
ORCHID: Optimisation of Robotic Control and Hardware In Design
using Reinforcement Learning

Lucy Jackson1, Celyn Walters 1, Steve Eckersley2, Pete Senior 2 and Simon Hadfield1

Abstract— The successful performance of any system is
dependant on the hardware of the agent, which is typically
immutable during RL training. In this work, we present
ORCHID (Optimisation of Robotic Control and Hardware In
Design) which allows for truly simultaneous optimisation of
hardware and control parameters in an RL pipeline. We show
that by forming a complex differential path through a trajectory
rollout we can leverage a vast amount of information from the
system that was previously lost in the ‘black-box’ environment.
Combining this with a novel hardware-conditioned critic net-
work minimises variance during training and ensures stable
updates are made. This allows for refinements to be made to
both the morphology and control parameters simultaneously.
The result is an efficient and versatile approach to holistic robot
design, that brings the final system nearer to true optimality.
We show improvements in performance across 4 different test
environments with two different control algorithms - in all ex-
periments the maximum performance achieved with ORCHID
is shown to be unattainable using only policy updates with the
default design. We also show how re-designing a robot using
ORCHID in simulation, transfers to a vast improvement in the
performance of a real-world robot.

I. INTRODUCTION

The reinforcement learning (RL) paradigm suffers from
an inherent limitation, caused by the intrinsically coupled
physical laws that underpin motion. The successful perfor-
mance of any agent in a given environment is dependant
on both its physical design and control capabilities. In some
cases a poor mechanical design may cause an impossible
control problem, such as a walker with legs too short to
reach a target, see Figure 1a. In less extreme cases, designs
may be inefficient, with excess material or joints, leading
to high energy consumption and/or poor movement patterns.
Deep RL and other data-driven learning techniques are now
capable of learning complex control polices with exceptional
results [1]–[3]. However, these techniques treat hardware
as immutable and learn no useful representation for how
changes may affect the environment or task outcome. No
amount of RL training can overcome a fundamentally flawed
hardware design.

Analytical methods to optimise robotic design do exist
and are based around a combination of computational soft-
ware, multi-objective optimisation techniques and human
in the loop prototyping and testing [4], [5]. The use of
these techniques makes the design process a long, arduous
and expensive one. They attempt to serve as a proxy for

*This work was supported by Surrey Satellite Technology Ltd.
1 University of Surrey, GU2. l.jackson@surrey.ac.uk,

s.hadfield@surrey.ac.uk, celyn.walters@surrey.ac.uk
2Surrey Satellite Technology Limited. Tycho House, GU2.

s.eckersley@sstl.co.uk, p.senior@sstl.co.uk

(a) Agent changing its control policy to try and complete a task.

(b) Agent changes its morphology, rendering the control policy useless.

(c) Agent is able to complete the task by changing both its morphology
and control policy.

Fig. 1: Illustration of the impact of the ORCHID system on an agents ability
to achieve a task.

optimizing the final performance of the agent in a real
task. However, the growing complexity of learned control
algorithms is rendering these proxies less and less valid.

Unfortunately, it is impossible to decouple what constitutes
a good hardware design from the control policy used. Ap-
proaches to automated morphology optimization generally
assume a simplistic control scheme. This means that once
the hardware is finalized and a more custom control policy
is developed, the previously chosen hardware may no longer
be optimal, as shown in Figure 1b. A biological example
of the interconnectedness of mechanical design and motor
skills, can be seen in human athletes. Sprinters aim to
develop stronger hip muscles and a technique that involves
higher frequency, shorter strides, while long distance runners
require stronger ankle muscles and longer strides at a lower
frequency [6]. These solutions are only possible thanks to
the joint consideration of both mechanical design and motor
control. This raises the question of whether we can effec-
tively automate the full design of the agent. The approach
proposed in this paper is designed to unify the design of both
the control policy and the robotic morphology bringing the
final system nearer to true optimality while providing a more
time efficient and less costly design process.

To date, most RL techniques that have touched on this
co-optimzation problem rely on intelligent sampling and
sheer computational power to find an optimal combination.
They utilise high fidelity simulators that allow for refinement
of the hardware design during simulation, therefore side-
stepping the need to re-build hardware in between each trial.

Solving the problem in this manner cannot be considered
as genuine co-optimisation since the problem is decoupled
into design generation and policy optimisation and solved
iteratively. Furthermore, the joint control and hardware space
is very complex: each hardware design can only be refined
up to a point before changes to the fixed control policy
are necessary for further improvement. The dual problem of
refining control policies for a collection of fixed, randomly
sampled hardware designs, suffers from severe scalability
issues, since the high dimensional nature of modern control
policies make their repeated optimization very costly.

We propose a truly unified approach where a single RL
system optimises both the morphology of the robot and the
control policy simultaneously, as shown in Figure 1c. Our
method takes inspiration from the concept that fundamentally
underpins all forms of deep learning – hierarchical partial
differentiation. By using a modern simulator during opti-
misation, consisting of a differentiable transition function,
we are able to form a complex differential path throughout
a rollout. This allows our system to leverage vast amounts
of information that was otherwise lost in the ‘black box’
environment. We exploit this information to quantify the
coupled relationship between physical design and control of
a robot-agent pair, leading to improved designs and increased
performance. In addition, the hardware parameters can be di-
rectly modelled without the need for function approximators.
This makes it possible to transfer the resultant designs to the
real world, as we demonstrate with a balance robot.

To summarise, the contributions of this paper are 1) The
first work that, to the best of our knowledge, allows a
truly unified general approach to hardware and software
co-optimisation capable of dealing with kinematic design
and complex control policies. 2) The first work to integrate
fully differentiable simulation into an RL pipeline. 3) A
new hardware conditioned critic to improve the stability of
reinforcement learning across changing hardware designs.

II. RELATED WORK

Co-optimisation of morphology and control has been of
interest for decades in the field of robotics. Early approaches
used a full set of dynamic equations to solve for both the
morphology and control [7]–[9]. However, this becomes non-
trivial for any complex system and is impossible to imple-
ment in the more common model-free scenario. Evolutionary
computation has been used to solve the design problem [10]–
[12]. While the results are promising these methods are
computationally expensive and data inefficient.

More recently the problem has been approached in an
RL setting. Ha [13] bridged the gap between evolutionary
computation and RL by using a population based policy
gradient method to sample the optimal robot-agent pair. Al-
though their method yielded a higher reward in fewer training
iterations when compared to the ‘out-of-the-box’ agent, the
method is computationally expensive since a population of
designs must be maintained throughout training. Schaff et
al. [14] propose a similar approach whereby they treat the
parameterised design as an additional input to the control

policy. Throughout training they maintain a distribution of
designs and continually shift this distribution towards higher
performing regions of the design space. Fundamental to the
success of their method is that their control policy maintains
generalization over morphologies in the distribution – a
widely documented challenge in the field of RL [15].

Luck et al. [16] noted the need to maintain a distribution
of designs as a limitation and instead decompose the problem
as a bi-level optimisation. They alternate optimizing the
morphology and the control policy. By learning Q-values
over the design distribution and using this to pre-evaluate
agent performance prior to testing they reduced size of design
distribution that must be maintained. This method is reliant
on learning Q-values over a wide distribution of robotic
designs, or risk missing out on the optimal design due to
poor function approximation. Our work proposes a novel
hardware conditioned critic to mitigate this issue, and also
avoids the explicit decoupling of the two design elements.

Avila Belbute-Peres et al. [17] propose an approach to
directly optimise robotic morphologies and solve simple con-
trol problems. They achieve this by re-defining the systems
using differentiable mathematical concepts on a case-by-case
basis (similar methods are shown in [18], [19]). Application
of their method is limited since they require differntiable
reward functions, which are typically sparse step functions
based on the final state of a system – and reward functions
almost universally hold no information about the robotic
morphology. In contrast to these, our proposed approach
only requires the system dynamics to be differentiable, while
solving for standard non-differentiable reward functions.

The most similar prior work to our proposed approach
is HWasp [20]. In this approach they re-define the effects
of the robotic hardware needing to be optimised separately
from the rest of the environment as a differentiable compu-
tational graph. The control policy and hardware policy are
then optimised in a standard RL framework. This approach
lacks generality since it requires a redefinition of the action
space, unique to each problem, as well as the inclusion
of bespoke computations for the graph implementation. In
contrast our proposed approach can be employed in standard
RL benchmark environments [21] since no change to the
action or state space is required. HWasp also suffers from
an inability to fully optimise changes in morphology or link
dimensions. Instead, modifications are made to kinematic
structure (inclusion of a mass damper system at either end of
a link) in order to allow for the necessary modifications to the
action space to be implemented. Our proposed approach does
not suffer from such limitations and the physical dimensions
of robots can be optimised directly.

III. METHODOLOGY

ORCHID provides a truly unified approach to optimising
robotic morphologies and control policies. Figure 2a shows
the standard RL feedback loop used to update an actor-critic
architecture based on experiences in an environment, for all
time steps in T . Visible in red is the simple differential path
required for network updates to improve agent performance.

This is dependant only on the action taken (at) at time
t and the subsequent reward (rt), leaving the agent with
little information to exploit during updates. Figure 2b shows
three time steps in an environment following ORCHID.
The use of a differentiable transition function (P) hugely
expands the capability of our system, via the introduction of
a complex differential path throughout the rollout. From this,
it becomes apparent how information on the impact/quality
of a change to the morphology parameters (v) can improve
performance. During training we allow the optimiser to
update the morphology parameter and/or the agent param-
eters in a way that best improves performance throughout
the system. The exact robotic morphology parameterisation
vector (v) is environment specific and is sized by the number
of designable parameters, i.e if the mass and width of each
leg on a quadrouped robot is to be optimised: v ∈ R8×1.

A. Reinforcement Learning Formulation

We solve the co-optimisation problem in an RL setting, in
which the state is fully observable and episodes/transitions
are modeled as a finite Markov Decision Process (MDP).
The MDP is represented by the tuple (S,A,P, r, γ), where
S is the state space, A is the action space, P(st+1|st, at) is
the state transition function, r(st, at) is the reward function
and γ is the reward discount rate. The control of the agent
in this environment is determined by policy πθ(at|st), which
uses an agent paramtereised by θ to take action at from state
st at time t. During optimisation, parameters θ are updated
such that the expected return, R =

∑T
t=0 γ

tr(st, at), over
trajectories induced by πθ(at|st), is maximised, where T
is the length of an episode. The optimal values (θ∗) are
determined by solving:

θ∗ = argmax
θ

Es∼P,a∼πθR (1)

B. Conditioning RL on morphology

During standard RL, the morphology of a robot (v) is
treated as immutable. However, in this work we allow it to
change during training. We make P a function of v such that
P(st+1|at, st, vt). This allows for the derivative of the future
state with respect to the morphology to be computed. Note
that vt is only updated between episodes and is therefore
referred to as v in the remainder of this paper. Exploiting
the fact that the performance of an agent is now dependant
on v and θ, we introduce it as a trainable parameter and
equation 1 becomes:

(θ∗, v∗) = argmax
θ,v

Es∼P,a∼πθR (2)

Successful learning with modern RL algorithms is usually
dependant on an accurate estimation of the value of each state
(V (st)). In this setting the value becomes dependant on v,
giving V (st, v). The value is used to calculate the advantage
(Ât), defined as:

Ât =

T∑
t

γtrt − V (st, v), (3)

(a) Standard RL loop.

(b) Three unrolled time steps in ORCHID.

Fig. 2: In both images the forward pass is shown in black and the backward
pass in red. Non-differentiable paths are shown as dashed lines.

The use of the advantage during actor updates reduces
variance during training in a way that stabilises learning and
prevents exploding gradients. The value function is usually
learnt as a distribution over states by the critic network,
(µφ), parameterised by φ. In order to maintain stability
throughout training we require an accurately learnt value
function approximation. Given this we require µφ to learn
a distribution which does not lose reliability every time
the morphology is modified. In order to facilitate this, we
condition µφ on v during training and optimse for:

φ∗ = argmin
φ

Es∼P,a∼µφ(R− V (s, v))2 (4)

The result is a general network, µφ(Vt|st, v) that is capable
of approximating Vt based on the morphology at hand.

C. Parametric control optimisation
Our approach is agnostic to the control policy architecture,

given it is differentiable and can be parameterised. In our
experiments we test two types of control policies. The first
is a classical PID controller, where the policy is defined as:

at = ω1et + ω2

∫
et + ω3

det
dt
, (5)

and parameterised as θ = {ω0, ω1, ω2}. Here et is the
difference between st and a reference vector. Secondly we
test a deep multi-layer-perceptron control network parame-
terized as θ = {wi, bj , wi+1, bj+1, ..., wI , bJ} where w are
the weights, and b are the biases of the network.

D. Parameter Co-Optimisation

Optimising parameters θ, v and φ according to equations
2 and 4 is nontrivial. These equations are highly nonlinear
and include many complex inter-related functions. To deal
with this, we make use of optimization techniques that
have proved highly successful in the field of deep-learning.
Specifically, we formulate the entire system including the
actor, critic and environment updates (but not the reward
function) as a chain of partial derivatives leading back from
the final loss functions. We use the composition of these
partial derivatives to make small updates to the parameters
based on the value of the loss functions, and repeat this
across many different explorations of the input space.

The applications of the chain rule for back-propagation
within a multi-layer perceptron (i.e. Figure 2a) are well
understood. Likewise, the optimization of parameters for a
PID controller are trivial to compute and will not be repeated
here. Instead, we focus on the propagation of information
along the other routes shown in red in Figure 2b.

The introduction of v into the optimisation results in
a number of new partial derivative terms necessary for
backpropagation, compared to the standard formulation. ∂s∂v ,
∂s
∂a and ∂st

∂st−1
. ∂s
∂a can be solved explicitly from the forward

pass, while ∂s
∂v and ∂st

∂st−1
require the use of a differentiable

transition function. We achieve the state transition function
from the rest of the environment, giving a split environment
consisting of P and r, as seen in Figure 2b.

The unified approach to co-optimisation means a single
loss function (Ja) drives the refinement of θ and v, based on
its differential such that:

∂Ja
∂v

=
∂Ja
∂a

∂a

∂s

∂s

∂v
, (6)

and
∂Ja
∂θ

=
∂Ja
∂a

∂a

∂θ
. (7)

However, careful examination of the full differential path
shown in Figure 2b reveals the dependency of a single point
in the state space on all previous actions and states. This
requires gradients to flow across a timestep meaning a single
step trajectory cannot optimize v because no gradient flows
through the transition function. For example we can see that
the update for v from a 3 step rollout should be:

∂Ja1 + ∂Ja2
∂v

=
∂Ja1
∂a1

∂a1
∂s1

∂s1
∂v

+
∂Ja2
∂a2

∂a2
∂s2

∂s2
∂v

+
∂Ja2
∂a2

∂a2
∂s2

(
∂s2
∂s1

+
∂s2
∂a1

∂a1
∂s1

)
∂s1
∂v

(8)

Indeed the number of routes for gradient flow grows expo-
nentially with the length of the rollout, a full derivation can
be found in the supplementary material. To counteract this,
it is possible to limit the gradient flow between pairs of time

steps as shown by the green line. This also improves com-
putational efficiency of our method since the computational
graphs that need to be stored during training are smaller.

E. Differentiable State Transitions

In this work we employ a method similar to [19] for
defining our simulators. In order to use ORCHID the en-
vironment must have a differentiable transition function as
detailed above, necessary for the calculation of ∂s

∂v . Although
this could theoretically preclude certain environments, the
advancement of differentiable simulators means behaviours
such as collisions [18], grasping and soft deformable struc-
tures [22] can now be modelled using fully differentiable
functions. It is also important to highlight that gradients do
not flow between v and µφ, shown by the dashed black
line in Figure 2b. This is because updates to the robot
design should be driven by optimising the performance on
the given task, not to improve the system’s knowledge of
reward distribution. Instead, the interaction between v and
µφ is limited to the conditional training explained above.

F. Losses and Design Constraints

The simultaneous nature of the optimisation in our method
means all parameters (θ, v, φ) are updated at the same time.
As mentioned previously we present two implementations of
ORCHID corresponding to two different parameterisations
of theta. Both use the same loss functions (A2C [23]),
critic architecture and overall set-up. However, they differ
in the actor network architecture. The first uses three fully
connected layers with 64 hidden nodes. The second imple-
mentation is a classical PID controller, demonstrating the
generality of our approach across control policies. The actor
takes an error signal (et) as input and outputs at, as seen in
equation 5.

The loss function that constrains θ and v is calculated as:

Jat = −Âtlog(πθ(at|st))−Ht(π(at|st)), (9)

where Ât is the advantage, as defined in equation 3 and Ht

is an entropy term, added to encourage exploration. The loss
used to update the critic network is calculated as:

Jct = (γtrt + µφ(Vt+1|st+1, v)− µφ(Vt|st, v))2. (10)

At every training iteration Ja and Jc are summed. Algorithm
1 outlines the system training. 1

During robotic hardware design it is normal to have
bounds on the allowable values of parameters. These may
be due to physical limitations, such as non-negative weights
and lengths or known environmental stipulations such as
storage or operating facility sizes. ORCHID implements
such constraints by passing parameters through a smooth
differentiable bounding function such as CELU [24]:

CELU(v, α) =

{
v, if v≥1
α exp

(
v
α

)
− 1, otherwise

(11)

1All code can be found at https://gitlab.eps.surrey.ac.
uk/lj00304/orchid.git

https://gitlab.eps.surrey.ac.uk/lj00304/orchid.git
https://gitlab.eps.surrey.ac.uk/lj00304/orchid.git

Algorithm 1 Implementation of ORCHID
1: Randomly initialise parameters θ, v and φ
2: for i = 1, 2, . . . total number of updates do
3: Initialise memory M ← ∅
4: Sample starting state si0 ∼ S
5: for j = 1, 2, . . . number of steps per update do
6: Sample action aj ∼ πθ(aj |sj)
7: Determine next state sj+1 = P(sj+1|aj , sj , vi)
8: Determine reward rj = r(sj+1, aj , vi))
9: Store transition Mµ ←Mµ ∪ (sj , aj , rj , vi, sj+1)

10: end for
11: Calculate Jc
12: Calculate Ja
13: θ ← θ + α∇Ja, v ← v + α∇Ja
14: φ← φ+ α∇Jc
15: end for
16: return θ, v and φ

IV. EXPERIMENTS AND RESULTS

We demonstrate the generality of our method by per-
forming all evaluations across four standard RL problems
(CartPole, Pendulum, Mountain Car and Balancer). Three
of these are OpenAi gym environments [21]. The fourth is a
newly developed simulation environment1 with a correspond-
ing physical robot system. Unless stated otherwise we keep
motor specifications and material choice/density the same as
the default. In all cases, updates to the morphology main-
tained the symmetry of parts and the overall configuration
of the robot. To further illustrate the generality of our work,
we repeat all experiments in all environments using both a
classical control policy, and an RL control policy.

A. Environments

In the CartPole environment the task involves balancing
a pole above a cart attached to an un-actuated joint where
motion occurs along a friction less track. A reward of 1
is given for each time step that the pole remains above
the cart (±15◦). Additionally a penalty is applied based on
the distance moved from the last step. This encourages the
system to minimize wasted motion. In this task setting we
allow the mass of the cart and length of the pole to optimised.

In the Pendulum environment the goal is to swing the
pendulum so that it remains in an upright position. A reward
is given based on the angular position and velocity of the
pendulum, and the force applied at each step. A higher
reward is given for a stationary upright pendulum achieved
using minimal force. In this setting we allow both the
mass and length of the pole to be optimised independently,
mimicking a change in the material and structure.

The Mountain Car environment requires a cart which
starts at the bottom of two ‘mountains’ to drive up the right
hand side to reach the goal. The engine is not strong enough
to do so, instead the cart must build up momentum by cycling
between the mountains. A negative reward is given for all
engine output and a sparse reward is given when the goal is
reached. The path planning aspect of this environment means
we cannot apply our classical control policy. In this setting
we allow the mass of the car to be optimised.

Balancer, the final demonstration of our co-optimisation
method is in a new environment. We set up a balancing
robot whose task is to remain upright by actuating a single
wheel-axle, as seen in Figure 5. This is a variation on the
cart pole environment with a direct coupling of the upright
to the chassis which induces a de-stabilising momentum
proportional to the length of the upright. This environment
encapsulates the highly coupled nature of design and control
since actuation of the upright is inextricably coupled to the
movement of the base. A similar reward function to cart pole
is used in that the robot should remain upright for as long
as possible while trying to minimise wasted movement. In
this experiment we allow the length of the upright and the
weight of the chassis to be optimised.

B. Baselines
We compare our method against three baselines, the first

is a standard PID/A2C baseline used to learn the control
policy for a fixed morphology. In the second, the morphol-
ogy is optimised using Covariance Matrix Adaptation with
Evolutionary Selection (CMA-ES) [25], while the control
policy is optimised individually using an inner RL loop,
either with the PID or A2C implementation. The third uses
Random Selection (RS) to optimise the morphology where
again, the control policy is optimised using an inner RL loop.
An Optuna implementation of both of these methods is used
[26]. In all cases, other than mountain car, we evaluate with
two different types of control policy.

C. Final Design Performance Analysis
First we show a direct comparison between the final

performance of designs chosen by ORCHID and the three
baselines, we do this for both the PID and A2C controller. To
mitigate the effects of random initialization and ensure that
findings are meaningful, every technique was evaluated with
10 different seeds. Figure 3 shows the median, min, max,
25th and 75th percentiles across these runs for each tech-
nique. The A2C/PID baseline was trained with the default
morphology, while the ORCHID algorithm was initialised
with this default morphology. Morphology initialisation for
CMA-ES and RS was left to the respective algorithms.

The implementation of ORCHID shows the highest max-
imum performance across all experiments and control poli-
cies. In fact, for all experiments the median with ORCHID is
higher than the maximum score achieved with the baseline.
This highlights the need for design co-optimisation since
the changes in morphology lead to improvements that are
unattainable using control policy updates alone.

We note smaller gains between ORCHID and the standard
baseline with the PID controller, as well as noticing lower
levels of performance compared to the use of a more complex
policy. This is due to the limitations of using a simpler
architecture to learn a complex policy. However, even with
the reduced control capability, the implementation of OR-
CHID with the PID controller leads to a higher maximum
performance than the A2C controller in 2/3 environments.
Again highlighting the need to allow for hardware design
optimisation.

(a) Cart Pole (b) Pendulum (c) Mountain Car (d) Balancer

Fig. 3: Final performance of our method and baselines in different environments. Each consists of 10 runs at random start points. Note that the start points
are the same for each algorithm in the env, with the baseline A2C/PID this is the fixed morphology used throughout.

(a) Cart Pole (b) Pendulum (c) Mountain Car (d) Balancer

Fig. 4: Comparison between ORCHID and baseline in time to solve the task. Results shown are the median, min and max values over 10 runs, each with
a random starting seed. Training was done using A2C controller.

D. Design Speed Analysis

Another advantage of our method is the acceleration of
the design cycle, and the sample efficiency of training. This
speed improvement manifests in two ways. First, as show
in Figure 4, the ability to optimize the hardware design
actually allows our joint system to converge in a similar time
frame, or more rapidly, than refining the control policy alone.
This is a very interesting result as our joint optimization
is strictly more complex and higher dimensional than the
baseline (with our target subsuming the baseline target). The
same is seen in the PID experiments but for conciseness
the results are omitted. This increase in convergence speed
demonstrates that updating the hardware design is often a
far more effective way to improve performance than trying
to refine a control policy for a sub optimal hardware design.

The second improvement in speed comes when comparing
the system to CMA-ES and RS. While our technique only
needs to run a single optimization to convergence, these
baselines must repeat the entire process multiple times for
different samples. In our experiments, this lead to an approx-
imate factor of 3 increase in the runtime for these baselines,
as shown in Table I. On top of this, the implementation of
both CMA-ES and RS require maintaining the distribution
of control policies, leading to high memory overheads.

E. Sim-to-real with ORCHID

Finally we show how the co-optimisation of design and
control policy using our approach improves performance in
sim-to-real transfer. We show this using an implementation
of the balancer robot. The baseline design was trained in
simulation using the classical PID control policy, gaining a
maximum reward of 102. After joint hardware and control
optimization, our method produced a robot with a shorter

TABLE I: Comparison of run times for ORCHID and all baselines.

Time to convergence, average
over 10 runs (hrs)

Env Control Baseline CMA-ES RS ORCHID

Cart Pole PID 1.2 8.2 8.1 4.9
A2C 1.1 9.4 8.9 5.1

Pendulum PID 2.7 15.7 16.3 6.5
A2C 2.4 13.8 15.6 6.8

Mountain Car PID n/a
A2C 2.1 12.9 13.5 4.9

Balancer PID 1.8 12.7 15.8 7.8
A2C 2.6 15.4 16.6 6.7

TABLE II: Comparison between original prototype and ORCHID design

Baseline ORCHID
Chassis Mass 226g 404g
Upright Length 28cm 17cm
Reward in sim (avg over 10 runs) 102 967
% of successful runs of prototype 7 83

lighter upright, and a heavier chassis, leading to a maximum
reward in simulation of 967. Both variants of the robot
were prototyped physically (Figure 5) and tested in real life.
Videos of performance are available in the supplementary
material. In practice the performance in real life mirrored that
in simulation where the optimised design was able to remain
upright for a substantially longer amount of time. Even
more impressively, the optimized design proved capable of
re-stabilising when external perturbations were applied – a
scenario which was not included during training. Table II
shows a numerical comparison between the two balancer
variations.

V. CONCLUSIONS

In this paper we presented ORCHID – the first RL
approach to jointly optimise robotic morphology and control

(a) Original design (b) Optimised design

Fig. 5: Comparison between initial design and the optimised design,
determined using ORCHID.

policies where changes can be made to the robots kinematics.
This method addressed the two main problems with prior
research. The first being the need to maintain a distri-
bution of control policies and robotic designs throughout
the optimisation process and the second being the itera-
tive way in which state-of-the-art algorithms optimise the
control and design separately. Our method overcomes both
of these issues by proposing a unified optimization scheme
which simultaneously updates both the control parameters
and design parameters. The combination of a critic network
conditioned on the morphology and a differentiable transition
function that allows gradient flow throughout a rollout, led
to improvements in the maximum performance for every
combination of environment and control policy. In addition
to finding the jointly optimal control policy and hardware
pairs, ORCHID boasts the added benefit of greatly increasing
design speed when compared to naive brute force search
methods. We believe that this method of co-optimisation
can aid in streamlining the design process of robotic agents,
with particular gains in the early prototyping stages. Moving
forwards, this method should be advanced to enable changes
in fundamental kinematic structure – including degrees of
freedom, as a way to further improve the design process.

VI. ACKNOWLEDGEMENTS

This work was partially supported by Surrey Satel-
lite Technology Ltd and the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) grant agreement
EP/S035761/1 ‘Reflexive Robotics’.

REFERENCES

[1] Y. Lui, “Deep reinforcement learning: An overiview,” CoRR, vol.
abs/1701.07274, 2017.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” in Proc. in 4th International Conference on Learning
Representations (ICLR), San Diego, Ca, USA, 7-9, May San Juan,
Puerto Rico, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nature (London), vol. 529, no. 7587, pp. 484–489,
2016.

[4] T. Kivela, J. Mattila, and J. Puura, “A generic method to optimize
a redundant serial robotic manipulator’s structure,” Automation in
Construction, vol. 81, pp. 172–179, 2017.

[5] A. Hassan and M. Abomoharam, “Modeling and design optimization
of a robot gripper mechanism,” Robotics and Computer-Integrated
Manufacturing, vol. 46, pp. 94–103, 2017.

[6] T. W. Dorn, A. G. Schache, and M. G. Pandy, “Muscular strategy
shift in human running: dependence of running speed on hip andankle
muscle performance,” Journal of Experimental Biology, pp. 1944–
1956, 2012.

[7] J. Park and H. Asada, “Concurrent design optimization of mechanical
structure and control for high speed robots,” in 1993 American Control
Conference, Jun. 1993.

[8] T. Ravichandran and D. G. Heppler, “Simultaneous plant-controller
design optimization of a two-link planar manipulator,” Mechatronics,
vol. 16, no. 3, pp. 233–242, 2006.

[9] S. F. Alyaqout, P. Y. Papalambros, and A. G. Ulsoy, “Combined
robust design and robust control of an electric dc motor,” IEEE/ASME
Transactions on Mechatronics, vol. 16, no. 3, pp. 574–582, 2011.

[10] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evolution:
Towards efficient automatic robot design,” CoRR, vol. abs/1906.05370,
2019.

[11] J. E. Auerbach and J. C. Bongard, “Dynamic resolution in the co-
evolution of morphology and control,” in In Proc. of the Twelfth
International Conference on Artificial Life (ALIFE XII), 2010.

[12] T. F. Nygaard, C. P. Martin, E. Samuelsen, J. Torresen, and K. Glette,
“Real-world evolution adapts robot morphology and control tohard-
ware limitations,” In Proceedings ofthe Genetic and Evolutionary
Computation Conference, Jul. 2018.

[13] D. Ha, “Reinforcement learning for improving agent design,” Neural
Information Processing Systems Reinforcement Learning Workshop,
2018.

[14] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly learn-
ing to construct and control agents using deep reinforcement learning,”
in 2019 International Conference on Robotics and Automation (ICRA),
2019.

[15] J. Lundell, M. Hazara, and V. Kyrki, “Generalizing movement prim-
itives to new situations,” in Proc. 18th Towards Autonomous Robotic
Systems. Guildford, England. 19-21: Springer International Publish-
ing, Jul. 2017, pp. 16–31.

[16] K. S. Luck, H. B. Amor, and R. Calandra, “Data-efficient co-adaptation
of morphology and behaviour with deep reinforcement learning,” in
Proceedings of the Conference on Robot Learning, PMLR, vol. 100,
Oct. 2020, pp. 854–869.

[17] F. de A. Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z.
Kolter, “End-to-end differentiable physics for learning and control,”
in Advances in Neural Information Processing Systems 31 (NeurIPS
2018), 2018.

[18] J. Liang and M. Lin, “Differentiable physics simulation,” in ICLR 2020
Workshop on Integration of Deep Neural Models and Differenttial
Equations, 2020.

[19] J. Degrave, M. Hermans, J. Dambre, and F. wyffels, “A differentiable
physics engine for deep learning in robotics,” Frontiers in Neuro-
robotics, vol. 13, 2019.

[20] T. Chen, Z. He, and M. Ciocarlie, “Hardware as policy: Mechanical
and computationalco-optimization using deep reinforcement learning,”
in Conference on Robotic Learning (CoRL), 2020.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016.

[22] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu,
D. Rus, and W. Matusik, “Chainqueen: A real-time differentiable
physical simulator for soft robotics,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 6265–6271.

[23] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” CoRR, vol. abs/1602.01783, 2016.

[24] J. T. Barron, “Continuously differentiable exponential linear units,”
CoRR, vol. abs/1704.07483v1, 2017.

[25] I. Loshchilov and F. Hutter, “CMA-ES for hyperparameter optimiza-
tion of deep neural networks,” CoRR, vol. abs/1604.07269, 2016.

[26] T. Akiba, S. Sano, T. Tanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,” in Pro-
ceedings of the 25rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Reinforcement Learning Formulation
	Conditioning RL on morphology
	Parametric control optimisation
	Parameter Co-Optimisation
	Differentiable State Transitions
	Losses and Design Constraints

	Experiments and Results
	Environments
	Baselines
	Final Design Performance Analysis
	Design Speed Analysis
	Sim-to-real with ORCHID

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	References

