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The planning and execution of modern space missions
rely on traditional SSA methods for detecting and track-
ing orbiting hazards. This often leads to sub-optimal
responses due to remote sensing inaccuracies and trans-
mission delays. On the other hand, deploying and main-
taining space-based sensors is expensive and technically
challenging due to the inadequacy of current vision tech-
nologies. In this paper, we propose a novel perception
framework to enhance in-orbit autonomy and address the
shortcomings of traditional SSA methods. We leverage the
advances of neuromorphic cameras for a vastly superior
sensing performance under space conditions. Addition-
ally, we maximize the advantageous characteristics of the
sensor by harnessing the modelling power and efficient
design of selective State Space Models. Specifically, we in-
troduce two novel event-based backbones, E-Mamba and
E-Vim, for real-time on-board inference with linear scal-
ing in complexity w.r.t. input length. Extensive evaluation
across multiple neuromorphic datasets demonstrate the
superior parameter efficiency or our approaches (<1.3M
params), while yielding comparable performance to the
state of the art in both detection and dense-prediction
tasks. This opens the door to a new era of highly-efficient
intelligent solutions to improve the capabilities and
safety of future space missions.

1 Introduction

Space Situational Awareness (SSA) stands as a cor-
nerstone of the global space exploration initiative.
Its essence lies on the identification, analysis and
tracking of near-earth objects’ orbits. These efforts
allow for the integration of said trajectories into new
mission designs and facilitate the strategic rerouting
of existing systems when necessary. However, most
of the work carried out in this field relies on the
high-fidelity detection and mathematical modeling
of orbits from earth. This significantly prolongs the
response time of current satellites to any unforeseen
incoming object. In addition, low-latency autonomous
approaches to SSA are often discouraged, as tradi-
tional visual sensors are ill-suited for space-related
applications due to their sub-optimal characteristics

e.g. slow capture-rate, high power consumption and
susceptibility to low light environments.

In terrestrial research, event cameras emerged as
a neurologically inspired visual sensor which signif-
icantly deviates from the operational principles of
traditional frame-based cameras. Unlike standard
cameras, which capture full-frame luminance levels
at predetermined intervals, event cameras document
per-pixel intensity changes asynchronously in real-
time. These new sensors offer several advantages over
their RGB counterparts, particularly benefiting on-
board SSA applications: Their asynchronous nature
drastically diminishes their power consumption and
data output volume, rendering them ideal for long-
term in-orbit deployment. Moreover, their higher dy-
namic range enhances capture performance in the
challenging lighting conditions of space, including
direct sunlight and deep shadows. Additionally, their
reduced latency enables fast reactivity, which is vital
for collision avoidance and maneuver planning tasks.
However, their asynchronous nature also causes a
radical shift in output representation, which in this
case is a stream of spatio-temporal events. Unfortu-
nately, given that most traditional computer vision
algorithms rely on dense and synchronous pixel mea-
surements, adapting them to accommodate the stream
generated by event cameras can pose significant chal-
lenges.

The current landscape of event-based processing ar-
chitectures can be divided into two categories. Point-
based methods process the generated events in their
natural sequence form, by employing sparse computa-
tional paradigms. The architectural choices inside this
line of research include Point Networks [1] [2], Graph
Neural Networks (GNNs) [3] [4] [5], or Spiking Neural
Networks (SNNs) [6] [7] [8]. However, despite the high
compatibility of these approaches with the natural
characteristics of event sequences, they tend to offer
limited performance or need specialised hardware to
function. To address the performance issues, several
works have proposed a second processing paradigm
which involves converting events into image-like



representations, making them compatible with mod-
ern vision architectures i.e Frame-based methods.
The preferred architectures inside this category are
Convolutional Neural Networks (CNNs) which have
been successfully applied to multiple event-based
task such as Optical Flow estimation [9] [10], Depth
prediction [11] [12], object detection [13] and object
classification [14]. Following the landscape changes in
synchronous vision, Transformers were also presented
as viable alternatives to CNNs, obtaining state-of-
the-art results across several benchmarks [15] [16] at
the cost of longer training cycles due to the lack of
convolutional inductive biases. In spite of the compet-
itive performance shown by this category of models,
accumulating the events reduces the advantageous
reaction time of the sensor while also introducing
redundant computation due to empty pixels/voxels.
This makes them less well suited to space applications
and their computational constraints.

In this paper we propose selective State Space
Models (SSMs) [17] [18] [19] as a potential alternative
for both of these regimes. Specifically, we build our
architectures on top of the Mamba processing ap-
proach to address the shortcomings present in previ-
ous work. Mamba is a sequence modeling architecture
which has recently emerged in the Natural Language
Processing (NLP) domain. Initial experiments have
demonstrated its notably reduced computational re-
quirements, as unlike transformers, it scales linearly
in complexity w.r.t. sequence length. Additionally,
it has proven to be significantly more parameter
efficient than existing state-of-the-art techniques. The
joint characteristics of the proposed pipeline hold
promise for enabling a lightweight space-ready com-
puter vision system, characterised by high efficiency
spanning from sensor input to computational output.
In turn, this would allow for the introduction of
novel intelligent assistive frameworks in future space
missions, where the on-board perception components
effectively communicate with human operators to
alert of possible hazards or suggest re-routing maneu-
vers.

2 State Space Models (SSMs)

We define a State Space Model that describes a 1-D
sequence-to-sequence mapping from u(t) : R → R
to y(t) : R → R through an N-D hidden state h(t) ∈
RN . Such a model is parametrised by two projection
matrices B, C dependent on the input sequence (i.e.
B = SB(u) : R → RN , C = SC(u) : R → RN ), and
an evolution matrix A ∈ RN×N . SB and SC represent
linear projections to dimension N i.e. LinearN (·).

This can be formulated as linear ordinary differen-

tial equations, where h′ is the gradient of the state h.

h′(t) = Ah(t) + Bu(t),
y(t) = Ch(t).

(1)

In order to integrate this SSM design into deep learn-
ing algorithms, we transform the continuous-time
parameters A, B into the discrete-time parameters
A, B using the Zero Order Hold (ZOH) discretisation
method.

A = exp(∆A) B = (∆A)−1(exp(∆A)− I) ·∆B. (2)

This reformulation adds a new step size parameter
∆ representing the input’s resolution, theoretically
controlling how much to focus on or ignore each
measurement. We ensure that the step size is also
dependent on the input by ∆ = τ∆ (∆+ S∆(u)) where
S∆ = BroadcastD (Linear1(·)) and τ∆ = softplus.

We leverage the HiPPO theory of continuous-time
memorization [20] as the initialization mechanism for
our evolution matrix A, allowing the state to integrate
recent inputs with higher fidelity than those further
in the past.

Ank = −


(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

(3)

3 Selective SSMs for Event Vision
Let I(x,y, t) denote the log intensity at location (x,y)
and time t. An event e is triggered at (x,y, t) whenever
the change in log intensity surpasses a predefined
contrast threshold C. Each event is characterised by
its polarity p, indicating either a positive or negative
variation in I . Hence, the output of an event camera
is an asynchronous stream of N events

E = {ek | I(xk , yk , tk)− I(xk−1, yk−1, tk−1) ≥ C}Nk=1 (4)

In this paper, we propose two main approaches to
efficient SSM-based event processing for space appli-
cations:

Point-based. Current state-of-the-art models i.e.
Transformers are not able to perform point-based
event processing due to their poor scalability with
input length as well as their limited context win-
dows. However, Mamba’s proven ability to scale up
to 1M-length sequences with no compromise in per-
formance finally enables us to efficiently perform
raw event-stream processing, preserving all the speed
and memory benefits for on-board space applications.
To explore this regime we propose E-Mamba, our
event-sequence encoder comprised of a stack of uni-
directional SSM blocks.



Figure 1: Overview of the E-Vim (top) and E-Mamba (bottom) architectures. The semantically rich features extracted by
our models can be subsequently utilised for both classification or dense-prediction tasks.

In this case, each individual event in the stream is
transformed into a 4D tensor ek = [xk , yk , (tk−1− tk),pk]
encoding its spatial location within the DVS’s sensor
array, its polarity and the difference in timestamp w.r.t.
the previous event. These sensors produce streams in
the order of millions of events per second, hence in
order to ease the learning process we encode relative
time information as timestamp differences.

Frame-based. To fuse the advantages of frame-base
methods with the parameter and implementation effi-
ciency of SSMs, we propose E-Vim, our novel frame-
based event encoder. In this case, we extend our
point-based encoder block with bi-directional process-
ing of the input sequence using forward and back-
ward SSMs, and a spatio-temporal patch embedding
module. First, we transform the input streams into
voxelised representations by dividing the sequence
into t temporal windows of length l. Subsequently,
we convert the events in each window into a frame
representation F ∈ R2×B×H×W . We focus on two rep-
resentation strategies: traditional volumetric voxel-
grids, following the pipeline described in [11], and
event histograms, where each pixel location in F is
represented by two histogram-like vectors of B bins,
one per polarity p ∈ {0,1}.

We introduce a spatio-temporal patch embedding
strategy to encode the input frames by using a 3D
strided convolution with a kernel k ∈ R1×PH×PW . This
in turn creates a sequence S of length (B × H

PH
× W

PW
)

comprised of non-overlapping spatio-temporal patch
features, subsequently flattened and projected to the
dimensionality of the encoder. Following BERT’s [21]
conventions, the model adds a learnable [CLS] token
cls ∈ RD to the sequence plus learnable positional
encodings Epos ∈ R(L+1)×D .

4 Sequence Classification Results
We begin by assessing our selected models on the
two primary event-based sequence classification tasks,

Dataset Model Acc. (↑) # params

[22]

EvT+ [23] 97.57 0.66M
TORE [24] 96.2 5.94M
S-former [25] 98.96 9.28M

E-Mamba 60.02 75.5K
E-VimS 84.03 383K
E-VimL 80.09 1.2M

[26]

EvS [27] 68.0 N/A
NDA [28] 81.7 132.8M
S-former [25] 81.4 9.28M

E-Mamba 32.4 75.5K
E-VimS 59.7 1.2M
E-VimL 59.1 2.9M

Table 1: Evaluation of Base E-Mamba and E-Vim variants
on DVS128-Gesture [22] and CIFAR10-DVS [26].

namely gesture recognition on the DVS128-Gesture
dataset [22] and object detection using CIFAR10-DVS
[26]. These are used as proxy tasks with relevance
to space-situational awareness due to the nature of
their acquisition methodologies, assessing the adapt-
ability of our proposed systems to both static-camera
dynamic-scene and dynamic-camera static-scene sce-
narios.

Point-based processing Our architecture is com-
posed of 2 Mamba encoder blocks, each with an em-
bedding size of 100. Following the encoding process,
the embedding of the last event is linearly projected
through a classification head to obtain the logits.
We optimize the framework using Negative Log-
likelihood loss and a base learning rate of 0.001.

Frame-based processing The reduced computa-
tional demands of frame-based processing allows us
to explore two different model sizes for our architec-
tures: E-VimS and E-VimL of encoder depths equal
to 1 and 4 for DVS128-Gesture, and 4 and 10 for
CIFAR10-DVS. We first train the two baselines on



Dataset Model Nbins lr Repre. Aug.
Time*

15 2 1e−3 3e−4 Voxel Hist. NDA Rand.

DVS128 [22] E-Mamba - - - - - - 90.97 - 1.45ms
E-VimS 84.03 79.51 84.03 80.9 84.03 91.01 86.46 83.4 1.66ms

CIFAR10-DVS [26] E-Mamba - - - - - - 35.97 - 1.45ms
E-VimS 59.7 53.8 59.1 58.9 59.7 60.01 62.5 54.3 4.01ms

* Avg. inference time over 1000 runs.

Table 2: Additional evaluation of the best-performing E-Vim variant and E-Mamba (with neuromorphic augmentations)
on DVS128-Gesture [22] and CIFAR10-DVS [26].

(96×96×Nbins) spatio-temporal crops using the same
experimental details described above. In this case,
we pre-process the input sequences into voxel-grid
representations by discretising the time dimension in
Nbins = 15 bins prior to feeding them to the models.
The final embedding of the learned [CLS] token is
linearly projected to obtain the predictions.

As shown in Table 1, the compact variants of our
E-Vim model outperform their larger counterparts in
both gesture and object recognition tasks despite hav-
ing 32% and 55% fewer parameters respectively. This
demonstrates the exceptional parameter efficiency of
our State Space Models. As expected, our frame-based
architectures outperformed the proposed E-Mamba
in all datasets. We hypothesize that this is caused
by the lack of convolutional inductive biases present
in our point-based approach, making it harder for
the network to encode spatial relationships between
non-neighboring events in the sequence. However,
our E-Mamba model is able to perform perform
streaming inference on an event-by-event basis and
with minimal computational requirements, by using
the recurrent interpretation of its discretised SSMs.
This is an extremely valuable property in on-board
use cases where fast-reactivity is required.

We now select the best-performing frame-based
variant in each dataset for further investigation. These
additional experiments assess how various design
choices impact task performance i.e. hyperparameter
optimization, temporal granularity of the input vol-
umes, event-representation and data augmentation.
On this last front we both explore a naive pipeline
of affine transforms (e.g. random flips, rotations,
shears etc.), and the state-of-the-art Neuromorphic
Data Augmentation (NDA) framework proposed in
[29]. Additionally, we also investigate the effect of
related point-based transforms (event-drop, rotations,
translations and spatio-temporal jitter) on the gener-
alization capabilities of our E-Mamba architectures.

According to Table 2, our E-VimS model exhibits
comparable performance to the state of the art in
the DVS128-Gesture dataset with less than 400K
parameters. This suggests significant potential for our
model as a lightweight & powerful encoder.

Dataset Model L1 (↓) # params

DSEC-flow [10] E-VimS 0.523 1.2M
E-VimL 0.549 8.1M

Table 3: Evaluation of Base E-Vim variants on our custom
validation split of DSEC-flow [10].

Upon reducing the input’s temporal granularity, we
observed a substantial drop in performance in both
benchmarks. This indicates that our architectures
benefit from the rich temporal information in the
events, instead of relying on appearance cues only.

Adequately applying relevant transformations to
the input data also proved to be extremely valuable
for our models. Naive augmentations hindered the
performance of our SSMs, but using the event-specific
NDA transforms improved their generalization capa-
bilities w.r.t. the baseline case in both tasks.

5 Dense-prediction Tasks
Additionally, we evaluate our SSM variants on a dense
pixel-wise prediction task: Optical flow estimation on
the DSEC-flow dataset [10]. This is not only a highly
relevant task for autonomous space applications, but
also enables us to observe the behaviour of our SSMs
in more complex dynamic- camera dynamic-scene
scenarios. Nonetheless, the lengthier sequences in
DSEC (> 3M) render it infeasible to effectively employ
point-wise training on the data. Instead we focus
training-efficient frame processing techniques.

Frame-based processing Here we also explore two
different model sizes, E-VimS and E-VimL of encoder
depths equal to 8 and 20. We use the same voxel-grid
representation but increase our random crop size to
(480 × 480 × 15) to account for the higher resolution.
The final embedding of the learned [CLS] token is re-
shaped into a 2D tensor and fed into a decoder-like
head with 4 [Upsample+Conv2D] blocks to obtain
the flow predictions. We use an L1 loss and a base
learning rate of 3e−4.

Table 3 presents the results obtained by E-Vim in
the dense prediction task. Consistently with earlier ob-



Dataset Nbins lr Repre. # params
30 40 1e−3 5e−5 Hist. Voxel

DSEC-flow [10] 0.5636 0.572 0.5384 0.59 0.502 0.523 1.2M

Table 4: Evaluation of the best-performing Base E-Vim variant on the additional DSEC-flow [10] experiments.

servations, the smaller model demonstrates superior
performance compared to its larger counterpart, re-
gardless of their 6.8M parameter difference. These re-
sults illustrate the high-adaptability of our approach
to multiple task types and use-case scenarios, while
maintaining competitive performance. We now select
the best-performing variant and conduct a similar
array of extra evaluations to those presented in the
classification experiments.

Table 4 Illustrates the performance of our E-VimS
across said extra evaluations. Motivated by the results
obtained in the classification tasks, we further quan-
tised the input volume into 30 and 40 bins for a finer
temporal history of the sequence. Nevertheless, the
redundant computation introduced by the additional
empty pixels prevented any significant improvement.

We could also observe significant benefits across
tasks as a consequence of using the simpler histogram
frames. However, we show that our model is able
to successfully extract information from multiple
representations without hindering task results.

6 Discussion
In this paper we proposed neuromorphic cameras
as an ideal sensor for on-board Space Situational
Awareness scenarios, where fast-reactivity and com-
putational efficiency are essential. Additionally, we
introduced two SSM-based architectures designed
to extract task-agnostic features from event streams,
while fully leveraging the advantageous characteris-
tics of the sensing device.

Experimental results in several event-based bench-
marks have verified the modeling capabilities and
parameter/computational efficiency of our architec-
tures. The integration between the proposed com-
ponents yields a lightweight, space-ready perception
framework. This can be employed alongside current
SSA methods to enhance both the detection accu-
racy of potential hazards and the reaction time to
such threats. We hope that our work encourages new
avenues of research and applications in on-board
intelligent systems for the next generation of space
missions.
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