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Abstract

We propose a novel deep learning approach to solve
simultaneous alignment and recognition problems (referred
to as “Sequence-to-sequence” learning). We decompose the
problem into a series of specialised expert systems referred
to as SubUNets. The spatio-temporal relationships between
these SubUNets are then modelled to solve the task, while
remaining trainable end-to-end.

The approach mimics human learning and educational
techniques, and has a number of significant advantages. Sub-
UNets allow us to inject domain-specific expert knowledge
into the system regarding suitable intermediate represen-
tations. They also allow us to implicitly perform transfer
learning between different interrelated tasks, which also al-
lows us to exploit a wider range of more varied data sources.
In our experiments we demonstrate that each of these proper-
ties serves to significantly improve the performance of the
overarching recognition system, by better constraining the
learning problem.

The proposed techniques are demonstrated in the challeng-
ing domain of sign language recognition. We demonstrate
state-of-the-art performance on hand-shape recognition (out-
performing previous techniques by more than 30%). Fur-
thermore, we are able to obtain comparable sign recognition
rates to previous research, without the need for an alignment
step to segment out the signs for recognition.

1. Introduction
Perception is a hierarchical process; our understanding

of the world as a whole, is based on recognising different
parts of the world and understanding their spatio-temporal
interactions. As an example, for recognising human ac-
tions we not only recognise where the different body parts
are located, but how they move relative to each other and
in relation to surrounding objects. More generally, most
spatio-temporal learning problems can be broken down into
meaningful “subunit” problems. However, the subunits often
have complex, unsynchronised, causal relationships, making
it very challenging to model them jointly.

Figure 1. Overview of a SubUNet and its building blocks. In this
example our input sequences are hand patch videos and target
sequences are hand shape classes. Hand-Icons from [31].

Until recent years, most spatio-temporal computer vi-
sion techniques have extracted hand-crafted intermediate
representations and then used classical temporal modelling
approaches such as Hidden Markov Models and Conditional
Random Fields [35]. The emergence of modern deep learning
methods [30, 13, 34] has removed the need for such tailored
representations and enabled systems to implicitly learn both
the spatial and the temporal features. However, the disad-
vantage of deep learning is that it can be difficult to encode
expert knowledge (such as suitable subunits or intermediate
representations). This is especially true when dealing with
sequence-to-sequence modelling problems, where the differ-
ent subunits may not be synchronised with each other and
can exhibit complex causal relationships.



In this paper, we present SubUNets1, a novel deep learn-
ing architecture for sequence-to-sequence learning tasks,
where the systems are expected to produce a sequence of
outputs from a given video. Contrary to other video to text
approaches, our method explicitly models the contextual sub-
units of the task while training the network for the main task.
This allows us not only to encode expert knowledge about
the properties of the task, but also to exploit a much wider
range of annotation sources, and to exploit implicit trans-
fer learning between tasks. We demonstrate this approach
for the problem of Continuous Sign Language recognition,
where the recognition systems are expected to detect and
recognise the individual signs in a given video and produce a
text translation. This problem is particularly well suited to
our SubUNets approach as unlike spoken languages, sign
is famously multi-channel. Information is carried in the
hand shape, motions, body pose and even facial gestures.
Additionally, there is a wealth of expert linguistic knowledge
relating to sign language and the interactions between it’s
different modalities.

The contributions of this paper can be listed as:
• An end-to-end framework for explicitly modelling the

subunits during sequence-to-sequence learning.
• The first end-to-end system for continuous sign lan-

guage recognition alignment and recognition, based on
explicit subunit modelling.
• A thorough comparison of different decoding schemes

for networks using CTC loss.
The rest of the paper is organized as follows: In Section 2 we
go over the related work on sequence-to-sequence modelling,
and continuous sign language recognition. In Section 3 we
depict SubUNets and go further into detail of its components.
First we apply SubUNets to the problem of hand shape recog-
nition in Section 4, achieving state-of-the-art performance
without needing to realign the data. Then we describe our
application of SubUNets to the challenge of Continuous Sign
Language recognition in Section 5. Here we demonstrate
how SubUNets can be combined to model the asynchronous
relationship between different channels of information and
that combining different loss layers allows expert knowledge
to be incorporated which increases recognition performance.
Finally, we conclude the paper in Section 6 by discussing
our findings and the possible future work.

2. Related Work
Sequence-to-sequence learning methods can be grouped

into two categories: Encoder-Decoder Networks [38] and
approaches based on Connectionist Temporal Classification
(CTC) [16].

Encoder-Decoder networks first emerged from the field of
Neural Machine Translation (NMT) [32]. Kalchbrenner and
Blunsom [24] proposed the first encoder-decoder network

1Not to be confused with U-Nets [36]

that uses a single Recurrent Neural Network for both encod-
ing and decoding sequences. Following this Sutzkever et al.
[38] and Cho et al. [8] proposed separating the encoding
and decoding jobs into two separate RNNs. Although this
approach improved their machine translation performance,
there were still issues with modelling the long term dependen-
cies between the input and output sequences. To overcome
this problem Bahdanau et al. [4] proposed attention mech-
anisms that were able to learn where to focus on the input
sequence depending on the output. These successes in NMT
encouraged computer vision researchers to adopt encoder-
decoder networks for applications such as image captioning
[43], activity recognition [13] and lip-reading [9].

The second group of sequence-to-sequence learning ap-
proaches are based on CTC, proposed by Graves et al. [16].
This approach has been widely used in the fields of Speech
Recognition [18, 2] and Hand Writing Recognition [17]. As
CTC is an ideal method for tasks where the data is weakly
labelled, computer vision researchers have also applied this
sequence-to-sequence learning method to sentence-level lip
reading [3] and action recognition [21].

In this paper, we demonstrate our proposed sequence-to-
sequence learning techniques in the domain of continuous
sign language recognition. This is due to its multi-channel
nature [11], and the large amounts of expert linguistic knowl-
edge available.

Until recently, most sign language recognition research
was conducted on isolated sign samples [42, 5]. How-
ever, with the availability of large datasets, such as RWTH-
PHOENIX-Weather-2014 [14], research interest has started
to shift towards continuous sign language recognition. As
frame level annotations are hard to come by in continuous
datasets, most of the work to date required an alignment step
to localize individual signs in videos [10]. The work that
is most relevant to this paper is by Koller et al. [27] which
combines deep-representations with traditional HMM based
temporal modelling.

3. SubUNets
In this section we present a novel deep learning architec-

ture for generic video to sequence learning problems, employ-
ing smaller specialized sub-networks. This approach forces
the network to explicitly model domain specific expert knowl-
edge, better constraining the overarching recognition problem.
We refer to these smaller specialized networks as SubUNets,
as they are trained to model subunits of a given task.

Each SubUNet consists of three tiers of neural network.
Firstly, Convolutional Neural Networks (CNNs) take images
as inputs and extract spatial features. Secondly, Bidirectional
Long Short Term Memory Layers (BLSTM) temporally
model the spatial features extracted by the CNNs. Finally
a Connectionist Temporal Classification (CTC) Loss Layer
allows the networks to be trained with different length videos



and label sequences. We depict a sample SubUNet architec-
ture that learns hand shapes from cropped hand images in
Figure 1. In the remainder of this section, we will provide
further details on each tier of the SubUNets, and describe
how to train them in an end-to-end manner.

3.1. Spatial Feature Extraction: Convolutional
Neural Networks

In SubUNets we employ 2D CNNs for learning the spatial
feature representations. Given an input image I with c
channels, the 2D convolution layers extract the feature map
F by convolving the image with the weights w as in

F (x, y) =
∑
c

∑
δx,δy

I(x+δx, y+δy, c)×w(δx, δy)+b (1)

where x and y represent the pixel coordinates of the image
I and b is the bias term. The spatial neighbourhood that δx
and δy are drawn from is defined by the kernel size of the
convolution layer.

Although the SubUNets approach can exploit any CNN
architecture for spatial modelling, our experiments use Caf-
feNet due to its low memory consumption (see Section 3.4
for further details). CaffeNet is a variant of AlexNet [30]
that has five convolutional and three fully connected layers.
We discard the last fully connected layer and use the weights
that were pre-trained on ImageNet [12].

3.2. Temporal Modelling: Bidirectional LSTMs

Two dimensional convolutional neural networks have
achieved state-of-the-art performance for many spatial recog-
nition tasks [39]. However they do not have the ability to
model temporal transitions of a video sequence. The spatio-
temporal convolutional networks [41] can theoretically model
temporal change in the spatial domain but their ability to
represent state transitions is limited. Instead, we model the
temporal aspects of our input sequences using Recurrent
Neural Networks (RNNs).

One of the main difficulties when training RNNs is the
vanishing gradient problem. The error generated from each
time step (and it’s associated gradients) diminishes during
the course of the sequence [33]. In order to preserve the long
term dependencies from the effects of vanishing gradients
Hochreiter et al. [20] proposed Long Short Term Memory
(LSTM) units.

LSTMs try to overcome the vanishing gradient problem
by proposing a cell state in addition to the hidden state that
classic RNNs use. Furthermore, it has specialized, input,
forget and update gates that minimize the diminishing effects
of long term dependencies.

An LSTM unit takes as input, the cell state, Ct−1 and
hidden state, ht−1 from the previous time step along side the
spatial data Ft at the current time step. It then computes the

input gate it, forget gate ft and the update gate C̃t as:

ft = σ(Wf · [ht−1, Ft] + bf ) (2)
it = σ(Wi · [ht−1, Ft] + bi) (3)

C̃t = tanh(Wc · [ht−1, Ft] + bc) (4)

Using the calculated gate values, the LSTM unit calculates
the output ot, cell state Ct and the hidden state ht values to
pass to the next time step as:

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)
ot = σ(Wo · [ht−1, Ft] + bo) (6)
ht = ot ∗ tanh(Ct) (7)

From these equations, it is obvious that an LSTM produces
the output at a time step t using the current spatial information
Ft and the information leading up to this point, encoded in
the hidden state ht−1. Thus, any time step following t has
no effect on the output of the LSTM at time step t. Although,
this gives LSTM the ability to operate in real-time, there is
useful information in the following frames that is not being
used to constrain the current frame’s prediction.

Therefore, we deploy BLSTMs as our temporal modelling
layer. A BLSTM contains two LSTM layers operating in
opposite directions along the time domain (See Figure 1).
The outputs of the two LSTMs are then concatenated before
being fed deeper into the network. The main idea of the
BLSTM is to provide knowledge about the full sequence
during prediction. The output of the BLSTM at time t is
based on both of the hidden states encoding F1:t−1 and
FT :t+1. In our SubUNets each BLSTM layer has 2048 units,
1024 units in each direction. Although, the use of BLSTM
layers limits the real-time capabilities, on-line prediction is
still achievable with a sliding window approach.

3.3. Sequence-to-Sequence Learning: Connection-
ist Temporal Classification

When trained with Cross Entropy Loss [15], both the
classic feed-forward and recurrent architectures require a
label for each sample or time step. However, nearly all
sequence-to-sequence problems have different length input
and target sequences. One way to overcome this problem
might be to segment the input sequences and assign a cor-
responding label to each time step. However, this level of
annotation for every sub-unit on large datasets would be
impractical. Furthermore, segmenting an input sequence in
this manner often introduces label ambiguity, as the system
is forced to predict the same class across the start, middle
and end of a segment. Therefore, an additional structure is
required to effectively train sequence-to-sequence models
using feed-forward and recurrent neural networks.

Connectionist Temporal Classification (CTC), a loss layer
proposed by Graves et al. [16], is one of the most popular



approaches to training sequence-to-sequence models. When
using generic loss functions to train a network with L target
labels, (vocabulary), we structure our architecture to have |L|
outputs, each one corresponding to one of the labels. This
allows our network to produce posteriors over each label
for every time step. CTC introduces a blank label and
creates an extended vocabulary L′, where L′ = L ∪ { },
and restructures the network by adding another output unit
corresponding to the blank label. The blank label accounts
for silence and transitions that may exist between target
labels in the sequence, removing the need for per frame
annotation.

Although the blank label solves some of the problems,
the network still has to learn which parts of the input se-
quence sT , with T time steps, corresponds to silence and
transitions. To solve this, the CTC defines a mapping func-
tion B : L′T → LU (where U ≤ T ) between extended
vocabulary sequences π ∈ L′T and label sequences l ∈ LU
by collapsing repetitions and removing the blank labels in
π. Given an input sequence s, the probability of observing
a label sequence l is computed by marginalising over all
extended vocabulary sequences that would give rise to l. In
other words, if we define an inverse mapping function B−1

which produces every possible extended vocabulary sequence
π corresponding to label sequence l, then the probability of l
given an input sequence s is:

p(l|s) =
∑

π∈B−1(l)

p(π|s) (8)

However, as the length of label sequence increases, the
number of corresponding extended vocabulary sequences π
expands drastically. To overcome this, CTC uses dynamic
programming to efficiently calculate the loss and its gradient.

3.4. Implementation Details and Training

The proposed architecture is implemented using the
BLVC Caffe [23] framework and the CTC implementation
of ChWick2. Training was done on a single Titan X GPU
with Maxwell chip architecture and 12 GB VRAM. The code
of our paper is publicly available3.

While choosing our SubUNet layer architectures, memory
usage was of particular importance, so that the combined
SubUNets would fit into a single GPU. This is exacerbated
by the need for CTC to simultaneously have the posteriors
from all frames of a sequence in order to calculate the loss,
meaning entire sequences must be processed as a whole.
Therefore, a set of preliminary experiments was conducted
using a dummy SubUNet (One layer of BLSTM with 100
units in each direction) with all well known CNN architec-
tures, to check the practical limitations of memory use on

2https://github.com/BVLC/caffe/pull/4681/
3https://github.com/neccam/SubUNets

a single Titan X GPU. In these experiments images were
resized to the input size of each network, i.e. 224× 224 or
227× 227.

CNN Architecture #frames Memory (MB)
ResNet-50 [19] 35 12201
GoogLeNet [40] 160 12081
VGG-16 [37] 175 12025
SqueezeNet v1.1 [22] 320 12109
AlexNet [30] 1080 12111
VGG-F [7] 1340 12131
CaffeNet [23] 1450 12104

Table 1. Most Common Architectures and the maximum number of
frames we can load to them on a single GPU.

As can be seen in Table 1, the dummy SubUNet using
CaffeNet was able to support batches containing significantly
longer sequences. Therefore, CaffeNet is used as the spatial
encoding layer for all remaining experiments. To be able
to train variable length input and output sequences in a
single batch and to avoid the memory allocation overhead
we resized all frames to 227 × 227 and padded all input
sequences to 300 frames.

All of our networks were trained using the Adam Opti-
mization Algorithm [25] with a learning rate of 10−4 and the
default parameters: β1 = 0.9, β2 = 0.999, ε = 10−8.

4. Hand SubUNet: End-to-End Hand Shape
Recognition and Alignment

To demonstrate the power of the proposed SubUNet ap-
proach we focus on the challenging task of Continuous Sign
Language Recognition. One of the primary information carry-
ing modalities in sign language is the hand shape. Therefore,
as our first SubUNet, we train a network that learns to simul-
taneously recognize and time-align hand shape sequences
from videos of cropped hand patches.

Figure 2. Hand SubUNet: End-to-end Hand Shape Recognition
network from sequences.

Hand shape recognition is a challenging task in its own
right, due to a hands’ highly articulated nature. For instance,
the same hand shapes (with the same linguistic meaning)
but viewed from different directions, results in drastically
different appearances in the image due to self occlusion. To
be able to generalize across this variation, without over-fitting,
requires vast amounts of training data.

We use the One-Million Hands [27] dataset for training the
Hand SubUNet. The dataset consists of cropped hand images



collated from publicly available datasets, including Dan-
ish [29], New Zealand [31] and German (RWTH-PHOENIX-
Weather-2014 [14] sign languages. It has over 1.2 million
hand images, from which 1 million images were labelled with
one of 60 hand shape classes. The dataset contains 23 differ-
ent signers, which helps our network to generalize over differ-
ent users as well as language. The statistics of the dataset can
be seen in Table 2. The majority of the dataset comes from
the Training set of RWTH-PHOENIX-Weather-2014, a con-
tinuous sign language dataset which will be used in our con-
tinuous sign language recognition experiments in Section 5.

Danish NZ DGS Total
duration [min] 98 192 532 882
#frames 145,720 288,593 799,006 1,233,319
#labelled frames 65,088 153,298 786,750 1,005,136
#sequences 2,149 4,155 5,672 11,976
#signs 2,149 4,155 65,227 69,382
#signers 6 8 9 23

Table 2. Statistics of the One Million Hands dataset which con-
tains cropped hand patches from existing Danish, New Zealand
(’NZ’) and German(’DGS’ - RWTH-PHOENIX-Weather-2014)
sign language datasets. See [27] for more details.

The One-Million Hands dataset provides frame-level an-
notation for these sequences. However, as we are focussing
on the more challenging sequence-to-sequence problem, we
remove repetitions of the frame-level annotations to form our
target sequence of hand shapes.

For our network architecture, we used the first 7 layers
(5 Convolution, 2 Fully Connected Layers) of the CaffeNet,
followed by a single layer of BLSTM with 1024 units in each
direction. As the size of our vocabulary for this SubUNet
is 61 (60 hand shapes and the blank CTC label) we follow
the BLSTM layer with an inner product layer of 61 units. At
the end, a CTC Loss Layer is deployed to be able to learn
both alignment and recognition in a sequence-to-sequence
manner. A simplified visualization of the network can be
seen in Figure 2, while Figure 1 illustrates the network after
being unrolled in time.

The network was trained for 5000 iterations with a mini-
batch size of 90 sequences, using the Adam Optimizer as
described in Section 3.4. Optimization is terminated when
the training loss has converged.

To evaluate the performance of our network we used
the 3361 manually annotated hand images provided by
[27], which are from the Development set of the RWTH-
PHOENIX-Weather-2014 dataset. Again, because we are
interested in the more challenging alignment & recogni-
tion problem, we run the system on the full (unseen) test
sequences from which these images were taken. We then
extract and evaluate the estimated hand shapes for the subset
of frames which have ground truth.

As shown in Table 3, our Hand SubUNet surpasses the
hand shape recognition performance of the state-of-the-art

CNN-based method proposed by Koller et al. [27], by a mar-
gin of 18% Top-1 accuracy, which is a relative improvement
of 30%. Koller et al. [27] iteratively realigned and retrained
his network whereas the SubUNet architecture automatically
overcomes the frame alignment issue. These experiments
show us that SubUNets are able to learn both the alignment
and the recognition jointly from sequences in an end-to-end
fashion, without requiring any other alignment procedure.

We will now demonstrate the power of SubUNet to the
sequence-to-sequence learning problem by applying it to end-
to-end, multi-channel, continuous sign language recognition.

Top-1 Top-3 Top-5 Top-10
Koller et al. [27] 62.8 – 85.6 –
Hand SubUNet 80.3 90.6 93.9 96.9

Table 3. Hand SubUNet’s hand shape recognition results on the
One-Million Hands dataset.

5. Sign SubUNets: End-to-End Continuous
Sign Language Recognition

Compared to their spoken counter parts, Sign Languages
are multi-channel languages. Its users convey information
using a combination of hand and face gestures, hand move-
ments, upper body pose and facial expressions. The nature
of sign languages, makes it an ideal target application for the
SubUNets-based approach.

Due to the difficulty in collecting annotations, most of the
sign language recognition datasets that have been developed,
consist of isolated sign videos [42], [6]. Although these
datasets are suitable for isolated recognition [5], they do not
support the ultimate aim of sign language recognition re-
search: the translation of sign language utterances to their spo-
ken languages equivalents. Indeed, training a sign language
recognition system using these isolated datasets is equivalent
to training a machine translation systems using a dictionary
alone. Such a system would be unable to learn the higher
order sentence-level relationship between words or signs4.

To be able to train a sentence-level sign language recogni-
tion system, we used the RWTH-PHOENIX-Weather-2014
dataset, a DGS (German Sign Language) dataset that consists
of Weather Forecast Footage. The dataset contains both the
full frames and the cropped hands of the signers. This multi-
channel data is ideal to test our SubUNet network. For both
information channels there are 6841 sequences containing
a total of 77,321 words. The statistics of the dataset can be
seen in Table 4.

To be able to assess the benefits of SubUNets for Continu-
ous Sign Language Recognition, we conducted experiments
using a variety architectures.

4It is important to note that sign languages do not contain a direct
equivalent to sentences, the term is used here to clarify the concept to the
reader and refers to a meaningful phrase which consists of a sequence of
continuous signs.



Train Dev Test
#frames 799,006 75,186 89,472
#sequences 5,672 540 629
#words 65,227 5,564 6,530
#vocabulary 1,231 461 497
#signers 9 9 9

Table 4. Summary of RWTH-PHOENIX-Weather-2014 dataset.

All of the sign language recognition networks were trained
for 6000 iterations using the Adam Optimizer as described
in Section 3.4 with a mini-batch size of 60 sequences. Its
performance on the development set was evaluated at every
epoch, which is 96 iterations. If the training loss has not
converged after 60 epochs, we restart the training using the
best performing iteration with a lower learning rate and train
until the training loss convergence.

To evaluate the performance of a model, we fed the de-
velopment and test set sequences through the network and
extracted posterior probabilities for each word and the blank
CTC label. These posteriors are then passed through Ten-
sorFlow’s implementation of CTC beam decoder [1] with
a beam width of 100 to obtain the final sequence predic-
tions. To facilitate comparison with previous publications we
measure word error rate (WER) as:

WER =
#deletions + #insertions + #substitutions

#number of reference observations
(9)

5.1. Word SubUNet: End-to-End Continuous Sign
Language Recognition Single Channel

Figure 3. Word SubUNet: End-to-end Sentence-level Continuous
Sign Language Recognition Network.

As our first sentence-level architecture we train SubUNets
that learn the mapping between the given input sequence and
the word sequences. As depicted in Figure 3, this network
is similar to the proposed Hand SubUNet. However, as
words have a more abstract relationship to the images than
the observable hand shapes, we employ a deeper BLSTM
structure (adding BLSTM-2) to help the network model the
temporal relationships within the input sequence.

As can be seen in Table 5, having two layers in our
Word SubUNets improves our sentence-level recognition
performance. However, in order to combine multiple
SubUNets for different information channels (in subsequent
experiments), adding further layers is infeasible due to GPU
memory limitations.

In theory, full frame sequences should provide all neces-
sary channels of information for a sign. In other words hand
shape are by definition contained in the full body frame and

Dev Test
Full Frames del/ins WER del/ins WER
Single Layer 19.9/5.2 44.5 18.9/5.6 43.8
Two Layers 20.6/3.2 43.9 19.8/3.2 43.1

Table 5. Evaluation of having a deeper network.

the network should be able to find and use this information.
However, the problem is under-constrained, and it is unclear
what information the network will actually use to predict
word sequences. Due to the network’s resolution, the most
likely candidates are hand shape, arm motions and upper
body pose. To see how much the network benefits from
having the additional information in the full frame we train
another SubUNet using the same network architecture and
parameters but this time using only the cropped hands as the
input sequences.

Dev Test
Trained on del/ins WER del/ins WER

Hand Patches 24.3/2.8 45.8 23.4/2.5 44.5
Full Frames 20.6/3.2 43.9 19.8/3.2 43.1

Table 6. Evaluation of training Word SubUNets on different infor-
mation channels.

As can be seen in Table 6, training a Word SubUNet with
the hand patches worsens our performance by 2% WER. This
means the network trained on the full frames does make use
of the additional information contained in the full frames.
However, it is still unclear how redundant the information is.
Do the full frames contain all the information from the hand
patches plus a small amount of novel information? Or is the
additional context of motion in the full frame experiment
compensating for the loss of hand shape information? To
answer these questions, we propose combining networks
that model hand shape (Hand Patches Word-SubUNets and
Hand-SubUNets) with the Full Frame Word-SubUNet to see
if the sentence-level recognition performance benefits from
both sources of information.

5.2. Combining SubUNets: End-to-End Continu-
ous Sign Language Recognition from Multiple
Channels

So far we have trained three SubUNets: A hand Sub-
UNet that predicts hand shape sequences from hand patches
and two word SubUNets which perform sentence-level sign
language recognition from either full frame or hand patch
sequences. Although our experiments have demonstrated that
a word level SubUNet is able to make use of the additional
information from the Full Frames, it is unknown how novel
this information is compared to the hand shape network.
Therefore, we combine pre-trained networks, trained at the
word level, for both Hand SubUNets and and Full Frame
SubUNets to create a larger network that takes advantage of
both sources of information.



Due to the asynchronous nature of the sign language
modalities, we put the combined information of the Full
Frame Word SubUNet and Hand SubUNet through an addi-
tional BLSTM layer. This models the temporal relationship
between the modalities.

Figure 4. Combination of Hand SubUNets and Full Frame Word
SubUNets. Blue and Green Blocks represent the weights that are
going to be fixed and the weights that are going to omitted in the
fixed setup, respectively.

As most datasets don’t have annotations for both the hand
shape and signs (making it impossible to jointly train all
streams), we investigate the effects of fixing the weights for
pre-trained SubUNets. By doing so we hope to determine
how much the SubUNets benefits from tuning themselves
to the new compound architecture. Therefore we train two
networks. In the first experiment (“Fixed”), we pre-train
the two SubUNets depicted in Figure 4. Combining the two
networks at their final BLSTM layers into a 3rd BLSTM, IP
and CTC layer and therefore maintaining 3 loss layers. In the
figure, blue blocks are pre-trained and fixed, green blocks are
removed, while white block are trained for the task. In the
second variant (“Not Fixed”), all weights are trained using
the gradients produced by all three loss layers.

Dev Test
Combined SubUNet del/ins WER del/ins WER

Fixed 24.4/2.2 44.4 23.6/2.2 44.2
Not Fixed 19.6/2.7 43.1 18.7/2.9 42.1

Table 7. Evaluation of fixing SubUNets weights or allowing them to
train end-to-end.

This experiment provides two very important insights
into combining SubUNets. Firstly, as shown in Table 7,
allowing the SubUNets to tune themselves to the new network
structure by training end-to-end yields significantly improved
results. Secondly, and more interestingly, the combination of
the different SubUNet modalities outperforms all previous
experiments using isolated SubUNets. This reinforces the
idea that guided subunit learning is extremely valuable in
sequence-to-sequence recognition.

For our final experiment, we evaluate how much the expert
knowledge embedded within the SubUNets is contributing to
the system. The inspiration behind this expert knowledge,

Figure 5. Combining Word SubUNets that model Full Frame and
Hand Patches to sentence-level sign language.

comes from how humans teach and learn similar represen-
tations. For example, both linguists, and students learning
sign, would classify the hand shape related to a sign as being
a distinct but related entity to the motion of that that sign.

We investigate this using the best performing network
from the previous section (the “Not Fixed” combination
of Hand SubUNet and Full Frame Word SubUNet from
Figure 4). As we trained this network, the additional super-
visory information of the Hand SubUNet forces the hand
patches stream to learn hand shapes explicitly, mimicking
its human counterpart, which we named Expert SubUNets.

For comparison we instead leave the network free to train
but replace the hand shape CTC with another Word CTC (as
in Figure 5), which we named Generic SubUNets. In this
case the network receives the same level of supervision, and
one could argue that the supervision is more specific to the
task at hand. The network is given the freedom to learn any
intermediate representation it wishes in order to solve the
overarching problem.

Dev Test
del/ins WER del/ins WER

Generic SubUNets 27.1/1.6 43.0 26.8/1.5 42.6
Expert SubUNets 19.6/2.7 43.1 18.7/2.9 42.1

Table 8. Comparison of Generic and Expert SubUNet systems with
other approaches.

However, as Table 8 shows, forcing networks to learn
expert knowledge representations actually results in better
performance on sentence-level sign language recognition.
Although, both of the networks have a similar WER on the
development set, the architecture that explicitly learns the
intermediate hand shape representations performs better
on the test set. Furthermore, the number of deletion and
insertions is much more balanced for the network that mimics
human learning. This implies that it is also performing better
at the alignment task. Therefore, in light of these experiments
we can conclude that training deep neural networks using
SubUNets that explicitly model expert knowledge results
in better constrained and more general solutions.



5.3. Decoding of networks trained with CTC loss

In this final section we explore the effects of different
decoding and post-processing techniques during sequence-
to-sequence prediction. Previously, the CTC outputs were
decoded for prediction by performing a beam search on the
sum of the probabilities over all possible alignment paths
(as proposed by [16]). In other words it attempts to choose
the best label for each frame, marginalised over all previous
and future labellings. We refer to this approach as ’Full
Sum’ decoding. We contrast this against a greedy ’Viterbi’
decoding which only considers the maximum path. Table 9
compares the two decoding strategies, showing that Full Sum
decoding outperforms its counterpart by 0.5% points on dev
and 0.6% points on the test set. However, this gain comes at
a price of much higher computational complexity.

Decoding Dev Test
del/ins WER del/ins WER

Viterbi 20.4/2.9 43.6 19.4/2.9 42.7
Full Sum 19.6/2.7 43.1 18.7/2.9 42.1

Table 9. Impact of the Full Sum and Viterbi decoding variants.

The significant impact of this change in post-processing
raises an interesting question: Are there more advanced
post-processing techniques that could further improve the
performance of the system? We therefore apply an additional
pre-learnt language model during decoding, similar to that
proposed by [28].

Figure 6 shows the difference between the three tested de-
coding schemes. First the CTC topology, which binds a class
posterior state to a tied blank state. Second, an intermediate
topology referred to as LM, where the CTC style segments
are joined with optional intermediate silence states that do
not belong to the classes, but share the same distribution
as the blank states. Finally, a HMM inspired topology is
depicted, where two class states are bound together (sharing
the same probability distribution) with optional tied silence
states in between.

Table 10 summarises the decoding results employing the
different topologies. We see that the HMM topology with
a language model and the intermediate silence state outper-
forms the standard CTC topology by nearly 3% on develop-
ment set. The table also shows that our proposed technique
performs comparably to previous state-of-the-art research on
this dataset, with the significant advantages that there is no
need for a separate alignment step, the system can be trained
end-to-end, and it extends easily to additional SubUNets.

6. Conclusion and Discussion
In this paper we have proposed SubUNets, a novel deep

learning architecture that learns intermediate representations
to guide the learning procedure. We have applied the pro-
posed method to the challenging task of Continuous Sign
Language Recognition.

Figure 6. Showing three different model topologies used for de-
coding. Skip paths have only been illustrated on the first model
segments. Round circles refer to single (class) states, whereas
squares mean tied states (blank or silence). The top row shows the
standard CTC topology. The middle row shows the CTC topology
with optional silence insertions in between class symbols. The last
row shows a HMM topology, where the same class distribution is
shared across two states in a segment and optional silence can be
inserted in between class symbols.

Model Structure Dev Test
del/ins WER del/ins WER

CTC 19.6/2.7 43.1 18.7/2.9 42.1
LM 12.3/6.2 42.5 15.2/4.5 42.2

HMM-LM 14.6/4.0 40.8 14.3/4.0 40.7
[26] 23.6/4.0 57.3 23.1/4.4 55.6
[27] 16.3/4.6 47.1 15.2/4.6 45.1

Table 10. Evaluation of different decoding schemes and comparison
with previous research.

As hands are one of the most informative channels of
a sign we have trained a hand shape recognition network
using the SubUNet architecture, that learns to predict hand
shape sequences from a video. We trained and evaluated
our hand shape recognizing SubUNet on the One Million
Hands dataset [27] and reported state-of-the-art frame level
accuracy (Top 1: 80.3%, Top 5: 93.9%), improving on
previous research by around 30%.

Our experiments on Continuous Sign Language recog-
nition show that having SubUNets that learn intermediate
representations helps the network generalize better. More-
over we have thoroughly evaluated the effects of different
decoding schemes and have seen the benefits of extra post pro-
cessing, reporting competitive results to the state-of-the-art,
without the need for an explicit segmentation of the signs.

As future work, it would be interesting to investigate hier-
archical SubUNets, where each expert system is comprised
of lower level expert systems.
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Language Recognition for Assisting the Deaf in Hospitals. In
International Workshop on Human Behavior Understanding,
2016.

[6] N. C. Camgoz, A. A. Kindiroglu, S. Karabuklu, M. Kelepir,
A. S. Ozsoy, and L. Akarun. BosphorusSign: A Turkish
Sign Language Recognition Corpus in Health and Finance
Domains. In International Conference on Language Resources
and Evaluation (LREC), 2016.

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the Devil in the Details: Delving Deep into Convo-
lutional Nets. In British Machine Vision Conference (BMVC),
2014.
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