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Abstract

In recent years, there has been a rise in the popularity of robotic systems used to in-
spect large infrastructures. Traditionally, the footage collected by such systems requires
manual monitoring and analysis by professionals to detect abnormalities. However, this
process can be very time-consuming and expensive. Therefore, research activities in
automatic visual anomaly detection can have great practical significance in reducing
the cost and difficulty of inspection and allowing for a more continuous inspection of
infrastructures.

Deep learning visual anomaly detection has achieved state-of-the-art performance on
various image and video anomaly detection tasks within research settings. However,
applying anomaly detection models to real-world scenarios remains challenging. Real-
world data is often noisy, unstructured and diverse, which can cause high false-positive
rates and poor generalisation in new environments. Anomalies can also be subtle or
context-dependent, which current deep learning models struggle to understand. Lastly,
the black-box nature of the models and lack of interpretability and transparency can be
a challenge for regulators. To overcome these challenges, this thesis introduces a novel
set of anomaly detection models based on modular neural networks and graph neural
networks. The results indicate that these models are promising avenues for overcoming
the stated challenges while maintaining high-accuracy results.
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Chapter 1

Introduction

Visual anomaly detection (VAD) is an emerging and increasingly important area of

research within computer vision and deep learning with applications in various tasks,

such as product defect detection [104], infrastructure inspection [81], medical image

analysis [47] and surveillance [10]. VAD models aim to identify unusual data points,

patterns, and events in images and videos that deviate from the norm or expected

appearance.

Recent years have seen the rapid adoption of deep learning techniques for detecting

anomalies in images and videos. Compared to traditional image processing techniques,

deep learning models have shown significant performance improvement due to their

ability to automatically learn relevant features and capture complex non-linear relation-

ships [8]. Models such as Convolutional Neural Networks (CNNs) [90], Autoencoders

(AEs) [65], Variational Autoencoders (VAEs) [88] and Generative Adversarial Networks

(GANs) [59] have been instrumental in advancing this field. Deep learning-based VAD

methods can be broadly classified into supervised, semi-supervised and unsupervised

approaches, depending on the type of data and the training process involved. Su-

pervised VAD models use labelled datasets to train the model to learn discriminative

features associated with anomalies [134]. In contrast, unsupervised and semi-supervised

VAD models are trained using weakly labelled or unlabeled data. They are typically

trained on normal data to learn the underlying patterns and feature representations

of anomaly-free images or video sequences. At inference time, significant deviations

1
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Figure 1.1: Unsupervised and semi-supervised image anomaly detection models

can misinterpret normal variations in lighting, background noise, or aspect ratio

as anomalies. The first row shows output from the PadIM [35] model on an

anomaly-free image from MVTec dataset [18], the next rows illustrate how normal

variations are incorrectly highlighted as defects

from this learned representation can be interpreted as anomalies [109] [121]. By defini-

tion, anomalies are rare and diverse, making the collection of a comprehensive labelled

dataset both labour-intensive and costly [183]. As a result of these inherent challenges,

existing work in the VAD domain has predominantly focused on unsupervised methods

that leverage reconstruction-based or generative models [183].

While recent advances have significantly improved VAD, important challenges remain

that need to be addressed to adopt and apply VAD models in real-world scenarios

effectively. This is especially true for applications in dynamic environments. Most

existing AD studies assume that the training and test data follow the same data dis-

tribution. As a result, current models predominantly focus on achieving high accuracy,
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Figure 1.2: Supervised anomaly detection models can misinterpret defect types

when context and material properties are not considered. In this example, the

model mistakes corrosion for concrete spalling

based on evaluation on benchmark datasets, which typically contain well-defined and

controlled anomalies [196]. However, such datasets do not reflect the complexities and

variability found in many real-world settings. In practice, models often perform poorly

in real-world dynamic environments, where natural variations such as changes in the

environment, background, lighting conditions or camera configurations can cause the

test data distribution to diverge significantly from the training data, where this distri-

bution shift can have a significant negative impact on the performance of the model

[196] [23].

This challenge affects both supervised and unsupervised approaches. In supervised

settings, models are prone to misclassification when encountering out-of-distribution

anomalies, as models often rely on low-level visual cues without contextual understand-

ing (see Fig. 1.2) [56] [156]. At the same time, in unsupervised or semi-supervised set-

tings, distribution shift can cause normal variations to be falsely detected as anomalies

(see Fig. 1.1) [23].

Furthermore, the inherent complexity and “black-box” nature of deep learning models

make their decision-making processes opaque and difficult to interpret for the end users.

This lack of interpretability and explainability can be a major obstacle to the adoption

and deployment of deep learning-based AD models in industrial settings [14]. In safety-

critical applications, in particular, model transparency is essential not only to build

trust in the system but also to meet regulatory requirements that demand a clear

understanding of automated decision-making [102] [95] [123].
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In this work, we aim to tackle some of the real-world challenges in visual anomaly de-

tection applications with a particular focus towards anomaly detection tasks in nuclear

power plants. In the remainder of this chapter, we provide a brief overview of inspection

practices in nuclear power plants. We then outline some of the main challenges that

should be addressed to develop effective visual anomaly detection methods for nuclear

power plant inspections.

1.1 Industrial context - Nuclear power plant inspection

Structural components and equipment inside a nuclear power plant can be exposed to

challenging environments of radiation, harmful gases and particulates, and high temper-

atures that accelerate deterioration and damage to them[202] [1] [3] [2] [7]. Therefore,

periodic inspection of structural components and equipment is essential for ensuring

the safety, security, and continuous operation of these sites. Failing to detect defects

and damages can have significant environmental and financial costs.

Between 1952 and 2009, 99 nuclear power plant accidents 1 were reported worldwide,

resulting in over 20 billion dollars in damages. Of these incidents, several were di-

rectly related to structural failures [149] of nuclear power plants, which highlights the

importance of accurate and efficient inspection of nuclear facilities.

In many nuclear power plants, visual inspections serve as one of the primary means

of monitoring the health and condition of the infrastructure and equipment within the

facility (see Fig. 1.3). However, inspections can be a challenging process. Due to the

hazardous environment, direct inspections in nuclear power plants can be difficult for

human access. Therefore, many inspections are conducted manually by specialists using

a variety of robotic systems such as teleoperated cameras [127] [158], legged or wheeled

robots [13] [89] [143], unmanned aerial vehicles (UAV) [15] [25] [89] and autonomous

underwater vehicles (AUV) [119] [127]. The areas that require inspection are also

varied, ranging from general infrastructure and equipment inspection to the inspection

of storage silos that can be accessed via single boreholes or underwater storage units in

1Accidents are defined as incidents that result in more than US$50,000 of property damage or loss

of human life
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(a) (b)

(c) (d)

Figure 1.3: a) Perry Nuclear Power Plant employees replacing fuel assemblies in

the reactor core [48] (CC BY-ND 2.0), b) Inspection robot at Peach Bottom nu-

clear power plant [33] (CC BY 2.0), c) Inspecting pipes carrying 1.5 pct enriched

uranium hexafluoride [76] (CC BY-NC-SA 2.0), d) Canadian Nuclear Safety Com-

mission, examines the Common Spent Fuel Pool at TEPCO’s Fukushima Daiichi

Nuclear Power Station [74] (CC BY-SA 2.0)

large man-made pools (see Fig. 1.4). Lack of direct access to the inspection area results

in poor and limited lighting conditions, which typically comes from a single light source

attached to the camera. Combined with environmental radiation, this can introduce

noise and reduce the quality and contrast in the captured data.

The collected images and videos are then manually reviewed by domain specialists for

various types of defects and anomalies that could, if not suitably addressed and rectified,

compromise the integrity and security of the infrastructure. These may include cracks,

corrosion, pitting, dents, degradation or wear, structural damage, leaks, fallen debris
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(a) (b)

(c) (d)

Figure 1.4: a) Central Interim Storage Facility for Spent Nuclear Fuel, Oskar-

shamn, Sweden [77] (CC BY 2.0), b) Civaux power plant engine room [31] (CC

BY-SA 4.0), c) Safeguards Inspection at URENCO, Almelo, Netherlands [75]

(CC BY-NC-ND 2.0), d) Turbine hall of Qinshan Nuclear Power Plant [73] (CC

BY-SA 2.0)

and damage to equipment. However, the large number of images and videos that

require analysis makes this process time-consuming, costly and susceptible to human

error. Therefore, there is a real opportunity to improve efficiency and safety and reduce

the cost of inspecting nuclear power plants by automating this process.
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1.2 Challenges and Motivation

Deep learning-based Video Anomaly Detection (VAD) models have demonstrated strong

performance and state-of-the-art accuracy on various benchmark datasets. However,

most of these models have been designed and developed specifically for scenarios involv-

ing static cameras in controlled environments. In contrast, many real-world applications

require models to operate in dynamic environments on images and videos captured from

a moving camera [23]. Despite this, VAD in dynamic conditions, particularly with mov-

ing cameras, remains a challenging problem, with a wide range of industrial applications

in security and surveillance, industrial inspection, transportation and robotics [82].

In response, in recent years, several deep learning-based VAD methods have been pro-

posed, such as: semantic segmentation-based [11] [126] [173], reference frame-based

[189] [96], background separation-based [57] [105], object trajectory-based [199] [135]

and interaction-based approaches [166] [41] [187]. While these methods often outper-

form models designed for static environments, they still face major challenges that

hinder their practical adoption and performance. A key limitation is that these meth-

ods are typically restricted to detecting a limited set of specific anomaly categories,

constraining their versatility across a broader spectrum of anomaly types [82]. More-

over, they frequently suffer from poor generalisability, often requiring retraining when

applied to new environments or scenes [160], [195], [120]. Additionally, these models

are still vulnerable to external factors, such as changes in illumination, occlusions, and

complex backgrounds, which frequently lead to false positives or false negatives [40].

These limitations are partly due to the fact that many of the models are derived from

more traditional VAD models, which are designed for less complex environments. As

a result, they inherit similar foundational limitations. While newer models introduce

strategies to handle better the complexities of dynamic conditions, such as camera mo-

tion, occlusions, and changing backgrounds, these improvements are often incremental

rather than transformative, leaving some of the underlying weaknesses intact.

Furthermore, reasoning and context awareness are essential aspects that remain un-

derdeveloped in current VAD models. In the majority of cases, the model’s context

awareness level is often limited to spatial, semantic, or spatio-temporal information
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[181] [150]. Similarly, the reasoning capabilities of these models are largely data-driven

and lack the depth and flexibility characteristic of human cognition. While humans rely

on abstract, context-rich understanding, prior knowledge, and causal reasoning, most

models detect deviations from learned patterns without comprehending why something

is anomalous [129] [175]. Although recent methods have begun to incorporate basic

relational [150] or semantic reasoning [181], these approaches remain narrow and pre-

defined. These limitations mean that models can struggle when the same visual pattern

might signify different anomaly types or no anomalies at all, depending on the context

or when the same object or action can represent different meanings given a different

context.

Another crucial and underdeveloped aspect is the explainability and interpretability of

the model. Existing VAD models generally lack explainability and interpretability [102],

making it difficult for users to understand the rationale behind the model’s decision-

making. This is crucial for mass adoption in many industrial applications, especially

those that are safety-critical, both from a regulatory and audit perspective and for

developing trust and understanding of the model with the end user [95] [14].

In recent years, several methods have been proposed for explainable image and video

anomaly detection [169]. For image anomaly detection, explainability often rests on the

model’s ability to show how it analysed the image via pixel or region-level explanations

that highlight areas most relevant to the anomaly [169]. This is typically achieved

with attention maps [91], reconstruction and prediction-error maps [172], perturbation

methods [67], foundation model-based [198, 80] or post-hoc techniques such as Grad-

CAM [161, 151]. Video anomaly detection similarly uses signals to highlight areas of

interest during decision-making [130]. However, recent work also applies structured

reasoning through scene graphs, graph neural networks, and knowledge graphs [27, 42].

Nevertheless, the explainability in these methods primarily focuses on the form of the

model’s output rather than on exposing the model’s internal decision process, while

understanding the model’s reasoning and decision-making at each step remains mostly

opaque.

These challenges provide the basis for the main research questions for this work:
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1. How to develop a robust VAD model for dynamic environments that can generalise

across diverse scenarios without the need for extensive retraining.

2. How to incorporate context-aware reasoning to identify context-dependent anoma-

lies accurately.

3. How to improve the interpretability and explainability of VAD models to enhance

transparency for end-users.

1.3 Contributions

The central contribution of this thesis is the proposition that VAD should be formu-

lated as a context-aware compositional reasoning problem rather than as a static task

addressed by a single monolithic model. Instead of applying a uniform architecture

equally across all regions of an image, this thesis argues that anomaly detection should

dynamically adapt its computation based on image content, allowing different regions

to be analysed using specialised reasoning strategies. To this end, this thesis makes the

following two primary contributions:

• A novel VAD framework that formulates anomaly detection as a compositional

problem. By incorporating NMN architecture, our proposed method dynamically

assembles a VAD model from a shared set of reusable modules conditioned on the

context of the input image.

• A novel physics-based model for detecting anomalies in human motion from video.

Our model predicts individuals’ future poses by modelling human motion using

a graph neural network constrained by kinematic principles.

1.4 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 presents a comprehensive

literature review on image anomaly detection. In this chapter, we present the challenges

associated with each method and review prior work that addresses them.
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Chapter 3 introduces a novel formulation of VAD as a compositional problem. To

this end, we propose a compositional NMN framework for visual anomaly detection.

We also present a comparison of our model with previously published results on three

benchmark datasets.

Chapter 4 focuses on skeletal anomaly detection for human motion analysis in video.

We introduce a physics-inspired graph neural network that models inter-joint depen-

dencies and temporal dynamics. Furthermore, we evaluated our method on a bench-

mark dataset and compared the performance with that of existing anomaly detection

techniques.

Finally, Chapter 5 concludes the thesis by summarising the motivations, the main con-

tributions, and the performance and limitations of the proposed models. Furthermore,

the possible directions for future research are discussed.



Chapter 2

Literature Review

Image and video anomaly detection is a critical task in computer vision, aiming to

identify patterns that deviate from normal or expected observations. In this chapter,

we review the key deep learning architectures developed for image-based anomaly de-

tection. While video anomaly detection generally extends image anomaly detection by

incorporating temporal information to capture dynamic irregularities, in the context

of industrial inspection and defect detection, the temporal aspect is often not relevant.

Instead, each video frame is typically analysed independently to detect defects or abnor-

mal events, effectively treating video anomaly detection as frame-wise image anomaly

detection. Therefore, here we focus primarily on the formulation and methods devel-

oped for image anomaly detection, which form the foundation for both image-based

and frame-wise video-based industrial inspection systems.

2.1 Unsupervised Anomaly Detection

2.1.1 AutoEncoders

An Autoencoder (AE) is a feedforward neural network that aims to replicate its input

data as the output by learning a lower-dimensional latent representation of the input.

Autoencoders (AEs) typically consist of two components: an encoder fθ that maps the

input image x to a latent representation z, such that f : X → Z; and a decoder gϕ

11
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that reconstructs the input from the latent representation z as an output x̂, such that

g : Z → X̂. During training, the objective is to minimise the reconstruction loss, which

is commonly measured using the Mean Squared Error (MSE) loss:

LAE(θ, ϕ) =
N∑
i=1

∥xi − gϕ(fθ(xi))∥2

The basic idea behind using AEs for anomaly detection is to leverage the reconstruction

error as an anomaly score. AEs are trained on normal data under the assumption that

during inference, the model will have a higher reconstruction error for images containing

anomalies. However, this assumption does not always hold, as AEs can learn to over-

generalise and reconstruct both normal and anomalous inputs with low reconstruction

errors. Overgeneralisation can be especially problematic if the training data contains

anomalous samples. Even in small numbers, these can lead the model to learn to min-

imise reconstruction loss for both normal and anomalous data, thereby reducing its

discriminative ability during inference [86]. Furthermore, AEs can fail to capture high-

level semantic anomalies [71, 191] while exhibiting sensitivity to noise in the data, which

can lead to unstable reconstructions and inaccurate anomaly localisation [124, 180]. To

address these challenges, different training strategies and architectural modifications

have been explored in the literature.

Adversarial training strategies, such as introducing perturbations in the latent space

during model training, have been shown to help the autoencoder extract more sta-

ble and discriminative features, thereby addressing the problem of overgeneralization

[86]. Another line of research has been the use of self-supervised learning strategies.

Introducing auxiliary tasks such as predicting geometric transformations or reconstruct-

ing corrupted inputs has been shown to improve model performance by allowing the

model to learn richer, high-level representations [71]. An example of this is the Self-

Supervision-Augmented Autoencoder (SSR-AE) that trains the model to reconstruct

both the original image and the transformation applied to it. This helps the encoder to

learn better discriminative features rather than memorising low-level details, making

the model more sensitive to anomalies that fail to preserve transformation consistency

[71]. Another example is introducing structured (non-i.i.d.) noise with spatial depen-

dencies. Unlike traditional denoising autoencoders that use i.i.d. noise, structured noise
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better represents realistic anomalies. Rather than pixel-wise denoising, this forces the

autoencoder to learn contextual and region-level structure. This training strategy has

shown state-of-the-art results on benchmark datasets [16].

The other main path of research has been to utilise architectural modifications and

hybrid architectures. For example, dual-teacher models suppress the reconstruction of

abnormal features by distilling knowledge from clean reference models, allowing for a

better separation of normal and abnormal data [112]. Patchwise AEs reconstruct small,

localised patches instead of the whole image, which has been shown to improve anomaly

localisation and detection accuracy [34, 110]. Furthermore, models such as Adversarial

Dual Autoencoders (ADAE) have proposed a GAN-based method while utilising two

autoencoders as the generator and the discriminator. While allowing for more stable

training of a GAN-based method, ADAE has also demonstrated strong performance

across various dataset types [162]. Similarly, adversarial autoencoder design meth-

ods have shown strong performance on various benchmark datasets [194]. In recent

years, motivated by the ability of vision transformers to capture long-range depen-

dencies and global context, several studies have also explored integrating transformer

architectures into encoder-decoder-based anomaly detection models [98] [116]. These

models have demonstrated state-of-the-art performance on benchmark datasets [186].

Finally, Memory-augmented AEs, such as MemAE and PA-MAE, have introduced the

use of external memory modules, which have been shown to prevent the model from

overgeneralizing to abnormal data during testing [58, 97, 157].

2.1.2 Variational AutoEncoders

A Variational Autoencoder (VAE), similar to a traditional AE, aims to replicate the

input data at the output. However, unlike AEs that encode inputs into fixed latent

vectors, VAEs introduce a probabilistic framework by encoding each input x as a dis-

tribution over the latent space. The encoder maps x to the parameters µ and σ of a

Gaussian distribution, from which a latent vector z is sampled using the reparameteri-

sation trick to maintain differentiability. The decoder then reconstructs the input from

z. This stochastic encoding encourages the model to learn a continuous and smooth la-
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tent space, enabling both accurate reconstruction and the generation of novel, coherent

data samples by drawing from the learned distribution.

The loss function is typically composed of two terms:

LVAE(θ, ϕ) =
N∑
i=1

(
−Eqϕ(z|xi) [log pθ(xi|z)] + KL(qϕ(z|xi) ∥ p(z))

)
where p(z) is the prior distribution (commonly N(0, I)), and qϕ(z|x) is the variational

posterior. The first term encourages accurate reconstruction, while the second regu-

larises the latent space by minimising the divergence between the approximate posterior

and the prior. In terms of image anomaly detection, the reconstruction error or the

reconstruction probability of VAEs can be used as an anomaly score. However, in

practice, using reconstruction error or the reconstruction probability as an anomaly

score can be challenging as VAEs are susceptible to overgeneralisation. The smooth

and continuous latent space of the model allows it to reconstruct both normal and

anomalous inputs with low reconstruction errors. This reduces the model’s ability to

separate normal and abnormal inputs.

To overcome this, models such as VQ-VAE discretise the latent space to prevent smooth

interpolation for outliers to make it harder to accurately reconstruct abnormal inputs

[114]. Furthermore, Memory-augmented VAEs prevent overgeneralisation by storing

the prototypical representations of normal data during testing. This enables the model

to accurately reconstruct normal images, whereas the reconstruction of abnormal im-

ages results in higher reconstruction errors. [55, 115]. Similarly, to reduce the effect of

noise in training data and prevent overgeneralisation, Robust VAEs (RVAEs) replace

the standard Kullback–Leibler divergence with a β-divergence formulation. This helps

the model learn a more robust reconstruction boundary between normal and abnormal

data [6].

VAEs also encounter difficulties in detecting subtle abnormalities and in identifying

regions that do not correspond with human perception of anomalies. To address this,

the Feature-Augmented VAEs (FA-VAEs) model proposed calculating reconstruction

loss in both pixel space and across feature hierarchies extracted from pre-trained con-

volutional networks [36]. Other approaches introduce contrastive learning objectives,
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which, during training, encourage the encoder to cluster similar normal inputs and sep-

arate dissimilar or potentially anomalous ones. This process enables the model to learn

embeddings that accurately capture high-level semantic differences. Both approaches

have achieved high accuracy on benchmark datasets [111].

Lastly, VAE models can produce unreliable likelihood estimates. In practice, the model

can assign higher likelihoods to out-of-distribution samples resulting from minor input

variations, such as changes in lighting conditions. To address this likelihood, debiasing

techniques have been proposed, which adjust the model’s estimates to better separate

anomalies from normal data. Additionally, ensemble-based methods, which aggregate

likelihood estimates from multiple VAE models, have demonstrated improved robust-

ness against such biases [26, 174].

2.1.3 Generative Adversarial Networks

A Generative Adversarial Network (GAN) consists of two competing networks: a gen-

erator network and a discriminator network. Generator network G(z; θG) attempts to

generate fake samples from a noise vector z; while the discriminator D(x; θD) aims to

learn to classify if the input is real or is fake from the generator:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))]

GAN-based image anomaly detection models rely on the assumption that a model

trained on normal images will fail to reconstruct anomalous inputs accurately. Broadly,

these models can be categorised into two main types: reconstruction-based and discriminator-

based approaches. In discriminator-based methods, the discriminator’s ability to learn

the boundary between normal and abnormal images is utilised. In reconstruction-based

methods, the generator’s reconstruction error is used for anomaly detection. One of the

seminal works in this field was the proposed AnoGAN model [142]. During training,

the GAN model is trained on normal data. During testing, the model searches the

latent space for a latent vector that can best reconstruct the input image. Models such

as f-AnoGAN [141] removed the need for searching the latent space by introducing

an encoder. Here, the encoded image features are passed as a latent vector z to the
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GAN model for reconstructing a normal image. Another seminal work in this field was

the introduction of GANomaly [5]. GANomaly employed an encoder–decoder-encoder

design architecture. As such, instead of relying solely on input–output reconstruc-

tion, GANomaly also utilises the discrepancy between the latent representations of

the input image and the encoded representation of its reconstruction. Therefore, the

anomaly score combines image-level reconstruction error and latent-space consistency

error, which helps the model to distinguish between normal and abnormal inputs more

effectively [5].

To improve model accuracy and performance in producing anomaly masks, later works

introduced the use of self-supervised masking during training [72]. SCADN [182] in-

troduced the use of a fixed set of strips for super-pixel segmentation as masking can-

didates. Similarly, AnoSeg [148] used masking and synthetic anomaly data to increase

accuracy on benchmark datasets. At the same time, models such as Fence GAN [122]

introduced the idea of training the generator’s objective to produce samples near the

normal–abnormal boundary. By doing so, the discriminator can better separate be-

tween normal and abnormal data at the boundary, improving sensitivity to smaller

anomalies that standard models may miss.

Another interesting line of research has been the introduction of CycleGAN [201] meth-

ods for image anomaly detection [17] [167]. Although anomalies are rare, in some cases,

we may have a few examples or be able to generate synthetic ones. CycleGANs are able

to translate between normal and abnormal images, and back to normal, without the

need for paired data. During training, the model learns image-to-image translation be-

tween anomalous and normal domains. During testing, the input image is translated to

an anomaly-free version of that image. The anomaly score is then obtained by measur-

ing the difference between the input image and its translated version. Furthermore, by

learning bidirectional mappings, CycleGAN can enhance its generalisation capabilities.

At the same time, the cycle-consistency loss helps mitigate mode collapse by acting as

a regularizer. Another architectural innovation was made in Y-GAN [78]. The goal of

Y-GAN is to disentangle better informative image semantics relevant to normal train-

ing data from uninformative residual information. Unlike vanilla reconstruction-based

models, Y-GAN employs two encoders, which encourages the model to separate the
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latent space into semantic features and low-level residual features. This enables the

model to generalise more effectively and better highlight subtle anomalies [78].

2.1.4 Teacher-Student

Teacher-student (T-S) architectures rely on the premise that a student model that is

trained to replicate a pretrained teacher’s outputs will diverge when processing anoma-

lous data. As such, the divergence between various layers of the teacher and student

model can be used to detect and localise anomalies. The seminal work in this field was

introduced by Bergman et al. [19], which outperformed many other benchmark meth-

ods at the time. However, one of the main challenges with T-S architectures is feature

leakage. This occurs when the student network overfits to the teacher’s distribution.

As such, the discrepancy between the teacher and student network for anomaly data is

removed.

Reverse Distillation [39] was one of the main works that tried to address this issue.

Unlike traditional T-S architectures, the Reverse Distillation model consists of a teacher

encoder and a student decoder. While the teacher network outputs a low-dimensional

embedding of the image, the student decoder takes the low-dimensional embedding as

input and aims at generating the teacher model’s representations at different levels [39].

Other methods, such as the Normal Feature Bank [168] and decoupled representation

learning strategy [106], have also been proposed to mitigate feature leakage between

the teacher and student networks. While the former selectively preserves representative

normal features during training [168], the latter allows the model to maintain feature-

space separation between normal and abnormal data [106].

Building on this, several works incorporate multi-scale feature matching by training

the student’s feature pyramid to replicate that of the teacher. This enables the model

to capture fine-grained anomaly localisation across different resolutions. However, it

requires that the student and the teacher share the same architectural design [163].

Another architectural innovation has been the introduction of dual student and dual

teacher networks. Dual student models utilise two complementary student networks,

which allows the model to capture richer representation and improved anomaly sensi-
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tivity [61] [184]. At the same time, multi-teacher configurations aim to increase gen-

eralisation by distilling knowledge from multiple teacher networks [132]. Furthermore,

in recent years, research has also focused on incorporating Transformer-based architec-

tures [12] to enable the model to better capture long-range dependencies and contextual

information within the image.

2.1.5 Memory Banks

Memory bank architecture functions by storing a representative set of features from

normal data into a dedicated memory bank. The features are typically outputs of a

pre-trained model, such as variations of ResNet models. This is usually achieved by

sampling normal features directly or by clustering to form representative prototypes.

During testing, the extracted feature embedding of the input image is compared with

the memory bank, and the similarity or distance between them is used to determine

anomaly scores. In terms of memory banks, one of the main challenges is the increase in

memory requirements when dealing with complex environments or multi-class anomaly

detection scenarios.

Models such as SPADE [32] use a pretrained WideResNet-101 during training to build

a pyramid of feature embeddings. These embeddings are stored in a memory bank of

normal patch-level descriptors. During testing, anomalies are detected by measuring

the distances between test patch features and the nearest normal features in the memory

bank. While effective SPADE requires a high memory footprint, this can be problematic

for large datasets or high-resolution images. Building on this PaDiM [35] was proposed

to overcome some of SPADE’s inefficiencies. Instead of storing all patch embeddings,

PaDiM models the distribution of normal patch features at each spatial location using

a multivariate Gaussian. During testing, each patch feature is measured against this

Gaussian distribution. This formulation means that the PaDiM memory bank size is

independent of the training set size and is solely dependent on the image resolution.

Other methods, such as SOMAD [101] proposed using Self-Organising MAPs (SOMs)

to cluster and store multi-scale CNN features while preserving the structure of the

normal data.
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One of the seminal works in this area is PatchCore [140], which achieved state-of-the-art

results on benchmark datasets while maintaining fast and efficient inference. This was

achieved by extracting patch-level features from normal images during training using

a pre-trained ResNet backbone, and constructing a memory bank containing a coreset

of these features. To ensure that the stored coreset of features remains representative

of the full diversity of normal patches, PatchCore utilises a greedy facility location

algorithm. During inference, patches are compared to the stored features using nearest

neighbour search.

While the methods discussed so far use pre-trained CNNs to extract image features,

another line of research has employed encoder-decoder architectures for feature ex-

traction. For example, MemAE [58] introduced memory-augmented autoencoders in

which memory items are used to reconstruct inputs; high reconstruction errors indicate

potential anomalies. Another interesting line of research has been the proposed incorpo-

ration of both normal and annotated abnormal feature representations. Methods such

as Dual Memory Bank Anomaly Detection (DMAD) [69] employ a CNN backbone to

extract features, storing them in dedicated normal and abnormal memory banks. Dur-

ing testing, the distance between input image features against both memory banks is

calculated. These semi-supervised approaches have shown high performance and accu-

racy on benchmark datasets; however, unlike previous examples discussed above, they

require access to both normal and abnormal training data.

2.2 Supervised Anomaly Detection

In applications where labelled data for both normal and abnormal images is available,

supervised learning techniques can be employed. For clarity, we consider supervised

learning to mean any method that relies on human-labelled anomalies. If an annotated

dataset is available, a straightforward approach is to use traditional image classifica-

tion, object detection, and segmentation models for image anomaly detection. Archi-

tectures such as CNNs [155], YOLO [197], U-Net [152], and Mask R-CNN [176] can be

trained on labelled data for image anomaly detection, including image-level classifica-

tion, object detection, and semantic or instance segmentation. In recent years, the use
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of transformer-based models has increased due to their ability to capture long-range

dependencies. Accordingly, transformer models such as ViT [147], Swin Transformer

[203], and DETR [108] have also been applied to image anomaly detection. Such meth-

ods can achieve high accuracy on a variety of image anomaly detection tasks. However,

their methods require a sufficient number of annotated abnormal examples and han-

dling of class imbalance, which is common in anomaly detection tasks. In some cases,

we may have access to only a few examples of labelled data or have access to labelled

data at a lower granularity than is needed to train a fully supervised model. In such

cases, weakly supervised, mixed-supervised, and few-shot supervised methods can be

utilised.

Weakly supervised methods are trained to output pixel-level localisation of anoma-

lies using image-level labels or coarse spatial annotations. For example, DeScarGAN

[171] achieves pixel-level anomaly detection and localisation by learning image-to-image

translation between normal and abnormal images using only image-level labels. A

dual-branch generator and discriminator are trained with adversarial, classification,

and cycle reconstruction losses, enabling the model to convert an input image into its

anomaly-free counterpart. The difference between the input image and the translated

output creates a pixel-level anomaly map [171]. Other proposed methods utilise Class

Activation Maps (CAM) or Multiple Instance Learning (MIL). For example, CAVGA

[161], an attention-based VAE model, is trained to reconstruct the input data and ac-

curately classify images using image-level labels. Using a small percentage of examples

of anomalies has shown state-of-the-art performance for this model [161].

In cases where abundant image-level labels are available, mixed supervision methods

aim to combine the available data with a few strong pixel masks to close the gap to

full supervision. [21] introduced a dual-head segmentation–classification network and

demonstrated that adding only a handful of fully annotated samples to a large number of

weakly labelled images can achieve performance comparable to that of fully supervised

methods. [68] further demonstrate the effectiveness of joint weakly and fully supervised

learning for surface-defect segmentation, confirming the efficiency of combining sparse

masks with plentiful weak labels.
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Another important line of research has also been few-shot supervised learning. Few-

shot supervised learning is designed to address the core challenge of data scarcity in

some applications. The main idea is to learn discriminative boundaries that generalise

beyond the seen positives from only a small number of labelled anomalies. DevNet [128]

introduces a deviation-based objective that enforces statistically significant separation

between normal scores and the few labelled anomalies, yielding robust few-shot detec-

tors. BGAD [185] introduces explicit boundary-guided contrastive learning to mitigate

bias towards seen anomalies.

Finally, because labelled anomalies are rare, some methods synthesise pseudo-anomalies,

either with generative models (e.g., CycleGAN) or via image-space augmentations.

Depending on whether human-labelled anomalies are used during training, these ap-

proaches can be classified as self-supervised [99, 190] or supervised [60, 63, 170]. How-

ever, in both cases, they typically utilise supervised learning architectures and losses.

In summary, supervised image anomaly detection methods deliver strong detection, lo-

calisation, and accuracy when dense labels are available. However, due to the nature of

the task, such annotation is often scarce. In these cases, research has focused on weakly

supervised, mixed-supervised, and few-shot supervised methods. These methods have

demonstrated high accuracy and, in many cases, outperform comparable unsupervised

or semi-supervised models. Nonetheless, supervised methods remain vulnerable to do-

main shift and may generalise poorly to unseen environments without recalibration or

adaptation.

2.3 Discussion

In this chapter, we presented a structured literature review of image anomaly detection

methods, categorised according to architectural type and level of supervision. The

key challenges associated with each architectural class and the strategies proposed in

the literature to address them were also addressed. Overall, the review shows that

substantial progress has been made in image anomaly detection approaches.

Despite this progress, the literature review also highlights several recurring challenges
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affecting existing models, irrespective of the supervision level or architectural choice.

These challenges include sensitivity to dynamic and non-stationary environments, diffi-

culty in distinguishing anomaly-related changes from normal environmental variations,

limited access to interpretability and explainability of the model decision-making pro-

cess, and a lack of explicit use of contextual information during VAD.

A key factor contributing to these challenges is that most existing methods are applied

uniformly across the image under the assumption that training and test data are drawn

from the same underlying distribution. A direct consequence of this is the conflation

of normal with abnormal changes. Many existing approaches rely on reconstruction

errors or feature-space distances that lack semantic grounding, implicitly treating any

deviation from learned normality as anomalous. As a result, such models are overly

sensitive to expected visual variations, including changes in illumination, background

appearance, or viewpoint, while potentially overlooking subtle yet semantically mean-

ingful anomalous events. Furthermore, these methods offer limited explainability. This

lack of explainability reduces robustness and hinders trust, particularly in safety-critical

applications where understanding the cause of an anomaly is essential.

To address these needs, Chapter 3 presents a compositional, object-centric visual

anomaly detection model based on a neural module network architecture. Inspired

by the compositional nature of human problem-solving, the proposed approach reasons

explicitly about objects and regions within an image, rather than treating the image as

a homogeneous input. By dynamically assembling task-specific modules conditioned on

the image content, the model determines how individual objects should be analysed,

or whether analysis is required at all. This compositional reasoning framework im-

proves robustness underdynamic conditions by reducing sensitivity to irrelevant visual

variations, while also providing a degree of explainability.

Chapter 4 addresses this limitation through a human-centric anomaly detection frame-

work based on graph representations and physics-inspired graph neural networks. In

this approach, the human body is modelled as a graph of joints and connections, en-

abling explicit representation of joint relationships and motion dynamics over time.

By incorporating physics-inspired modelling principles, the proposed method distin-
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guishes natural variability in human motion from genuinely anomalous behaviour in a

structured and interpretable manner. This representation supports the separation of

anomaly-relevant changes from benign variation while maintaining robustness in dy-

namic environments. Moreover, grounding anomaly detection in physically meaningful

relational constraints enhances explainability by providing interpretable anomaly deci-

sions rooted in motion dynamics.
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Chapter 3

Compositional Anomaly

Detection with Neural Module

Networks

3.1 Introduction

In recent years, deep learning models have become the de facto standard architecture for

both image and video anomaly detection. These models have demonstrated remarkable

performance across a range of applications, largely due to their ability to learn high-level

feature representations from large datasets.

However, as outlined in the previous chapter, these models operate under the key

assumption that the data encountered during inference shares the same underlying sta-

tistical properties as the training data. In many real-world scenarios, however, data

distribution shifts are common and can significantly undermine model performance

[196] [23]. This is particularly problematic in applications that require models to oper-

ate in complex environments with dynamic and cluttered scenes or on footage captured

by moving cameras. In such settings, factors such as changes in lighting, background

and camera motion can introduce significant distribution shifts, leading to performance

degradation and poor generalisation [196] [23].

25
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To address the challenges introduced by dynamic environments and moving cameras,

various deep-learning-based approaches have been proposed. Methods based on se-

mantic segmentation [11] [126], the use of reference frames and background separation

[189] [57], object trajectory detection from spatiotemporal information [199] [135], and

interaction models leveraging spatiotemporal contextual clues [166] [41] have been ex-

tensively explored to enhance the accuracy and robustness of anomaly detection in com-

plex real-world settings. Despite these advancements, fundamental challenges remain

with respect to domain shift, environmental variability, limited contextual awareness

and poor generalisations [82] [160], [195], [120] [40].

Current deep learning-based VAD models designed for dynamic environments or moving

cameras are largely extensions of earlier models developed for static scenes. As such,

they inherit many of the same model assumptions and design principles, which limit

their ability to address the core challenges posed by environmental variability and

camera motion. Rather than fundamentally rethinking the modelling approach, these

methods often adopt workaround strategies such as motion compensation or background

modelling, without directly addressing the root causes. Consequently, they continue to

suffer from the same inherent limitations as their predecessors.

In contrast to deep learning architectures used for VAD, human visual cognition em-

ploys a far more nuanced and involved approach to VAD. Substantial evidence sug-

gests that human visual cognition and problem-solving are inherently compositional

[66], meaning that the brain represents and processes visual information in terms of

structured components and their spatial, functional, and causal relationships [145].

Compositionality in visual cognition enables efficient problem-solving by allowing the

decomposition of complex scenes into meaningful parts and understanding their inter-

relations [53] [136] [37]. This hierarchical processing also allows for rapid generalisation,

as the brain can recognise new objects and understand and problem-solve in new envi-

ronments by assembling familiar subcomponents rather than memorising entire scenes

[20] [93] [94]. Compositionality also enhances visual search by directing attention based

on expected relationships and facilitates anomaly detection by identifying deviations

from expected learned structures. In dynamic environments, it enables adaptive rea-

soning through the flexible reuse and recombination of previously learned elements to
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navigate novel situations [92] [44].

Inspired by this, we propose a novel compositional VAD model based on Neural Mod-

ule Networks (NMNs) architecture. NMNs have previously demonstrated strong per-

formance across a range of computer vision tasks [45]. However, to the best of our

knowledge, neural modular networks and explicit compositional reasoning have not

previously been used for image or video anomaly detection. In this work, we aim to

bridge this gap, demonstrating the potential of modular compositional neural networks

for flexible, adaptive, and accurate anomaly detection in complex visual environments.

Furthermore, we aim to move beyond task-specific solutions by proposing a unified

and generalizable framework for anomaly detection. Lastly, the modular design also

enhances interpretability and explainability, which are critical factors in many applica-

tions.

VAD as a Compositional Problem: Anomaly detection tasks often exhibit an

underlying modular and compositional structure, regardless of the specific domain or

anomaly type. A key challenge lies in modelling this structure. Scenes may contain

multiple objects from different categories (e.g., pipes, beams, motors, cables), each

associated with its own normal and abnormal patterns. For instance, a dent may

be acceptable on one component but considered anomalous on another, depending

on its material or function. Similarly, context-specific factors such as environment and

location can influence whether the presence or severity of anomalous patterns is deemed

acceptable. For example, a crack in a structural support beam may be critical, whereas

a similar crack on an exterior ground surface may be considered acceptable. To address

this complexity, we formulate VAD as a compositional problem. This enables our model

to reason in terms of object-specific and context-dependent components.

Consider the inspection in Figure 3.1 . To ensure the integrity and safety of the pipe

work carrying radioactive material, an inspector might prioritise inspecting pipes and

the support structure to identify abnormalities while disregarding minor scratches on

the ground or walls. The inspection task can be decomposed into a set of subtasks:

1. Detect pipework

2. Locate pipes → check pipes for deformation, leaks and signs of corrosion
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Figure 3.1: Decomposed inspection steps. Original image from [76] (CC BY-

NC-SA 2.0)

3. Locate valves and joints → check them for signs of leaks, corrosion and missing

parts

Here, we can consider that each subtask corresponds to a distinct computational func-

tion. The first step, detecting pipework, can be performed by a generic detection

module, which maps from image features and a semantic token (e.g., ”pipework”) to a

spatial distribution. The second step, locating pipes, narrows the area of interest and fo-

cuses on the pipe section, which can be considered as a form of filter or reattention

module. Finally, specialised modules can check the area of interest for signs of object

and material-specific deformation and abnormalities.

Therefore, to achieve this formulation, we propose an NMN model that dynamically

assembles its structure from a collection of reusable neural modules, each specialised for

a distinct function, based on the content of the input image. This approach reflects the

compositional nature of the task and allows the model to adapt its reasoning process

to the specific context of the scene. Unlike monolithic deep learning architectures that
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rely on fixed processing pipelines, our model enhances adaptability, interpretability,

and robustness across diverse anomaly types and complex environments.

3.2 Related Work

In this section, we mainly focus on Neural Modular Networks (NMNs) and the con-

cept of compositionality in Visual Question Answering (VQA), as it aligns most closely

with the formulation of our problem. Compositionality is an important aspect of gen-

eralisation as it enables models to address unseen scenarios by recombining previously

acquired knowledge [28] [153]. Furthermore, it plays a central role in human cognition,

as it provides the ability to combine simpler concepts to form more complex ones [146]

[133]. NMNs are designed to decompose complex tasks into simpler sub-tasks, where

specialised modules complete each subtask.

The NMN, proposed by Andreas et al. [9], was an early attempt to make neural

networks compositional by dynamically assembling a task-specific network at inference,

rather than using a fixed, monolithic network. The proposed method leveraged the

natural compositional nature of questions within the framework of VQA tasks. The

question is first parsed into a set of functions, and the network is then assembled by

selecting and composing reusable modules, each corresponding to one of these functions.

This approach achieved state-of-the-art results on both natural and synthetic datasets

[9].

However, NMN was limited by the need for hand-crafted parsers that could convert

questions into a dynamically assembled network. As a result, End-to-End Module Net-

works (N2NMNs) were introduced, incorporating the REINFORCE algorithm along-

side an LSTM-based sequence model to generate network layout directly from the input

question, which eliminated the need for hand-crafted parsers [70]. However, N2NMNs

still required a set of handcrafted modules, which limited the model generalisation to

new tasks and scalability. As such, subsequent work aimed to eliminate the need for

handcrafted modules and instead proposed a method where each module shared the

same architecture, regardless of its specific task. In this way, each module starts with

the same architecture and only evolves into task-specific experts through training [84].
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To further improve the generalisation and scalability of previous NMNs methods, the

Meta Module Network (MMN) was also proposed. MMN uses function recipes to gen-

erate instance-specific modules dynamically. This architecture enables the system to

adapt to a wide range of tasks without increasing model complexity [29]. More recently,

researchers have integrated Transformer architectures with modular approaches to en-

hance NMN performance further. For example, Transformer Module Networks (TMNs)

[179] , proposed the use of Transformer blocks instead of traditional CNN-based mod-

ules. Notably, their findings also suggest that even unmodified NMNS generalise better

than flat Transformers, underscoring the advantages of modular structures[179].

NMN architectures have demonstrated strong performance on various VQA tasks. Al-

though they better reflect the compositional nature of human cognition, their adoption

has remained limited due to the complexity of designing and implementing these mod-

els.

3.3 Methodology

We introduce a learnable compositional model based on a neural modular network

architecture for VAD. The overall architecture of the model is shown in Figure 3.2 .

The core idea behind our proposed method is to replace the fixed monolithic model

architectures commonly used for VAD (as discussed in Chapter 2) with a model that

dynamically assembles an input-specific network from a library of specialised neural

modules. This allows the computation performed by the model to adapt to the visual

content of each individual input image.

This is achieved by decomposing the anomaly detection task into a set of distinct

sub-tasks, where each subtask can be completed by a dedicated learnable module. In

contrast to fixed VAD pipelines, our method dynamically assembles a task-specific

network per input, improving adaptability and interpretability.

The model consists of three components: a set of neural modules M = {m1,m2, . . . ,mk},

each with learnable parameters θm, which serve as fundamental building blocks that

can be dynamically assembled to form task-specific networks. A layout policy generator
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p(z | I; θp), which predicts a scene-specific layout z to enable the dynamic assembly

of a neural network, such that z specifies the subset of modules and how they are

connected. Finally, an inference model p(a | z, I; θi) that uses the predicted layout z

to assemble a task-specific neural network composed of a set of neural modules that

produce anomaly-related predictions.

Concretely, given an input image I ∈ RH×W×3, the model is trained to detect and

localise anomalous regions via a dynamically assembled model from a predefined set of

modules. The final output of the model is produced by a dedicated prediction module

that forms the terminal node of the assembled modular network, and can output either

pixel-wise anomaly segmentation mask Ŝ ∈ [0, 1]H×W or a set of anomaly bounding

boxes B̂ = {(x̂1, ŷ1, x̂2, ŷ2, ĉ)}Nj=1 such that ĉ denotes a confidence score.

To achieve this, first given the input image I, the learnable layout generator G(.) pre-

dicts a layout configuration l. The predicted layout specifies which modules are selected

from the predetermined set of modules, how these modules are connected, and which

external arguments are provided to each module. Based on this layout configuration,

the model is dynamically assembled by instantiating the corresponding modules and

connecting them according to the predicted structure. The resulting modular network

can be represented as a tree-structured computation graph, in which nodes correspond

to individual modules and edges define hierarchical or parallel relationships between

their outputs and inputs.

Each module mi is a function fθ parameterised by learnable weights θ and a set of

input arguments A = {a1, a2, . . . , an} with n ≥ 0. Therefore, a module can operate

with zero, one, or multiple inputs. The inputs to a module can originate from three

sources:

1. The output of other modules, enabling hierarchical reasoning.

2. Features extracted from the input image, providing direct visual information.

3. Embeddings generated by the layout generator, which encode structural or con-

textual priors for dynamic network assembly.
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Figure 3.2: Overview of our proposed modular model for image anomaly detec-

tion

At runtime, the modules are dynamically assembled into a network based on a layout

l, which defines a computational expression consisting of interconnected modules. For

example, a layout can be expressed as:

fm4(fm3(fm1 , fm2)) (3.1)

where each fmi represents a module within the network.

3.3.1 Layout Generator

To better understand the role of the layout generator model, we start by providing an

intuitive example. Let us consider how a human expert analyses a scene for anomalies.

For the task of inspection, an expert, based on information from observing the scene,

will decide on the set of subtasks that need to be completed. For each subtask, a set

of actions must be taken in the correct order. In terms of our proposed framework,

a layout generator can be considered as the model that takes an image as input and,

based on that image, decides on a set of subtasks, the actions that need to be taken to

complete those subtasks, and the order in which those actions must be taken. Similarly,

we can consider each neural module as a simple learnable action and the set of neural

modules as the library of simple actions an individual has access to.
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Therefore layout generator predicts a configuration L that specifies the optimal as-

sembly of modules for analysing an input image I. The layout encodes the modules

to be used, their interconnections, and any required external inputs. Previous NMN

approaches in computer vision rely on an external query, such as a natural language

question, to guide layout prediction. However, in VAD, such queries are not available

at inference time. To address this, we treat the input image itself as the query, al-

lowing the model to generate the layout directly from visual content, which represents

a novel alternative to addressing this task. This represents a fundamental shift from

prior NMN-based methods, which rely on externally provided task specifications. In

contrast, our approach requires the model to infer the tasks it must perform from the

image itself. Furthermore, while conventional NMNs typically predict a single layout

per input, as shown in Figure 3.2, VAD may demand multiple distinct layouts for a

single image, each targeting a different anomaly detection objective.

The NMN layout can be represented as a tree structure [70], where nodes correspond

to modules and edges define hierarchical or parallel relationships. This tree-structured

layout can be linearised using a domain-specific language that preserves structural

hierarchy through delimiters, such as parentheses for subtrees and brackets for external

arguments. Once linearised, layout prediction becomes a sequence-to-sequence problem,

mapping an input image I to a layout sequence L.

Therefore, we model layout prediction as a sequence generation task, where an image’s

visual features are mapped to the corresponding layout. In our implementation, we use

a pre-trained Vision Transformer (ViT) as the encoder and a decoder-only transformer

for generating the layout sequence. The decoder then generates the linearised layout.

Concretely, a learnable function G() maps input image I to a linearised layout L such

that:

L = Gθ(I), L = {ℓ1, ℓ2, . . . , ℓT } (3.2)

where each token ℓt represents a module identifier, structural delimiter, or external

input argument. The conditional probability of the layout is defined as:

p(L | I; θ) =
T∏
t=1

p(ℓt | ℓ<t, F ; θdec) (3.3)
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where F = fenc(I; θenc) is the encoded image representation, and θ = {θenc, θdec} de-

notes the model parameters. As such, the layout generator produces input-dependent

modular structures. In terms of VAD, this is particularly important because different

images or different video frames may require different computational strategies.

However, in practice, there are some practical constraints that should be considered.

Mainly, the space of all valid layouts is extremely large, and learning layout generation

from the anomaly detection error signal can be difficult and unstable, particularly with

limited training data size. This difficulty arises from needing to simultaneously learn

the correct layout and the correct action for each module from a shared error signal. To

reduce the combinatorial complexity of layout search while retaining input-dependent

modularity, we introduce a simplified adaptation of the layout generator. Rather than

generating an arbitrary layout sequence, we generate a sequence of a set of modules

and their input arguments. Specifically, the layout is represented as:

L = {(m1, a1), (m2, a2), . . . , (mT , aT )},

where mt is a module type and at is the corresponding module argument. At each

program step t, the generator produces two distributions, a distribution over module

types:

p(mt | z, ht−1),

and a distribution over valid arguments for the selected module:

p(at | mt, z, ht−1).

where z is a global image embedding, and ht−1 denotes the internal controller state

summarising the program prefix. Therefore, at each step, the layout generator takes

as input an image embedding z, the previously selected module token, the previously

selected argument token, and outputs the next module selection from a predefined

set of modules, as well as module-specific argument logits from a set of defined input

argument labels. Concretely, under this representation, the simplified variation of the

layout generator is:

p(L | I) =
T∏
t=1

p(mt | m<t, a<t, F ) p(at | mt,m<t, a<t, F ).
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Given the predicted module and argument tokens, the dynamic computation graph is

instantiated by selecting which module is applied at each step and which argument em-

bedding conditions its behaviour. Importantly, module parameters are shared globally

across all inputs. While the module inventory is fixed, the execution path is conditional

on the input image, resulting in input-dependent computation.

3.3.2 Neural Modules

The proposed NMN is composed of a fixed set of neural modules, each aimed at per-

forming a single operation. This design is motivated by the observation that industrial

inspection can be decomposed into a sequence of interpretable steps, such as localising

a relevant object or surface type, refining attention to a sub-region, and finally predict-

ing defect locations. Each module is implemented as a small trainable neural network

specialised for one simple function. The module weights are learned end-to-end during

the training process, such that the module weights are shared across all instances of

the same module type. Variation in behaviour across different instances of the same

module type is achieved by conditioning each module on a learned embedding of input

argument a such that e(a) ∈ Rd. For each module type, the input argument is se-

lected from a predefined set of valid arguments specific to that module. Therefore, the

argument embedding functions as a compact conditioning vector. In this work, argu-

ment embeddings are not taken from a pre-trained word embedding model but rather

trained from scratch jointly with the full system. Furthermore, all modules operate on

the feature representations extracted by the backbone model C():

F = C(I) ∈ RC×H×W .

In the remainder of this section, we describe the modules used.

START Module. The start module provides a fixed initial input to initiate execution

of the modular network. It is also used as the starting token for the layout generator.

In practice, the module outputs a uniform attention mask that does not restrict the

flow of information to the next module.
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FIND Module. The FIND module ffind() with learnable parameters θfind predicts

an attention mask that identifies the spatial region corresponding to an object or surface

category. The module uses a conditional convolutional network architecture. The FIND

module takes as input image feature F generated by the backbone model, an attention

mask Mt−1 from the previous module and an argument embedding e(a) ∈ Rd such that

a ∈ Afind where Afind denotes the predefined set of arguments for the FIND module.

The argument set should contain the names of objects and/or the material types.The

module outputs a soft attention mask Mfind ∈ [0, 1]1×H×W where:

Ft = F ⊙Mt,

Mfind = Mt ⊙ σ(ffind(Ft, e(afind)))

FILTER Module. The aim of the FILTER module ffilter() is a trainable function

parameterised by learnable weights θfilter that refines an existing attention mask. The

module uses a conditional convolutional network architecture. The FILTER module

takes as input image feature F generated by the backbone model, an attention mask

Mt−1 from the previous module and an argument embedding e(a) ∈ Rd such that

a ∈ Afilter where Afilter denotes the predefined set of arguments for the filter module.

When available, the argument set includes material and object attributes, which can

help to further constrain the region from the previous module. The module outputs a

soft attention mask Mfilter ∈ [0, 1]1×H×W where:

Ft = F ⊙Mt,

Mfilter = Mt ⊙ σ(ffilter(Ft, e(afilter)))

REATTEND Module. The REATTEND module freattend() is a trainable module

with learnable parameters θreattend that apply spatial transformation to the attention

mask from previous steps. The module uses a conditional convolutional network ar-

chitecture. The REATTEND module takes as input image feature F generated by the

backbone model, an attention mask Mt−1 from the previous module and an argument
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embedding e(a) ∈ Rd where areattend ∈ {left, right, up, down}. The module outputs a

soft attention mask Mreattend ∈ [0, 1]1×H×W where:

Ft = F ⊙Mt,

Mreattend = Mt ⊙ σ(freattend(Ft, e(areattend)))

Prediction Modules. The Prediction modules are trainable prediction heads which

act as the final modules of the architecture. They are responsible for generating model

outputs in the form of labels, segmentation masks, or bounding boxes. Here, we outline

two modules: PREDICT BOX and PREDICT SEGMENT.

The PREDICT BOX module follows a DETR-style [24] architecture. However, unlike

the vanilla DETR model, we introduce the use of defect-conditioned queries based

on the argument embedding e(a). The PREDICT SEGMENT module is based on a

U-Net [139] style decoder architecture. The output of PREDICT SEGMENT is also

conditioned on e(a).

As such, both PREDICT BOX and PREDICT SEGMENT are conditioned on e(a),

where a denotes the set of possible anomaly types. In addition to the input argument

embedding, both modules take as input the backbone feature map F and the attention

mask M from the previous module. To ensure that both detection and segmentation

are restricted to spatial regions highlighted as important by previous modules, the

backbone image features are gated using the attention mask such that

FT = F ⊙MT .

The PREDICT BOX module outputs K bounding box parameters b ∈ [0, 1]K×4 and

corresponding objectness scores o ∈ [0, 1]K , while the PREDICT SEGMENT module

outputs a probabilistic segmentation mask Ŝ ∈ [0, 1]1×H×W .

Concretely, the DETECT BOX module first converts the masked feature map into

a flattened sequence of spatial tokens, which serve as the input to the query-based

detection mechanism:

X = flatten(FT ) ∈ RHW×d.
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The module employs a fixed set of K learned query vectors Q ∈ RK×d, conditioned

on the defect embedding e(abox), which attend over the spatial tokens via transformer

cross-attention:

S = Transformer(Q,X) ∈ RK×d.

Bounding box prediction is performed using lightweight feed-forward heads applied

independently to each resulting latent vector Sk:

bk = σ(gbox(Sk)).

On the other hand, in DETECT SEGMENT, the masked feature map is passed to a

lightweight convolutional decoder gseg, which is conditioned on the defect embedding:

ℓseg = gseg(FT , e(aseg)), Ŝ = σ(ℓseg),

where ℓseg denotes the segmentation logits. The resulting mask may be upsampled to

match the input image resolution if required by the application.

3.4 Training

The training strategy depends on the type of supervision available in the dataset.

When the training annotations only provide the final inspection outcome (e.g., anomaly

bounding boxes, segmentation masks, and defect labels), the model must be trained

end-to-end, jointly optimising both the layout generator and the neural modules us-

ing the downstream detection/localisation loss. In this regime, the layout is treated

as a latent decision process, and the generator learns to select module sequences and

arguments indirectly through task performance. In addition, it is often possible to

incorporate weak or auxiliary supervision to stabilise learning. For example, inter-

mediate supervision can be provided for specific modules (e.g., supervising the FIND

module using object/surface labels), or partial program supervision can be provided

when approximate ground-truth layouts are available. When such layout annotations

exist, training can be performed in a two-stage manner, where the layout generator

is first trained with direct token-level supervision and subsequently fine-tuned jointly

with the modules.
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In all cases, the model relies on extracting image features using a pretrained backbone.

During the initial training stages, the backbone parameters are kept frozen, and only

the layout generator and neural modules are optimised, which allows for stabilised

learning. After the modular reasoning components reach satisfactory performance, a

second training stage is performed in which selected backbone layers are unfrozen and

fine-tuned jointly with the detection and reasoning modules using a reduced learning

rate.

3.4.1 Joint Training

In a joint training setting, the model is trained using only supervision from the anomaly

prediction task. Given an input image I and corresponding image anomaly annotation

Y , the model jointly optimises the parameters of the layout generator and the modules

without access to the ground-truth layouts. The layout generator produces a discrete

layout sequence P ∼ p(P | I; θL), which is assembled and executed to output a predic-

tion ŷ = fNMN(P, I; θM ), where θL and θM are the parameters of the layout generator

and modules, respectively.

Loss LNMN(ŷ, Y ) is computed by comparing the model output ŷ with the corresponding

ground truth image label Y . However, since the layout P is discrete, the layout gener-

ator cannot be trained via direct backpropagation. Instead, similar to previous works

[84], we formulate the layout generation process as a reinforcement learning problem

and optimise θL using the REINFORCE algorithm [84]. The reward is defined as the

negative task loss:

R(P, I) = −LNMN(fNMN(P, I; θM ), Y ) (3.4)

The objective is to maximise the expected reward:

J(θL) = EP∼p(P |I;θL) [R(P, I)] (3.5)

The gradient of this objective is estimated using:
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∇θLJ(θL) ≈ 1

K

K∑
i=1

(
R(P (i), I) − b

)
∇θL log p(P (i) | I; θL) (3.6)

where P (i) denotes the i-th sampled layout, K is the number of samples, and b is a

baseline to reduce variance. The module parameters θM are optimised via gradient

descent using the loss LNMN, treating the layout P as fixed during each update.

3.4.2 Alternative Training Strategies

During training, given an input image I and corresponding anomaly annotations Y ,

the model needs to jointly optimise the parameters of both the layout generator and

the modules. While this can be formulated as a joint training problem, it is often

challenging in practice, as the model must simultaneously learn to predict appropriate

layouts and train individual modules to perform task-specific computations, all from

supervision that reflects only the final anomaly detection output. This makes it difficult

to disentangle whether poor performance is due to layout prediction or incorrect module

behaviour. To help the model, we can first train the layout generator or the modules

separately before training both jointly.

If examples of optimal layout for images are available, the layout generator can be

trained as a decoder-only transformer:

L(θ) = −
T∑
t=1

log pθ(y
∗
t | I, y∗<t)

Such that π∗ = {y∗1, ..., y∗T } is the optimal sequence of tokens the transformer should

learn to predict. Alternatively, if image annotation for some or all of the modules’

behaviour is available, we can first pre-train some of the modules before jointly training

the modules and the layout generator.
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3.5 Experiment

3.5.1 Datasets

For this work, we use three publicly available benchmark datasets: DACL10K [51],

CODEBRIM [118], and DTU [144].

DACL10K contains 9,920 images and 62,327 labelled objects related to bridge inspec-

tion. The labelled objects include 12 damage classes and 6 bridge components that are

essential for assessing the condition of the bridge. CODEBRIM is another dataset with

a focus on bridge defects, consisting of 1,590 images. The dataset covers 6 different

types of concrete defects with 8,323 labelled objects. Finally, the DTU dataset is a

collection of drone images of wind turbines. The dataset consists of 13,470 images from

various parts of the wind turbine. Although the dataset does not distinguish between

different types of damage, it does contain labels for dirt marks that can be incorrectly

associated with surface-level defects. All the datasets above comprise images collected

under varying environmental conditions and include samples captured from multiple

viewpoints and scales.

3.5.2 Model Implementation

We implement and train the model using the joint training formulation described above.

While semantic segmentation and image classification naturally lend themselves to

NMN formulation, it is more challenging to formulate object detection as an NMN

model. This is because object detection involves a separate mechanism that does not

map cleanly onto a modular “choose-the-expert” paradigm. Therefore, below we outline

how semantic segmentation and object detection can be formulated based on NMN

design

Semantic Segmentation with NMN

For semantic segmentation, we implement the NMN framework using a ResNet-101

[62] backbone as the shared feature extractor. The high-level features from the back-
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bone can then be passed through a find and or re-attend attention module that adap-

tively highlights defect-relevant patterns (e.g., cracks, corrosion stains) while suppress-

ing background noise. This reweighted representation is then fed into a U-Net–style

decoder, the predict modules, which serve as the expert head for segmentation. Within

this NMN design, the attention block and the prediction head function as a modular

component that can be chosen and tuned based on the context.

Object Detection with NMN

For object detection, the NMN framework is integrated into a Faster R-CNN [137]

architecture. Here, the ResNet backbone first extracts multi-scale features, which are

then passed through the find and or re-attend positioned after the backbone and before

the Region Proposal Network (RPN). These attention modules act as foreground priors,

reweighting the feature maps so that the RPN is less likely to generate proposals in

uniform background areas and more likely to focus on regions with defect-like textures.

After proposals are generated and refined through ROIAlign, the features are passed

into modular predict modules acting as the prediction heads.

3.5.3 Results

To better assess our proposed method, we compare its performance against other mod-

els’ published results on the DACL10K dataset to analyse pixel-level defect detection,

and on the DTU and CODEBRIM datasets to evaluate bounding-box defect detection

performance. Although different backbone architectures are used, the comparison re-

mains informative as all methods are evaluated under the same training and testing

protocol.

As shown in Table 3.1, our proposed model achieves a 43.4 mean Intersection over

Union (mIoU) on the DACL10K dataset, demonstrating competitive performance on

the DACL10K dataset compared to previously published work. Flotzinger et al. [52]

report 42.4 mIoU using an FPN-based segmentation architecture with an EfficientNet-

B4 encoder and an auxiliary loss formulation. Later, this result was improved on by

the same authors by using an ImageNet-pretrained MaxViT-Base backbone within an
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FPN framework [49]. Furthermore, in addition to the DACL10K dataset, the authors

incorporated synthetic defect data during training, leading to improved performance.

In Table 3.1, we also included the best-performing submission in the DACL Challenge

competition that achieved 49.8 mIoU [50]. This was achieved by ensembling six seg-

mentation models with different architectures, training schemes, and prediction heads.

We can see that our model remains competitive against other state-of-the-art architec-

tures and more complicated training schemes using additional synthetic defect data.

However, the model showed particular difficulty in accurately detecting cracks and wet

spots on concrete surfaces. Small surface defects, such as cracks, may only occupy 10-30

pixels in width and height. As such, small features are poorly represented in the down-

sampled representation of the image from the deeper layers of the CNN backbones. In

the typical CNN backbone architecture, such as ResNet 101, a feature occupying 30

pixels in the image will correspond to only one or two output feature cells, making

accurate segmentation and bounding box regression less accurate. In practical terms,

due to loss of resolution in deeper layers of the backbone, the model reaches a localisa-

tion ceiling, such that despite the model receiving an output error, it can not precisely

align the output with the labelled data. As such, it falls short of the ensemble-based

approach, which can improve accuracy by leveraging complementary representations of

spatial detail and context across architectures, rather than relying on a single resolution

or feature hierarchy.

On the DTU dataset, we compare our model against the reported results of several

benchmark methods, including Faster R-CNN and YOLO-based models and their vari-

ations. Our model achieves 80.2 mAP@0.5, demonstrating improved performance rel-

ative to Faster R-CNN and YOLO-based benchmarks [54]. However, our model per-

forms less accurately than the YOLO variant, YOLO-Wind [193], which achieves 83.9

mAP@0.5 using a modified YOLOv8-based detector that integrates depthwise convo-

lutions, MobileNet-style bottlenecks, ECA attention mechanisms, and an additional

detection layer to enhance multi-scale feature representation and detection accuracy.

On the other hand comapred to YOLO-Wind, our approach relies on a more standard

two-stage detection pipeline and a modular design, achieving competitive performance

without introducing multiple detector-specific architectural modifications, which high-
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Figure 3.3: Anomaly detection results on CODEBRIM dataset. The figure

shows model outputs for six images. The four images on the left demonstrate

successful anomaly detection and localisation, while the two images on the right

illustrate failure cases where not all anomalies are detected.

Figure 3.4: The figure shows model outputs for four images from the DTU

dataset. The three images on the left demonstrate successful anomaly detec-

tion and localisation, while the image on the right illustrates failure cases when

anomalies are at the edge of the object.

lights the effectiveness and generality of the proposed modular framework for aerial

defect detection.

We also compare our model’s performance against several other benchmarks and meth-

ods on the CODEBRIM dataset. Patel et al. report 91.2 mAP@0.5 using an improved

Faster R-CNN formulation that incorporates a multi-label loss function to better han-

dle multiple defect classes [131]. SMDD-Net reports 99.1 mAP@0.5 and introduces

an attention-enhanced detection architecture that builds upon standard object detec-

tion frameworks by combining feature pyramids with attention modules to improve
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the localisation and classification of small-scale and low-contrast concrete surface de-

fects, demonstrating enhanced regional feature representation compared to more basic

detectors [64]. We can see that, excluding SMDD-Net, which employs a highly spe-

cialised attention-based design, our model performs better than or competitively with

other baseline models and their variations. Overall, our results show that our proposed

NMN model remains competitive with widely used detection frameworks.

One Factor that should be considered when comparing our results against previously

published methods is the challenging aspect of training the NMN architecture. NMN

are inherently challenging to train as the function of each module, and the layout

generator that controls module assembly is jointly optimised from a shared error signal.

Table 3.1: DACL10K Dataset

mIoU

Flotzinger et al., 2023 [52] 42.4

Flotzinger et al., 2024 [49] 43.37

Flotzinger et al., 2025 [50] 49.8

Ours 43.4

Table 3.2: DTU Dataset

mAP@0.5

Faster R-CNN [54] 75.39

Foster et al., 2022 [54] 79.37

Zhanfang et al., 2025 [193] 83.9

Ours 80.2
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Table 3.3: CODEBRIM Dataset

mAP@0.5

YOLOv5 [64] 41.7

YOLOv8 [64] 59.6

Patel et al., 2021 [131] 91.2

RetinaNet [103] 88.4

SMDD-Net [64] 99.1

Ours 90.68

3.6 Conclusion

We presented the implementation of an NMN-based method for detecting image anoma-

lies. Our proposed model demonstrates competitive performance compared to other

benchmark methods. More importantly, it shows that image anomaly detection can

be modelled as a compositional NMN framework. We further demonstrated that our

model can select and communicate the distinct steps required for detecting various

anomaly types. However, we should note that with the currently available benchmark

datasets, it is challenging to test the model’s capabilities thoroughly. Even when mix-

ing multiple datasets, the images from each dataset typically contain only one type of

material or object. Furthermore, current datasets lack examples where numerous types

of anomalies across various materials co-occur in the same image. Finally, detecting

abnormalities in the available datasets does not require complex multi-step reasoning;

they can usually be resolved with only two modules. For future work, three directions

can be explored:

1. Creating a more challenging dataset that reflects dynamic environments.

2. Expanding both the module architecture and the backbone to other network

designs.

3. Investigating the level of granularity for each module’s task to find the best bal-

ance between performance and interpretability.
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In this section, we primarily focused on object-level prediction heads for surface-defect-

type anomalies. However, object-level anomaly detection may also require consideration

of abnormal motion, for example, in the case of individuals or vehicles that move over

time. As such, in the following section, we introduce a prediction head for skeletal

anomaly detection that remains aligned with the broader objectives of this thesis, par-

ticularly robustness in dynamic environments, explicit context awareness, and improved

interpretability.
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Chapter 4

Physics-Guided Graph Neural

Networks for Skeletal Anomaly

Detection

4.1 Introduction

Skeleton-based Video Anomaly Detection (SVAD) is a key task in computer vision and

video surveillance, providing an interpretable and structured way to analyse human

behaviour by abstracting visual data into sequences of skeletal joint positions. By

focusing on the spatial and temporal evolution of these joints, SVAD systems can

detect deviations from typical human motion patterns, which may signify anomalous

events.

Recent work has leveraged a variety of Graph Neural Network (GNN) architectures to

model the dynamics of these skeletal sequences, typically by forecasting future joint

positions and flagging significant prediction errors as anomalies. Architectures such as

Contextual Graph Networks (CGNs), Graph Attention Networks (GATs), and various

temporal GNNs have been employed to better capture spatial relationships between

joints and their temporal evolution over time. While these models have shown promise,

they face notable challenges: they often suffer from noisy or missing pose estimates due

49
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to occlusions, and they tend to struggle with capturing long-range dependencies, multi-

scale temporal patterns, and broader contextual cues in complex scenes.

To address these limitations, we propose a paradigm shift: instead of directly learning

to predict future joint positions, we formulate SVAD as a physics-based simulation task.

Specifically, we model human motion as a system governed by rigid body kinematics

and dynamics, embedding these physical constraints within a learnable GNN-based

architecture. Our method draws inspiration from previously proposed deep learning-

based simulators that have employed Multi-Layer Perceptrons (MLPs) and GNNs to

model physical interactions in domains ranging from liquid and gas flow simulations

to solid object dynamics. By treating the human skeleton as a physically interacting

system, our approach learns to simulate joint dynamics in a manner that respects

kinematic and dynamic principles, providing physically consistent and robust motion

predictions even under noisy or incomplete input data.

By treating the human skeleton as an articulated physical system, our model learns

to simulate joint dynamics in a way that respects underlying physical principles. This

approach enhances robustness to noisy or incomplete data and improves the general-

isation and interpretability of anomaly detection. Furthermore, by grounding motion

prediction in physical dynamics, the model provides richer representations of normal

behaviour, allowing it to detect subtle or complex anomalies.

In this work, we aim to combine the predictive power of GNN and physics-informed

modelling. By integrating GNN architectures with rigid body kinematic and dynamic

modelling, we aim to introduce a novel, physically consistent framework for SVAD.

4.2 Related Work

In recent years, the use of graph-based approaches [38, 87] has gained traction in many

time-series problems due to their ability to effectively capture both spatial and temporal

dependencies. One important application is prediction-based skeleton video anomaly

detection. Here, the human skeleton is modelled as a graph where joints are represented

as nodes and edges typically represent the anatomical connections between the joints.
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A seminal work introducing the concept of Spatio-Temporal Graph Convolutional Net-

works (ST-GCNs) for skeleton-based video anomaly detection was presented in [113].

The model used an ST-GCN encoder to learn spatial–temporal dependencies between

the joints, enabling it to predict the next frame of skeleton joint positions. During

inference, a high prediction error between the model prediction and the observed joint

position is used as an indication of anomalies. However, as outlined in the paper, in-

creasing the depth of ST-GCNs beyond nine layers can lead to over-smoothing and

diminishing returns, causing model accuracy to drop. This limits the model’s ability to

learn from longer-term dependencies. At the same time, Tang et al. [154] introduced a

graph-based motion prediction framework that models both spatial body structure and

temporal motion dynamics. To better capture joint dependencies, the graph formu-

lation relaxes strict adherence to anatomical connections and introduces handcrafted

edges between several joints that are not anatomically connected. Together, these two

works laid the foundation for prediction-based graph models in skeleton-based anomaly

detection. Nonetheless, challenges such as over-smoothing and limited long-term mod-

elling remained.

To address the limitations of earlier models, ST-GCAE-LSTM [100] combines a spatio-

temporal graph convolutional autoencoder with an embedded LSTM and a dual de-

coder, jointly training the model to reconstruct past sequences and predict future ones.

This improved the model’s performance by enabling it to capture long-term dependen-

cies better. Similarly, STEGT-AE [200] introduced a similar architecture by combining

a spatio-temporal Graph-Transformer encoder and a dual-decoder autoencoder struc-

ture. To better capture long-range dependencies, multi-level skip connections are used.

Furthermore, during training, the model encodes skeleton sequences using transformer-

style attention over the spatio-temporal skeleton graph, which improved the model’s

anomaly sensitivity. While both methods improved model performance compared to

basic ST-GCN-based models, they introduce higher training complexity and greater

computational cost. At the same time, the deterministic modelling of future poses can

lead to poor generalisation in new or dynamic scenarios [200, 100]. Furthermore, in

general, using the body’s predicted position as a whole can lead to missing localised

anomalies if the majority of the rest of the body region is acting normally [85].
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The Graph-Jigsaw Conditioned Diffusion Model (GiCiSAD) [85] tackles several of these

issues. While Normal Graph predicts a single deterministic next pose, GiCiSAD pre-

dicts future skeleton poses using a Graph-Attention Forecasting module, then refines

this with a diffusion model that generates multiple plausible futures instead of a sin-

gle deterministic one. Furthermore, it introduced the idea of the graph-jigsaw task,

in which skeleton frames are shuffled in time, and the model learns to put them back

in order. This forces the model to capture temporal dependencies more effectively,

improving its ability to predict future poses and detect anomalies. While GiCiSAD al-

leviates several limitations of earlier models, it remains computationally expensive due

to diffusion sampling. GNN-based approaches have demonstrated strong performance

in skeleton video anomaly detection owing to their ability to model the spatio-temporal

dynamics of the human skeleton effectively. However, over-smoothing remains a chal-

lenge in capturing long-term dependencies. Several models have attempted to address

this issue with more complex architectures. But doing so introduces higher computa-

tional demands, which can become problematic in more challenging environments and

when training on larger datasets. Furthermore, these models do not explicitly learn the

underlying dynamics and kinematics that drive human motion, limiting their ability to

generalise to new scenarios or dynamic environments.

4.3 Methodology

4.3.1 Problem Formulation

We aim to formulate SVAD as a prediction problem, where, given historical joint motion

features, the goal is to predict the position of each joint at the next time step. As shown

in Figure 4.3.1, the model consists of three main components: (1) encoding raw joint

features into a shared latent space, (2) applying a graph neural network to leverage

information from other available nodes and update node states, and (3) predicting the

position of the visible joints at the next time step.

Existing GNN-based approaches typically model human pose estimation as a sparsely

connected graph such that joints represent graph nodes and edges correspond to anatom-
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ically accurate connections between physically adjacent joints. While this topology

introduces a strong inductive bias by enforcing anatomical constraints, it can be sen-

sitive to noise and partial observation of joints. This is because when one or more

joints are missing, the sparse graph topology results in limiting the information flow

and disrupting message passing between the nodes in the GNN model. This poses a

significant challenge for real-world applications, where factors such as occlusion, sensor

noise, motion blur, and pose estimation errors can frequently result in missing or un-

reliable joint observations. To overcome this limitation, we model pose estimation as

a complete graph, coupled with an attention mechanism that enables adaptive, data-

driven weighting of joint interactions. This allows each node to selectively incorporate

information from any other available node and maintain effective information flow un-

der partial observability instead of relying on fixed information flow based on skeletal

connectivity of joints.

Motivated by this, we start by modelling the human pose estimation as a dynamic

graph:

Gt = (Vt, Et), (4.1)

where

Vt = {v1, . . . , vn} (4.2)

is the set of nodes observable at time t, such that each node represents a joint, and Et

is the set of edges that capture the relationships between each pair of joints. To ensure

robustness under partial observability, we adopt a complete graph structure such that:

Et = {(vi, vj) | vi, vj ∈ Vt, i ̸= j}. (4.3)

This allows for the information to propagate between any pair of joints, even if the

intermediate joints and edges that connect them in the physical world are not observ-

able. We also define each node vi ∈ Vt feature vector x
(t)
i by the temporal feature vector

associated with the corresponding joint, such that the node feature:

x
(t)
i ∈ Rdi , (4.4)

Represents historical motion information (e.g., position, velocity, acceleration), image

context, and class label for joint i at time t as defined in Eq. (4.10). When observing



54 Chapter 4

human poses across multiple frames, information for certain joints may be missing at

some time steps. To address this, we first encode the raw input features into a shared

latent space using a learnable function:

h
(t)
i = Encoder(x

(t)
i ) (4.5)

This encoding step ensures that all nodes are projected into a common representation

space suitable for downstream graph-based computation. The encoded representations

are then updated via a Graph Attention Network (GAT), which allows each node to

aggregate information from all other joints in the graph, weighted by learned attention

coefficients:

ĥ
(t)
i = GAT

(
{h(t)j }j∈Jt

)
(4.6)

such that Jt denotes the set of joints at time t. To compute the joint positions at the

next time step, we adopt a rigid-body kinematic formulation.

x(t+1) = x(t) + v(t)∆t+ 1
2a

(t)∆t2, (4.7)

which requires joint position x, velocity v, and acceleration a at time t. While joint

positions are observable, joint velocity can be estimated as a first-order differential ap-

proximation using backward finite differences based on past observations, and remains

relatively accurate under moderate noise and partial observability. However, joint ac-

celeration cannot be accurately estimated, as it requires position values from three time

steps, t−1, t, and t+1. While acceleration can technically be estimated at time t using

backward finite differences, such estimates are highly sensitive to measurement noise

and amplify pose estimation errors due to second-order differentiation. As such, we

consider acceleration a hidden state at time t, which the model is required to predict.

To this end, node embeddings from GAT are used to predict the change in acceleration

for each joint at time t:

∆a
(t)
i = faccel(ĥ

(t)
i ). (4.8)

Finally, the predicted acceleration is integrated into a rigid-body dynamics formulation

to estimate the joint positions at the next time step. Specifically, we use the predicted

change in acceleration to update the velocity and position of each joint, allowing us to
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Figure 4.1: The pipeline of our proposed model. After extracting kinematic

joint data from the last n consecutive frames, it is encoded using the transformer

encoder block. We then model the human skeleton representation as a complete

graph. The graph is passed through a multi-head GAT network. Finally, each

joint representation is used to estimate the acceleration at the current time step

t and the position at time step t+1

forecast the expected pose at time t+ 1. This physically grounded formulation ensures

that the predicted motion remains consistent with natural kinematic constraints.

In the remainder of this section, we provide a detailed description of different sections

of the model. We begin by discussing the feature encoding process used to project raw

joint observations into a shared latent space. We then describe how Graph Attention

Networks are employed to model spatial relationships among joints and update node

embeddings. Finally, we outline the dynamics-based prediction module used to estimate

future joint positions via acceleration forecasting.

4.3.2 Node Encoder

A crucial aspect of the model is encoding relevant information to accurately predict

future joint positions. To this end, we aim to learn a function

ϕnode : Rdx → Rdh (4.9)

that maps each joint’s feature vector xi into a latent node representation. We begin

by outlining how we encode the time series of motion features for a single joint at time
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t. Each node vi ∈ Vt is associated with a time series of motion features x
(t)
i ∈ Rn×f ,

representing the joint’s recent dynamics over a sliding window of length n. Concretely,

each node’s feature vector at time t is defined as:

xt = [pt−n, . . . , pt, vt−n, . . . , vt, at−n, . . . , at−1] (4.10)

where p, v, and a denote the position, velocity, and acceleration vectors, respectively.

However, as mentioned before, due to occlusion or model failure to localise all visible

joints, some of these measurements may be unobservable. Therefore, for each time step

i in the node’s history, we initially define a token k as:

ki = [pi, vi, ai] (4.11)

Such that:

xt = [kt−n, . . . , kt] (4.12)

To handle missing data, we introduce a binary mask for each component:

mi = [mp
i , m

v
i , m

a
i ] , with mp

i ,m
v
i ,m

a
i ∈ {0, 1} (4.13)

To maintain a consistent input dimensionality, missing features are imputed using learn-

able embeddings:

ṽi = mv
i · vi + (1 −mv

i ) · ev, ãi = ma
i · ai + (1 −ma

i ) · ea (4.14)

where ev ∈ Rdv and ea ∈ Rda are learnable vectors corresponding to velocity and

acceleration, respectively, the final augmented token becomes:

k̃i = [pi, ṽi, ãi, mi] (4.15)

4.3.3 Token Embedding and Positional Encoding

Here, we adopt a standard formulation for [CLS] [43] and position encoding [159]. Each

augmented token x̃i ∈ Rd is linearly projected into a latent space:

zi = Wk̃i + b, zi ∈ Rde (4.16)
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where W ∈ Rde×d and b ∈ Rde . To capture temporal information, we add positional

encodings PE(i) to each token:

z̃i = zi + PE(i) (4.17)

To facilitate sequence-level representation, we prepend a special learnable [CLS] token

z̃CLS ∈ Rde to the input sequence. This token is intended to aggregate information

from the entire sequence and does not receive a positional encoding.

The full input to the transformer becomes:

Z = [z̃CLS, z̃1, z̃2, . . . , z̃n] (4.18)

4.3.4 Transformer Encoder with Attention Masking

The sequence Z is processed by a stack of L transformer encoder layers [159]. Each

layer employs self-attention to compute contextualised representations of all tokens.

For each token zi ∈ Z, we compute:

qi = WQzi, ki = WKzi, vi = WV zi (4.19)

with WQ,WK ,WV ∈ Rdk×de . The attention score between tokens i and j is given by:

eij =
qi · kj√
dk

(4.20)

The resulting attention outputs are passed through a feed-forward network with residual

connections and layer normalisation, following standard transformer design.

4.3.5 Node Features Embedding

We adopt the [CLS] token [43] strategy to obtain a summary embedding for each node.

After passing the token sequence through L transformer layers, the final representation

of the [CLS] token is used as a compact summary of the node’s motion history:

hmotion = z̃
(L)
CLS (4.21)
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We aim to integrate visual and semantic information into the node embedding. To

this end, we enrich the motion-based node embedding with both image context and

joint type information. These components are concatenated to form a unified node

representation:

h
(t)
i = Encoder

([
hmotion ∥ximage ∥xtypei

])
(4.22)

such that ximage is the [CLS] token representation from the ViT encoder of the scene

and xtypei is the encoding of the joint class label. Therefore, the final embedding h
(t)
i

fuses temporal dynamics, visual scene context, and anatomical semantics, enabling

more informed reasoning during graph-based message passing.

4.3.6 Graph Attention Network

To model spatial dependencies and heterogeneous interactions among joints, we employ

a multi-layer Graph Attention Network (GAT). At each layer l, the representation of

a node is updated by aggregating information from neighbouring nodes, weighted by

learned attention coefficients that reflect their contextual relevance.

Given input node features h
(l)
i , each node is first projected into a shared latent space

using a learnable transformation, such that:

h̃
(l)
i = W (l)h

(l)
i (4.23)

Pairwise attention scores α
(l)
ij are computed and normalised using softmax based on the

similarity of node features. Each node is then updated by taking the weighted sum of

neighbour features such that:

h
(l+1)
i = σ

 ∑
j∈N(i)∪i

α
(l)
ij h̃

(l)
j

 (4.24)

where σ is a non-linear activation function, and h̃
(l)
j is the transformed representation

of node j as shown in Eq. (4.23). To improve expressiveness and training stability,
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we use multi-head attention. The outputs from K independent attention heads are

concatenated:

h
(l+1)
i = ∥Kk=1σ

 ∑
j∈N(i)∪i

α
(l,k)
ij h̃

(l,k)
j

 (4.25)

such that:

h̃
(l,k)
j = W (l,k)h

(l)
j . (4.26)

This attention mechanism enables each joint to selectively attend to other joints based

on contextual relevance, while remaining robust to noisy or missing observations.

4.3.7 Decoder

After L layers of GAT, we obtain the final latent representations h
(L)
i for each joint.

These embeddings are then decoded to predict the motion states for each node. We

employ a separate decoder for predicting acceleration at time t and position at time

t + 1. Both decoders ψdec : Rd
(L)
h → Rdy share the same architecture design and are

implemented as a multi-layer perceptron (MLP), applied independently to each node:

ŷpos = ψpos(h
(L)
i ) (4.27)

ŷacc = ψacc(h
(L)
i ) (4.28)

where ŷpos and ŷacc represent the models’ predicted acceleration for time t and position

at time t+ 1.

4.3.8 Loss Function

In this work, the model aims to predict acceleration at the current time step and

position at the next time step. Therefore, the loss function can be defined as:

L = Lacc + Lpos (4.29)
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such that:

Lacc =

N∑
i=1

∥â(i)t − a
(i)
t ∥22 (4.30)

Lpos = λ
N∑
i=1

∥p̂(i)t+1 − p
(i)
t+1∥

2
2 (4.31)

4.4 Experimental Setup

4.4.1 Datasets

We evaluate our proposed model on the Human-Related ShanghaiTech (HR-SHT)

dataset [107]. The HR-SHT dataset is a subset of the ShanghaiTech Campus dataset

[107], focusing on human skeletal and action anomaly detection. As such, six videos

containing anomalies irrelevant to human motion are removed.

HR-SHT is a widely used benchmark for semi-supervised skeleton-based video anomaly

detection. The HR-SHT dataset comprises of 437 videos recorded across 13 camera

scenes. It is broken down into 330 anomaly-free training videos and 107 testing videos

containing various types of anomalies. In total, the test set includes 130 abnormal

events captured under complex lighting conditions and diverse camera viewpoints. The

test set also provides frame-level and pixel-level annotations for evaluation.

In this work, we utilise the dataset under a semi-supervised learning paradigm. The

model is trained using only anomaly-free videos, without access to anomaly annotations,

to learn patterns of normal human motion. During testing, the model is evaluated using

the test-set annotations.

4.4.2 Pose Estimation and Tracking

For our model, each joint input state vector requires a sequence of the previous n joint

positions (see Eq. (4.10)). As such, we need to track each person and their associated

pose estimations across the video. To achieve this, we utilise multi-object tracking

to maintain consistent identities across video frames and apply pose estimation for
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Figure 4.2: Example of anomaly detection result on ShanghaiTech dataset

each tracked person in the frame. For detecting individuals in each frame, we employ

Ultralytics YOLOv8 object detector [83].

For generating pose estimation data, we utilise the PyTorch implementation [177] of

the ViTPose model [178], as the ViTPose model has demonstrated strong performance

in crowded scenes due to its global attention mechanism and robustness to occlusions

[178]. Furthermore, for tracking, we employ the BoT-SORT algorithm [4] using the

online implementation in [22].

The BoT-SORT algorithm combines appearance-based re-identification with motion

modelling, enabling robust identity association under frequent occlusions and high

inter-person interactions [4]. This property is well-suited for real-world crowded en-

vironments, where individuals in video footage often overlap or may be temporarily

occluded before reappearing.

4.5 Results

In this section, we evaluate the performance of our proposed physics-guided GNN-

based anomaly detection model. The model aims to learn the underlying kinematic

and dynamic structure of human motion. Our proposed method adopts a predictive

approach such that, given the joint features over a temporal window of size n, the model

predicts the joint accelerations at time t and joint positions at time t+1. Anomalies are

detected by measuring the divergence between these predicted values and the actual
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observed values, leveraging the assumption that anomalous motions are more complex

to predict under learned physical dynamics.

Table 4.1 presents the comparative performance of our model against a range of re-

cent state-of-the-art methods on two standard datasets: ShanghaiTech (SHT), Human-

related ShanghaiTech (HR-SHT). Our model achieves competitive performance, partic-

ularly on the SHT and HR-SHT datasets, where it surpasses or matches several baseline

methods such as CT-D2GAN, ROADMAP, and PoseCAVE.

Methods SHT HR-SHT

MTP [138] 76.03 77.04

MPED-RNN [117] 73.4 75.4

Jigsaw [164] 84.3 -

CT-D2GAN [46] 77.7 -

HSTGCNN [192] 81.80 83.40

PoseWatch-H [125] 85.75 87.23

MoPRL [188] 83.35 84.34

STGformer [165] 82.9 86.97

MSTA-GCN [30] 75.9 76.8

PoseCAVE [79] 74.9 75.7

Ours 77.29 79.18

Table 4.1: Performance comparison of different methods on SHT, HR-SHT

Our model demonstrates a strong capacity for generalisation by learning the funda-

mental physical dynamics of human motion. This enables effective anomaly detection

without relying on dataset-specific features or action-specific patterns. Additionally,

due to its physics-informed design, the model exhibits notable robustness in handling

missing or occluded joint data, making it practical for real-world scenarios where im-

perfect pose estimations are standard.

In this section, we also compare the results from our model against various other

prediction-based models, using the results reported in the original publications. It

should be noted that the reported results are obtained using different image feature
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Figure 4.3: From left to right, each column shows the input image, the ground-

truth pose estimation, the pose predicted by our model, and the overlap between

the ground truth and the predicted pose. Results are shown for several consecu-

tive frames from a video sequence. During anomalous motion, a clear discrepancy

can be observed between the model’s prediction and the ground-truth pose esti-

mation.

extraction backbones, pose estimators, and tracking strategies. As such, these compar-

isons reflect end-to-end performance rather than a strictly controlled evaluation under

identical preprocessing. However, the reported results provide a useful reference for

comparing our model against various baseline and state-of-the-art (SOTA) prediction-

based VAD models. Here, we mainly evaluate against models that operate on skeletal

pose data; however, for completeness, we also include predictive methods that operate

directly on RGB video data.
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Figure 4.4: Failure and edge cases. From left to right, each column shows

the image, ground-truth pose estimation, pose prediction, overlap between the

ground truth and the predicted. First row: False detections caused by reflections

on glass surfaces. Second row: Missed anomaly due to the failure of pose

estimation and object detection to detect the person. Third row: Edge-motion

cases where the proposed model correctly matches predictions with ground truth

for previously unseen activities, particularly slow motions such as coasting on a

bicycle.

RGB-based methods such as Jigsaw [164] and CT-D2GAN [46] flag anomalies based on

failures in future-frame prediction and spatio-temporal consistency. This class of models

typically utilises 2D or 3D CNN-based spatiotemporal architectures or transformers

to model appearance and motion cues directly from pixels. Compared to skeleton-

based methods, RGB-based methods are more general and can detect anomalies beyond

those related to human motion. At the same time, since they process the full image,

they are often more sensitive to appearance changes and background variation and

provide weaker interpretability for abnormal behaviour. We observe that our model is

competitive against RGB prediction baselines.

Skeleton-based models operate on sequence or individual pose estimations for differ-

ent individuals in the video. Similar to our model, pose sequences are typically ex-

tracted via a combination of tracking methods (e.g., PoseFlow, SORT/DeepSORT)

and pose estimation models (e.g., OpenPose, HRNet, AlphaPose). We compare our
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results against three distinct skeleton-based architectural families, namely recurrent

model such as (MPED-RNN), spatio-temporal GNNs (MSTA-GCN), and transformer-

based approaches (MoPRL, STGformer, and PoseWatch-H). Quantitatively, our ap-

proach performs better than or is competitive against most skeleton baselines such as

MPED-RNN [117], PoseCVAE [79], and MSTA-GCN [30]. However, its performance

remains below transformer-based models such as MoPRL [188], STGformer [165], and

PoseWatch-H [125]. Although our method underperforms, it should be noted that

these approaches typically rely on higher-capacity architectures that may be more dif-

ficult to support in real-world environments. Furthermore, our model provides a more

interpretable anomaly signal grounded in motion dynamics.

Overall, these results indicate that our physics-inspired pose-graph formulation is com-

petitive with SOTA and benchmark prediction-based models, while retaining the inter-

pretability advantages of human-centric modelling.

4.6 Conclusion

We have presented a novel skeleton-based video anomaly detection framework that

explicitly models human motion as a physical system. This physics-informed represen-

tation enables the model to capture the governing kinematic and dynamic formulation

of human motion, allowing it to generalise effectively to unseen scenarios. Unlike prior

GNN-based SVAD methods that employ expensive spatio-temporal graph convolutions,

thereby limiting model depth and expressivity, this method enables the model to utilise

a longer window of historical motion information.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we set out to address some of the persistent limitations in VAD, namely

poor reliability in dynamic environments, limited explainability, and a lack of context

awareness.

As discussed in Chapter 2, in recent years many deep learning models have shown

strong performance on standard benchmark datasets under controlled environments.

VAD typically falls under two paradigms: learning to recognise anomalous features, or

learning a representation of normal features and using this information to recognise ab-

normality. Both formulations generally struggle in dynamic environments. In the latter,

the distinction between anomalous and non-anomalous change can become ambiguous

and context-dependent. In the former, a lack of context awareness makes learned rep-

resentations of anomalous or normal features difficult to generalise and correctly apply.

Furthermore, model interpretability and explainability remain open and largely un-

solved problems. While some solutions have been proposed to address these challenges

individually, they are typically variations of, or extensions to, existing architectures;

as such, the underlying limitations largely remain unresolved. These limitations moti-

vated the central argument of this thesis: that VAD models should move beyond static,

monolithic formulations and instead be viewed as a compositional problem.

67
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Accordingly, a key contribution of this thesis is the reframing of anomaly detection

as a compositional reasoning problem rather than a monolithic classification or recon-

struction task. This reframing was motivated by considering how expert individuals

analyse and inspect images or videos for anomalies. When analysing an image or video

sequence, experts do not treat all regions equally. Instead, they first identify objects,

surfaces, or areas of interest that require further analysis, each of which can be consid-

ered a task to be completed. Following this, different inspection and analysis strategies

are applied to complete each task. This process is therefore inherently context-aware

and compositional, and requires explicit reasoning. In response, this thesis introduced

a novel compositional VAD model based on an NMN architecture, designed to emulate

expert inspection behaviour during anomaly analysis.

To this end, Chapter 3 introduced the formulation of VAD as a compositional problem

and proposed an NMN-based architecture for anomaly detection. Instead of relying on

a single monolithic model, the proposed method dynamically assembles a model based

on information captured from the input image. This represents a second key novelty

of the approach. NMNs typically require an external input query to assemble a model;

in contrast, this thesis demonstrated that the image itself can be used as the input

query to guide dynamic model assembly. As such, the proposed model is able to first

identify regions that require further analysis and then dynamically assemble a model to

perform the anomaly detection task. Furthermore, the VAD task can be formulated as

a compositional problem in which a shared set of modules is dynamically assembled into

an image-dependent model. This allows the model to adapt its internal computation to

image content, enabling different regions to be processed using different combinations

of learned components. This was achieved via end-to-end training of a layout generator

model that outputs the mapping of the dynamically assembled model. The proposed

approach was evaluated against previously published results on benchmark datasets

for object detection and segmentation, and was shown to be competitive with existing

methods.

Finally, this compositional approach provides improved interpretability and context-

aware decision-making. The dynamic assembly of models from a set of predefined

expert modules, together with the selection of regions for investigation, introduces
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intermediate decisions that can be inspected and analysed. This provides a form of

explanation that is more closely aligned with expert reasoning. While this does not

fully resolve the challenge of explainability in anomaly detection, it offers a clearer

decomposition of the decision-making process.

In Chapter 3, our modular neural network model was aimed at detecting object-level

anomalies, such as surface defects. However, an important aspect of the anomaly

detection problem is detecting anomalies in dynamic objects that move or change over

time. For this reason, in Chapter 4, we focused on pose estimation anomaly detection,

which can be used as an expert module within the MNM architecture introduced in

Chapter 3. Consistent with the earlier chapters, this approach aimed to address the

same core challenges identified in the preceding discussion.

To this end, we proposed a novel physics-based pose anomaly detection model based

on a graph neural network architecture. Similar to previous work, we use a prediction-

based error to detect anomalies. Our model aims to predict the position of each visible

joint at the next time step by first predicting the acceleration of each joint at the cur-

rent time step and then using kinematic equations to estimate the joint positions at the

next time step. Furthermore, to prevent the need for the use of spatiotemporal, which

can suffer from over-smoothing and limited network depth, we embed each joint’s his-

torical features and image context individually. Finally, by using an attention-weighted

complete graph, we ensure that the model can leverage information from the most in-

formative joints to improve prediction, without being constrained by predefined human

skeletal connections. We demonstrated that our model’s performance is better than or

comparable to many alternative architectural designs, and that it is only outperformed

by significantly more parameter-heavy transformer-based networks.

In summary, in this thesis, we presented several conclusions. First, VAD can bene-

fit from being formulated as a context-dependent and structured reasoning problem

rather than a single global modelling task. Second, compositionality combined with an

NMN architecture provides a practical framework for VAD in dynamic environments.

Furthermore, compositionality naturally allows for less opaque and more interpretable

models, which are essential for many real-world applications. Finally, deep learning
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models with built-in physical priors can provide strong performance, improved gener-

alisation, and allow for better interpretability.

Despite these contributions, several limitations remain. The main two limitations are

related to the training of the layout generator for the NMN architecture and the choice

of modules. The proposed modular framework relies on the correct selection of regions

to investigate, as well as the correct selection and execution order of modules. As

the number of modules increases, the training space becomes exponentially larger,

making end-to-end training of the layout generator and modules difficult to achieve.

Furthermore, the modular framework introduces additional design choices related to the

number, type, and complexity of modules used. Finally, it should be acknowledged that

currently available benchmark datasets, even when combined, cannot fully represent the

diversity observed in real-world applications. Based on these limitations, the following

section outlines directions for future work that could build on this thesis.

5.2 Future Works

In this section, we recommend several directions for future work.

• Dataset limitation: Existing datasets are largely collected under controlled en-

vironments with limited variation, which do not adequately represent the con-

ditions encountered in real dynamic inspection settings. Furthermore, most

datasets contain anomalies from a single object or material type per image or

sequence. For accurate evaluation of VAD models in dynamic environments, new

datasets should capture: 1) real-world variation, 2) context-aware reasoning, and

3) multiple anomaly types from different object classes in the same image.

• Optimisation of NMN layout generators: Layout generators enable com-

positional reasoning in neural modular networks; however, their optimisation re-

mains challenging due to the discrete and often non-differentiable nature of struc-

ture learning. As the number of available modules increases, the layout search

space grows rapidly, making efficient exploration difficult. In addition, propa-

gating training signals from module-level errors to layout-generation decisions is
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non-trivial and can result in unstable learning dynamics. Future work should

examine different deep learning architectures and training paradigms to improve

layout generators’ performance.

• Modules design considerations: The complexity of the tasks that individual

modules can perform, as well as the number of module types used, can signifi-

cantly influence both detection accuracy and interpretability. However, increasing

module diversity also makes layout learning more challenging and reduces com-

putational efficiency, often requiring more training data and parameters. Future

research should explore the trade-offs between model expressiveness and efficiency

when increasing the number and complexity of modules.

• Multimodal fusion and graph interaction for skeletal anomaly detec-

tion: In our proposed method in Chapter 4, the RGB appearance of individuals

was only used to extract individuals’ pose estimations. Future work could explore

combining skeletal graph representations with other modalities, such as the RGB

appearance of different sections of individuals in the image. Furthermore, our

model treats each person’s motion as a stand alone indivudal withouut consid-

ering interaction with other people, objects or the environment. In future work,

these interactions should be investigated.

• More expressive physics-inspired modelling: The current model relies on

relatively simple kinematic equations to anchor predictions in physically plausible

motion. Future work should consider more sophisticated kinematic and dynamic

motion formulation priors, as well as additional physical constraints, such as

improved modelling and formulation of motion, bone length consistency, joint

angle limits, and angular velocities.
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baz Khan, Marius Popescu, and Mubarak Shah. Anomaly detection in video via

self-supervised and multi-task learning. In 2021 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 12737–12747, 2021.

[58] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour,

Svetha Venkatesh, and Anton van den Hengel. Memorizing normality to detect

anomaly: Memory-augmented deep autoencoder for unsupervised anomaly de-

tection. In Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), October 2019.

[59] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial

nets. Advances in neural information processing systems, 27, 2014.

[60] Guan Gui, Bin-Bin Gao, Jun Liu, Chengjie Wang, and Yunsheng Wu. Few-

shot anomaly-driven generation for anomaly classification and segmentation. In

European Conference on Computer Vision, pages 210–226. Springer, 2024.

[61] Jutao Hao, Kai Huang, Chen Chen, and Jian Mao. Dual-student knowledge distil-

lation for visual anomaly detection. Complex & Intelligent Systems, 10(4):4853–

4865, 2024.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[63] Xiangjie He, Zhongqiang Luo, Quanyang Li, Hongbo Chen, and Feng Li. Dg-gan:

A high quality defect image generation method for defect detection. Sensors,

23(13), 2023.

[64] Loucif Hebbache, Dariush Amirkhani, Mohand Säıd Allili, Nadir Hammouche,
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learning. Transactions on Machine Learning Research, 2023. Survey Certification.

[134] Michela Prunella, Roberto Maria Scardigno, Domenico Buongiorno, Antonio

Brunetti, Nicola Longo, Raffaele Carli, Mariagrazia Dotoli, and Vitoantonio

Bevilacqua. Deep learning for automatic vision-based recognition of industrial

surface defects: A survey. IEEE Access, 11:43370–43423, 2023.

[135] Jianing Qiu, Lipeng Chen, Xiao Gu, Frank P.-W. Lo, Ya-Yen Tsai, Jiankai Sun,

Jiaqi Liu, and Benny Lo. Egocentric human trajectory forecasting with a wear-

able camera and multi-modal fusion. IEEE Robotics and Automation Letters,

7(4):8799–8806, 2022.

[136] Jake Quilty-Dunn, Nicolas Porot, and Eric Mandelbaum. The best game in

town: The reemergence of the language-of-thought hypothesis across the cognitive

sciences. Behavioral and Brain Sciences, 46:e261, 2023.

[137] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. IEEE transactions on

pattern analysis and machine intelligence, 39(6):1137–1149, 2016.

[138] Royston Rodrigues, Neha Bhargava, Rajbabu Velmurugan, and Subhasis Chaud-

huri. Multi-timescale trajectory prediction for abnormal human activity detec-

tion. In Proceedings of the IEEE/CVF winter conference on applications of com-

puter vision, pages 2626–2634, 2020.



90 Bibliography

[139] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In International Conference on Medical

image computing and computer-assisted intervention, pages 234–241. Springer,

2015.

[140] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas

Brox, and Peter Gehler. Towards total recall in industrial anomaly detection.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 14318–14328, June 2022.
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