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Abstract— The use of reinforcement learning (RL) has led
to huge advancements in the field of robotics. However data
scarcity, brittle convergence and the gap between simulation
& real world environments, mean that most common RL
approaches are subject to over fitting and fail to generalise
to unseen environments. Hardware agnostic policies would
mitigate this by allowing a single network to operate in a
variety of test domains, where dynamics vary due to changes in
robotic morphologies or internal parameters. We utilise the idea
that learning to adapt a known and successful control policy is
easier and more flexible than jointly learning numerous control
policies for different morphologies.

This paper presents the idea of Hardware Agnostic Rein-
forcement Learning using Adversarial selection (HARL-A). In
this approach training examples are sampled using a novel
adversarial loss function. This is designed to self regulate
morphologies based on their learning potential. Simply applying
our learning potential based loss function to current state-
of-the-art already provides ∼ 30% improvement in perfor-
mance. Meanwhile experiments using the full implementation
of HARL-A report an average increase of 70% to a standard
RL baseline and 55% compared with current state-of-the-art.

I. INTRODUCTION

Deep Reinforcement Learning (deep RL), named such due
to the use of neural networks as powerful function approx-
imators, has recently demonstrated huge success. Notably,
beating world class players at strategic board games [1],
controlling continuous robotic systems [2] and playing video
games to superhuman standards [3]. However, taxing data
requirements, brittle convergence and sensitivity to hyper-
parameters still pose issues in the deep RL domain. One
aspect of parametric sensitivity which has received limited
attention, is sensitivity to the specifics of the simulator or
robotic hardware used to train the agent. This creates a
huge demand for data collected using real-world hardware,
something that is costly, time inefficient and in some cases
dangerous. Even worse, data collected in one lab using one
robot cannot easily be utilised elsewhere, unless training
is to occur on the exact same robot in the exact same
configuration. Even then, differences in the calibration of the
robots are likely to hurt reproducibility. Hardware agnostic
policies would mitigate some of these issues by allowing
experiences on semi-identical hardware to be pooled and
used collectively, a technique widely used in the supervised
learning community. On top of this it would make the
sharing, reproduction and testing of results much easier,
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Fig. 1: Representation of HARL-A. Where a single agent can suc-
cessfully operate on a range of different robots, whose configuration
has been determined by an adversary.

aiding in the development of advanced intelligent systems
[4]. Semi-identical is defined in this paper as a robot of the
same fundamental structure (e.g. Degrees of Freedom and
action space), but with varying dynamics due to differences
in size, shape, construction or calibration.

The idea of hardware agnostic policies has not been
tackled explicitly in prior work, but transfer learning provides
a promising start. Transfer learning has been extensively
explored in a cross-task setting [5] [6] and more recently
in bridging the ‘reality-gap’: the inability of agents trained
in simulation to operate on real world hardware [7]. These
methods aim to overcome inter-dependence of hardware
properties and learnt policies. This is often considered a
form of multi-robot transfer learning, which allows a primary
agent to utilise data collected by a second, similar agent
carrying out the same task [8]. The source and target domains
are not drawn from a distribution at test or training time,
but are instead prior knowledge, relating to one or two
morphologies. The definition of hardware agnostic policies
proposed in this paper is somewhat comparable to that of
multi-robot transfer learning but with broader applicability.
In this paper training and target domains will be drawn from
a continuous distribution of hardware parameters, rather than
a discrete number of pre-determined possibilities.

HARL-A is a novel system to train hardware agnostic
policies, a representation of which can be seen in Figure 1.
It is comprised of a pre-trained/expert policy, a modification
policy and an adversary network. The modification policy
is conditioned on the change in morphology and learns to
adjust the output of a pre-trained ‘expert’ policy based on the
changing hardware. The adversary network is trained using a
novel loss function, derived from the agent’s ability to learn
on each robotic morphology, hence named learning potential.
This allows for morphologies on which the agent can never
learn to be removed from the training distribution, shifting



focus to areas which are both challenging, and possible. The
result is a general policy that is capable of operating on semi-
identical robots with zero-shot transfer, meaning no fine-
tuning is required when the policy is rolled out on a new
robot. Unlike standard approaches to multi-robot transfer
learning, the proposed method increases the scope of the
agents ability during the learning phase, as oppose to utilising
it after data collection.

To summarise, the contributions of this paper are: 1)
The first work to explore training of hardware-agnostic
RL agents. 2) A novel modification-network architecture
for multi-robot learning. 3) A novel learning criteria and
adversarial sample selection approach to mitigate sample
scarcity in RL training.

II. RELATED WORK

Transfer learning is a popular field of study for RL, and
the majority of the literature in this field focuses on the
transfer of policies between tasks [5], [6], [9]–[11], known
as multi-task transfer learning. Prior work has also looked
into transfer between control policies [12], dynamics [13],
non-stationary environments [14], and visual inputs [15].

Yu et al. [16] propose using multiple policies with varying
behaviors, where each is optimized for a particular dynamic
vector. At the search stage, the highest performing policy
is selected using co-variance matrix adaptation. Devin et
al. [17] also explore the idea of having multiple trained
networks that they draw from based on the task at hand.
They decompose neural network policies into ‘task-specific’
and ‘robot-specific’ modules, where ‘task-specific’ modules
are shared across tasks and ‘robot-specific’ modules across
different robots. The recombination of these modules after
training allows for different tasks to be carried out on
different robots, however this requires training across options
simultaneously, and tasks cannot be learnt in sequence.

Finn et al. [18] move away from the idea of training and
selectively using multiple expert networks and instead use
meta-learning. They identify network parameters that are
most sensitive to changes in a task. This allows a good
initialisation of network parameters to allow for ‘few-shot’
transfer. Nagabandi et al. [19] built on this idea and increased
network generalization by treating each time-step as a new
task, breaking away from the episodic nature of RL. Again,
this method, along with most meta-learning approaches,
requires experience in the new setting before the task can be
completed. This idea of adapting or fine tuning is something
our method does not need.

Chen et al. [20] propose a method that is considered
current state-of-the-art in the context of hardware agnostic
policies. They augment a physical parameter vector with
the environmental observation and use this as the agents
observed state. During training the physical parameter vector
is randomly selected from a discrete distribution of 7 pos-
sibilities. Testing is then carried out on these 7 possibilities
plus 1 more. While they report strong results compared to
DDPG+HER, the scope of operation of their agent is limited
across the training distribution. On top of this, some policies

are fine-tuned in the test environment. While this is not as
laborious as re-training, zero-shot transfer is required for
policies to be truly hardware agnostic. They also show that
their explicit method falls short in situations when the task
policy is dependent on agent dynamics.

Adversarial networks are common in other areas of
machine learning, but are a lesser explored concept within
RL. Rajeswaran et al. [21] implemented an adversarial
inspired idea in the context of RL to increase robustness
of policies in Ensemble Policy Optimization (EPOpt). This
dual-step approach consists of policy optimisation using
samples from a batch of tasks whereby the distribution of
tasks is updated using the lowest performing experiences.
Evaluation of the algorithm shows that performing batch
optimisation on the worst performing subset of tasks leads
to more robust policies.

Pinto et al. [22] advance this idea by using a separate
adversarial network to apply perturbation forces to the sys-
tem during training. Their system, named RARL (robust
adversarial reinforcement learning) is set up as a two player
zero-sum discounted game, where the adversary’s reward
is the negative of the agents reward, and the loss func-
tions are derived accordingly. Though this method shows
improvements over a baseline, the application of adversarial
forces during training does not affect the dynamics of the
system. Shioya et al. [23] propose two modifications to the
RARL architecture, the first introduces a penalty term to
the adversary’s loss function for sampling training examples
that fall far from the current state. While the second utilises
sampling from a memory bank of adversary networks. Both
of these methods aimed to tackle the problem outline by
Bansal et al. [24], whose experiments showed that always
using the hardest environment can hinder the training of the
agent. Our method addresses this problem via the novel loss
function derived from the learning potential. This ensures
that the agent is provided with low performing samples on
which it can definitely learn.

III. METHODOLOGY

The goal of this work is to learn a robust, hardware
agnostic policy. More specifically a single learnt policy that
successfully works on all morphology vectors drawn from
the continuous distribution: v ∈ V . The system follows
the structure shown in Figure 2, where an adversary net-
work samples a value of vT . This is combined with the
environment observations, and the action that a canonical
expert network would have taken given that observation.
This extended state is used as an input to the modification
network, which outputs a modified action, suitable for the
robot with morphology vT .

Vector v can be of any size, dependant on the environ-
ment and each element represents the parameterisation of a
different robotic property. Examples include the dimensions
or mass of any limb or part and friction coefficients in
joints. During training, as illustrated in Figure 2, one v
is selected per episode roll out, hence vT . This value is
not time dependant within any single episode. The per-



Fig. 2: Flow diagram showing training loops used with HARL-A . The per-trajectory loop is shown in red, and the per-step loop in blue.

trajectory training loop is shown in red, in which whole
episodes are condensed into a single event and these are
used to optimise the adversary network. In blue is the per-
step training loop, in which every step is stored and used to
update the modification network. The weights in the expert
network are not updated at any point.

A. Reinforcement Learning Formulation

We formulate this as an RL problem in a fully observable
environment, modeled as finite horizon Markov Decision
Process (M). This is represented by the tuple: M =
(S,A,P, r, γ), where s ∈ S is a point in a continuous state
space, a ∈ A is a continuous action vector, P(st+1|st, at) is
the state transition function, r(st, at) is the reward function
and γ is the reward discount rate. In this setting, the goal of
a network is to find parameters θ that maximise the expected
return, R =

∑T
t=0 γ

tr(st, at), over trajectories induced by
the policy πθ(at|st), which takes action at, given state st at
time step t.

B. Modification Network

The overarching aim of the modification network is to
learn a policy, π̃θ̃(at|st), parameterised by θ̃ (note ˜
indicates parameters relate to the modification network),
that is capable of maximising the expected reward for any
morphology drawn from distribution v ∈ V . To achieve this,
the network is conditioned on vt: π̃θ(at|st, vt). In order to
condition the policy on the robotic morphology, the state
space of the modification network differs from that of a stan-
dard RL problem. In addition to morphology conditioning,
information is leveraged from a pre-trained expert network
which already has knowledge of the environmental dynamics.
To achieve both of these aims, an observation (ot ∈ O) is
obtained from the environment and is used by the expert
network to predict action at. ot and at are then concatenated
with the current morphology vector vT , giving the state space
for the modification network as: s̃t = vT ⊕ ot ⊕ at, where
⊕ denotes concatenation.

For a given parameter vector and corresponding transition
function, P(ot+1|ot, at, vT ), also now dependant on vt the
optimal policy parameters can be learnt such that the ex-

pected reward is maximized:

θ̃∗ = argmax
θ̃

E
s̃0

[
T∑
t=0

γtr(s̃t, ãt)

∣∣∣∣∣P(ot+1|ot, ãt, vT ), π̃θ(ãt|s̃t)

]
(1)

Different to standard RL settings, equation 1 shows that the
expected return of the modification network is conditioned
on the transition function since this varies with vT . Given this
definition, the desired policy should maximise its expected
return across all possible transition functions:

θ̃∗ = argmax
θ̃

E
vT[

E
s̃0

[
T∑
t=0

γtr(s̃t, ãt)

∣∣∣∣∣P(ot+1|ot, ãt, vT ), π̃θ̃(ãt|s̃t)

]]
(2)

There are multiple approaches to optimising equation 2,
dependant on the sampling of v. In this paper, first propose
sampling v randomly from a pre-defined design space. We
refer to this approach as Hardware Agnostic Reinforcement
Learning (HARL). One obvious limitation of HARL is that
a significant amount of time may be wasted training on sam-
ples that already perform well. This leads us to propose the
full HARL-A approach, which includes adversarial selection
of challenging, but achievable, training samples.

C. Adversarial Network

The role of the adversary is to sample morphology vectors
for the modification network to train on. It learns policy
πθ̄(v|θ̃), parameterised by θ (note ¯ indicates parameters
relate to the adversary network) and conditioned on the
current version of π̃θ̃. Intuition says that the modification
network should train on the lowest performing morphology
vectors, in order to improve overall behaviour. However,
when dealing with a large continuous design space there
are inevitably morphologies on which the agent can never
learn to ‘complete the task’. In a standard adversarial set-
up, since these samples have the lowest performance, they
would continually be selected for training, wasting valuable
resources. Instead we introduce the concept of learning
potential (lp).



This is calculated as the ratio between performance in
the environment following policy (π̃θ̃i ) and performance in
the environment following the same policy after K updates,
(π̃θ̃ i+K):

lp(vT ) =
Rπ̃θ̃ iλ

Rπ̃θ̃ i+k + λ
(3)

where λ is a constant used to ensure that division by zero
never occurs. lp(vT ) is interpreted as the agents ability to
learn a more effective policy for that morphology.

D. Implementation of HARL-A

Algorithm 1 outlines the system training. The modifica-
tion network is trained using a standard a PPO algorithm
implemented in PyTorch. The objective function used when
training the adversary is a variation on the standard PPO
algorithm [25], where the lp is used as opposed to the
normalised advantage:

L = min (−lp∇t,−lpclip(∇t,1−ε,1+ε))− αH(vT ) (4)

Here ∇t represents the ratio between policy updates, H(vT )
is the entropy of the adversary, calculated over its output.
ε is the clipping factor and α is the entropy coefficient. lp
is negated since the objective function is minimised during
training.

Training alternates between the modification network and
the adversary network. Prior to training the adversary a
copy is made of the modification network weights (θ̃) and
this is used to determine lp. Ñ and N are the number
of agent and adversary updates that are carried out before
training switches. Z is the number of steps per update for the
modification network, and K is the number of updates used
to calculate lp. For all experiments in this paper K = 10.

IV. RESULTS AND DISCUSSION

We demonstrate the performance of HARL and HARL-A
in three environments:

CartPole (CP): This is a standard OpenAI Gym control
environment [26]. The task is to balance a pole above a cart,
it is attached through an un-actuated joint and the system can
apply a force of ±1 to the cart which slides over a friction-
less track. Experiments are carried out varying the length
and mass of the pole and the mass of the cart. A point is
awarded for each time step the pole remains above the cart
(±15◦), a score of above 1000 is considered as solving the
problem. The expert network is trained for a pole length of
1 and a cart mass of 1.

BipedalWalker (BW): This is another standard environ-
ment from the OpenAI Gym control package. Here a bipedal
robot aims to move forwards with a reward earned based
on efficiency over distance travelled. If the robot falls it
gets −100 points and applying a motor torque costs points.
A more efficient walking pattern therefore earns a higher
final score. In this paper a score of above 250 is deemed as
successful. In our experiments either the size of the entire
walker is varied: vT ∈ R1, or the length and width of each
leg segment is varied independently: vT ∈ R8. For both

Algorithm 1 Implementation of HARL-A

1: Randomly initialise networks (θ̃, θ)
2: for i = 1, 2, . . . total number of updates do

# Modification Network Update
3: M̃ ← ∅
4: for j = 1, 2, . . . , Ñ do
5: vjT ∼ πθ
6: oj0 ∼ O
7: for t = 1, 2, . . . ,Z do
8: ajt ∼ π(o

j
t)

9: s̃jt = (vjT ⊕ o
j
t ⊕ a

j
t)

10: ãjt ∼ π̃θ(s̃
j
t)

11: õjt+1 ∼ P(o
j
t , ã

j
t , v

j
T )

12: M̃ ← M̃ ∪ (ojt , ã
j
t , r

j
t , v

j
T , o

j
t+1)

13: end for
14: Sample a random mini batch from M̃
15: Optimise θ̃ according to equation 2
16: end for

# Adversary Network Update
17: M ← ∅
18: θ̃i′ ← θ̃i

19: for J = 1, 2 . . . , N do
20: vjT ∼ πθ
21: for k = 1, 2, . . .K do
22: oj0 ∼ O
23: Optimise θ̃′ over a full roll out (lines 7 to 15)
24: end for
25: Calculate lp according to equation 3
26: M ←M ∪ (vjT , l

j
p)

27: Sample a random mini batch from M
28: Optimise θ using equation 4
29: end for
30: end for
31: return θ̃, θ

situations the expert network is trained for a walker of scale
or leg size 1.

SpaceRobot (SR): This is a novel environment developed
for use with this work 1. It comprises of a small, 10 Degree
of Freedom free-flying space robot aiming to reach its end
effector to a payload, the position of which is randomly
assigned at the start of each episode. A reward of −10 is
given if the joint limits of the robotic arm are exceeded, 100
points are awarded for successful capture of the payload if
the base has a sufficiently low velocity, 40 points are given
if the payload is captured but the base’s velocity is above the
threshold value, any form of capture is considered a success.
Lastly, a reward of −50 is given if any part of the robot,
excluding the end effector, collides with the payload. This
environment is used as it demonstrates a complex control
problem in three dimensions, using a sparse reward where
changes to the morphology have a huge impact on the system
dynamics 2. Therefore showing the ability of our method
to deal with complex control algorithms and design spaces.
For experiments the sizes of each link, on the four link
robot, are varied individually. The expert network was trained

1Code available at https://gitlab.eps.surrey.ac.uk/
lj00304/spacerobot_v1

2The micro-gravity operating environment means that every joint ac-
tuation creates an equal and opposite reaction upon the base. This is a
phenomenon called dynamic coupling that makes control very challenging.

https://gitlab.eps.surrey.ac.uk/lj00304/spacerobot_v1
https://gitlab.eps.surrey.ac.uk/lj00304/spacerobot_v1


TABLE I: Information on morphology vectors used during exper-
iments. A, B and C represent different experiments of varying
difficulty level.

Parameters A B C
CP Pole vT ∈ R1 [0.5,10]

Cart, Pole vT ∈ R2 [0.5,10]
SR Individual vT ∈ R4 [0.25,0.5] [0.5,0.75]
BW Whole vT ∈ R1 [1,1.25] [0.75,1] [0.75,1.25]

Individual vT ∈ R8 [1,1.25] [0.75,1] [0.75,1.25]

with link lengths, 0.25m, 0.25m, 0.25m and 0.05m. Due
to the environment’s sparse reward, lp is calculated for this
environment with R approximated as the % success over 50
episodes.

Balancer: We also demonstrate the successful application
of HARL-A on a physical balance robot, whose task is to
remain upright by actuating a single wheel-axle. Videos of
its performance under a single policy on a range of sizes can
be found in the supplementary material 3.

In this paper, a range of experiments were run to evaluate
HARL-A, these use the range of morphologies quoted in
Table I. Each experiment was run 3 times with 3 different
seeds, for 1e7 steps in the corresponding environment and
all results are an average of the 3 runs. To fairly evaluate
performance over these ranges, a consistent test distribution
was used for each experiment. This consists of 500 random
morphology vectors from the defined range. We evaluate our
method against current state-of-the-art for across morphology
control - hardware conditioned policies (HCP) [20], and a
standard PPO baseline.

A. Modification Network vs. Direct Learning

We first show the training progress of HARL compared to
an RL baseline, where the RL agent is trained using a random
sample from V for each T . Figure 3 shows performance as a
function of training iteration for BW-whole C. The policies
learnt using HARL reach a higher performance at a quicker
rate demonstrating that these tasks cannot be easily solved
with traditional hardware-dependent agents. Comparison to
HCP, also in Figure 3 shows how learning to modify the
output of a pre-trained network in contrast to learning a
single robust policy leads to higher performance at a quicker
rate. More detailed results can be seen in Table II. In all
cases the performance of HARL improves on both the PPO
and HCP baseline, validating our initial motivation. On top
of this, in almost all cases the improvement seen between
HCP and HARL is much larger than PPO and HCP. In fact,
for experiment SR-individual C neither PPO or HCP learnt
to reach the payload.

Figure 4 shows how the policies learnt for BW-whole C
perform as a function of the walker scale for all control
policies evaluated. Proving the increased generalisation ca-
pability of HARL compared with the PPO and HCP. Here
it can be seen that performance of HARL also leads to
increased performance outside of the training range, shown
by the black dotted line.

3https://www.youtube.com/watch?v=oxuByrlig2M

TABLE II: Comparison between proposed method HARL, HCP and
standard PPO. Quoted are the % success rates over test distributions.

Experiment PPO HCP HARL
CP Pole C 29 41 44

Pole and Mass C 25 31 37
SR Individual B 69 61 88

C 0 0 35
A 62 68 71

BW Whole B 27 52 74
C 39 44 70
A 43 43 72

BW Individual B 29 31 38
C 24 20 26

Fig. 3: Reward against training iteration for BW-whole C for
HARL, HCP and PPO (maximum, minimum and mean).

Fig. 4: Reward as a function of BW (whole C) scale for HARL,
HCP and PPO (maximum, minimum and mean). The black dotted
line shows the range of scales used during training.

Fig. 5: Comparison of reward as a function of the coefficient of
friction at the hip and knee joints of the BW for HARL, HCP and
PPO (maximum, minimum and mean results).

https://www.youtube.com/watch?v=oxuByrlig2M


TABLE III: % success rates over test distributions for HARL-A and
HCP-A. Non-adversarial counterparts are included for comparison.

Experiment HCP HCP-A HARL HARL-A
CP Pole C 41 54 44 56

Pole and Mass C 31 35 37 35
SR Individual B 61 87 88 90

C 0 0 35 36
A 68 73 71 87

BW Whole B 52 73 74 82
C 44 77 70 84
A 43 76 72 85

BW Individual B 31 39 38 46
C 20 30 26 45

Having shown that our method improves performance
over changing physical morphologies we now show that
it can have the same level of improvement when internal
parameters are varied. A new experiment is introduced here,
whereby the friction coefficient at the joints of the hip and
knee of the BW are varied. Figure 5 shows how performance
of the walker varies for HCP, PPO and HARL. Again, this
shows that the implementation of our method drastically
improves the performance of a single policy over a range
of morphologies with varying internal parameters.

B. Adversarial Learning Evaluation

Next we demonstrate the benefits of the adversarial train-
ing using lp over both the standard HARL and HCP systems,
named HARL-A and HCP-A respectively. Results are shown
in Table III. For all experiments, except one, HARL-A shows
the highest level of performance. In CP-pole and mass HARL
shows the highest performance. However, all results for CP,
other than the benchmark are similar. It is thought that
this is due to the limited effect that changing the physical
parameters has on the dynamics of the simple problem, as
well as the fact that the system is near saturation.

The performance of HCP-A is second best in 6 out of
10 cases, proving the importance of the novel lp loss. In
fact, excluding CP-pole and mass and SR-individual C, all
experiments where the adversary is included show better
results than their non-adversarial counterparts. It is thought
that the highly non-linear and coupled dynamics of the SR
meant HCP/HCP-A was unable to learn to reach the payload.

Since all HARL-A experiments for BW and CP shown
here were carried out using an expert network trained using
PPO, the same set of experiments were run again using
TRPO [27] and DDPG [2]. In all cases, results matched that
of HARL-A + PPO, showing that HARL-A is also agnostic
to the model used to train the expert policy, provided it gives
a high level of performance. Figure 6 serves to demonstrate
the continued benefit of the modification network in the
presence of the adversarial training regime. It shows a
comparison between HCP-A and HARL-A for all BW-whole
experiments. Here it can be seen that in all cases HARL-
A begins to learn quicker and at a faster rate throughout
training, as well as reaching a higher final performance.

C. Use of Learning Potential

The intuition behind sampling using lp as opposed to
traditional hard negative mining is now evaluated. The idea

(a) BW-whole A (b) BW-whole B

(c) BW-whole C

Fig. 6: Running percentage performance during the first 7500
training iterations. Graphs show the mean, maximum and minimum.

TABLE IV: Comparison between HARL used with hard negative
mining and HARL-A. All experiments are run with BW-whole.

BW-whole HARL HARL-NM HARL-A
A 71 79 87
B 74 76 82
C 70 77 84
D 32 41 53

of hard negative mining is to select the lowest performing
morphologies from V to train the system. We compare our
results from HARL-A to those collecting using HARL with
hard negative mining (HARL-NM). Due to issues with the
scalability of NM experiments were only computed on BW-
whole A-C, the results are shown in Table IV. A fourth set
of design space bounds is introduced here (BW-whole D),
where scales range from 0.5 to 2, in order to demonstrate
how HARL-A works over larger parameter spaces. For all
cases it can be seen that the performance of HARL-NM
improves that of HARL, but HARL-A shows the best results.
For experiment BW-whole A, the change from HARL-NM
to HARL-A leads to a 10% increase in performance, where
as in experiment D a 25% increase is seen. This disparity
is due to the fact that in the easier problems all of the
morphologies can be learnt on, meaning that selection of the
lowest performing examples is acceptable. Whereas, when
the scale of the walker is > 1.8, as in experiment BW-whole
D, the learning of a policy is much less stable. With the
use of HARL-A, the adversary learns to stop presenting the
agent with those morphologies, allowing it to spend valuable
time learning at other values of v.

It is also worth re-iterating that a naive hard negative
mining approach is intractable for any system of reasonable
complexity. Most of the experiments in this paper would



take hundreds of years to complete a single iteration of hard
negative mining.

V. CONCLUSIONS

In this paper we presented HARL-A: a system to train
a new type of hardware agnostic policy using a form of
adversarial selection. This system aims to tackle the problem
of generalisation in domains with varying dynamics, i.e
across similar robots with different morphologies. Tackling
this problem will allow for the sharing of training data across
labs and improvements in the reproducability of results. We
first presented the idea of a modification network architecture
to enable multi-robot learning. This lead to performance
improvements in current state-of-the-art of around 45%. We
then presented the idea of adversarial selection using learning
potential. This is a novel metric that quantifies the ability
of a policy to train on a particular robot morphology. The
implementation of this metric in the adversarial network
used in conjunction with the modification network (the full
HARL-A system) lead to ∼ 70% increase in the ability of
a single policy to act on a range of semi-identical robots.
In the future this architecture could be advanced to allow
for generalisation across robots with different degrees of
freedom, or larger variations in morphology. This would
advance the field of RL and be a huge step towards the over
arching goal of general AI.
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