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Abstract. This paper demonstrates a novel method for automatically
discovering and recognising characters in video without any labelled ex-
amples or user intervention. Instead weak supervision is obtained via
a rough script-to-subtitle alignment. The technique uses pose invariant
features, extracted from detected faces and clustered to form groups of
co-occurring characters. Results show that with 9 characters, 29% of the
closest exemplars are correctly identified, increasing to 50% as additional
exemplars are considered.

1 Introduction

This paper presents an approach to weakly supervised character identification
from video footage using subtitle and script information as weak supervision in
a facial clustering process. This is challenging as the the annotation gained from
scripts and subtitles is a weak verbal commentary and the pose, expression and
lighting of characters is highly variable. To overcome these problems we present

Fig. 1: Example faces from Friends opening sequence.

an approach which incorporates both subtitle and shot boundary detection into
a script alignment process which gives accurate start and end times for each
scene. The script also indicates which characters are present within each scene.
By automatically detecting faces throughout the video, accurately regressing fa-
cial features and then using these facial features in an unsupervised clustering
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process, individuals can be identified without user intervention. The script in-
formation is used as weak supervision in this clustering process to identify the
likelihood of characters over subsets of frames. We demonstrate a completely un-
supervised approach to character identification and show results on the popular
American sitcom “Friends” (See Fig 1).

The remainder of this paper is structured as follows. In section 2 we discuss
relevant related work in the areas of script alignment, character identification and
shot boundary detection. In section 3 we present the proposed methodology with
scene identification and timing described in section 3.1, facial feature detection
and extraction described in section 3.2 and the facial clustering process described
in section 3.3. Section 4 describes results and conclusions and future work are
discussed in section 5.

2 Related work
Computer vision has seen the use of video footage increase in previous years and
areas such as action recognition have moved away from staged datasets such
as KTH [29] and Weizmann [2], which are generally considered “solved” with
many techniques reporting performance of 95% or more. As a result, recent ac-
tion recognition datasets have been concerned with action recognition “in the
wild”, dealing with unconstrained variations in location, lighting, camera angle,
actor and action style. Alternative means for obtaining data have been explored,
including videos obtained from youtube [17] and clips extracted from commer-
cially available films (e.g. “Hollywood” [15], “Hollywood 2” [19] and “Hollywood
3D”[12]).

The size of the Hollywood 2 dataset was facilitated by the automated extrac-
tion process employed by Marszalek et al. [19]. Such techniques offer ease in data
collection and rely on the extraction of time stamped subtitles from the film.
These subtitles are then aligned with film scripts, which describe the behaviour
of the actors in addition to dialogue.

Perhaps one of the earliest attempts to use script information was the work
of Everingham et al.[8][9]. Everingham used the subtitles to provide timing in-
formation by matching it with the dialogue in the scripts. When there are in-
consistencies with the script and subtitle information, dynamic time warping is
used to find the best alignment. When subtitle information is either not available
or there are scenes without dialogue, other methods need to be used to provide
alignment information. Sankar et al.[28] use a combination of location recog-
nition, facial recognition and speech-to-text to align scripts when subtitles are
not available. However, the approach requires manual labelling of characters and
location information was hard-coded to repetitive use of stock footage. Subtitles
have also been used as weak supervision in learning sign [6, 4, 26]

Subtitles only provide timing information for dialogue. However, identifying
shots within a video can help to identify when a scene containing dialogue might
start or end. A shot in a video sequence is a group of continuous frames between
edits. The edits can take various forms such as fades or abrupt transitions. To be
able to learn about scenes, a video must first be divided into shots. Hanjalic[13]
defines the problem of Shot Boundary Detection (SBD) as finding discontinuities
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in the feature distance between frames. Many different feature types have been
used for SBD including: Pixel differences[35], Colour histograms[20], tracking of
features[10] and mutual information[5]. Yuan et al.[34] try to provide a formal
framework for SBD and review many existing techniques while suggesting op-
timal criteria for the different sections of the framework. To take advantage of
existing information, Patel et al.[25] use the motion vectors from the video com-
pression to detect cuts. Due to the large number of approaches available, there
have been many survey papers such as Boreczky and Rowe[3] and Smeaton et
al.[30]. Boeczky and Rowe find that, in general, the approaches based on region-
based comparisons and motion vectors worked better and simpler algorithms
out performed more complex ones. Smeaton et al. found that there was usually
very little difference in performance between the top approaches and shot cut
performance is still a lot higher than gradual transitions.

This work integrates shot cut detection into the script-subtitle alignment
process to provide accurate scene level annotation. We then use character infor-
mation from the scripts as weak supervision to automatically identify characters
by clustering their facial descriptors.

3 Methodology
Figure 2 gives an overview of the approach. Firstly the subtitles are extracted
from the video along with the shot boundaries which are detected in the video
footage. Fuzzy text matching is used to match the dialogue in the script with
that of the subtitles and scene boundaries are constrained to only occur on shot
boundaries. This extends the dialogue timing to give the start and end times of
scenes. Using the time aligned script, all scenes for each character are identified
along with the presence of other characters in the same scenes. This is passed
to the clustering process along with the face descriptors for the correspond-
ing frames. Face descriptors are extracted from detected faces by regressing the
facial pose and extracting SIFT features around the contour of the face. Unsu-
pervised clustering then provides sets of visually similar face descriptors which
are assigned identities from the script.

Fig. 2: Character identification framework.
3.1 Scene Identification

Television and film scripts contain the details for the scenes within a video
sequence. There is a standardised format for scripts and their contents. This
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format specifies the location in which the scene occurs, editorial information for
the shots, a description of the activities and actions occurring within the scene
and the dialogue spoken by the characters. The location information is contained
within the “slug lines” which state if the scene is exterior or interior, where it is
and the time of day it occurs. The script Γ contains text elements t, Γ = t0...n.
The scenes within a script are a subset of the script. The scene boundaries A
are defined as A ⊂ Γ . Equation 1 defines the text scene ΣT as the text between
the scene boundaries in the script,

ΣT
j = {j|Ak−1 < j < Ak}. (1)

The script does not, however, contain any information about the timing of the
scenes within the video. To use the scripts as annotation, the contents of the
video and the script need to be aligned.

(a) Subtitle and script matching (b) Interpolated timing

Fig. 3: Alignment between the text elements in the script and subtitles

Initial alignment can be performed by matching the video subtitles with
the dialogue in the scripts. The subtitles contain text and timing information.
Figure 3 shows the alignment between the script and subtitles and an example
of how the script and subtitles are matched. Black elements are well aligned,
blue elements are interpolated and orange elements are when multiple script
elements occur simultaneously. The subtitles sub have text, subt = t, as well
as start frames, subs, and end frames, sube. Fuzzy matching between subtitle
text and script text is used to assign start and end frames to script text as in
equation 2. This gives us the images that belong to a scene ΣI ,

ΣI
j = {j|argmin(subs) < j < argmax(sube) and subt ∈ ΣT

j}. (2)

Scene Boundary Refinement The frames which occur between subtitles are
ill-defined. A scene can contain many shots and a scene cannot change during
a shot. Our method requires that we divide the video into shots so that they
can be matched to scenes. We use a shot boundary detection method based
on calculating the homography from one frame to the next. We trigger a shot
boundary when the homography between shots is invalid.
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A video consists of a set of images, I = i1...n. The set of shot boundaries (SB)
is where the homography (hj,j+1) between consecutive images (ij and ij+1) leads
to a transformed image with an area smaller than a threshold (t),

SB =

{
j

∣∣∣∣ |hj,j+1(ij)|
|ij |

< t

}
. (3)

A particular shot (Sk) is defined as the set of frames which between 2 consecutive
shot boundaries ( SBk and SBk+1),

Sk = {ij |SBk < j < SBk+1}. (4)

We define the scenes ΣS using the shots that belong to them,

ΣS
k =

⋃
j

Sj |Sj
⋂
ΣI

k 6= ∅

 . (5)

This gives us all the shots belonging to a scene so that frames which occur after
or before a subtitle are also included. This avoids missing face candidates that
occur without dialogue.

3.2 Face extraction

(a) Facial Landmarks (b) Regressed Landmarks (c) Sequential Regression

Fig. 4: Facial Feature Regression

Cootes suggested learning a simple linear mapping between facial image
intensity difference and the pose of an Active Appearance Model (AAM) in
1998 [7]. Similar ideas have since been applied to tracking rigid objects [14][21]
as well as using more complex, non-linear mappings in regression tracking [32].
Zimmerman et al. proposed the idea of a sequential linear predictor and this
idea was applied to facial feature regression by Ong and Bowden [23][24], whose
sequential and hierarchical linear predictors can be trained using Monte-Carlo
sampling to accurately track facial features in real-time. The same principle was
adopted by Xiong and De la Torre [33] to regress from SIFT [18] features rather
than image intensities. Both approaches use a simple cascade of sequential linear
mappings but SIFT gives better person independence in the regression process.
Another difference between Ong and Xiong is the latter regress all feature points
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in a single regressor which captures the motion dependency of the features un-
like Ong who treat each facial feature as independent. We combine these ideas
to train a cascade of linear predictors that regress facial position from SIFT
features extracted at each facial landmark.

Given a set of face images di ∈ D with associated facial landmarks xi ∈ X,
the objective is to find a mapping H that can predict the displacement of the
landmarks δx such that δx = Hφ(x). The image observation, φ(x) ∈ Rnm+1, is
a 6733 dimensional concatenated SIFT vector where n = 99 is the dimension of
a SIFT descriptor after projection through PCA, m = |x|/2 is the number of
facial landmarks (in our case 68) and a single dimension is added for the bias
term in linear regression.

To learn H, a training set of random displacements T ∈ R(|x|×r|X|) is ex-
tracted by randomly offsetting the model from the true face location and record-
ing the displacements. For each displacement the image observations are com-
piled into Φ ∈ R(|φ|×r|X|) where r = 10 is the number of random offsets per
image.

H is then calculated as the least squares solution H = T(ΦΦT )−1. As a single
linear mapping is insufficient to model the complexities of a highly deformable
object like a face, a sequence of regressors is used where δxi = Hiφ(x0 + δxi−1).

We train our facial regressor using 5691 example images taken from the 300
Faces in-the-wild challenge dataset (300-W) [27]. These images are annotated
using the Multi-PIE [11] 68 point mark up shown in Figure 4a. The full dataset
consists of consistent re-annotations for LFPW [1], AFW [36], HELEN [16] and
XM2VTS [22]. We refrain from using the additional 135 IBUG images and the
testing subsets of the aforementioned datasets which are retained for internal
validation e.g. regressor convergence during training.

Figure 4a shows the 68 landmark points used in our regression and Figure 4b
the result of applying the learnt regressor to a sample static image. At runtime,
a Viola Jones boosted face detector [31] is applied to each frame. Following non
maximal suppression, the regressor is independently applied at each positive
detection using the mean face x0 = 1

|x|
∑
∀xi∈X xi as the initial estimate as

was used during training. The initial face estimate is scaled and translated to
the detected face region and the SIFT features are set at one tenth of the face
scale which translates to roughly half the size of an eye. The regressor typically
converges onto the face using 4-5 linear predictors in the sequential cascade.

Figure 4c shows the process of regression for each regressor in the cascade
starting from a mean face (dark) to final regression (yellow). An example of
regressing multiple faces from a frame taken from Friends is shown in Figure 1.

3.3 Face Clustering
To allow us to name the faces we have extracted, we can cluster the face descrip-
tors and label them with character names from the script. To avoid clustering
all of the face descriptors at once, which could cause less pure clusters, we divide
the descriptors into subsets that contains all occurences of a certain character.
For each scene, the characters Πk are defined using the characters z present in
ΣS

k. The set of all the characters in the episode, Z, is defined by Z =
⋃
kΠk.
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With the script aligned to the video, we can use the scene boundaries to work
out the frames and face descriptors belonging to these scenes. This gives us a
matrix of images with character co-occurrence,

Exy = {i|i ∈ ΣS
z and zx ∈ Πz and zy ∈ Πz}. (6)

We can then normalise by the number of frames each character is in,

Ējk =
|Ejk|∑
l

|Ejl|
. (7)

For each character zk we perform k-means on the descriptors for all face candi-
dates Υ k. The co-occurence of characters is used to reduce the number of char-
acters present in the input to the k-means. The face candidates are obtained
by,

Υ k = {υF |υF ∈ ΣS
j and zk ∈ Πj}. (8)

The number of clusters p is calculated from the total number of characters
present in the scenes using,

pi = |{Ejk 6= 0}|. (9)

We expect that the face descriptors will be clustered into the characters. The
cluster centres C are found by the k-means algorithm,

Ck = kmeans(Υ k; pk). (10)

We now have the the clusters of face candidates but we don’t know which char-
acters belong to each cluster. To overcome this problem we create a histogram
of the number of face descriptors belonging to each cluster. The histogram M jk

is calculated by,

M jk =

∣∣∣∣{υ|υ ∈ Υ j where arg min
l

(
|υ − Cl|2

)
= k

}∣∣∣∣
|Υ j |

. (11)

To match the labels from the co-occurrence histogram to the membership his-
togram, we re-order the membership histogram to find the minimum χ2 distance.
We expect the largest cluster to correspond to the character themselves as they
would be present the most often within their scenes. This relies on characters
appearing separately from other characters in different scenes.

4 Results

We evaluated the proposed technique on a dataset of approximately 35,000 im-
ages, obtained form the TV sitcom “Friends”. This program is ideal for exam-
ining the approach, as the large cast of “main” (i.e. re-occurring and named)
characters, makes the task especially challenging. In addition, scripts are easily
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Ross Rachel Phoebe

Fig. 5: Comparison of cluster density and co-occurrence frequency after identity
assignment, for the 3 most common characters.

obtainable for the series, and the large amount of dialogue facilitates the accu-
rate subtitle-to-script alignment. The total number of named characters present
in the relevant scripts is 9, with co-occurrences spread across 14 different scenes.

From the dataset, around 20,000 face descriptors are extracted. After parti-
tioning based on character co-occurrence as described in section 3.3, each char-
acter had on average of 6,830 face candidates.

4.1 Cluster feasibility

In order to assign identities, we assume that the density of the clusters relates to
the frequency of character co-occurrences. In order to evaluate this assumption
figure 5 compares histograms for the 3 most commonly occurring characters in
the dataset.

It can be seen that, in general, cluster density correlates well with character
co-occurrence frequency, meaning that the assumption used for identity assign-
ment is likely a valid one. There are some inconsistencies, particularly with minor
characters, as they tend to talk (and be visible) less often, even when they are
technically present in the scene. Thus the cluster density of the smallest clusters
is generally somewhat lower than what we would expect from the script.

4.2 Character identification

It is extremely time-consuming to manually annotate the identity of tens of
thousands of face images. Avoiding this task is one of the primary motivations
for our automatic data-driven approach. As such, we evaluate the technique
in terms of “character exemplars”. For each cluster with an assigned identity,
we extract the face candidate closest to the cluster centre, and record whether
this exemplar belongs to the assigned character. These exemplars are shown in
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Fig. 6: Character co-occurrence matrix E, represented using the assigned ex-
emplars. Exemplars with a blue border are correctly identified. Gaps indicate
pairs of characters which never co-occur within the dataset. Roughly one third
of cluster exemplars have had the correct identity assigned.

Fig. 7: Accuracy of identity assignment for the K-nearest exemplars.

figure 6 for the full co-occurrence matrix E. Blue borders indicate exemplars
with correctly assigned identities.

Overall 29% of the exemplars are assigned the correct identity. This is 2.5
times the accuracy achievable by random assignment, indicating that even the
weak supervision provided by script co-occurrences, can be hugely beneficial.

We extend this evaluation to look at the the accuracy of the K-nearest ex-
emplars, as shown in figure 7. If we examine up to the top 20 exemplars, we are
able to identify more than 50% of the characters correctly.



10 Friendly faces

5 Conclusions

In this paper, we have introduced an approach to identify characters in broadcast
footage, without any manual intervention. Instead the technique uses weak su-
pervision from script and subtitle alignments, to estimate character co-occurrences.

Face candidates were extracted, and described in terms of facial landmarks
to mitigate pose variation. Modes in the face data were then estimated, and the
density of these modes was used to assign character identities, by comparison
to the expected co-occurrence rates. The technique was evaluated by examining
the “exemplars” of these modes, 29% of which had the correct identity assigned
(2.5 times the baseline from random assignment). Accuracy increased to over
50% when examining the top 20 exemplars per mode

In the future it would be interesting to investigate co-clustering techniques
to collate character identity information across the rows of the co-occurrences.
Using different clustering techniques that don’t assume spherical clusters such as
GMMs should allow for better modelling of the distribution of characters as well
as using more clusters than there are characters. The use of the actual speaking
times from the subtitles could also be used to further improve performance.
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