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A. Linearisation of appearance matching costs

As mentioned in Section 6 of the paper, all the cost func-
tions integrated into the system are linear in terms of «,
except for the image lookups during appearance matching
(Equations 3-5 of the paper). Here, we describe how these
lookups are linearised, using an extension of the “Optical
flow constraint” from the motion estimation literature. This
enables us to perform efficient inference by solving a sparse
Linear Program.

We illustrate the linearisation for the Brightness Con-
stancy cost function

Epe (si) = Y $(Ux]) ~T(H(x{lew))), (D)
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however, it extends trivially to the other appearance match-
ing costs.

As mentioned at the end of Section 4, this equation omits
the conversion from 3 element homogeneous pixel positions
(x) to 2D image locations (x). We now include a conversion

% = G(x) 0

into the cost function explicitly

Ep(si) = Y $(I'(G(x})) — (G (H(x]|ew)))).
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The lookup in the reference image (I") does not depend
on o and so does not need to be linearised. For the target
image (I*) lookup, we perform a Taylor expansion and drop
all terms of quadratic order or higher. If we have a current
estimate a”, we can perform the Taylor expansion around

this and obtain a parameter update Acx

I{G (H (x}|a) + Aat))) = THG (H (x}]ad))) + T Aa,
“4)

where J is the Jacobian of the combined function.
The function being approximated can be viewed as the
composition of 3 functions (!, G and H). Thus, we can
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compute J in closed form using the total derivative chain
rule,

J = J1(G (H (xj[))) Jo(H (xj[e)) Tu(x7). (5

In other words, J is the matrix product of the three Jaco-
bians (J;, Jg and Jg) for the composited sub-functions,
with each Jacobian being evaluated at the location output
by its preceding sub-functions.

To define the first sub-Jacobian (J i € R3*3), remember
that the H function is defined as the application of 3 matrix
multiplications to the pixel position. First the inverse of
the calibration matrix for the reference camera, second the
homography matrix induced by the plane, and finally the
intrinsic matrix for the target camera

H(x/|e;) = K,H;K'x" = x". (6)

The matrix H; is defined as H; = R + ta; and is the
only part of the equation which depends on c. As such, the
sub-jacobian J g in terms of « is given by

Ju(x") = Kt (K1x") T (7

the intrinsics of the target camera, and the outer product of
the camera baseline with the normalised homogeneous pixel
position.

The second sub-Jacobian (Jg € R2*3) is the simplest,
given by

1 u
Ja(x') = {g i _“:f] ®)

where u, v, w are the elements of x’.

The final sub-Jacobian J; € R'*2 encodes how the im-
age intensity varies as a result of changes in the pixel po-
sition, and is constructed from the x and y gradients of the
target image.
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Res. || Adirondack ArtL Jadeplant | Motorcycle | MotorcycleE | Piano | PianoL Pipes
F 13.1/1 17.6/2 20776 21.3/5 21.0/3 11.1/2 | 14372 | 279/2
RMSErmr. | H 11.9/3 20.8/6 81.0/3 22.6/7 225175 11.3/3 | 193/3 | 31.5/4
Q 13.3/2 21.3/2 754172 26.2/2 259/2 12.2/1 | 153/1 | 36.7/2
F 591/3 8.04/4 146 /6 9.36/5 9.00/3 790/5 | 936/2 | 13.0/4
Avg. Err. | H 57617 991/6 39.6/6 9.85/17 9.54/5 8.09/7 | 10.8/4 | 15.0/8
Q 6.75/2 11.7/2 38.6/2 11.5/4 11.2/2 858/2 | 103/2 | 18.7/4

F 66.5/1 78.0/1 533/6 123/3 122/3 39.8/1 | 47.7/1 | 123/2

A99 H 58.0/2 84.6/6 319/2 132/5 132/3 38.1/1 | 100/4 | 131/4
Q 63.3/2 752171 283/1 140/2 139/2 43.6/1 | 56.2/1 | 149/2
Res. Playroom | Playtable | PlaytableP Recycle Shelves Teddy | Vintage | Average

F 30.6/5 36.7/3 18.3/4 10.0/2 21.7/3 152/5 | 155/6 | 393/5

RMSErmr. | H 26.8/7 42.6/3 18.7/7 9.63/2 21577 10.8/5 | 283/4 | 248/3
Q 18.6/2 224/1 19.5/72 11.6/2 20.0/2 8.66/2 | 227/1 | 24.0/2
F 12475 24815 13.6/6 6.87/6 13.3/5 450/5 | 913/6 | 24.0/6
Avg. Err. | H 11.0/7 2521/4 14.0/9 6.74/9 13.3/7 297/5|195/9 | 129/6
Q 947/2 15.8/3 14.6/4 7.64/4 12472 373/2 | 16.8/3 | 13.2/2

F 164/5 140/1 54874 347171 855/2 74.0/5 | 427/6 | 134/5

A99 H 14777 184/3 56.9/4 37571 794175 40.6/2 | 81.2/1 | 106/2
Q 99.9/2 77971 59.5/72 43.0/1 79.2/1 43572 | 61.7/1 | 98.1/1

Table 1: Performance on each sequence, for all resolution benchmarks. Listed is the error value for that sequence, followed
by the ranking for that sequence. Rankings are out of 6, 9 and 5 for the F, H and Q benchmarks respectively.

Given these definitions, we can substitute the approxi-
mation of Equation 4 into the cost function from Equation 3

Bue(s) = 3 (I(G (xD)) -
X; €S, (10)

IG (H (x}|af))) = I daI g Aa).

This cost function is linear in terms of Acx.

B. Additional results

For the Middlebury 2014 dataset, the full breakdown of
the performance across every sequence is given in table 1.
This includes results for all 3 resolution benchmarks. Qual-
itative examples of the algorithm’s output are given in fig-
ures figures 1 to 3. These examples were randomly chosen
from the Middlebury 2014 and KITTI datasets.

C. Surface Normal Estimation

We performed an additional analysis of the surface nor-
mal estimation system. The agreement of the surface nor-
mals estimated in the 2 views was quantified by

RIT (x7) - I3 (%)) + 1
2 i

(1)

where x! is the corresponding pixel in the target image ac-
cording to the ground truth disparity map. In other words,
the dot product of the 2 normal vectors in the target co-
ordinate frame, normalised between O and 1.

Figure 1: Random examples from the Middlebury 2014 Full
resolution benchmark. Input image (left) and output (right).




l |

Figure 2: Random examples from the KITTI dataset. Input image (left), the output of our algorithm (middle) and the ground
truth (right).



Figure 3: Random examples from the Middlebury 2014 Full resolution benchmark. Input image (left), the output of our
algorithm (middle) and the ground truth (right).



The distribution across all pixels from all scenes in the
Middlebury 2014 training set, is displayed in figure 4. The
average consistency across viewpoints is 0.982, with al-
most nothing below 0.95. To measure the sensitivity of the
overall reconstruction framework to this, we also computed
the correlation between the surface normal agreement and
the disparity error (again over all pixels in the training se-
quences). The resulting correlation co-efficient was -0.08,
indicating a slight anti-correlation (i.e. increased surface
normal agreement indicates a reduction in disparity error).
This is reasonable as matching estimated surface normals
is one of the inputs to the system, however the sensitivity
proves very slight due to the influence of other cues.

D. Performance vs. baseline

This experiment examines the effect of the stereo base-
line on the performance of the proposed system. The Mid-
dlebury 2014 and KITTI datasets are poorly suited for this
evaluation as there is little variation in baseline, and the
change in scene clutter is far more significant. Instead we
use the Middlebury 2003 dataset which includes a larger
array of cameras. We can then use different pairs of im-
ages to simulate stereo pairs with different baselines, but all
viewing the same scene. The results are plotted in figure 5,
which shows that an extremely narrow baseline is the most
detrimental, and that good performance can be obtained for
a wide range of baselines. However, there is an eventual
decay in performance when the baseline becomes too large.
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Figure 4: Distribution of consistency between the two view-
points for estimated surface normals.
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Figure 5: Performance against varying stereo baseline.



