergence (DKL) as a loss

function in order to optimise δ̃. The first relies on being able to evaluate P∗(p) in a differentiable

manner, and the second relies on being able to draw samples from P∗(p). The latter is used in

this work. Using the definition of KL divergence, it is possible to define a loss function (Jadv)

to optimise parameters δ̃.

Jadv = DKL

(
P∗p(p)

∣∣∣∣∣∣∣∣Pp(p; δ̃)

)

=

∫
R
P∗p (p) log

 P∗p (p)

Pp

(
p; δ̃
)
 dp,

=

∫
R
P∗p (p) log

(
P∗p (p)

)
dp−

∫
R
P∗p (p) log Pp

(
p; δ̃
)
dp

= −E
P∗

p

(
log Pp

(
p; δ̃
))

+ const

(6.9)

and using the inverse of Equation 6.3 and the definition of Pp(p) in Equation 6.5, the loss

function becomes,

Jadv = E
P∗

p

[
log Pq

(
f−1 (p)× δ̃1; δ̃2

)
+ log

∥∥∥∥det J
f−1×δ̃1

(p)

∥∥∥∥]+ const. (6.10)

Sampling from P∗p means a Monte Carlo estimate of Equation 6.10 can be found,

Jadv = − 1

N̊

N̊∑
n̊=1

[
log Pq

(
f−1

(
pn̊
)
× δ̃1; δ̃2

)
+ log

∥∥∥∥det J
f−1×δ̃1

(
pn̊
)∥∥∥∥] , (6.11)

100 Chapter 6. Hardware Agnostic Control

where N̊ is the number of samples in a batch.

Following the definition of Jadv, the implementation of a NFN relies on the definition of

an appropriate set of functions, or flow blocks — fK . Constraints include those mentioned

previously in addition to the Jacobian of each being easy to calculate. Two different types of

flow are utilised in this chapter. The first is a simple 1D transform, used when v∈ R1. This

situation is trivial, since the idea behind NFNs is to model the probability of higher dimensional

data, therefore the majority of the literature proposes flow blocks that do not work in the

1D case. However, it is possible to use a weighted combination of Cumulative Distribution

Functions (CDF), separated by a non-linear activation function (Φ), where the µ and σ and

weights (w) make up δ̃:

fCDF = Φ(wN (µ, σ)) (6.12)

By nature, CDF and non-linear activation functions are differentiable, and their Jacobian’s are

well-defined, while the fact they are continuously increasing makes them invertible.

For higher dimensional spaces, Real-Valued Non-Volume Preserving (RNVP) flows are used

[42]. This block works by splitting input q; the first j dimensions are unchanged, and an affine

transform, defined by the first dimensions, is applied to the remaining components of q,

fRNVP =

p1:j = q1:j

pj+1:d = qj+1:d � exp (S (q1:j)) + T (q1:j) ,

(6.13)

where S() and T () are the scale and translation functions and � is the element-wise Hadamard

product. Since p1:j = q1:j neither S or T need to be invertible in order to solve Equation 6.8.

This is because f−1
RNVP can be calculated without needing to invert either function,

f−1
RNVP =

q1:j = p1:j

qj+1:d = pj+1:d − T (p1:j)� exp (S (p1:j)) ,

(6.14)

where � is Hadamard division. In addition to this, det(JfRNVP) is easy to compute since

JfRNVP is lower triangular and does not require det(JT) or det(JS). This means that S and T

can be complex functions that are parameterised via δ̃. The implication of this splitting however,

is that if many of these flows are appended, the first j dimensions will always remain unchanged.

Therefore, these blocks are used in pairs where neighboring blocks have their channels reversed.

In summary, the adversary network is a NFN which is made up of a stack of fK , either fRNVP,

or fCDF, depending on the dimensionality of v. The network learns a complex characterisation

6.1. Methodology 101

of the ability of the modification network to improve its performance over V . The aim of this is

that when queried, π
δ̃

will provide appropriate samples for the modification network to train on.

Optimisation of the NFN requires a batch of morphologies drawn from the target distribution,

where the target distribution is directly related to the lp. As such, it is necessary to develop a

method for turning sets of lp and corresponding v (calculated in the blue loop using the method

outlined in Section 6.1.2) into a set of points drawn from the desired distribution. The lp values

are positively scaled and used as the weights for multinomial sampling [16]. This distribution

can then be queried to provide as many samples as required for adversary training, this is done

with replacement.

6.1.3 Implementation

Algorithm 1 outlines the system training. Training occurs in two separate loops as defined by

the colors in Figure 6.2, the first collects samples for and updates π
ψ̃

and the second does the

same but for π
δ̃

. π
ψ̃

has the same architecture as in Section 5, with both an actor and critic

component. π
δ̃

is made up of the flows discussed in Section 6.1.2. In the 1D case, K = 3 and

in the higher dimensional problems K = 8 with dimension swapping in between each.

A number of different loops are required during training:

• Total number of updates to the entire system: o = 10e3

• Training epochs for the modification network per 1 system update: m = 128

• Steps in the environment per modification training batch i.e. modification batch size:

p = 2500

• Iterations over one batch of collected experience for the modification network: q = 4

• Training epochs for the adversary network per 1 system update: n = 64

• Number of lp and morphology pairs collected per adversary updated i.e. adversary batch

size: F = 15

The same values are used for all experiments in this chapter. The same learning rate is used for

updating δ̃, ω̃ and ψ̃, where Lmod=LNFN=Lc= 7e− 4.

102 Chapter 6. Hardware Agnostic Control

1: Randomly initialise δ̃ and ψ̃

2: for o = 1, 2, . . . total number of updates do

Modification Network Update

3: for m = 1, 2, 3, . . . number of modification network updates do

4: Initialise memory for modification network M̄ ← ∅

5: Sample morphology and start state: v0T ∼ πδ̃ , sm0 ∼ S

When training the adversary sample v0T from a random distribution

6: for p = 1, 2, . . . number of steps per modification network update do

7: Sample action: âmp from expert network

8: Determine mod state: s̄mp = vmT ⊕ smp ⊕ âmp
9: Sample modified action: āmp ∼ πψ̃

(
āp |̄smp

)
10: Determine reward: rmp = R(smp+1, ā

m
p , vT)

11: Store transition: M̄ ← M̄ ∪ (̄smp , āmp , rmp , s̄mp+1)

12: if Episode ends then

13: Sample morphology and state: vtT ∼ πδ̃ , smp ∼ S

When training adversary only sample state: smp ∼ S

14: end if

15: end for

16: for q = 1, 2, . . . number of PPO epochs do

17: Sample mini batch from M̄

18: Calculate Ja and Jc and update: ψ̃ ← ψ̃ + Lmod∇(Ja) and ω̃ ← ω̃ + Lc∇+ Jc)

19: end for

20: end for

Adversary Network Update

21: for v = 1, 2, 3 . . . number of adversary network updates do

22: Initialise memory M̊ ← ∅

23: for F = 1, 2, . . . number of updates for lp do

24: Make copy of π
ψ̃
∼ π̊

ψ̃
25: Repeat lines 4 to 15, using π̊

ψ̃

26: Calculate lp and store data: M̊ ← M̊ ∪ (vvT , lp
v)

27: end for

28: Draw a batch of samples of v from M̊ using multinomial sampling

29: Calculate Jadv and update: δ̃ ← δ̃ + LNFN∇Jadv
30: end for

31: end for

32: return δ̃ and ψ̃

Algorithm 3: Implementation of HARL-A

Depending on the desired target environment for use of the trained HARL-A system, it is

necessary to restrict the output of π
δ̃

between certain values. This is achieved by applying the

sigmoid function to all the sampled vT within a batch (of which there will be q samples) and

rescaling the output to the desired range.

6.2. Experiments and Results 103

6.2 Experiments and Results

The performance of HARL and HARL-A is demonstrated in three environments, Cart Pole,

Bipedal Walker and the Space Robot.

6.2.1 Environments

Cart Pole

Experiments are carried out varying the length of the pole: v ∈ R1 or the length of the pole and

the mass of the cart: v ∈ R2. The same material choices are used throughout so varying the

pole’s length also changes its mass. The expert network is trained for a pole length of 1 and a

cart mass of 1. The same expert network is used for all experiments.

Bipedal Walker

The aim is for the walker to travel as far as it can in 250 time steps using as little energy as

possible. The reward is total distance traveled minus energy expended due to actuator motion.

Two different setups are used with the bipedal walker. In both cases the size of the walker’s

legs are varied. The first mode is referred to as ‘whole’ and legs are varied by the same amount:

v ∈ R1. When the length and width of each leg segment is varied independently: v∈ R8 and

experiments are referred to as ‘individual’. For both situations the expert network is trained for

a walker of scale or leg size 1.

Space Robot

The ORCHID trained systems from the previous chapter are used as the expert network and

baseline morphology for all experiments using the space robot. This means that each mission

has a different baseline design. The length of each link, and the size and mass of the base is

varied during the following experiments. As such, v∈ R7.

104 Chapter 6. Hardware Agnostic Control

Table 6.1: Testing ranges.

Environment Parameters A B C

Cart Pole
Pole v∈ R1 [0.5,10]

Cart, Pole v∈ R2 [0.5,10]

Bipedal Walker
Whole v∈ R1 [1,1.25] [0.75,1] [0.75,1.25]

Individual v∈ R8 [1,1.25] [0.75,1] [0.75,1.25]

6.2.2 Testing Parameters

A number of experiments were run to test the generalisation of HARL-A over different mor-

phology distributions. For experiments other than those involving the space robot, which are

included later, values are quoted in Table 6.1. The values in the table refer to the range of

values used during training. For the HARL system the range randomly sampled from, and for

HARL-A this is the range which the adversary is trained over. Each experiment was run 3 times

with 3 different seeds, for 1× 106 steps in the corresponding environment and all results quoted

are an average of the 3 runs. To fairly evaluate performance, a consistent test distribution was

used for each experiment. This consists of 500 random morphology vectors from the defined

range. HARL and HARL-A are both compared against current state-of-the-art in the field of

generalisation to embodiment — Hardware Conditioned Policies (HCP) [29], and a standard

PPO baseline.

6.2.3 Modification Network vs Direct Learning

The use of both the modification network and expert network in the HARL architecture is vali-

dated by comparing the final performance of HARL, HCP and PPO. In this set of experiments,

each algorithm was trained with a random sample from V for each T without the use of a

lp based adversary. The results for all experiments, excluding the space robot are shown in

Table 6.2. In all but one of the experiments both HCP and HARL perform better than PPO,

showing that giving the network knowledge of its embodiment can improve its ability to learn a

robust policy. Further to this, HARL reports the best performance in 8/9 experiments, with HCP

showing the best performance in the remaining experiment. The average improvement of HARL

over HCP (the next best performance) in experiments in the cart pole environment is 69.5% and

6.2. Experiments and Results 105

Table 6.2: Comparison between HARL and baselines.

Experiment PPO HCP HARL

Cart Pole
Pole C 366 580 650

Cart, Pole C 427 338 645

Bipedal Walker

Whole

A 147 173 203

B 123 185 190

C 126 181 171

Individual

A 132 191 222

B 133 139 164

C 126 174 202

26.75% for those in the bipedal walker environment. Conversely, for the remaining experiment

in which HARL does not report the highest performance, the corresponding decreased is 5.5%.

This decrease is considerably lower than the increase seen across the other experiments. This

improvement between HARL and HCP shows how learning to modify the output of a pre-trained

network in contrast to learning a single robust policy from scratch leads to higher performance,

validating the use of the modification network and expert network in series.

Figure 6.4 and Figure 6.5 show how policies learned to perform as a function of the varied

design parameter. While the performance of HARL is not the highest at all values, particularly

in the case of Cart Pole, it does show the highest levels of generalisation across embodiment,

which was the aim of this chapter. This shows there may be a trade-off between generalisation

and localised performance. It is interesting to note that the high generalisation performance of

HARL extends outside of the testing range, to embodiments which could not have been seen

during training. In the case of larger scales for cart pole and lower scales for bipedal walker,

HARL is able to extrapolate its control policy at a considerably higher level than the baselines —

something that is not captured in Table 6.2.

6.2.4 Adversarial Learning

The next experiments explore the benefits of the adversarial training using NFNs and lp with

both HARL and the baseline HCP. These are named HARL-A and HCP-A respectively. Results

106 Chapter 6. Hardware Agnostic Control

Figure 6.4: Performance in Bipedal Walker. Comparison of the performance of different

agents in the Bipedal Walker environment as a function of leg scale. This training distribution

for this experiment was [0.75, 1.25], as shown by the dotted lines.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Scale

0

200

400

600

800

1000

R
e
w

a
rd

 p
e
r

E
p

is
o
d
e

PPO

HARL

HCP

Figure 6.5: Performance in Cart Pole. Comparison of the performance of different agents in

the Cart Pole environment as a function of pole length. In this experiment only the pole length

was varied from [0.5, 10], as shown by the dotted lines.

6.2. Experiments and Results 107

Table 6.3: Performance with intelligent morphology sampling.

Experiment HCP HCP-A HARL HARL-A

Cart Pole
Pole C 580 537 650 647

Cart, Pole C 338 442 645 749

Bipedal Walker

Whole

A 173 192 203 241

B 185 188 190 213

C 181 183 171 195

Individual

A 191 173 222 229

B 139 163 164 207

C 174 177 202 189

are shown in Table 6.3. For all but two experiments HARL-A, shows the highest performance.

The first experiment in which HARL-A does not have the highest performance is when the pole

length of Cart Pole is varied. In this instance, HARL has the highest performance. It is likely

that this is due to the limited effect that changing the physical parameters has on the dynamics

of the simple problem, as well as the fact that the system is near saturation. By definition, the

adversarial network is only of use if there exist morphologies on which the system cannot learn.

It is very possible that there are no pole lengths on which learning is impossible in this setting

— as implied by Figure 6.5. In this case, the use of intelligent sampling would be redundant.

This hypothesis is backed up by a similarity in results between HCP & HCP-A and HARL &

HARL-A. Instead, improvements in performance are seen in this experiment due to the overall

architecture alone.

The other experiment in which HARL-A does not report the highest performance is with the

hardest experiment involving the Bipedal Walker. Again, the best performance is seen with

HARL. It is possible that there was insufficient training time for the adversary to learn a

reasonable distribution across this wider space.

It is also interesting to note that in all but two experiments the use of the adversarial NFN also

improved the performance of the baseline HCP architecture. In fact, in experiment C with

the whole Bipedal Walker, HCP-A reports higher performance than HARL. This proves the

108 Chapter 6. Hardware Agnostic Control

importance of the intelligent sampling technique, and the novel loss function — lp, used in this

work.

6.2.5 Normalising Flow Network Analysis

It is possible to draw a number of assumptions from the variation in the NFN throughout

training. Figure 6.6 shows the variation in the estimation of the learning potential over time for

the experiment when the pole length of Cart Pole is varied. Looking at the first 10 iterations

(Figure 6.6b), it becomes apparent that the system believes it can learn on scales around 2, 6

and 10. Comparing this to the distribution for the last 10 iterations (Figure 6.6c), sampling

from the network will likely give scales clustered around 6 and 2. While direct conclusions

cannot be drawn about performance at larger scales, since this characterises the distribution of

lp not reward, some assumptions can be made via comparison with Figure 6.5. It is most likely

that the RL agent learned to perform the task to a high standard fairly quickly at longer pole

lengths. This is because it shows high final performance in this region following a few samples

at the start of training. Conversely, reaching the same levels of performance at the lower lengths

required more training since this is the region of the space that was most sampled later on.

The results in Table 6.3 showed that HARL gave marginally better performance than HARL-A

for the experiment shown in Figure 6.6. It is possible that this is due to high performance across

all morphologies. This is heavily backed up by the changing distribution in Figure 6.6a, which

shows that there exists no part of the design space in which the probability of selection is zero.

The distribution of lp throughout training can also be utilised to give information about certain

designs. If there is a region of the morphology space that has not been sampled from, it implies

that it has a very low or negative lp. This can mean one of two things — that the agent has

already achieved the highest performance on this morphology (as with the previous experiment),

or more likely that it is not able to learn at all.

6.2.6 Failure Modes

The HARL-A framework is designed to produce hardware agnostic policies which can be

deployed effectively on a range of similar hardware. However, another intriguing possibility

is to adapt HARL-A to provide robustness against outright failure cases. To achieve this we

6.2. Experiments and Results 109

0 2 4 6 8 10 12
Pole Length

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

(a) All updates

0 2 4 6 8 10 12
Pole Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y

(b) First 10 updates

0 2 4 6 8 10 12
Pole Length

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

(c) Last 10 updates

Figure 6.6: Variation of NFN over time for HARL-A with 1 dimension. Changing distribu-

tion on which HARL-A was trained for just the pole length in the Cart Pole environment. The

lighter colour indicates an older version of the distribution.

modify the framework to disable a different set of sensors in every episode. The expanded state

which the modification network operates on includes a binary vector defining which sensors are

disabled for that training episode.

110 Chapter 6. Hardware Agnostic Control

Table 6.4: Performance of failure modes.

Experiment PPO HCP HCP-A HARL HARL-A

Cart Pole 280 323 273 742 920

Bipedal Walker -88.1 -91.5 -79.8 89.8 150.4

In addition to a varied input to the modification network, the NFN set-up varies since this is

now a discrete distribution as opposed to continuous. To account for this, a threshold is applied

to the output of the adversary network. If the output is > 0.5 then the sensor is on, and if it is

lower then it is off. Random samples from a continuous distribution between 0 and 1 are used to

train the NFN in this instance. The expert network remains the same and is trained on a fully

working consistent robotic agent.

Results

The ability of HARL-A to increase redundancies in robotic agents at no extra cost is demon-

strated in both the Cart Pole and Bipedal Walker environment. This is done by disabling any

number of sensors. A comparison between the performance of HARL, HARL-A and the previ-

ously mentioned baselines is given in Table 6.4. This shows that the proposed architectures in

this work were the only one to achieve any reasonable level of performance. This implies that

the use of the expert network makes it considerably easier for an agent to learn a policy robust

to missing inputs. In both cases HARL-A also outperformed HARL. This is an indication that

there are sensors in both systems which are pivotal to success. Further to this, it demonstrates

that the NFN was able to learn which these were — showing success over a discrete design space.

Comparison with results in Section 6.2.4 show that for any algorithm, higher performance can

be reached with a loss of input information compared to with a variation in the system dynamics

for Cart Pole. Conversely, the opposite can be seen for the Bipedal Walker. This could be due to

the relationship between sensors in the different environments. Those of Cart Pole are much

more correlated, and inputs can be estimated from each other. Whereas with the Bipedal Walker

observations are uncorrelated so a loss of any input causes a unrecoverable loss of information.

6.2. Experiments and Results 111

Table 6.5: Space robot performance with HARL-A.

Sub-mission

Relocate Grasp Relocate Fine Manipulation

Algorithm Average reward

In
ne

rB
P

A
ss

em
bl

y
PPO -253.3 -61.1 -511.6 -104.6

HCP -181.2 -40.6 -263.2 -127.5

HCP-A -175.5 -40.2 -201.7 -100.1

HARL -196.9 -42.1 -199.2 -92.3

HARL-A -175.2 -40.1 -180.3 -39.4

O
ut

er
B

P

A
ss

em
bl

y

PPO 999.5 -54.1 -205.6 -221.9

HCP 1104.1 -30.6 -160.4 -167.5

HCP-A 1126.7 -30.7 -159.6 -142.8

HARL 1138.9 -35.1 -171.1 -137.9

HARL-A 1133.6 -30.3 -101.3 -47.3

O
ut

er
B

P

A
ss

em
bl

y

PPO 738.2 -64.4 -1023.0 -131.3

HCP 886.6 -30.2 -470.5 -173.3

HCP-A 1018.3 -30.3 -109.5 -159.6

HARL 1014.1 -35.5 -178.3 -143.6

HARL-A 1011.6 -30.3 98.4 -129.0

6.2.7 Robust Space Robot Control

Finally, the performance of HARL-A was evaluated in the space robot environment. This

was done by varying each of the 7 parameters in the design vector by ±2% compared to the

ORCHID designs of the previous chapter — the results are shown in Table 6.5. For 10/12

sub-missions HARL-A shows the maximum or comparable reward, with the PPO baseline

showing the worst performance across the board. Of interest in this set of experiments compared

to those on the Bipedal Walker or in Cart Pole is that in the majority of cases the performance of

HCP-A is second to HARL-A. It is likely there are a number of morphologies for which the

missions are unsolvable. As a result, the added value of the intelligent sampling technique is

considerably higher in this setting since it is capable of learning the morphologies on which

112 Chapter 6. Hardware Agnostic Control

mission completion is unlikely, preventing wasted training epochs. The exception is the grasp

task for the outer BP assembly in which HARL-A shows the highest results, with HCP showing

the next best. While unexpected, performance for all algorithms other than the PPO baseline is

comparable with only a 16% difference between the best and worst performing algorithm.

Overall, performance of the space robot when controlled with a HARL-A trained policy is lower

for all missions than when controlled with an ORCHID trained policy. This demonstrates the

trade-off between localised and generalised performance as discussed previously. However, a

small change to the robot calibration or embodiment is likely to invalidate the ORCHID policy,

while the HARL-A policy will remain largely unaffected.

6.3 Conclusion

This chapter presented HARL-A — a system to train a new type of hardware-agnostic policy

using a form of adversarial selection. This system aimed to tackle two generalisation problems.

The first was in domains with varying dynamics, i.e. across similar robots with different

morphologies or calibrations. The second was as a method of increasing robustness to sensor

failures. HARL-A was shown to overcome both of these issues, showing improved performance

over state-of-the-art and standard RL algorithms.

First the idea of a modification network architecture to enable multi-robot learning was presented.

This led to performance improvements in current state-of-the-art, showing that learning to

modify pre-learnt behavior is more successful than learning from scratch. Then the concept

of using adversarial inspired selection based on the learning potential was introduced. This is

a novel metric that quantifies the ability of a policy to train on a particular robot morphology.

The implementation of this metric with the adversarial network used in conjunction with the

modification network (the full HARL-A system) enabled a single policy to act on a range of

semi-identical robots despite a range of sensor failures.

Chapter 7

Conclusions and Future Work

The use of robotic manipulators to achieve tasks is a long explored topic spanning a number

of different fields. Finding the optimal geometry of such a manipulator remains one of the

most complicated problems in robotic design [74]. Traditional approaches to implementing

systems involved designing robots whose quality was evaluated using simplistic control schemes

[70, 73, 82]. Upon finalising designs, it was typical for the controller to be refined and optimised

for the specific task. If further changes to the design were made at this point, controller

refinement needed to be carried out again due to dependence on the robot’s dynamics.

This intrinsic coupling between a robot’s physical design and control provided the motivation

for the thesis. The overarching aim was to investigate the relationship between robotic hardware

and control and how either could be modified to improve overall performance. Throughout

this work the motivating use case of a small free-flying robotic agent for OOA was used for

evaluation. There were three main objectives of this work:

1. To explore the automation of hardware optimisation techniques as a way of improving the

performance of a small space robot carrying out OOA.

2. To develop an automated design methodology that will reason over hardware and software

simultaneously, rather than using a disconnected two stage approach.

3. To develop RL task-based control solutions for generalisation to different robotic hard-

ware.

113

114 Chapter 7. Conclusions and Future Work

This chapter will give a breakdown of each contribution demonstrating the successful imple-

mentation of each across a variety of simulations. This work has advanced state-of-the-art in

multiple fields, with general contributions in the area of OOA and RL. In addition to this, two

simulators that capture the full kino-dynamic system of a space robot were developed. Both are

valuable tools and are available for use in future research.

7.1 Conclusions

Chapter 4 introduced Ta-DAH Design, an automated design technique for small free-flying

space robots. This addressed objective 1 in addition to providing a benchmark design for the

rest of the work in this thesis. The design of such a system is a challenging problem due to the

phenomenon of dynamic coupling. Only the presentation of final designs exist in the literature,

and even these lack detail on the actual spacecraft parameters [39, 44, 163]. Ta-DAH Design

used a cost function in a MOO pipeline to output an optimal design for a space robot based on

input conditions. These input conditions required the definition of tasks at a low level in the

form of joint angles and base position. A space robot was designed for each of the missions

necessary for the OOA of a large aperture space telescope, the architecture of which was also

presented in this work. An 11 d.o.f. system was deemed optimal for all missions, where the

base sizing and link lengths vary with mission specifics. This chapter provided clear details on

how each design parameter was reached. An in-depth analysis of how the different parameters

interact with each other and impact overall performance was also carried out and presented.

This information can be used by entities in the future when looking at sizing space robots for

different missions, cutting down on the time needed for R&D.

Chapter 5 introduced ORCHID, a method for the co-optimisation of robotic embodiment and

control. This addressed objective 2. Previous approaches to the co-design problem suffered

from two main limitations. First, the requirement to store a number of control policies and

robotic designs throughout training for later comparison [9, 170]. Second, having to iterate

between policy updates and morphology updates [88]. Conversely, ORCHID allowed for

simultaneous updates to a parameterised design and control policy via the use of a differentiable

simulator. This allowed information on how variations in robotic morphology would impact

overall performance to be quantified and exploited using back-propagation. Not only were

improvements in overall performance seen when implementing ORCHID, but design times were

7.1. Conclusions 115

also drastically lowered. Experiments showed that the iterative nature in which the optimisation

previously occurred led to sub-par results in comparison to the simultaneous optimisation used

in ORCHID. This method of co-optimisation can aid in streamlining the design process of

robotic agents, with particular gains in the early prototyping stages.

ORCHID was also evaluated in the OOA mission. In general, the resulting designs showed

improvements over those designed by the Ta-DAH Design system, this highlighted the need

for control and morphology co-optimisation. However, there did exist a lack of consistency in

the final results as well as in the agent design. Therefore, it is not suggested that these are a

finalised design or control scheme. The industry is not in a place to implement neural network

control in-situ due to memory overheads, and a lack of consistency in the stochastic policies that

does not yet conform with the high safety requirements needed for space missions. Instead, the

application of ORCHID validated the possibility of using free-flying space robots to assemble

the proposed telescope. More importantly, analysis of the final designs provided a number

of usable conclusions for future mission design. This included ways to reduce the effect of

dynamic coupling and an empirical approximation of the necessary payload mass to base ratio

for a stable system.

Chapter 6 presented HARL-A and in doing so addressed objective 3. This architecture improved

the robustness of an RL controller to changes in robotic morphology and failure modes. This

problem had received less attention than controller robustness to changing tasks [102, 125].

Solutions that did address the problem directly usually required some experience in the new

environment [6, 49], while others showed limited improvements over baselines [112, 122]. The

architecture used in HARL-A involved an expert network and a modification network to enhance

learning. This showed improvements over state-of-the-art, demonstrating how modifying a pre-

learnt behavior is more successful than learning and distilling multiple policies. The introduction

of an intelligent sampling technique allowed the system to self-regulate the morphologies on

which the system trained, leading to further improvements in performance. This sampling

technique alone made improvements to the performance of baseline algorithms as well as to

HARL-A.

116 Chapter 7. Conclusions and Future Work

7.2 Short Term Future Work

The techniques presented in this thesis show some limitations and thus provide promising areas

for short-term future work.

In Chapter 4, Ta-DAH Design relied on the definition of tasks at a low-level, requiring an

in-depth knowledge of the mission scenario in order to define start and finish configurations.

These were then interpolated using a high order polynomial to determine intermediate states.

This is not an easy task, and it has been shown that a slight variation in input can lead to a large

variation in both the optimal design and output behavior. Instead, Ta-DAH Design should be

combined with a path planning algorithm that can determine the optimal joint angles and base

position throughout the desired trajectory. However, path planning algorithms can be complex

to implement and are dependent on the robotic morphology. As such, it would be interesting to

develop a more simplistic, quick to implement path planning approach that is parameterised by

the robot’s embodiment. Thus, providing more realistic data for analysis in the Ta-DAH Design

pipeline, improving the output designs.

The methods presented in both chapter 5 and 6 are constrained by the input and output dimen-

sions of the actor network. This limits each to always operate on an agent with the same d.o.f.

As such, the development of compact techniques in which the control policy can perform over

various input and output dimensions would be an interesting field of research. This would allow

HARL-A to operate across robots with varying numbers of joints, further increasing robustness

to changing dynamics. With this ability, the architecture could then be adapted for use in failure

cases, meaning that the same control policy could be used when certain joints or motors on a

robot fail.

In addition, there exist opportunities to improve the efficiency of HARL-A at runtime, further

increasing its appeal for implementation. The major constraint is the need to sample from both

the modification network and expert network. This increases computational demand. Instead,

the modification network should learn and encode the expert network such that they are not both

needed at run time.

The nature of ORCHID requires differentiable training of the control policy. This limits

additional RL techniques that can be utilised in order to improve the performance, such as

HER or curriculum learning [5]. An interesting avenue for future work would therefore be

7.3. Directions for the Field 117

to investigate methods that can be used in the ORCHID pipeline. This would mean that the

performance of agents would improve, ideally facilitating the completion of all tasks in the

space robot simulator.

7.3 Directions for the Field

The contributions of this thesis provide a number of interesting areas for future research in the

field of space robotics and RL. In particular, topics are discussed that will unify the two fields in

order to strive for the implementation of RL techniques in-situ.

The methods presented in chapter 4 and 5 look into the design of robotic agents. Both contribu-

tions showed how modifying the design of an agent can lead to performance improvements, and

together they provide an exciting avenue for future research. As with the techniques presented

in Section 2, both approaches look at modifying certain parameters on a mostly fixed robot. To

this end, the overall configuration and design of the robots remained the same. Future work

should explore the possibility for true design in addition to parameter optimisation. For instance,

the arrangement, orientation and geometry of components, including the base or links on the

space manipulator. The method could even be advanced to select and locate sensors and motors

in a manner that improves performance and efficiency. The implementation of such a technique

is likely to lead to the discovery of completely new and innovative designs, potentially leading

to improvements in performance of orders of magnitude.

As for the use of RL in the space robotics community there still exists a large technology

gap. While some of these are hardware dependent e.g. the radiation hardening of chips used

on satellites, issues also arise at the validation and testing stage. A promising area for future

research is to look at ways to implement RL control techniques external to NNs. Not only would

this reduce computational demand, but the use of more easily understandable systems would

increase the confidence that control schemes would perform the same on-orbit as on Earth. The

introduction of such techniques along with more powerful space-qualified computers may even

allow for on-board learning.

The culmination of the work in this thesis concludes that a number of different space robots

are required to achieve the OOA of a large aperture space telescope. However, work at this

stage has treated each as an individual entity operating in series with the other agents. A pivotal

118 Chapter 7. Conclusions and Future Work

area of research for pushing this mission concept forwards is investigating how heterogeneous,

potentially multi-arm, space robots could operate collaboratively to achieve missions. Further-

more, such a system could be combined with ORCHID in a manner that allows agent design

to occur simultaneously across multiple agents. The result would be a fully operational and

optimal mission concept for OOA. This could be extended to a robust framework that could be

used to optimise mission concepts for other OOO tasks.

In summary, the work carried out in this thesis has opened up a number of new research

directions for furthering the field of space robotics and RL. It is hoped that these contributions

and conclusions will aid in the ultimate goal of a space robot fully autonomously assembling

large structures in space. ,̇¨

Appendix A

Telescope Architecture

A.1 Introduction

This section outlines the design of a large aperture space telescope for OOA with a free-flying

robotic spacecraft. A detailed science case behind design choices is not presented and instead

the mechanical design is the focus of this section. The telescope is a Ritchey-Chretien telescope,

with a PM of 25 m in diameter and a spatial resolution of 1 m from GEO. The scientific

validation of the PM and SM sizes have been discussed and validated by Nanjangud et al. [106].

The design aims to utilise as much technology already in-orbit or planned for use due to the

high TRL, making testing and verification a less expensive and arduous task. In addition to this,

design choices are made to minimise costs and mission complexity.

A.2 Optical Space Telescopes

There are three main types of telescope that can image in the optical range. The first are

refractor telescopes, which rely on lenses to focus light. Reflector telescopes rely on mirrors,

and catadioptrics use a combination of mirrors and lenses to focus light. While all types have

contributed to great scientific discoveries, reflector telescopes are favored in space applications

[106]. This is because they do not suffer from chromatic aberrations at apertures over 1 m [124].

119

120 Appendix A. Telescope Architecture

(a) Isometric view of full telescope assembly (b) Side view of full telescope assembly

Figure A.1: Artist impression of a large aperture telescope. This shows an illustration of

what a large aperture telescope that has been assembly on-orbit may look like. Visible is the

storage satellite, PM, SM and modular BP. At the rear a number of deployable solar arrays can

also be seen.

Figure A.1 shows an artist’s impression of the space telescope. There are three main parts that

will require assembly or deployment:

1. Segmented PM assembly: The PM or aperture is the main light gathering surface on

a reflective telescope. Since resolution is dependent on how much light the telescope

can collect, the size of this mirror plays a large part in the overall performance of the

telescope.

2. Modular BP: This is the structure that supports the PM modules and acts as the contact

between the PM and the main telescope housing.

3. SM: A smaller mirror that is used to redirect and refocus the light reflected from the PM.

While a functional space telescope will require more components than just those named above,

focus is on these components since they will require robotic assembly/deployment. Other parts

such as the AOCS, communication unit and power subsystems will be developed at a later date

when a systems design approach is taken. Since the size of the satellite bus does not affect

the telescope architecture, it is assumed that suitable subsystems will be available and easily

integrated into the final design.

A.3. Standard Interface 121

Table A.1: Comparison of available standard interfaces. Comparison of the standard inter-

faces suitable for use with robotic OOA [80, 168, 72].

iSSI SIROM
HOTDOCK

(Active)

Size

Diameter 199mm 120mm 128mm

Height 48mm 30mm 70mm

Mass 0.9 kg 1.5 kg 1.4 kg

Mechanical

Loads

Axial 6000N 200N 3000N

Lateral 400N 200N n/a

Bending 400Nm 40Nm 300Nm

Torque 400Nm 40Nm n/a

Transfer

Rates

Power 5 kW/100V 120W/100V 2.5 kW/120V

Thermal 5KW 2 to 2.5KW 2.5KW

Data 1Gbit s−1 100Mbit s−1 n/a

Temperature Range −50 to 70 ◦C −128 to 50 ◦C −40 to 70 ◦C

TRL 6 4 4

Capture
Symmetrical

about 90◦

Not symmetrical

for capture

Symmetrical

about 90◦

Alignment

Tolerance

Axial 3mm 10mm 15mm

All Axis 15◦ 1.5◦ 10◦

A.3 Standard Interface

The implementation of OOA missions will be reliant on cooperative design and plug-and-play

principles. This requires modular designs and standardised connection interfaces, two ideas that

have gained a lot of traction in recent years. There are currently three standard interfaces in

production aimed for use in space, information on each can be found in Table A.1.

The iSSI interface is selected for use in this design. This choice was made since the interface

can withstand the highest mechanical loads and has the highest transfer rates. On top of this, it

is the most developed of all the systems. The drawback is that it has more precise alignment

122 Appendix A. Telescope Architecture

tolerances for capture compared to SIROM and HOTDOCK. However, the symmetry of the

capture mechanism about 90◦ means docking will be significantly easier. The choice of this

interface also limits design complexity since it is androgynous and hard capture is automatic

once the systems are aligned.

The space robot will host an end-effector of the same interface, meaning it can easily cap-

ture/grasp any other module. These will be mounted in strategic locations to facilitate the

capture, placement and connection of all the modules required for telescope operation. This

same interface will be used to connect the different telescope parts to each other. This means that

each component will require at least two interfaces, one for manipulation and one for assembly.

A.4 Primary Mirror

The fully assembled PM will be 25 m in diameter, constructed of 342 of identical hexagonal

segments that measure 1 m, flat edge to flat edge [106]. A segmented design is necessary

since monolithic mirrors can only be manufactured to a certain size. In addition to this, large

mirrors must survive the harsh launch environment, which is dependent on their stiffness, which

decreases with diameter [109]. The segments are arranged in a honeycomb design, the same

as that utilised by the JWST and all other modular telescope designs proposed in the literature.

The advantage is a symmetrical design where the segments interface with as little wasted space

as possible, resulting in a fully filled PM.

In order to minimise the number of pick-and-place operations needed for the full mirror assembly,

sub-assemblies of the 1 m segments are to be used. This approach makes the phasing and

aligning of the mirrors easier since each 1 m segment in the sub-assembly will have its own

actuators, therefore requiring less force to manipulate than if each sub-assembly had only one

set of actuators. When deciding on the geometry of these sub-assemblies a number of things

were taken into account:

• The overall number of pick and place operations that will be required for the full PM

assembly. Fewer operations will lower mission complexity.

• The number of mirrors in each sub-assembly. In the case of failure the whole module will

be replaced so collateral wastage should be limited.

A.4. Primary Mirror 123

Figure A.2: Primary mirror sub-assemblies. The left image shows the full PM set up. On the

right, labelled with letters, are the different combinations of segment assemblies that could be

used to make the full structure.

• The mass of each sub-assembly. This will govern the overall mass of the PM.

• The size of the sub-assembly in relation to launch vehicle fairings.

• The shape of each sub-assembly. This should be as consistent as possible to limit

complexity in both the assembly and servicing missions.

A number of configurations were considered, all are shown in Figure A.2 with a comparison in

Table A.2. The PM sub-assemblies relate to a hexagonal combination of 19 segments. The full

mirror is then made of 18 of these larger sections. This split was chosen since it maintains the

hexagonal shape and design symmetry.

Designs d, e and f were discounted due to their large maximum dimension. This requires a

larger manipulator during assembly, and it limits the launch vehicles that can be utilised. At

a maximum dimension of over 4.6 m (internal fairing diameter of the Falcon-9), these pieces

would depend on specific launch vehicles with lower launch frequencies adding huge cost and

lowering mission flexibility. The novel control and planning method taken in this work means

that once learned, the assembly process becomes a well-defined repeatable operation. As a result,

the number of pick and place operations required is not considered to be the most important of

the trade-off factors. Therefore, the selected sub-assembly geometry is option a. This geometry

124 Appendix A. Telescope Architecture

Table A.2: Mirror subassembly geometry comparions. The different PM sub-assembly

combinations are presented here. A comparison of their desired attributes is given.

Additional mass

from connectors

(kg)

Number of

pick and place

operations

Number of

different shaped

sub-assemblies

Maximum

dimension

(m)

Maximum number

of mirrors in

one sub-assembly

a 10.8 108 2 3 3

b 18 180 2 2 2

c 9 90 3 3 7

d 9 90 3 5 5

e 5.4 54 3 5 7

f 1.8 18 1 5 19

will result in minimal wastage if a single mirror is damaged compared to c and hosts a lower

overall mass than option b. Complementary to this is the lower design complexity with only

two different geometries being required. This aids in minimising the complexity of servicing

missions.

In order for these segments to act as one, they must be co-aligned, co-focused and co-phased.

This is achieved using a number of actuators and rods attached to the rear of each segment. This

allows for flexing of the mirror to facilitate alignment once assembled. In addition, each mirror

will be equipped with edge sensors, so its exact location is known — the same technology is

used on the JWST [85]. In order to minimise complexity each mirror segment is mounted on

a thin rear cover. One of the main reasons for this is that the alignment system can be tested

and installed on the ground and then the robotic manipulator can interface with a standard

connector on the rear cover. Figure A.3 shows the PM sub-assembly. The perpendicular facing

iSSI module is for robotic grasping and the top facing module is for connection with the BP.

This set-up means that the alignment system is protected from the robotic manipulator during

assembly, limiting the chance of damage and generation of space debris.

Employing the same material choices made by Nanjangud et al. for the PM, each 1 m segment

with wave sensing and control hardware is estimated to weigh 17.3 kg [106]. Included in the

design is the thin rear cover, iSSI support structure and the iSSI modules themselves. It is

therefore estimated the 3 segment PM mirror sub-assembly (sub-assembly 1) weighs 57.49 kg,

A.5. Modular Back-Plane 125

Figure A.3: Different views of the primary mirror sub-assembly. Three different views of

the PM are visible. A top view, a side view and a zoomed in section. The purpose of the last

image is to show the placement of the alignment actuators.

Table A.3: Mass of primary mirror sub-assemblies. Break-down of mass of the two different

sub-assemblies used in with the PM

Sub-Assembly 1 Sub-Assembly 2

Component Description Mass (kg) Quantity Total Mass (kg) Mass (kg) Quantity Total Mass (kg)

PM segment and wave

front control sensing
17.3 3 51.9 17.3 4 69.2

iSSI module 0.9 6 5.4 0.9 8 7.2

Rear cover 0.02 1 0.02 0.01 1 0.01

iSSI support column 0.06 3 0.17 0.06 4 0.24

TOTAL 57.69 76.65

and the 4 mirror sub-assembly (sub-assembly 2) weighs 76.75 kg. A breakdown of this can be

seen in Table A.3.

A.5 Modular Back-Plane

In order for the PM sub-assemblies to form a single filled mirror and attach to the main telescope

hub, a rigid BP is needed. The same hexagonal modular design is desired, meaning one PM

sub-assembly can interface with one BP module. Unlike with the PM, the BP does not have a

given volume/surface area that must be solid. This provides huge scope for stowed volumetric

minimisation. Two main solutions exist to such a problem. The first is to assemble the BP from

126 Appendix A. Telescope Architecture

struts and nodes, and the second is to use quasi-rigid members connected by mechanical joints

that auto-deploy. The first idea is disregarded due to the additional complexity in mission design

and increased burden on the robotic agent. A design exercise carried out by Doggett, showed

that to make an 8m truss structure from nodes and struts would take upwards of 20 hours using

many pick and place operations [43]. Instead a deployable structure will be used.

A sparse tessellation configuration of the BP modules is favorable since it leads to lower mass

and lower design complexity compared to a filled tessellation. It also allows room for the

robot to access the rear of the telescope’s PM when assembled. With this configuration the

dimensions of the BP modules differ from that of the PM sub-assemblies, instead they measure

4m flat-to-flat. A visualisation of how the PM and BP interface is shown in Figure A.4a. Similar

to all the telescope designs in the literature this work utilises the PacTruss modules developed

by NASA [56]. Following the convention of this truss structure, the depth of each BP module

is half the desired flat-to-flat length, in this case, 2m. An issue not addressed in prior work

is how these modules will connect to each other to form a rigid BP. The design in this thesis

uses iSSI modules in various locations on each module: two will be used for inter-module

connection, one for connection to the main telescope/inner ring and six for connections to each

of the PM components. A single BP module with iSSI modules can be seen in Figure A.4b.

At the connection points the iSSI module is housed in a special unit that interfaces with the

Pactruss module and aids in locking its joints once deployed. It should be noted that the BP

modules sit in two rings, with the inner ring connecting directly to the main telescope hub and

the second, larger ring, connected only to other BP modules. According to Nanjangud et al. , a

single truss module without connectors will weigh around 4.2kg, it can therefore be estimated

that each sub-assembly including all other components to weigh 13.2kg [106]. This is given

that each iSSI and housing unit weighs 1kg.

A.6 Secondary Mirror

The SM is a 2.4m hyperbolic mirror that sits 4.55m away from the primary mirror. It will be

pre-assembled on Earth so the task here is to get it to the correct distance from the PM, and then

fix it rigidly. The accuracy of placement of this mirror is paramount to the successful operation

of the telescope in-orbit. In addition to this, along with all other parts of the telescope it should

be serviceable by the space robot. As a result the sub-assembly will host an iSSI interface,

A.6. Secondary Mirror 127

(a) Geometry of PM and BP modules (b) A single fully deployed BP module

with iSSI interface

Figure A.4: Dimensions and structure of back-plane. Image shows a comparison between

the dimensions of PM module and a BP module as well as how they line up in the full assembly.

Note that each PM module is made up of the selected sub-assembly geometry.

mounted on the rear of the module. The JWST uses a hinged mechanism to deploy the SM

but this requires sufficient space in a launch vehicle for the full length of the mast, in this case

4.55m. This can be avoided by instead using a deployable mast.

In order to achieve the desired accuracy the SM must be fixed by six constraints, 1 for each

d.o.f.. Therefore a triangular truss will be used − this will be fixed at the center of the PM

surrounding the optics and will be the final component of the telescope to be deployed. Sensors

mounted in the SM module will measure its exact position relative to the PM. Deployment will

happen automatically without the aid of the space robot.

128 Appendix A. Telescope Architecture

Bibliography

[1] Robotic manipulation and capture in space: A survey. Frontiers in Robotics and AI, 8,

2021.

[2] Ajith Abraham and Lakhmi C. Jain. Evolutionary multiobjective optimisation. In

Evolutionary Multiobjective Optimisation Theoretical Advances and Applications, pages

1–6. 2006.

[3] Hatem Al-Dois, A. K. Jha, and R. B. Mishra. Task-based design optimization of serial

robot manipulators. Engineering Optimization, 45(6):647–658, August 2012.

[4] S. F. Alyaqout, P. Y. Papalambros, and A. G. Ulsoy. Combined robust design and robust

control of an electric dc motor. IEEE/ASME Transactions on Mechatronics, 16(3):574–

582, 2011.

[5] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.

Hindsight experience replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc., 2017.

[6] Timothée Anne, Jack Wilkinson, and Zhibin Li. Meta-learning for fast adaptive lo-

comotion with uncertainties in environments and robot dynamics. In 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 4568–4575,

2021.

[7] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.

Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine,

34(6):26–38, 2017.

129

130 BIBLIOGRAPHY

[8] Randy Attwood. MOST: Canada’s first space telescope part 2. Journal of the Royal

Astronomical Society of Canada, 97:7, 2003.

[9] J E Auerbach and J C Bongard. Dynamic resolution in the co-evolution of morphology

and control. In In Proc. of the Twelfth International Conference on Artificial Life (ALIFE

XII), 2010.

[10] Dave Baiocchi and Philip H. Stahl. Enabling future space telescopes: mirror technology

review and development roadmap. The Astronomy and Astrophysics Decadal Survey,

(23), 2009.

[11] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutckever, and Igor Mordatch. Emer-

gent complexity via multi-agent competition. In Proc. 6th International Conference on

Learning Representations (ICLR), Vancouver, BC, 2018.

[12] Johathan T. Barron. Continuously differentiable exponential linear units. CoRR,

abs/1704.07483v1, 2017.

[13] Santanu Basu. Conceptual design of an autonomously assembled space telescope (AAST).

In Howard A. MacEwen, editor, UV/Optical/IR Space Telescopes: Innovative Technolo-

gies and Concepts, volume 5166, pages 98 – 112. International Society for Optics and

Photonics, SPIE, 2004.

[14] Santanu Basu, Terry S. Mast, and Gary T. Miyata. A proposed autonomously assembled

space telescope (AAST). Space, 2003.

[15] Simone Battistini, Chantal Cappelletti, and Filippo Graziani. An attitude determination

and control system for a nano-satellite alternative launch platform. In Proceedings of the

67th International Astronautical Congress, 26th - 30th Sep, 2016. Guadalajara, Mexico.

[16] Saul Blumenthal. Multinomial sampling with partially categorized data. Journal of the

American Statistical Association, 63(322):542–551, 1968.

[17] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory,

volume 1. Springer, 2007.

[18] Adrien Bolland, Ioannis Boukas, Mathias Berger, and Damien Ernst. Jointly learning

environments and control policies with projected stochastic gradient ascent. Journal of

Artificial Intelligence Research, 73, 2022.

BIBLIOGRAPHY 131

[19] William J. Borucki, David Koch, Gibor Basri, Natalie Batalha, Timothy Brown, Douglas

Caldwell, John Caldwell, Jørgen Christensen-Dalsgaard, William D. Cochran, Edna

DeVore, Edward W. Dunham, Andrea K. Dupree, Thomas N. Gautier, John C. Geary,

Ronald Gilliland, Alan Gould, Steve B. Howell, Jon M. Jenkins, Yoji Kondo, David W.

Latham, Geoffrey W. Marcy, Søren Meibom, Hans Kjeldsen, Jack J. Lissauer, David G.

Monet, David Morrison, Dimitar Sasselov, Jill Tarter, Alan Boss, Don Brownlee, Toby

Owen, Derek Buzasi, David Charbonneau, Laurance Doyle, Jonathan Fortney, Eric B.

Ford, Matthew J. Holman, Sara Seager, Jason H. Steffen, William F. Welsh, Jason

Rowe, Howard Anderson, Lars Buchhave, David Ciardi, Lucianne Walkowicz, William

Sherry, Elliott Horch, Howard Isaacson, Mark E. Everett, Debra Fischer, Guillermo

Torres, John Asher Johnson, Michael Endl, Phillip MacQueen, Stephen T. Bryson, Jessie

Dotson, Michael Haas, Jeffrey Kolodziejczak, Jeffrey Van Cleve, Hema Chandrasekaran,

Joseph D. Twicken, Elisa V. Quintana, Bruce D. Clarke, Christopher Allen, Jie Li,

Haley Wu, Peter Tenenbaum, Ekaterina Verner, Frederick Bruhweiler, Jason Barnes, and

Andrej Prsa. Kepler planet-detection mission: Introduction and first results. Science,

327(5968):977–980, 2010.

[20] R. Boumans and C. Heemskerk. The european robotic arm for the international space

station. Robotics and Autonomous Systems, 23(1-2):17–27, March 1998.

[21] Lynn M. Bowman, W. Keith Belvin, Erik E. Komendera, John T. Dorsey, and Bill R.

Doggett. In-space assembly application and technology for NASA’s future science

observatory and platform missions. In Proceedings of SPIE Astronomical Telescopes and

Instrumentation, Austin, Texas. 12-14, June 2018.

[22] Bradford. Reaction wheel unit datasheet. URL, http://bradford-space.com/products-aocs-

reaction-wheel-unit.php. Date Accessed 22/08/2019.

[23] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,

abs/1606.01540, 2016.

[24] Christopher J. Burrows, Jon A. Holtzman, S. M. Faber, Pierre Y. Bely, Hashima Hasan,

C. R. Lynds, and Daniel Schroeder. The Imaging Performance of the Hubble Space

Telescope. Astrophysical Journal Letters, 369:L21, March 1991.

132 BIBLIOGRAPHY

[25] Luca Carlone and Carlo Pinciroli. Robot co-design: Beyond the monotone case. In

International Conference on Robotics and Automation (ICRA), Montreal, Canada. 20-24,

May 2019.

[26] Kieran A. carroll, Robert E. Zee, and Jaymie Matthews. The MOST microsatellite

mission: Canada’s first space telescope. In Proceedings of the 12th AIAA/USU Conference

on Small Satellites, 1998.

[27] Kuang-Hua Chang. e-Design Computer-Aided Engineering Design, chapter 19, pages

1105–1173. Academic Press, 2015.

[28] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox.

Closing the sim-to-real loop: Adapting simulation randomization with real world expe-

rience. In 2019 International Conference on Robotics and Automation (ICRA), pages

8973–897, Montreal, QC, 2019.

[29] Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned policies

for multi-robot transfer learning. CoRR, abs/1811.09864, 2018.

[30] Tianjian Chen, Zhanpeng He, and Matei Ciocarlie. Hardware as policy: Mechanical

and computationalco-optimization using deep reinforcement learning. In Conference on

Robotic Learning (CoRL), 2020.

[31] Xuanzhen Chen and Shiyin Qin. Kinematic modeling for a class of free-floating space

robot. IEEE Access, 5:12389–12403, 2017.

[32] G. Chiandussi, M. Codegone, S. Ferrero, and F.E. Varesio. Comparison of multi-objective

optimization methodologies for engineering applications. Computers & Mathematics

with Applications, 63(5):912–942, 2012.

[33] Carlos A. Coello Coello. A comprehensive survey of evolutionary-based multiobjective

optimization techniques. Knowledge and Information Systems, 1(3):269–308, 1999.

[34] Carlos A. Coello Coello. Twenty years of evolutionary multi-objective optimization: A

historical view of the field. IEEE Computational Intelligence Magazine, 1(1):28–36,

2006.

BIBLIOGRAPHY 133

[35] S Dahbi, A Aziz, S Zouggar, N Benazzi, H Zahboune, and M Elhfyani. Design and sizing

of electrical power source for a nanosatellite using photovoltaic cells. In Proceedings of

the 3rd IEEE International Renewable Sustainable Energy Conference, 10th-13th Dec,

December 2015. MarrakechOuarzazate, Morocco.

[36] Tianhong Dai, Kai Arulkumaran, Tamara Gerbert, Samyakh Tukra, Feryal Behbahani,

and Anil Anthony Bharath. Analysing deep reinforcement learning agents trained with

domain randomisation. Neurocomputing, 493:143–165, 2022.

[37] Indraneel Das and J. E. Dennis. Normal-boundary intersection: A new method for

generating the pareto surface in nonlinear multicriteria optimization problems. SIAM

Journal on Optimization, 8(3):631–657, 1998.

[38] Filipe de A. Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico

Kolter. End-to-end differentiable physics for learning and control. In Advances in Neural

Information Processing Systems 31 (NeurIPS 2018), 2018.

[39] Thomas J. Debus and Sean P. Dougherty. Overview and performance of the front-end

robotics enabling near-term demonstration (FREND) robotic arm. In Proceedings of

AIAA Infotech @Aerospace Conference, Seattle, Washington. 6-9, April 2009.

[40] Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. A differentiable

physics engine for deep learning in robotics. Frontiers in Neurorobotics, 13, 2019.

[41] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learn-

ing modular neural network policies for multi-task and multi-robot transfer. In 2017

IEEE International Conference on Robotics and Automation (ICRA), pages 2169–2176,

Marina Bay Sands, Singapore, 2017.

[42] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real

nvp, 2016.

[43] William Doggett. Robotic assembly of truss structures for space systems and future

research plans. IEEE Aerospace Conference Proceedings, 7:3589–3598, 2002.

[44] William R. Doggett, John T. Dorsey, Thomas C. Jones, and Bruce King. Development

of a tendon-actuated lightweight in-space MANipulator (TALISMAN). In Proceedings

134 BIBLIOGRAPHY

of 42nd Aerospace Mechanisms Symposium, volume 405, NASA Goddard Space Flight

Center. 14-16, May 2014.

[45] Tim W. Dorn, Anthony G. Schache, and Marcus G. Pandy. Muscular strategy shift in

human running: Dependence of running speed on hip and ankle muscle performance.

Journal of Experimental Biology, 1(215):1944–1956, July 2012.

[46] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbell.

rl2 : fast reinforcment learning via slow reinforcement learning. In Proc. 5th International

Conference on Learning Representations, Toulon, France. 24-26, April 2017.

[47] Michael T. M. Emmerich and André H. Deutz. A tutorial on multiobjective optimization:

fundamentals and evolutionary methods. Natural Computing, 17(3):585–609, 2018.

[48] Lee D. Feinberg, Jason G. Budinoff, Howard A. MacEwen, Gary W. Matthews, and Marc

Postman. Modular assembled space telescope. Optical Engineering, (9):1 – 9, 2013.

[49] C. Finn, P. Abbel, , and S. Levine. Model-agnostic meta-learning for fast adapation

of deep networks. In Proceedings of the 34th International Conference on Machine

Learning (ICML), pages 1126–1135, Sydney, NSW, Australia, 2017.

[50] Angel Flores-Abad, Ou Ma, Khanh Pham, and Steve Ulrich. A review of space robotics

technologies for on-orbit servicing. Progress in Aerospace Sciences, 68:1–26, July 2014.

[51] Robert B. Friend. Orbital express program summary and mission overview. In Proceed-

ings of SPIE Defense and Security Symposium, volume 6958, Orlando, Florida, USA. 15,

April 2008.

[52] Jonathan P. Gardner, John C. Mather, Mark Clampin, Rene Doyon, Matthew A. Green-

house, Heidi B. Hammel, John B. Hutchings, Peter Jakobsen, Simon J. Lilly, Knox S.

Long, Jonathan I. Lunine, Mark J. Mccaughrean, Matt Mountain, John Nella, George H.

Rieke, Marcia J. Rieke, Hans-Walter Rix, Eric P. Smith, George Sonneborn, Massimo

Stiavelli, H. S. Stockman, Rogier A. Windhorst, and Gillian S. Wright. The james webb

space telescope. Space Science Reviews, (123):485–606, 2006.

[53] David Ha. Reinforcement learning for improving agent design. Neural Information

Processing Systems Reinforcement Learning Workshop, 2018.

BIBLIOGRAPHY 135

[54] Zhou Hao, Nikos Mavrakis, Pedro Proenca, Richard Gillham Darnley, Saber Fallah, Mar-

tin Sweeting, and Yang Gao. Ground-based high-DOF AI and robotics demonstrator for

in-orbit space optical telescope assembly. In 70th International Astronautical Congress

(IAC), Washington D.C., United States, 21/10/2019-25-10-2019, 2019.

[55] Zhou Hao, R. B. Ashith Shyam, Arunkumar Rathinam, and Yang Gao. Intelligent

spacecraft visual GNC architecture with the start-of-the-art components for on-orbit

manipulation. Frontiers in Robotics and AI, 8(639327):65, 2021.

[56] John M. Hedgepeth and Richard K. Miller. Structural concepts for large solar concentra-

tors. NASA Contractor Report 4075, 1962.

[57] Honeybee. Microsat CMG attitude control array datasheet. URL,

https://honeybeerobotics.com/wp-content/uploads/2014/03/Honeybee-Robotics-

Microsat-CMGs.pdf. Date Accessed 22/08/2019.

[58] G.S. Hornby, H. Lipson, and J.B. Pollack. Generative representations for the automated

design of modular physical robots. IEEE Transactions on Robotics and Automation,

19(4):703–719, 2003.

[59] Kirk Hovell and Steve Ulrich. On deep reinforcement learning for spacecraft guidance.

In AIAA Scitech 2020 Forum, Orlando, Florida, 06/01/2020-10/01/2020, 2020.

[60] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T.

Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. Chainqueen: A real-time

differentiable physical simulator for soft robotics. In 2019 International Conference on

Robotics and Automation (ICRA), pages 6265–6271, 2019.

[61] Donald J. Henja III, Pieter Abbeel, and Lerrel Pinto. Task-agnostic morphology evolution.

In International Conference on Learning Representations, 2021.

[62] Lucy Jackson, Chakravarthini M. Saaj, Asma Seddaoui, Calem Whiting, Steve Eckersley,

and Mark Ferris. Design of a small space robot for on-orbit assembly missions. In Pro-

ceedings of the 5th International Conference on Mechatronics and Robotics Engineering

(ICMRE), pages 107–112, 16th-19th February, 2019. Rome, Italy.

136 BIBLIOGRAPHY

[63] Lucy Jackson, Chakravarthini M. Saaj, Asma Seddaoui, Calem Whiting, Steve Eckersley,

and Simon Hadfield. Downsizing an orbital space robot: A dynamic system based

evaluation. Advances in Space Research, 65(10):2247–2262, May 2020.

[64] Lucy Jackson, Celyn Walters, Steve Eckersley, and Simon Hadfield. HARL-A: Hardware

agnostic reinforcement learning through adversarial selection. In Proceedings of the 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

3499–3505, 27th September - 1st October, 2021. Virtual.

[65] Lucy Jackson, Celyn Walters, Steve Eckersley, Pete Senior, and Simon Hadfield. OR-

CHID: Optimisation of robotic control and hardware in design using reinforcement

learning. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 4911–4917, 27th September - 1st October, 2021.

Virtual.

[66] Lucy Jackson, Celyn Walters, Chakravarthini M. Rai, Steve Eckersley, and Simon Had-

field. Ta-DAH: Task driven automated hardware design of free-flying space robots. In

Proceedings of the 16th International Conference on Space Robotics and Automation

(ICSRA), 19th - 20th July, 2022. Virtual.

[67] Deb Kalyanmoy. Search Methodologies, chapter 10, pages 403–449. Springer US, 2014.

[68] Oussama Khatib, Xiyang Yeh, Gerald Brantner, Brian Soe, Boyeon Kim, Shameek

Ganguly, Hannah Stuart, Shiquan Wang, Mark Cutkosky, Aaron Edsinger, Phillip Mullins,

Mitchell Barham, Christian R. Voolstra, Khaled Nabil Salama, Michel L’Hour, and

Vincent Creuze. Ocean one: A robotic avatar for oceanic discovery. IEEE Robotics

Automation Magazine, 23(4):20–29, 2016.

[69] Jin-Oh Kim and Pradeep K. Khosla. A formulation for task based design of robot

manipulators. In Proceedings of 1993 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), volume 3, pages 2310–2317, 1993.

[70] Tuomo Kivela, Jouni Mattila, and Jussi Puura. A generic method to optimize a redundant

serial robotic manipulator’s structure. Automation in Construction, 81:172–179, 2017.

BIBLIOGRAPHY 137

[71] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normalizing flows: An introduction

and review of current methods. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PP:1–1, 05 2020.

[72] Joerg Kreisel, Thomas A. Schervan, and Kai-Uwe Schroeder. A game-changing space

system interface enabling multiple modular and building block-based architectures for

orbital and exploration missions. In Proceedings of the 70th International Astronautical

Congress (IAC), 21st - 25th October, 2019. Washington D.C., United States,.

[73] S. Kucuk and Z. Bingul. Robot workspace optimization based on a novel local and global

performance indices. In Proceedings of of the IEEE Symposium on Industrial Electronics,

Dubrovnik, Croatia. 20-23, June 2005.

[74] Serdar Kucuk and Zafer Bingul. Comparative study of performance indices for funda-

mental robot manipulators. Robotics and Autonomous Systems, (54):567–573, 2006.

[75] A. Kumar and K. J. Waldron. The workspaces of a mechanical manipulator. Journal of

Mechanical Design, 103(3):665–672, 07 1981.

[76] Jet Propulsion Laboratory. Mars 2020 perseverance landing press kit. Technical report,

NASA, January 2020.

[77] Jeffrey C Lagarias, James A Reeds, Margaret H Wright, and Paul E Wright. Convergence

properties of the nelder–mead simplex method in low dimensions. SIAM Journal on

optimization, 9(1):112–147, 1998.

[78] Nicolas Lee, Paul Backes, Joel Burdick, Sergio Pellegrino, Christine Fuller, Kristina

Hogstrom, Brett Kenedy, Junggon Kim, Rudranarayan Mukherjee, Carl Seubert, and

Yen-Hung Wu. Architecture for in-space robotic assembly of a modular space telescope.

Journal of Astronomical Telescopes, Instruments and Systems, 2(24), 2016.

[79] Floor Van Leeuwen. The hipparcos mission. Space Science Reviews, 81(201-409), 1997.

[80] Pierre Letier, Torsten Siedel, Mathieu Deremetz, Edgars Pavlovskis, Benoit Lietaer,

Korbinian Nottensteiner, Maximo A. Roa, Juan Sánchez Garcı́a Casarrubios, Javier

Luis Corella Romero, and Jeremi Gancet. Hotdock: Design and validation of a new

generation of standard robotic interface for on-orbit servicing. In Proceedints of the 71st

138 BIBLIOGRAPHY

International Astronautical Congress , The CyberSpace Edition, 12th-14th October, 2020.

Virtual.

[81] Q. Li, W.J. Zhang, and L. Chen. Design for control-a concurrent engineering approach for

mechatronic systems design. IEEE/ASME Transactions on Mechatronics, 6(2):161–169,

2001.

[82] RuiQin Li and Jian S Dai. Orientation angle workspaces of planar serial three-link

manipulators. Science in China Series E: Technological Sciences, 52:975–985, 2009.

[83] Yuxi Li. Deep reinforcement learning: An overiview. arXiv, abs/1701.07274, 2017.

[84] Junband Liang and Ming Lin. Differentiable physics simulation. In ICLR 2020 Workshop

on Integration of Deep Neural Models and Differenttial Equations, 2020.

[85] Paul A. Lightsey, Charles Atkinson, Mark Clampin, and Lee D. Feinberg. James webb

space telescope: large deployable cryogenic telescope in space. Optical Engineering,

51(1), 2012.

[86] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess,

Tom Erez, David Silver, and Daan Wierstra. Continuous control with deep reinforcement

learning. In Proceedings of the 4th International Conference on Learning Representations

(ICLR), 7th-9th May, 2015. San Juan, Puerto Rico.

[87] Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter optimization of deep

neural networks. CoRR, abs/1604.07269, 2016.

[88] Kevin Sebastian Luck, Heni Ben Amor, and Roberto Calandra. Data-efficient co-

adaptation of morphology and behaviour with deep reinforcement learning. In Pro-

ceedings of the Conference on Robot Learning, PMLR, volume 100, pages 854–869,

October 2020.

[89] Jens Lundell, Murtaza Hazara, and Ville Kyrki. Generalizing movement primitives to new

situations. In Proc. 18th Towards Autonomous Robotic Systems, pages 16–31, Guildford,

England. 19-21, July 2017. Springer International Publishing.

[90] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially

robust policy learning: Active construction of physically-plausible perturbations. In 2017

BIBLIOGRAPHY 139

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

3932–3939, 2017.

[91] Marc Manz, Sebastian Bartsch, Romain Caujolle, Torsten Vogel, Mark Shielton, Elie

Allouis, Stefan Gornig, Francisco Javier Colmenero, Sebastian Torralbo, Marko Jankovic,

Wiebke Brinkmann, Isabel Soto, Gonzalo Guerra, Daniel Silveira, Serra Carolina, Björn

Ordoubadian, Eric Bertels, Jeremi Gancet, Pierre Letier, Manfred Doermer, and Stéphane

Estable. Robotic architecture and operational concept for in-space assembly and ser-

vicing missions. In 16th Symposium on Advanced Space Technologies in Robotics and

Automation (ASTRA 2022), ESTEC Noordwijk, The Netherlands. 1–2, June 2022.

[92] R. Timothy Marler and Jasbir S. Arora. The weighted sum method for multi-objective

optimization: new insights. Structural and Multidisciplinary Optimization, 41(6):853–

862, 2010.

[93] R.T Marler and J.S Arora. Survey of multi-objective optimization methods for engineer-

ing. Structural and Multidisciplinary Optimization, 26(6):369–395, April 2004.

[94] A. Messac, A. Ismail-Yahaya, and C. A. Mattson. The normalized normal constraint

method for generating the pareto frontier. Structural and Multidisciplinary Optimization,

(25):89–98, 2003.

[95] Kaisa Miettinen and Marko M. Mäkelä. On scalarizing functions in multiobjective

optimization. OR Spectrum, 24(2):193–213, May 2002.

[96] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for

deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors,

Proceedings of The 33rd International Conference on Machine Learning, volume 48 of

Proceedings of Machine Learning Research, pages 1928–1937, New York, New York,

USA, 20–22 Jun 2016. PMLR.

[97] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,

Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis and. Human-level

control through deep reinforcement learning. Nature, (518):529–533, 2015.

140 BIBLIOGRAPHY

[98] Amr Mohamed, Chakravarthini Saaj, AsmaSeddaoui, and Manu Nair. Linear controllers

for free-flying and controlled-floating space robots: a new perspective. Aeronautics and

Aerospace Open Access Journal, 3(4), 2020.

[99] Lucian A. Montagnino. Test And Evaluation Of The Hubble Space Telescope 2.4-meter

Primary Mirror. In Gregory M. Sanger, editor, Large Optics Technology, volume 0571,

pages 182 – 190. International Society for Optics and Photonics, SPIE, 1986.

[100] Tom A Mulder. Orbital express autonomous rendezvous and capture flight operations.

part 2 of 2. In Proceedings of AIAA/AAS Astrodynamics Specialist Conference and

Exhibit, Honolulu, Hawaii. 18-21, August 2008.

[101] S. Nader Nabavi, Morteza Shariatee, Javad Enferadi, and Alireza Akbarzadeh. Para-

metric design and multi-objective optimization of a general 6-pus parallel manipulator.

Mechanism and Machine Theory, 152:103913, 2020.

[102] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey

Levine, and Chelsea Finn. Learning to adapt in dynamic, real-world environments

through meta-reinforcement learning. CoRR, arXiv:1803.11347, 2018.

[103] Muhammad Nagy, Yasser Mansour, and Sherif Abdelmohsen. Multi-objective opti-

mization methods as a decision making strategy. International Journal of Engineering

Research and Technology (IJERT), 9(3), 2020.

[104] Manu H. Nair, Chakravarthini M. Saaj, Sam Adlen, Amir G. Esfahani, and Steve Eck-

ersley. Advances in robotic in-orbit assembly of large-aperture space telescopes. In

i-SAIRAS, Virtual Conference, 19/10/20-23/10/20, 2020.

[105] A. Nanjangud, P. Blacker, S. Bandyopadhyay, and Y. Gao. Robotics and AI-enabled

on-orbit operations with future generation of small satellites. Proceedings of the IEEE,

106(3):429–439, February 2018.

[106] Angadh Nanjangud, Craig I. Underwood, Christopher P. Bridges, Chakravarthini M.

Saaj, Steve Eckersley, Sir Martin Sweeting, and Paolo Bianco. Towards robotic on-orbit

assembly of large space telescopes: Mission architectures, concepts and analyses. In

Proceedings of the 70th International Astronautical Congress (IAC), pages 1–25, 216st -

25th October, 2019. Washington D.C., United States.

BIBLIOGRAPHY 141

[107] Nanoavionics. Reaction wheels system ‘SatBus 4RWO’ datasheet. URL, https://n-

avionics.com/subsystems/cubesat-reaction-wheels-control-system-satbus-4rw/. Date Ac-

cessed 22/08/2019.

[108] John Nella, Paul D. Atcheson, Charles B. Atkinson, Doug Au, Allen J. Bronowicki,

Ed Bujanda, Andy Cohen, Don Davies, Paul A. Lightsey, Richard Lynch, Ray Lundquist,

Michael T. Menzel, Martin Mohan, John Pohner, Paul Reynolds, Henry Rivera, Scott C.

Texter, David V. Shuckstes, Debra D. Fitzgerald Simmons, Robert C. Smith, Pamela C.

Sullivan, Dean D. Waldie, and Rob Woods. James webb space telescope (jwst) observatory

architecture and performance. Optical, Infrared, and Millimeter Space Telescopes, pages

576–587, 2004.

[109] Jerry Nelson. Segmented mirror telescopes. In Renaud Foy and Françoise Claude Fot,

editors, Optics in Astrophysics, pages 61–72. Springer Netherlands, 2005.

[110] Tønnes F. Nygaard, Charles P. Martin, Eivind Samuelsen, Jim Torresen, and Kyrre Glette.

Real-world evolution adapts robot morphology and control to hardware limitations. In

Proceedings of the Genetic and Evolutionary Computation Conference, July 2018.

[111] M Oda. Space robot experiments on NASDA’s ETS-VII satellite - preliminary overview

of the experiment results. In IEEE International Conference on Robotics and Automation,

volume 1-4, pages 1390–1395, Detroit, MI, USA. 10-15, May 1999.

[112] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krahenbuhl, Vladlen Koltun, and Dawn

Song. Assessing generalization in deep reinforcement learning, 2018. arXiv preprint

arXiv:1810.12282,.

[113] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and

Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.

2019.

[114] J Park and H Asada. Concurrent design optimization of mechanical structure and control

for high speed robots. In 1993 American Control Conference, June 1993.

[115] Joon-Young Park, Pyung-Hun Chang, and Jeong-Yean Yang. Task-oriented design of

robot kinematics using the grid method. Advanced Robotics, 17(9):879–907, 2003.

142 BIBLIOGRAPHY

[116] A. P. Pashkevich and P.J. Flemming. A multiobjective optimisation approach to robotic

manipulator design. In IFAC Procedings Volumes, volume 24, pages 387–392. July 1991.

[117] Sarosh Patel and Tarek Sobh. Manipulator performance measures - a comprehensive

literature survey. Journal of Intelligent and Robotic Systems, 77(3-4):547–570, 2015.

[118] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of

robotic control with dynamics randomization. CoRR, abs/1710.06537, 2017.

[119] Luis F. Penin, Kohtaro Matsumoto, and Sachiko Wakabayashi. Force reflection for ground

control of space robots. IEEE Robotics Automation Magazine, 7:50–63, December 2000.

[120] M.A.C Perryman, E. Høg, J. Kovalevsky, L. Lindegren, C. Turon, P.L Bernacca, M. Crézé,

R. Donati, M. Grenon, M. Grewing, R. van Leeuwen, H. van der Marel, C.. Murray,

R.S. Le Poole, and H. Schrijver. In-orbit performance of the hipparcos astronomy satellite.

Astronomy and Astrophysics, (258):1–6, 1992.

[121] Maciej Petko and Grzegorz Karpiel. Hardware/software co-design of control algorithms.

In 2006 International Conference on Mechatronics and Automation, pages 2156–2161,

2006.

[122] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial

reinforcement learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of

the 34th International Conference on Machine Learning, volume 70 of Proceedings of

Machine Learning Research, pages 2817–2826. PMLR, 06–11 Aug 2017.

[123] Li Qiao, Chris Rizos, and Andrew G. Dempster. Analysis and comparison of a cubesat

lifetime. In Proceedings of 13th Australian Space Conference, pages 246 – 249, 30th Sep

- 2nd Oct, 2013. Sydney, Australia.

[124] René Racine. The historical growth of telescope aperture. The Publications of the

Astronomical Society of the Pacific, 116(815):77–83, 2004.

[125] A. Rajeswaran, Sarvjeet Ghotra, Sergey Levine, and Balaraman Ravindran. Epopt: Learn-

ing robust neural network policies using model ensembles. In Proc. 5th International

Conference on Learning Representations (ICLR), Toulon, France, 2017.

BIBLIOGRAPHY 143

[126] Thambirajah Ravichandran, David Wang, and Glenn Heppler. Simultaneous plant-

controller design optimization of a two-link planar manipulator. Mechatronics, 16(3):233–

242, 2006.

[127] Benjamin B. Reed, Robert C. Smith, Bo Naasz, Joseph Pellegrino, and Charles Bacon.

The restore-L servicing mission. In Proceedings of AIAA Space Forum, Long Beach,

California. 13-16, September 2016.

[128] D. Reintsema, B. Sommer, T. Wolf, J. Theater, A. Radthke, J. Sommer, W. Naumann, and

P. Rank. DEOS - the in-flight techonolgy demonstration of germans robotics approach

to dispose of malfunctioned satellites. In Proceedings of ESA Workshop on Advanced

Space Technologies for Robotics and Automation., ESTEC Noordwijk, The Netherlands.

12 - 14, April 2011.

[129] Richard Rembala and Cameron Ower. Robotic assembly and maintenance of future space

stations based on the iss mission operations experience. Acta Astronautica, 65:912–920,

November 2009.

[130] Mark J. Rentmeesters, Wei K. Tsai, and Kwei-Jay Lin. A theory of lexicographic multi-

criteria optimization. In Proceedings of ICECCS ’96: 2nd IEEE International Conference

on Engineering of Complex Computer Systems (held jointly with 6th CSESAW and 4th

IEEE RTAW), pages 76–79, 1996.

[131] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing

flows, 2015.

[132] Maximo Roa, Korbinian Nottensteiner, Armin Wedler, and Gerhard Grunwald. Robotic

technologies for in-space assembly operations. In Proceedings ESA 14th Symposium on

Advanced Space Technologies In Robotics and Automation (ASTRA), pages 1 – 8, 20th -

22nd Jun, June 2017. Leiden, The Netherlands.

[133] Máximo A. Roa, Korbinian Nottensteiner, Gerhard Grunwald, Pablo Lopez Negro, Aure-

lian Cuffolo, Sabrina Andiappane, Mathieu Rognant, Antoine Verhaeghe, and Vincent

Bissonnette. In-space robotic assembly of large telescopes. In Proceedings of 15th

Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk,

Netherlands, 27/05/2019-28/05/2019, 2019.

144 BIBLIOGRAPHY

[134] RockwellCollins. RSI 12 momentum and reaction wheels datasheet. URL,

https://www.rockwellcollins.com/Products-and-Services/Defense/Platforms/Space/RSI-

12-Momentum-and-Reaction-Wheels.aspx. Date Accessed 22/08/2019.

[135] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk-

patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural

networks. CoRR, abs/1606.04671, 2016.

[136] Fereshteh Sadeghi and Sergey Levine. (cad)$ˆ2$rl: Real single-image flight without a

single real image. CoRR, abs/1611.04201, 2016.

[137] Christian Sallaberger. Canadian space robotic activities. Acta Astronautica, 41(4):239 –

246, 1997.

[138] Mine Sarac, Massimiliano Solazzi, Edoargo Sotgiu, Massimo Bergamasco, and Antonio

Frisoli. Design and kinematic optimization of a novel underactuated robotic hand

exoskeleton. Meccanica, 52(3):749–761, 2017.

[139] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter. Jointly learning to construct and

control agents using deep reinforcement learning. In 2019 International Conference on

Robotics and Automation (ICRA), 2019.

[140] Charles Schaff and Matthew R. Walter. N-limb: Neural limb optimization for efficient

morphological design, 2022.

[141] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience

replay, 2015.

[142] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with

success-story algorithm, adaptive levin search, and incremental self-improvement. Ma-

chine Learning, 28(1):105–130, Jul 1997.

[143] Jürgen Schmidhuber and Rudolf Huber. Learning to generate artificial fovea trajectories

for target detection. International Journal of Neural Systems, 2(1), 1991.

[144] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust

region policy optimization. In Francis Bach and David Blei, editors, Proceedings of

the 32nd International Conference on Machine Learning, volume 37 of Proceedings of

Machine Learning Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

BIBLIOGRAPHY 145

[145] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-

mal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[146] A. Seddaoui and C M. Saaj. H∞ controller for a controlled floating robotic spacecraft.

In Proceedings of 14th International Symposium on Artificial Intelligence, Robotics and

Automation in Space (i-SAIRAS), 4th - 6th June, 2018. Madrid, Spain.

[147] Asma Seddaoui and Chakravarthini M. Saaj. The controlled floating motion of space

robots using a nonlinear H∞ controller. AIAA Journal of Guidance, Control and Dynam-

ics, 42(8), 2019.

[148] Hiroaki Shioya, Yusuke Iwasawa, and Yitaka Matsuo. Extending robust adversarial

reinforcement learning considering adaptation and diversity. Proc. 6th International

Conference on Learning Representations (ICLR), Vancouver, BC, 2018.

[149] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,

Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis

Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,

529(7587):484–489, January 2016.

[150] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic policy gradient algorithms. In Eric P. Xing and Tony Jebara, ed-

itors, Proceedings of the 31st International Conference on Machine Learning, volume 32

of Proceedings of Machine Learning Research, pages 387–395, Bejing, China, 22–24

Jun 2014. PMLR.

[151] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, page 15–22, New

York, NY, USA, 1994. Association for Computing Machinery.

[152] Ye. Somov, S. Butyrin, T. Somova, and S. Somov. Control of a free-flying robot at

preparation for capturing a passive space vehicle. IFAC-PapersOnLine, 51(30):72–76,

2018. 18th IFAC Conference on Technology, Culture and International Stability TECIS

2018.

146 BIBLIOGRAPHY

[153] Ivan P. Stanimirovic. Compendious lexicographic method for multi-objective optimiza-

tion. FACTA UNIVERSITATIS, Ser. Math. Inf., 27(1):55 – 66, 2012. Cited by: 11.

[154] L. Stocco, S.E. Salcudean, and F. Sassani. Matrix normalization for optimal robot design.

In Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.

No.98CH36146), volume 2, pages 1346–1351 vol.2, 1998.

[155] Freek Stulp, Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Learning to grasp

under uncertainty. In 2011 IEEE International Conference on Robotics and Automation,

pages 5703–5708, 2011.

[156] Richard S. Sutton. Reinforcement learning an introduction. Adaptive computation and

machine learning series. MIT Press, Cambridge, Mass, 1998.

[157] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven

Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped

robots. CoRR, abs/1804.10332, 2018.

[158] Geraud Nangue Tasse, Steven James, and Benjamin Rosman. Generalisation in lifelong

reinforcement learning through logical composition. In International Conference on

Learning Representations, 2022.

[159] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain random-

ization for transferring deep neural networks from simulation to the real world. In 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver,

BC, 2017.

[160] Olivier Toupet, Jeffrey Biesiadecki, Arturo Rankin, Amanda Steffy, Gareth Meirion-

Griffith, Dan Levine, Maximilian Schadegg, and Mark Maimone. Terrain-adaptive wheel

speed control on the curiosity mars rover: Algorithm and flight results. Journal of Field

Robotics, 37(5):699–728, 2020.

[161] Steve Ulrich and Jurek Z Sadiadek. Modified simple adaptive control for a two-link

space robot. In Proceedings of the 2010 American Control Conference, pages 3654–3659,

2010.

[162] Y. Umetani and K. Yoshida. Workspace and manipulability analysis of space manipulators.

Transactions of the Society of Instrument and Control Engineers, 1(1):116–123, 2001.

BIBLIOGRAPHY 147

[163] Tethers Unlimited. KrakenTM robotic arm data sheet. Technical report, Tethers Unlimited,

2018.

[164] Vacco. CuSP propulsion system. URL, https://www.cubesat-propulsion.com/cusp-

propulsion-system/. Date Accessed 27/08/2019.

[165] Vacco. AFRL propulsion unit for cubesats. URL, https://www.cubesat-

propulsion.com/propulsion-unit/. Date Accessed 27/08/2019.

[166] Vacco. NASA C-POD micro cubesat propulsion system data sheet. URL,

https://www.cubesat-propulsion.com/reaction-control-propulsion-module/. Date Ac-

cessed 23/08/2019.

[167] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with

double q-learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1),

Mar. 2016.

[168] Javier Vinals, Eduardo Urgoiti, Gonzalo Guerra, Ignacio Valiente, Judit Esnoz-Larraya,

Michel Ilzkovitz, Mario Franceski, Pierre Letier, Xiu-Tian Yan, Gwenole Henry, Albino

Quaranta, Wiebke Brinkmann, Marko Jankovic, Sevastian Bartsch, Alessandro Fumagalli,

and Manfred Doermer. Multi-functional interface for flexibility and reconfigurability

of future european space robotics. Advances in Astronautics Science and Technology,

1(1):119–133, June 2018.

[169] Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution:

Automatic robot design. In International Conference on Learning Representations, 2019.

[170] Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution:

Towards efficient automatic robot design. CoRR, abs/1906.05370, 2019.

[171] Ronald J. Williams and Jing Peng. Function optimization using connectionist reinforce-

ment learning algorithms. Connection Science, 3(3):241–268, 1991.

[172] James D. Wray, Harlan J. Smith, Karl G. Henize, and George R. Carruthers. Space

Schmidt Telescope. In Lawrence D. Barr and Geoffrey Burbidge, editors, Advanced

Technology Optical Telescopes I, volume 0332, pages 141 – 150. International Society

for Optics and Photonics, SPIE, 1982.

148 BIBLIOGRAPHY

[173] Yun-Hua Wu, Zhi-Cheng Yu, Chao-Yong Li, Meng-Jie He, Bing Hua, and Zhi-Ming

Chen. Reinforcement learning in dual-arm trajectory planning for a free-floating space

robot. Aerospace Science and Technology, 98:105657, 2020.

[174] Lei Xiujuan and Shi Zhongke. Overview of multi-objective optimization methods.

Journal of Systems Engineering and Electronics, 15(2):142–146, 2004.

[175] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudi-

nov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption

generation with visual attention. In Francis Bach and David Blei, editors, Proceedings of

the 32nd International Conference on Machine Learning, volume 37 of Proceedings of

Machine Learning Research, pages 2048–2057, Lille, France, 07–09 Jul 2015. PMLR.

[176] Wenfu Xu, Jianquing Peng, Bin Liang, and Zonggao Mu. Hybrid modeling and analysis

method for dynamic coupling of space robots. IEEE Transactions on Aerospace and

Electronic Systems, 52(1):85–98, February 2016.

[177] Tsuneo Yoshikawa. Manipulability and redundancy control of robotic mechanisms. In

Proceedings. 1985 IEEE International Conference on Robotics and Automation, volume 2,

pages 1004–1009, 1985.

[178] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The International Journal of

Robotics Research, 4(2):3–9, 1985.

[179] Wenhao Yu, C Karen Liu, and Greg Turk. Policy transfer with strategy optimization.

CoRR, abs/1810.05751, 2018.

[180] L.A. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Transactions

on Automatic Control, 8:59–60, 1963.

[181] Dan Zhang and Bin Wei. Modelling and optimisation of a 4 DoF hybrid robotic manipu-

lator. International Journal of Computer Integrated Manufacturing, 30(11):1179–1189,

2017.

	Nomenclature
	Symbols
	List of Figures
	List of Tables
	Declaration
	Introduction and Motivation
	Motivating Use Case
	Objectives
	Contributions

	Literature Review
	On-Orbit Assembly Using Robotic Spacecraft
	Optical Space Telescopes
	Past and Planned Robotic Missions
	Robotic Technologies Specific to Telescope Architectures
	Space Robot Control

	Classic Approaches to Robotic Hardware Design
	Performance-Based Hardware Optimisation
	Task-Based Hardware Optimisation

	Multi-Objective Optimisation
	Priori Articulation
	Posteriori Articulation
	No Articulation of Preferences

	Reinforcement Learning
	Q-Learning
	Policy Gradient Methods
	Actor-Critic Methods

	Simultaneous Design of Hardware and Control
	Nonlinear programming
	Evolutionary Computation
	Machine Learning

	Robust Reinforcement Learning for Control
	Domain Randomisation
	Multiple Policies
	Meta-Learning
	Adversarial Learning
	Other Approaches

	Summary

	Mission Concept for the On-Orbit Assembly of a Large Aperture Telescope
	Mission Concept
	Telescope Architecture
	Assembly Missions

	Space Robot Dynamic Model
	Spacecraft Definition
	Dynamic Coupling
	Force Definition
	Implementation

	Task Driven Automated Hardware Design
	Problem Definition
	System Requirements
	Methodology
	Arm Optimisation
	Base Spacecraft Optimisation

	Results and Discussion
	Arm Optimisation
	Base Spacecraft Optimisation
	Design of Space Robot for On-Orbit Telescope Assembly

	Conclusion

	Co-Optimisation of Hardware and Software using Reinforcement Learning
	Methodology
	Reinforcement Learning Formulation
	Parametric Control Optimisation
	Losses
	Parameter Co-Optimisation
	Differentiable State Transitions
	Implementation

	Experiments and Results
	Environments
	Baselines
	Gradient Flow Over Timesteps
	Performance Analysis
	Design Speed Analysis
	Final Designs
	Space Robot Design

	Conclusion

	Hardware Agnostic Control
	Methodology
	Modification Network
	Adversary Network
	Implementation

	Experiments and Results
	Environments
	Testing Parameters
	Modification Network vs Direct Learning
	Adversarial Learning
	Normalising Flow Network Analysis
	Failure Modes
	Robust Space Robot Control

	Conclusion

	Conclusions and Future Work
	Conclusions
	Short Term Future Work
	Directions for the Field

	Telescope Architecture
	Introduction
	Optical Space Telescopes
	Standard Interface
	Primary Mirror
	Modular Back-Plane
	Secondary Mirror

	Bibliography

