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Abstract. Tracking hands and estimating their trajectories is useful in a number
of tasks, including sign language recognition and human computer interaction.
Hands are extremely difficult objects to track, their deformability, frequent self
occlusions and motion blur cause appearance variations too great for most stan-
dard object trackers to deal with robustly.

In this paper, the 3D motion field of a scene (known as the Scene Flow, in con-
trast to Optical Flow, which is it’s projection onto the image plane) is estimated
using a recently proposed algorithm, inspired by particle filtering. Unlike pre-
vious techniques, this scene flow algorithm does not introduce blurring across
discontinuities, making it far more suitable for object segmentation and tracking.
Additionally the algorithm operates several orders of magnitude faster than pre-
vious scene flow estimation systems, enabling the use of Scene Flow in real-time,
and near real-time applications.

A novel approach to trajectory estimation is then introduced, based on clustering
the estimated scene flow field in both space and velocity dimensions. This allows
estimation of object motions in the true 3D scene, rather than the traditional ap-
proach of estimating 2D image plane motions. By working in the scene space
rather than the image plane, the constant velocity assumption, commonly used
in the prediction stage of trackers, is far more valid, and the resulting motion es-
timate is richer, providing information on out of plane motions. To evaluate the
performance of the system, 3D trajectories are estimated on a multi-view sign-
language dataset, and compared to a traditional high accuracy 2D system, with
excellent results.

1 Introduction

The 3D trajectories of freely moving hands within sign language, provide valuable in-
formation for the recognition of signs. However tracking hands is extremely difficult
using standard object trackers, as they move and deform rapidly, and frequently oc-
clude each other. In this paper, a three dimensional motion field is estimated along with
associated structure. Trajectories are then extracted by clustering, both in the estimated
structure and motion field.

As the hands can change appearance so rapidly, even adaptive object detectors are
generally unable to reliably localise them. Instead, previous approaches operate by seg-
menting the input image, according to some weak knowledge of hand regions such as
skin colour and motion assumptions. These segmentation results are then processed to
extract a small number of smooth regions, which are then labelled. The sequence of
positions associated with each label is then the estimated trajectory.

In this paper, the segmentation system is replaced with a scene flow estimator.
Rather than grouping segmented pixels into regions based on proximity, the estimated
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motion field is then clustered in 6D space (z,y, z, Az, Ay, Az) before labelling. The
advantage of this approach is that there is less chance of the hand regions merging in
the 6D space, than on the 2D image plane (hands may have distinct motion directions,
or be separated in depth). Additionally, the use of Scene Flow naturally provides hand
trajectories in the 3 world dimensions, rather than the 2D projection onto the image
plane, generally estimated in other approaches.

The scene flow estimation algorithm used in this paper, employs a collection of
weighted hypotheses similar to a particle filter. These hypotheses represent structure
and motion estimates in the scene, which are filtered based on appearance information
from multiple viewpoints, to estimate the overall scene characteristics.

In brief, the novelties of this paper are:

— Hand trajectory estimation based on Scene Flow.

— Estimation of 3D hand trajectories, rather than in the image plane.

— Extending the Scene Particle algorithm [7] to incorporate additional task specific
information.

1.1 Related Work

Hand Tracking The most accurate approaches to hand tracking involve the user wear-
ing special gloves. In [12] data gloves incorporating accelerometers are used to directly
obtain hand position. To avoid the expense of such systems, authors such as Kadir et
al. [11] use vision techniques, coupled with gloves of specific colours, and ensure these
colours are not present elsewhere in the scene. However, gloves are encumbering for
users, particularly in sign language applications. Many authors [10, 1, 8] thus employ
skin segmentation techniques to estimate hand position. Hand trajectories estimated
from skin segmentation, suffer from confusion between the two hands and the face.
Han et al. [8] attempt to deal with this using a Kalman filter, and a simple motion model
for the 3 objects.

The current state-of-the-art in hand tracking is the system proposed by Buehler et
al. [4]. This combines colour segmentation with Histogram of Oriented Gradient based
limb appearance and pictorial structure, to perform robust 2D tracking. Even so, the
approach still requires repeated processing, back and forth through the video to resolve
occlusions and is therefore extremely slow.

Scene Flow Estimation Scene flow is the dense, 3 dimensional motion field of a scene,
of which optical flow is a 2D projection. Estimation of Scene flow is generally formu-
lated as an optimisation problem, with a global energy function over a reference image,
estimating the X,Y and Z motion at every pixel [9]. This approach tends to be extremely
computationally complex, mitigated only by specialist GPU implementations [17].

Basha et al. [2] showed that estimating the motion field in 3D scene space, rather
than the image plane, improves performance. This is due to improved validity of as-
sumptions such as local smoothness, and allows easy extension to any number of views.

A regularisation cost is generally used to constrain the optimisation. This tends to
cause over-smoothing at discontinuities in the motion field, such as object boundaries.
Wedel et al. [20] among others, attempt to reduce this effect by basing the regularisation
strength on image gradients. Another approach employed by Li et al. [13] involves
segmenting the image, and applying regularisation within segments.
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Several approaches [14, 6, 5] represent the problem as sparse trajectory estimation,
similar to the application tackled in this paper. However the trajectories correspond to
the motion of scene mesh vertices, requiring initialisation, and limiting the range of
possible motions.

The approach proposed in [7] is inspired by particle filtering rather than optimi-
sation, making it less computationally expensive, easily parallelisable, and supporting
multiple-hypotheses. Additionally, the regularisation of the energy function is avoided,
allowing more accurate estimation at discontinuities, which is invaluable for object seg-
mentation and tracking tasks such as 3D hand tracking. In addition we propose a number
of modifications to the original formulation which improve performance in typical HCI
scenarios.

1.2 Paper Structure

The following section (2.1) provides an overview on the use of scene flow estimation for
extracting 3D trajectories. An overview of the probabilistic formalisation for multiview
scene flow estimation is presented in section 2.2. The integration of the skin likelihood
model is explained in section 3. Then, the details of the Scene Particle algorithm (4)
and a forwards & backwards extension (4.1) are presented. Section 4.2 describes the
clustering of the motion field. In section 5.1 the proposed scene flow algorithm is com-
pared with alternative techniques for 3D motion field estimation. Results of trajectory
estimation in sign language sequences are presented in section 5.2, with comparisons to
existing 2D techniques. Finally discussion of the approach, with possibilities for future
investigation, are presented in section 6.

2 Proposed Framework

2.1 Trajectory Estimation
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Fig. 1. Overview of trajectory estimation architecture.

Figure 2.1 provides an overview of the proposed approach. The scene flow estima-
tion system processes the input data from the multi-camera rig, and produces an esti-
mate of 3D scene structure, along with an estimated 3D motion field. Additional input
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is provided to the scene flow estimator from a skin colour model, in order to concentrate
estimation on relevant portions of the scene.

Clusters are then generated from the estimated structure and motion field. These
clusters are labelled, based on the predicted positions and velocities from the previous
frame. Finally the labelled positions are appended to the trajectories, and a constant
velocity motion model is used to estimate the cluster positions.

2.2 Multi-View Probabilistic Scene Flow

Estimating the structure and motion of an unconstrained scene, is equivalent to finding
structure points r which are most likely to be objects, and their associated 3D motion
v. This can be viewed as a 6 dimensional, continuous, probability distribution, from
which we wish to extract a set of peaks.

Based on an observation i, it is possible to represent the posterior probability p(r, v|i)
as the product of the prior probability and the likelihood.

p(r; v[i) o< p(i|r, v)p(r, v) (D

As the distribution is across scene positions and velocities, the prior probability p(r, v)
is easily obtained from the posterior probability at the previous time instant, in conjunc-
tion with a motion model.

The likelihood p(i|r, v) is calculated using the Brightness Constancy Assumption.
This assumption is frequently used for motion and structure estimation, and states that
the colour of a world point is identical, when viewed from any direction, and over
time. When a scene is viewed by a set of M cameras in any multi-view setup, with
projection matrices I1 s, images I7_ps are obtained. Over a period of T frames, the
image sequences I}-1; are generated as the observation i. The Brightness Constancy
Assumption implies that any true world point r, with colour vector u, moving between
frames with a velocity v, will satisfy the condition:

(Va), Ig (Igr) = 1,7 (g (r = v)) =u 2

In human interaction scenarios, generally the lighting of the scene, and sometimes
even the response characteristics, vary across cameras. To improve the validity of the
brightness constancy assumption used for scene flow estimation, the images are nor-
malised to the same mean and variance, before processing. Thus we can assume that
the colour u of a point, is the average of the colours in each (normalised) image. This
means the square of the deviation from the equation 2 becomes the variance of colours
across all images (at both the previous and current frame).

Using this, the likelihood distribution is calculated as in Equation 3, where the func-
tion var(r,v) is the variance of the projection colours, and ¢ = 0.001. This provides
a smooth approximation of L (see [3]). Projections are performed with subpixel accu-
racy, and the resulting colours are obtained using bilinear interpolation.

1
ijr,v) = 3
P(ilr. ) var(r,v)?2 + €2 ©)
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3 Skin Colour Model

For the estimation of hand trajectories, additional task specific information is included
in the system, in the form of an extra term in the likelihood equation 3. This term relates
to the likelihood that each combination of r and v belong to an object of interest, based
on an adaptive skin colour model. The purpose of this is to concentrate scene flow
estimation into regions of interest, allowing for faster computation.

The skin colour model comprise of 2 probability distributions in RGB colour space,
one for skin colour (Pg) and one for background colour (Pg ). For a point in the scene
space r, v, with colour vector u, the extra likelihood term h?i\r, v) is calculated using
the log-likelihood ratio of the skin and background models, as shown in equation 4. By
averaging the responses across viewpoints, the system obtains resistance to single view
occlusions, as objects of interest will still exhibit strong responses in the remaining
views. A limit « on the responses is estimated from training data.

. i (1 P3(u) 4
(ijr,v) = z_:mm 0g10 m ,Q (€))
q=1 g

The models are all bootstrapped from a generic colour model, and then allowed to
adapt to the data based on the results of face detection. The colour distribution within
the central region of the face detection is combined with Py, and the distribution across

the remainder of the image is added to Pyg.
4 Scene Particle Algorithm

Distributions across all possible r and v are obviously intractably large, and so the
posterior p(r, v|i) is represented by a collection of N weighted points. These points
are referred to as Scene Particles. Each particle p,, includes a 3D position in the world
r, and a 3D motion vector v, and also has an associated weight w,,.

As the space is continuous, multiple Scene Particles are maintained along the same
epipolar ray, with different depths. In addition, multiple Scene Particles may exist at the
same structure position, with different motion hypotheses.

A well known problem (see [19]) with particle filtering systems that operate over
long periods of time, is that eventually the particles converge to the largest mode of the
distribution. If only the single “best” point in the distribution is needed, as in standard
particle filtering, this is acceptable. However, in the Scene Particle algorithm, we are
not interested in the most probable point, but instead in the set of all high probability
points. To prevent many Scene Particles collecting onto a small number of structure
points, leaving other areas of the scene probability space under-explored, the weight
w! of scene particle p,, at time t, is taken as the average of it’s previous weight w’ !
and it’s likelihood given new observations i, as in equation 5. The effect of this change,
is that likelihoods based on more recent observations, have an increased effect on the
current weighting, resulting in better coverage being maintained over long sequences.

s t—1

5 (p(itpy) +wi ™)

Jj=0
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The Scene Particle population is resampled as in standard particle filtering. This
process serves to concentrate hypotheses in regions of the 6D space with high weight-
ing, more thoroughly exploring them, while reducing the number of Scene Particles
used to examine low weighted regions. To ensure structure and motion is estimated
densely across the scene a technique is used, referred to here as Ray Resampling. In
this approach, the particles along every epipolar ray are resampled separately. This is
equivalent to using a separate particle filter per ray, while allowing particles to move
between filters at frame transitions.

For estimation of sign language trajectories, only a sparse motion field is required.
For this reason, rays containing no Scene Particles are left empty. However, for the
comparison with other scene flow techniques (section 5.1), empty rays are populated by
random selection from neighbouring rays, enabling complete coverage, and reflecting
neighbouring distributions.

An iterative estimation approach is used, to allow the estimated motion field time to
converge. New images from every viewpoint are converted to multi-scale image pyra-
mids and estimation is performed in a coarse to fine manner as in [9, 16], this helps
particles avoid local minima during convergence. Additionally several inner iterations
are performed within each level of the pyramid, successively reducing the diffusion of
the motion model. This allows Scene Particles to transition from exploratory behaviour,
to more precise estimation. Experiments in this paper are performed using 3 pyramid
levels, with 3 noise loops, for a total of 9 iterations per frame.

4.1 Forwards & Backwards Brightness Constancy

Equation 3 specifies the likelihood of a Scene Particle, based on brightness constancy in
every viewpoint, at the current and previous frame. An additional assumption common
in tracking systems, is that of constant velocity, assuming the time between frames is
small. By employing this assumption, we extend the likelihood calculation to include
the future frame, giving the new condition shown in equation 6. As in section 2.2 the
deviation from this condition, is the variance of a Scene Particles projected intensities
across all viewpoints at all 3 frames (previous, current and future).

(Va), Ly ([0) =1~ (I (r—v) = [ (I (x+v) =u (6)

Examining Scene Particles in additional images improves the chances of disam-
biguating between similar motions. However, a future frame is required for the variance
calculation, necessitating a 1 frame delay in estimation. In the remainder of the paper,
scene flow based on this extended condition is referred to as “Forwards/Backwards”
(FB) scene flow.

4.2 Clustering & Labelling

After the structure and motion field have been estimated, clustering is performed via
expectation maximisation, with three clusters. Clustering is performed in the 6 dimen-
sional space of location and motion. Cluster centres are initialised by prediction from
previous results, using a constant velocity motion model. At frame 0, where there is no
previous prediction, clusters are initialised on the top, bottom left and bottom right ex-
tremities of the scene. After the output of the Scene Flow estimation is clustered, labels
are assigned to the new cluster centres, in order to create consistent trajectories for the
3 objects (head and 2 hands).
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5 Results

5.1 Scene Flow Comparisons

In order to perform a quantitative evaluation of the proposed Forwards/Backwards ex-
tension to the Scene Particle algorithm, tests were run on a standard scene flow esti-
mation dataset. The dataset is available from vision.middlebury.edu [18], and was orig-
inally intended for multi-view stereo reconstruction. It consists of a set of 9 rectified
images from 9 cameras viewing a static scene for a single frame. It is possible to simu-
late a scene in which all objects are in motion, viewed from multiple cameras, by taking
a number of images to act as frame 0 in each view. The remaining images can then be
used as the second frame of each sequence.

As ground truth disparity (with subpixel accuracy) is provided for the scene, the
motion between frames is known. This allows performance to be measured from 4
viewpoints, utilising 8 of the images for standard 2 frame estimation. When testing the
FB (3 frame) approach from section 4.1, 3 viewpoints are simulated using all 9 images.
In order to operate on general data rather than focus on hand trajectories, the adaptive
skin colour model is disabled during these tests.

Table 1 contains the comparisons. The Root Mean Square Error (RMSE) is mea-
sured for each estimated value, averaged across the scene. The Average Angular Error
(AAE) of the Scene Flow is also measured as in [20]. Each algorithm operates with a
different number of views and, in the case of the FB extension, a different number of
frames per view, the total amount of image data utilised is also displayed.

Algorithm Dataset|Images Used |Optical Flow|Z Flow |Structure | AAE (deg)
Single View+Depth[7]| Teddy 4 0.11 0.00 - 5.04
Multiview Teddy 8 1.12 0.07 1.10 4.13
Multiview+FB Teddy 9 0.73 0.06 1.02 4.21
Single View+Depth[7]| Venus 4 0.08 0.00 - 5.50
Multiview Venus 8 0.97 0.02 0.96 4.19
Multiview+FB Venus 9 0.51 0.03 0.93 4.32
Single View+Depth[7]| Cones 4 0.09 0.00 - 5.10
Multiview Cones 8 1.61 0.08 1.61 4.17
Multiview+FB Cones 9 0.59 0.07 1.65 4.22

Table 1. Performance of Scene Flow multiview estimation compared to estimation using a single
appearance and depth sensor as in [7]. Also results are shown including the Forwards/Backwards
extension.

For these tests, only 10 Scene Particles per ray were used, leading to a runtime of
less than a minute per frame for a non-parallelised implementation, which is several
orders of magnitude faster than alternative scene flow techniques [9]. In the multiview
scenario, motion estimation errors increase significantly, due to the need to estimate
both motion and structure simultaneously. However, the additional viewpoints allow
similar motions, which were previously ambiguous to be distinguished, leading to an
increase in directional accuracy. Additionally the multiview approach does not require
depth sensors, and can be applied in a wider range of scenarios.

The Forwards/Backwards confirmation approach leads to a significant improve-
ment in motion estimation accuracy roughly halving optical flow errors, and providing
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smaller improvements to structure and out of plane motion estimates. However, due to
the need for additional frames, the FB approach uses fewer viewpoints than the standard
multiview approach. This leads to increased difficulty distringuishing between similar
motions, and consequently a small reduction in directional accuracy (similar to the gain
found going from single view to multi-view).

5.2 Sign Language Trajectory Estimation

With the inclusion of the Trajectory calculation elements, and the adaptive skin colour
model, the approach was then applied to sign language data, for hand trajectory estima-
tion.

The 3D position ground truth for hands during sign language, is difficult to obtain
accurately without the use of data gloves. The authors are not aware of any available
natural sign language dataset, with such ground truth. Thus, results were obtained on
newly captured multi-view dataset, for which 2D trajectories in the image plane were
available. Figure 2 shows example frames from parts of this dataset. The previous 5 po-
sitions are displayed for the head and both hand trajectories. As can be seen, estimated
3D trajectories of all 3 objects are consistent with all viewpoints.

Figure 2 parts A-C are taken from a narrow baseline, 2 view, sequence. It can be
seen that estimated 3D trajectories are consistent with the 2D observations from both
viewpoints. However, figure 2.C illustrates a failure case, where the narrow baseline
creates some ambiguity in the Z dimension. The resulting trajectory matches the data
when projected to the left image plane, however the projection in the right viewpoint
shows an erroneous 1 frame jump towards the face. Wider baseline systems such as
Figure 2.D do not suffer from these errors. Additionally the third viewpoint in this
sequence allows the system to operate robustly in the case of occlusions. Despite being
completely occluded in the side view for several frames, the estimated trajectory for the
right hand is consistent with the observations from the other 2 views.

Object |Agreement|X RMS error|Y RMS error

Head 100% 0.057 0.097
Right Hand| 93.535% 0.191 0.100
Left Hand | 88.054% 0.277 0.091

Table 2. Agreement between projection of estimated 3D trajectories, and 2D trajectories from an
alternative system (values in palm widths).

Table 2 gives the comparison of the 3D trajectory to the extremely accurate 2D
tracking approach from [15]. Trajectories were assumed to be in agreement if their
separation was less than one third of a palm width. The percentage of frames where
trajectories are in agreement is listed for each object, as is the RMS distance between
trajectories in terms of palm widths. The close agreement between the trajectories indi-
cates that the estimates are plausible, if the system was innacurate, it would be unlikely
they would coincide so frequently in the frontal view. The results from the table pro-
vides a lower baseline on performance, as in some cases 2D tracking may be lost due to
frontal occlusion while the 3D tracking is maintained by the other views. Results were
compared over a 30,000 frame sequence. The greater accuracy of the head estimation
is to be expected as it moves little during the sequences. The accuracy of the left hand
is slightly higher than the right, as one viewpoint is placed on this side, and so the hand
is occluded less often.
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D)

Fig.2. (A) to (C) are taken from the narrow baseline, 2 view, sequence, showing the projection
of 3D trajectories which are consistent with both viewpoints. (C) Illustrates a failure case where
the narrow baseline of the 2 views gives rise to ambiguity in Z. (D) Shows a frame from the wide
baseline, 3 view, sequence, illustrating robustness to object occlusions.

6 Conclusions

The results presented in this paper have shown that clustered Scene Flow is an effec-
tive technique for trajectory estimation tasks. Such approaches enable the estimation
of trajectories in 3D rather than the image plane (providing invaluable information for
recognition tasks), but spatially close objects moving in different directions to be well
separated, reducing the crossing of hand tracks often observed in sign language tasks.
In addition, the multi-view particle based approach allows propagation of information
between frames, and the maintenance of multiple hypotheses at every point, improving
robustness to occlusions.

Also in this paper, extensions of the Scene Particles algorithm have been demon-
strated, to incorporate common hand tracking assumptions, such as small acceleration
and skin colour probability, and to account for variations in illumination and camera
responses between viewpoints.

In the future, the Scene Particle algorithm may be improved, by introducing smooth-
ness constraints on the motion and structure field. Insofar as possible, such constraints
should preserve object discontinuities, to maintain the advantages of the approach. The
trajectory estimation system may be improved by investigating alternative clustering
methods, and introducing a re-initialisation system when the distance between motion
model prediction and cluster centre is too great.
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