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Fig. 1: Path required for critic update in time step 0.

T=0
Throughout training all parameters are constrained using

only two loss functions. One constrains the critic network
(Jct) and the second constrains both the actor network and
the hardware parameters (Jat). For simplicity, the derivatives
are defined in terms of the network outputs not their trainable
parameters since these are architecture dependant. In the case
of the actor this is at and for the critic, it is Vt. Figure 1
highlights the path used to calculate the critic loss for the
first time step (Jc0). The derivative of this function defines
the first update used to optimise the critic network:

∂Jc0
∂V0

. (1)

From previous definition we know that

JC0 =
(
γ0r0 + µφ(s1, v)− µφ(s0, v)

)2
, (2)

so the final equation used to constrain the critic at time T = 0
is

∂Jc0
∂V0

= −2 (r0 + µφ(s1, v)− µφ(s0, v)) . (3)

The action loss is used to constrain the parameters of the
robot v and the weights of the actor network, θ. However,
for the first time step there is no differentiable pathway from
the loss to v and only a single step derivative of Ja0, ∂Ja0

∂a0
,

as shown in Figure 2. It is know that

Ja0 = −Â0log(πθ(a0|s0))−H0(πθ(a0|s0)). (4)

We take the partial derivative of this w.r.t. the action a0 by
applying the product rule to the first term and noting that the
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Fig. 2: Derivative path for first actor update.

differential of entropy is log(πθ(a0|s0)) + 1:

∂Ja0
∂a0

= −

[
∂Â0

∂a0
log(πθ(a0|s0)) + Â0

∂log(πθ(a0|s0))
∂a0

]
− [log(πθ(a0|s0)) + 1]

(5)

We additionally note that since the advantage is defined as

Ât =

T∑
t

γtrt − V (st, v), (6)

and the reward rt is non-differentiable, ∂Â0

∂a0
= 0. This leaves

us with the final equation

∂Ja0
∂a0

= − Â0

πθ(a0|s0)
− log(πθ(a0|s0))− 1, (7)

which is used to constrain the actor network at T = 0.

T=1
At this time step there exists still only one derivative path

for the critic update (as seen in Figure 3) giving the same
output as equation 3 but for the current time step (∂Jc1∂V1

),

JC1 =
(
γ1r1 + µφ(s2, v)− µφ(s1, v)

)2
, (8)

∂Jc1
∂V1

= −2 (γr1 + µφ(s2, v)− µφ(s1, v)) . (9)

There also exists a second path for ∂Ja1

∂a1
, similar to that

in equation 7. A visualisation of this can be seen in Figure
4. The derivative can then be defined for this time step,

∂Ja1
∂a1

= − Â1

πθ(a1|s1)
− log(πθ(a1|s1))− 1 (10)

There also now exists a non-trivial path for ∂Ja1

∂v , shown in
Figure 5 and defined as,

∂Ja1
∂v

=
∂Ja1
∂a1

∂a1
∂s1

∂s1
∂v

. (11)



Fig. 3: Critic update for T = 1

Fig. 4: Derivative path for second actor update.

It is here that the importance of the differentiable transi-
tion function becomes apparent, otherwise there would be
no information flow from the action loss to the morphol-
ogy parameter (v). Note that dotted lines represent non-
differentiable paths.

The first term in equation 11 has already been defined
in equation 10. The second term (∂a1∂s1 ) is network specific,
and can be easily obtained via auto-differentiation across
the entire network w.r.t. the network inputs rather than the
network parameters. The final term ∂s1

∂v must be obtained
from the differentiable simulator and is specific to the
environment being used.

T=2

The equations used to constrain the actor and critic net-
works, ∂Ja2

∂a2
and ∂Jc2

∂V2
respectively at this time step can be

found by re-defining equation 10 and 3 for the current time

Fig. 5: Derivative path for morphology constraint at T=1.

Fig. 6: First differential path to constrain v at T = 2

step (omitted here for brevity). However, there now exists a
complex combination of paths for information flow from the
actor loss to v. The first path is highlighted in Figure 6 and
mirrors that used in the previous time step,

∂Ja2
∂v

=
∂Ja2
∂a2

∂a2
∂s2

∂s2
∂v

. (12)

The second allows for gradients to back propagate through
time, shown in Figure 7 and defined as,

∂Ja2
∂v

=
∂Ja2
∂a2

∂a2
∂s2

∂s2
∂a1

∂a1
∂s1

∂s1
∂v

. (13)

The last potential path of information flow facilities transfer
through only the state transition function. This can be seen
in Figure 8 and is defined as,

∂Ja2
∂v

=
∂Ja2
∂a2

∂a2
∂s2

∂s2
∂s1

∂s1
∂v

. (14)

Combining the possible derivative paths gives the final
update used at T = 2 for v:

∂Ja2
∂v

=
∂Ja2
∂a2

∂a2
∂s2

∂s2
∂v

+
∂Ja2
∂a2

∂a2
∂s2

(
∂s2
∂s1

+
∂s2
∂a1

∂a1
∂s1

)
∂s1
∂v
(15)

It is important to notice that this update applies only if Ja2
is used to constrain v at T = 2, if Ja1 is also used then the
derivative path becomes

∂Ja1 + ∂Ja2
∂v

=
∂Ja1
∂a1

∂a1
∂s1

∂s1
∂v

+
∂Ja2
∂a2

∂a2
∂s2

∂s2
∂v

+
∂Ja2
∂a2

∂a2
∂s2

(
∂s2
∂s1

+
∂s2
∂a1

∂a1
∂s1

)
∂s1
∂v

.

(16)



Fig. 7: Second differential path to constrain v at T = 2

Fig. 8: Last differential path to constrain v at T = 2

Fig. 9: Full path of information flow for the morphology update at T = 2

This full path is shown in Figure 9.

T=3
As with T = 0, T = 1 and T = 2 the derivative used to

constrain the critic network parameters remains the same at
T = 3, but defined for the this time step. The same theory
applies to the actor network parameter update, as with the
standard RL pipelines. However, there now exists a complex
path for information to flow on the backpass to allow for
informed updates to v. The full path for T = 3 can be seen
in Figure 10. A brief comparison of this figure and Figure
9 shows each new time step introduces exponentially more
differential paths. In the case of T = 3 there are 7 potential
paths for ∂Ja3

∂v , without the inclusion of Ja2 and Ja1. This
increase leads to high computation demands. As a result there
exists a compact version of ORCHID where gradients are
detached in between time steps. This leads to a derivative
path similar to that shown in Figure 5 and 6 existing at
each time step. This limits the memory demands throughout
training.



Fig. 10: Full derivative path for T = 3


