
Rapid Prototyping of Deep Learning Models on
Radiation Hardened CPUs.

P. Blacker
University of Surrey

Guildford, UK
P.Blacker@Surrey.ac.uk

C. P. Bridges
University of Surrey

Guildford, UK
C.P.Bridges@Surrey.ac.uk

S. Hadfield
University of Surrey

Guildford, UK
S.Hadfield@Surrey.ac.uk

Abstract—Interest is increasing in the use of neural networks
and deep-learning for on-board processing tasks in the space
industry [1]. However development has lagged behind terres-
trial applications for several reasons: space qualified computers
have significantly less processing power than their terrestrial
equivalents, reliability requirements are more stringent than the
majority of applications deep-learning is being used for. The long
requirements, design and qualification cycles in much of the space
industry slows adoption of recent developments.

GPUs are the first hardware choice for implementing neu-
ral networks on terrestrial computers, however no radiation
hardened equivalent parts are currently available. Field Pro-
grammable Gate Array devices are capable of efficiently im-
plementing neural networks and radiation hardened parts are
available, however the process to deploy and validate an inference
network is non-trivial and robust tools that automate the process
are not available.

We present an open source tool chain that can automatically
deploy a trained inference network from the TensorFlow frame-
work directly to the LEON 3, and an industrial case study of
the design process used to train and optimise a deep-learning
model for this processor. This does not directly change the
three challenges described above however it greatly accelerates
prototyping and analysis of neural network solutions, allowing
these options to be more easily considered than is currently
possible.

Future improvements to the tools are identified along with a
summary of some of the obstacles to using neural networks and
potential solutions to these in the future.

Index Terms—LEON, TensorFlow, on-board, Planetary rover,
CNN, deep learning, autonomy.

I. INTRODUCTION

Recent advances in the science and application of neural
networks have been largely driven by improvements in tools,
both hardware and software, used to design and deploy these
solutions. Powerful frameworks now exist to design and train
network models as well as automated tools to deploy trained
inference models on a range of hardware targets. However
these tools are aimed at terrestrial hardware; desktop comput-
ers, mobile phones, and embedded computers. These targets
are significantly more powerful than the current generation of
radiation hardened space processors, LEON 3 & RAD 750 [2],
[3], meaning these tools are not able to target these processors.

Especially early in the life-cycle of a space mission when
low TRL (Technology Readiness Level) feasibility studies are
being undertaken, the lack of automated development tools
increases the difficulty of evaluating potential deep-learning

options. Tools to quickly design and train networks do exist,
however analysts also need to determine upper-bounds of the
CPU time and memory resources required by the model. At
a time of growing interest in the use of deep learning on-
board space missions there is a need for tools to make their
analysis and implementation on standard space processors as
straightforward as possible. It is hoped the TFMin library
will enable early analysis of deep-learning solutions during
the requirements stage, encouraging their adoption in final
spacecraft designs.

TFMin has been developed during our own work investi-
gating the use of deep-learning for processing on-board Mars
rovers, and serves to address this gap in the tools which are
available. Network design and training has been conducted
using the TF (TensorFlow) framework on desktop computers
with powerful GPUs, the TFMin library has been used to
extend these tools so we can automatically deploy our trained
inference networks onto the LEON3 platform and analyse their
memory and CPU requirements. This has allowed us to quickly
analyse different network topologies and the effects of changes
to the processor such as instruction and data cache sizes.

Our work focusses on the LEON family of SparcV8 pro-
cessors, however the TFMin tool can be used with a wider
range of targets, it generates C++11 code which is dependant
upon the Eigen linear algebra library [4]. This means it can be
deployed on any target platform that has a C++11 compliant
compiler including BAE’s RAD 750 space processor as well
many smaller processors commonly used on nano and micro
satellites. During testing small TF models have been success-
fully deployed to the Teensy 3.2 development board (ARM
Cortex-M4)[5], from this we conclude it may be possible to
deploy similar models to a wide range of small embedded
computers including the low cost ATMEL PA32 radiation
hardened processor which has flight heritage or the low cost
Vorago rad-hard ARM Cortex-M0 [6]. We intend for TFMin
to be a valuable tool for OBDH developers enabling them
to quickly generate accurate performance metrics for neural
networks on a wide range of processors used in space, as well
as generating prototype C++ code which can be used as a
starting point for the development of actual flight software.

This paper summarises work on the use of neural network
models in space applications and the development of tools to
automatically deploy these networks onto a range of hardware

targets. We then introduce the TFMin library and describe its
architecture and the internal optimisations that it uses. Finally
we describe the terrain evaluation task we have used the library
for, as a design and optimisation case study for deep learning
solutions on the LEON 3 processor.

Deep learning inference networks have become a common
part of terrestrial systems today, large continuously trained
models generally reside inside server clusters. Increasingly
however frozen inference models are being deployed onto
mobile and embedded devices. TF officially supports two
frameworks for the deployment of trained inference models,
TensorFlow-Lite, and the TensorFlow XLA (Accelerated Lin-
ear Algebra) AOT (Ahead of Time) compiler. TensorFlow-Lite
is a cut down version of the full TF library aimed at mobile
phone grade computers, as such it is still too large for many
embedded systems having a library overhead of more than
100MB. This framework has been used by [7] [8] to success-
fully process actual orbital imagery on a representative flight
proven single board computer. It should be noted however that
the more powerful Zynq chip (dual core Arm Cortex-A8) used
to execute the inference was not rad-hard, it was just protected
by the less powerful rad-hard components on the CHREC
Space Processor v1 board, limiting this application to lower
radiation orbits near Earth or short duration missions. The only
rad-hard components with a similar level of computing power
are the latest generation of processors (RAD 5500 [9], LEON
4 [10]) which are currently lacking flight heritage and come at
a high price. As such TensorFlow-Lite deployment is currently
only feasible for LEO missions and High-risk, high-value GEO
and deep space missions.

TensorFlow XLA is an LLVM (Low Level Virtual Machine)
compiler tool which generates machine code directly from a
trained model, the resulting compiled static-libraries can be
linked into larger projects with minimal library over heads.
This makes it ideally suited to deploy NN (Neural Network)
models on radiation hardened processors, due to it’s use of the
versatile LLVM compiler architecture [11] it is able to produce
code for a range of CPU targets. The Sparc V8 architecture
of the LEON family of processors is not officially supported
by XLA and after some initially promising results the authors
failed to successfully integrate it with the Gaisler LLVM com-
piler [12]. Gaisler’s Clang compiler is built on LLVM version
4.0 while the TF XLA compiler generates IR (Intermediate
Representation) using features only present in versions 5.0
and above. By taking the LLVM IR produced by the XLA
compiler then building it using the Gaisler clang compiler
simple fully connected networks were successfully deployed to
the LEON 3. However the authors did not manage to compile
working versions of large or convolutional networks using this
technique. The XLA compiler is considered experimental by
the TensorFlow team and it cannot be simply linked to the
Gaisler tool chain however this may change in the future.
Another drawback of using XLA is the challenge of integration
with aerospace V&V (Verification & Validation) practices,
since it generates machine code directly its output is difficult
to inspect. It also doesn’t produce human editable code which

could be used as a basis for developing formal flight software,
so a different solution is preferable for Aerospace applications.

MatLab’s ML (Machine Learning) toolbox provides two
options for deploying trained inference models onto embed-
ded systems; MatLabs C coder generates equivalent C++
code while MathWorks HDL (Hardware Definition Language)
Coder can deploy models directly to FPGAs (Field Pro-
grammable Gate Arrays). Code automatically generated from
MatLab has significant runtime library dependencies of a
size comparable to TensorFlow-Lite making it appropriate
for the same range of hardware targets. MathWorks HDL
Coder although targeting lower level hardware than CPUs is
an interesting new option for analysing deep-learning models
on space qualified hardware. FPGA implementations of DL
models have the potential to be of significantly higher perfor-
mance than CPU implementations. This approach is still an
active area of research with open questions that need to be
answered.

In addition to these tools there is always the option of
manually implementing a NN model on any platform and
for smaller networks this may be a practical option. The
fully-connected MNIST classification example model [13]
included with TFMin is made of seven operations so could
be easily hand coded, SqueezeNet on the other hand is made
of 93 operations while other deep learning models have many
hundreds. Importantly these deeper models are often the most
efficient way to solve complex problems and given the need
to iterate the design of DL models manual implementation
becomes increasingly impractical.

Fig. 1. Common terrestrial and space processors and the tools able to
automatically deploy neural networks to them.

Figure 1 shows a range of terrestrial and space qualified
CPU processors and which automated NN deployment tools
they are supported by. Unsurprisingly recent mobile phone
grade processors, which includes the next generation of ra-
diation hardened devices, are well supported, being the main
target of these tools. We can see that support for the current
generation of radiation hardened devices is lacking, which is
critical because these processors are and for a few years will
continue to be the most common choice for new space craft.
There is a need for a new tool to fill this gap for two reasons,
TF XLA compiler does not currently support the LEON family
of processors, and even when it does its use does not fit
into current coding standards for flight software. We present
the TFMin which tool addresses both of these limitations by

avoiding the need for XLA and providing validated C++ code
which can then be passed onto a flight software development
team.

II. TFMIN - GENERATING C++ FROM TENSORFLOW
MODELS

The TFMin tool automatically converts trained NN models
developed using TF into verifiable C++ code which can then
be built for any system with a C++11 compliant compiler,
including the LEON family of processors used on many
geostationary and deep space missions. Being able to quickly
deploy and analyse DNNs on computers representative of
flight hardware is a valuable tool allowing developers to
relate high level network changes to low level performance
without the need to manually implement the network model.
This conversion is done verbatim so the C++ version is
mathematically identical to the TF original, any quantisation
and retraining optimisation would need to be done in TF before
the model is converted. Additionally unlike the LLVM inter-
mediate representation generated by the XLA AOT compiler,
TFMin generates human readable C++ code which can be
independently verified and used as a starting point for formal
flight code development.

TF is a functional programming tool hiding within a pro-
cedural python/C++ framework, neural network models are
created as large functions known as flow-graphs. These flow-
graphs are networks of functions which transfer n-dimensional
tensors between each other, hence the name TensorFlow. The
power of TF is its capability to automatically accelerate the
evaluation of these flow-graphs using massively parallel GPUs,
which is essential for training and in many cases inference of
large DNNs (deep neural networks).

Since DNNs are represented as functional flow-graphs they
are mobile data structures as opposed to an algorithm that is
hard-coded into source code. A python program can procedu-
rally generate a flow-graph however they can also save, load,
optimise, and convert them. This capability allows the TFMin
library to extend TF with the capability to convert DNN flow-
graphs into equivalent C++ code.

When TF evaluates flow-graphs the required output ten-
sors are specified, these outputs are then traced backwards
through the network to determine which operations need to
be evaluated to compute the solution. Because of this a single
flow graph can be used for both inference and training, where
evaluating for training accuracy output will execute a batch
training run while evaluating for the estimate output will
execute an inference run.

TFMin uses the same approach, a flow graph and set of
output tensors is provided and the library works out which
operations, weights, and inputs are required, ignoring any
training or introspection operations. Model weights are written
into a C++ header file as array literals, while the required
operations from the flow-graph are built into a C++ object as
shown in Figure 2. As well as a standard inference method
two optional methods can be generated for verification and
timing. Verification methods include input data along with

the expected results of each operation allowing the generated
C++ model to validate itself against the TF original. Timing
methods can be used the same way as the standard inference
method while additionally providing total and operation level
execution times.

Fig. 2. Architecture of the TFMin TensorFlow to C++ code generator.

TF operations are converted into C++ code using a dictio-
nary of op kernels, these are objects which match themselves
to TF operations and generate equivalent code. The list of
these op kernels has been designed to be peripheral to the
core library so it can easily be extended and optimised by
developers to fine tune its code output for their particular
projects.

A. Adding TFMin Exporter to a Project

There are two parts to the TFMin library a Python module
used to analyse flow graphs and convert them to code, and
a C++ header only library containing the virtual base-class
that generated model classes are derived from. Integrating the
library with an existing TF project in python has been made as
simple as possible. Listing 1 shows how an existing TF model
can be exported to C++ using only two lines of python code.

Listing 1. Python example exporting a trained model from TensorFlow
to C++.

import tf_min as tfm

Setup flow-graph and
load or train model weights
...

gen = tfm.Exporter(flow_graph,
[’output0’,
’output1’])

gen.generate("cnn_model",
"cnnModel",
layout=’RowMajor’)

The TF flow graph object and a list of output tensor names
is all that is needed, running the code above will generate
three files: cnn model data.h containing the model weights,
and cnn model.cpp & cnn model.h which define an object
encapsulating the NN model itself.

These three files can then be included in a larger C++
application or library project. The interface has again been
designed to be as simple as possible, data is passed to and from
the model object using raw buffers in the layout specified in the
python code above. Listing 2 shows a minimal integration with
the SqueezeNet example model; First an Eigen device object is
created which defines how the model will be evaluated, in this
case a single thread device will be used, multi-threaded devices
are also supported. Secondly the model is instantiated, causing
required heap memory to be allocated. Thirdly the model is
evaluated using the given device, input and output buffers are
passed as pointers. Finally heap memory is released when the
model instance goes out of scope.

Listing 2. Example C++ project integration with TFMin generated code

#include <iostream>
#include "cnn_model.h"

using namespace std;

int main()
{

float input[154587];
float est_class[1000];

Eigen::DefaultDevice device;
SqueezeNet model;

cout << "Infering with Model.\n";
model.eval(device, input, est_class);
cout << "Inference complete.\n";

return 0;
}

B. Speed Analysis & Optimisation

As well as the standard eval() method shown above two
optional methods can be generated to analyse and verify the
generated code.

The following section describes how to export additional
methods for the generation of per-operation timing information
and measurement of a models memory requirements. Full
tutorials and examples can be found on the git repository wiki
pages [14]. Listing 3 shows how to export these two optional
methods, it should be noted that enabling full validation can
significantly increase the size of the generated binary since the
valid result of every operation needs to be stored.

The timing method performs the same task as eval() while
additionally reporting the time each operation takes to execute.
These results are printed to the terminal and returned in a data
structure for automatic recording. The validation method prints
either a pass or fail for each operation as the model is being

evaluation, terminating in the case of failure. This is especially
useful for developers that are optimising or extending the
operations supported by the library as described in section
II-D

Listing 3. Python example exporting a trained model with timing and
validation methods.

val_input = [...]

gen.generate("cnn_model",
"cnnModel",
validation_inputs =

{input_placeholder:
val_input},

validation_type=’Full’,
timing=True,
layout=’RowMajor’)

Figure 3 shows the timing results of the convolutional
MNIST example network on a 50 MHz LEON 3 [13], this tool
can be used to identify which parts of a network topology have
the greatest scope for being accelerated. In this simple CNN
model the costliest operations are the two convolution filters
and the largest fully connected layer as would be expected.
These operations predominantly use multiply and accumulate
instructions, accessing regions of memory larger than the
cache size of the processor. Using the TSim simulator it was
found that the cache hit rates were 70% and 82% for the
convolution and matrix multiplication operations respectively.
These are very poor hit rates and indicate that the speed of
execution is being limited by the time taken to access data
in RAM. The 4KB data cache size of the simulated LEON
processor used is a significant factor in the time taken to
calculate these layers. The pattern of memory use also has
a large effect on cache hit-rates and therefore performance,
using a row-major layout results in this classifier executing in
68% of the time it took to execute the same model using a
column-major layout.

Fig. 3. CPU time per operation of a convolutional MNIST classification
model executed on a 50 MHz LEON 3.

Optimisation of Neural network training and inference on
different types of hardware is an ongoing research topic,
this includes the single or multi core CPU architectures of
the LEON family. This work is not trying to push these
boundaries, but it is important that the algorithms used were

representative of current CPU implementations so that our per-
formance results are realistic. This was achieved by basing our
code on TensorFlow’s own open source C++ implementation
which use the Eigen linear Algebra library [4]. TFMin could
be extended by the development of layer implementations that
are optimised for specific hardware, such at the work of Lai
et. al.[15] who created a library of optimised ARM Cortex-
M NN layer implementations (CMSIS-NN). Combining the
automatic code generation framework provided by TFMin
with a set of hardware specific layer implementations would
combine the fast work-flow of TFMin with state of the art
layer implementations.

Using Eigen to perform the fundamental tensor operations
allows the library to take advantage of verified and optimised
algorithms. The most CPU intensive operation in most DNNs
is convolution, TFMin implements this by reshaping the input
and filter tensors so that the convolution can be calculated
using tensor contraction. The particular contraction used is
a matrix multiplication allowing Eigen’s optimised GEMM
algorithms to be used.

C. Memory Analysis & Optimisation

Measuring memory use on LEON 3 computers is more
challenging than on fully featured desktop-systems, however
requirements on both types of computer would be expected
to be close to each other. For this reason, we recommend
using the valgrind tool massif to measure the memory use of a
DNN model by compiling it for a desktop target and running
it natively, it is important to note that both heap and stack
memory need to recorded to get an accurate measurement.
Taking SqueezeNet v1.1 [16] as an example we can see in
Figure 4 that the model requires an approximately constant
amount of memory to run with a peak of 7.7 MB.

Fig. 4. Combined heap & stack memory use of the TFMin implementation
of SqueezeNet v1.1, during an inference operation.

The result shown in Figure 4 includes the memory op-
timisation step performed by the TFMin library. Memory
requirements of most NN models are fixed which means it
is possible to pre-calculate an optimal memory use pattern
removing the need for dynamic memory management during
its evaluation. This optimisation is performed by finding
the first assignment and final use of each tensor and the
amount of memory needed to store it. Each of these blocks
defines a block of memory covering a specific duration in the

calculation, a packing algorithm is used to fit them into the
smallest fixed sized block of memory, Figure 6. Comparing
SqueezeNets optimised pattern against the original pattern, the
peak memory requirement has reduced to 20% of the original,
Figure 5.

Fig. 5. Combined heap & stack memory use of SqueezeNet v1.1 before and
after optimisation.

Fig. 6. Tensor memory use patterns before (A) and after optimisation (B).

D. Supported Operations

TFMin uses a set of op kernel objects which match them-
selves to TF operations and generate equivalent C++ code,
the library currently has 19 op kernels supporting the most
common operations. This is a fraction of the approximately
800 operations available in the full TF framework, but is
sufficient to implement all the networks described in this work.
It is inevitable that developers will need to extended this set of
operations to work with a wider range of network models. An
extensible architecture has been used allowing new op kernels
support by adding separate python files to the op kernels
folder.

An example and walk through of this process is included
in the adding an operation tutorial on the git repository wiki
[14].

E. Benchmarking CNNs on the LEON 3

Using the analysis techniques described above several well
known tasks and network models have been built for the
LEON 3, these results provide a valuable guide to what is
possible on this generation of radiation hardened processors.
Several larger networks were investigated, AlexNet [17] and

TABLE I
EXECUTION SPEED AND MEMORY REQUIREMENTS OF NOTABLE DNN

MODELS ON A LEON 3 PROCESSOR.

Model Peak RAM (KB) Time (s)
MNIST Dense (float 32) 82.7 0.100
MNIST CNN (float 32) 200 0.121
SqueezeNet v1.1 [16] 7884 41.0

ResNet-50 [18] but were found to be too large to implement
on the current LEON 3 development boards available to us.

C++ code generated by TFMin was succesfully built using
both the gcc & llvm based compilers provided by Gaisler
Aeroflex [12] no significant difference in execution speed
was found between the two compilers. All evaluation binaries
have been built with maximum optimisation for speed and
no debugging symbols. Compiler optimisation is especially
important for the Eigen library which has been designed to
be built this way, a 20x speed increase was observed between
maximum (-O3) and no optimisation.

• All LEON times were generated using a 50 MHz pro-
cessor with hardware floating point unit and 16 KB data
and instruction cache sizes.

• MNIST classifier results can be generated using the free
evaluation version of TSIM (LEON simulator) available
from Gaisler Aeroflex.

• SqueezeNet result was generating using a Pender GR-
XC3S-1500 development board with a Xilinx Spartan
FPGA and 64 MB of SDRAM [19].

III. PLANETARY TERRAIN ASSESMENT, USE CASE

A. The Estimation Task

Determining which areas of terrain are safe and unsafe to
drive over is an essential function of planetary rovers and
terrestrial autonomous ground vehicles [20]. This experiment
investigates the use of a deep learning model for this task
and compares its accuracy and performance to an existing
baseline algorithm. A cost mapping algorithm based upon
the GESTALT navigation system used on the MER (Mars
Exploration Rovers) [21] is used as this baseline, its input
is a set of elevation values from within a rover footprint and
it produces a scalar navigation cost metric. These cost values
lie between zero and one, where zero is impassible and one is
the easiest possible terrain. This algorithm is repeated across
the DEM (digital elevation map) to generate a navigation cost
map, Figure 7, which is subsequently used by a path planning
algorithm to find a safe and efficient route to the chosen
destination [20].

A deep learning regression model fits the inputs and outputs
of the baseline algorithm, taking a fixed size input matrix
and estimating a single scalar. The existing baseline algorithm
allows us to automatically generate large sets of training data
from any existing DEM, this experiment used a 600 x 600
metre map generated from drone data with an 8cm cell size,
taken from the ERGO [22] [23] Morocco field trial. A set
of 36 million training cost values were generated from this

Fig. 7. (left) Digital elevation map taken from the ERGO Morocco dataset,
(right) cost map of navigability values.

map which was then augmented using rotations and reflections
increasing it eight times to 288 million. A Huber loss [24]
function was used with the ADAM optimiser [25] and a
variable learning rate to refine the weights of the model during
training.

During initial testing a problem was found with this training
data, the distribution of navigation costs was not uniform
with a bias towards easy terrain. The makes sense when
considering that the majority of the map is fairly flat, however
this training data bias prevented the model from fitting in areas
containing difficult terrain. Splitting the training data into ten
sets with evenly distributed navigation costs then selecting
samples equally from each of these sets removed this bias,
so that during training a uniform distribution of cost values
is used. This training methodology, cost function and training
data was then used to evaluate a range of CNN topologies.

B. Analysis of DNN Models

We present five different DNN models which were trained
as described in Section III-A and compare their performance to
a LEON 3 implementation of the baseline terrain assessment
algorithm. LEON 3 performance metrics were generated using
a 50 MHz processor with hardware floating point unit and 16
kB instruction and data caches. All models were trained on
the dataset for 200k steps with a batch size of 100, taking
approximately two hours per model using an NVIDIA GTX
1070 GPU.

After considering many different CNN topologies, five
models are presented with a range of layer counts and filter
sizes. Model A was first to successfully fit to the training data
Figure 9, with 5 convolution layers and three fully connected
layers, Figure 8 shows the cost map generated using this model
and the error between its estimates and the original training
data. This network topology was then gradually reduced in
size, decreasing the number of layers and reducing the size of
the convolutional filters until it was no longer capable of fitting
to the training data. Models B to E represent the range of the
network topologies that were able to fit to the training data,

Fig. 8. (left) DNN generated cost map from ERGO DEM data, (right) residual
error between DNN model and training data.

TABLE II
TERRAIN ASSESSMENT MODEL, ACCURACY AND PERFORMANCE RESULTS

ON A LEON 3.

A B C D E
Weights (kB) 1130 1094 300 154 110
Mean Error .0194 .0186 0.0198 .0206 .0199
Runtime (s) 8.34 2.03 1.09 0.39 0.18

Baseline ratio 87.6 21.4 11.5 4.1 1.9
Binary (kB) 11371 9807 9496 8868 8815

Memory (kB) 884 595.5 360 286.4 252.3

although there is a slight trend of increasing residual errors as
the networks become smaller.

Fig. 9. Terrain traversability estimation models A - E.

The baseline terrain assessment algorithm used calculates
three geometric properties which are then combined into the
final navigation cost; the slope of the best fit plane, the largest
distance between this plane and any point on the terrain, and
the greatest height difference between any adjacent DEM cells.
The most computationally intensive task is the calculation of
the best fit plane, a singular value decomposition (SVD) is
performed using the bidiagonal divide-and-conquer algorithm

TABLE III
TERRAIN ASSESSMENT MODEL PERFORMANCE RESULTS ON AN INTEL I7.

A B C D E
Time (s) .0404 .0060 .0040 .0015 .0009

Baseline ratio 336.8 49.9 33.4 12.8 7.3

[26], this produces the principal axes of a best fit ellipsoid,
the smallest eigen value will correspond to the axis matching
the planes normal. This algorithm takes 95 milliseconds to
execute on the LEON 3 CPU described in table II.

C. Use Case Findings

As can be seen in Table II the baseline algorithm is still
outperforming the DNN model by a factor of two even in
the best cases. This result suggests that deep learning is not
capable of estimating navigation cost maps more efficiently
than the existing baseline algorithm. Future work will develop
this approach using fully convolutional networks which esti-
mate multiple cost map elements at the same time, potentially
producing several square metre map in a single pass. Using
this technique, it is possible to surpass the performance of the
baseline algorithm when larger areas of cost map need to be
generated at once.

The value of TFMin to generate accurate LEON 3 timing
results for these models is highlighted, when the same compar-
ison between algorithms is made on an Intel i7 CPU, shown
in Table III. The relative speeds of the two algorithms on the
i7 are significantly different than on the LEON 3, caused by
the nature of each algorithm interacting differently with the
underlying CPU architecture and resources of each system.

There are many potential reasons for the observed difference
in relative performance between the two systems. The i7 level
two cache is larger than the entire DNN model, while the
LEON 3 has no level two cache and its level one cache cannot
store even a single layer of weights. The i7 also supports
vectorised FMA (Fused Multiply-Add) operations allowing
it to execute significantly more floating point operations per
clock cycle than the simpler FPU of the LEON 3. This is why
it is important to analyse the performance of an algorithm on
the same CPU architecture that it will run on in production,
and why TFMin can be a valuable tool for reviewing DNN
model performances early in the development cycle.

IV. CONCLUSIONS AND DISCUSSIONS

A new tool has been demonstrated enabling developers
to quickly deploy and evaluate TensorFlow models on small
resource constrained processors such as the LEON 3. LEON
3 benchmarks for several well known deep learning models
[Table I] have been produced using this tool. The workflow
and integration of this tool into an existing TensorFlow project
has been described, and the methods to extract meaningful
analyses from the deployed networks. Finally a simple use-
case has been shown which used the TFMin tool to quickly
analyse a range of different network models, highlighting why
it is important to compare algorithms on target hardware as
opposed to the more easily available desktop systems.

Our terrain assessment use case has shown that a conven-
tional regression CNN can accurately reproduce the output
of a traditional algorithm, although taking 1.9 times longer to
execute. Since only a small improvement in the performance of
the CNN model would make it surpass the baseline algorithm,
our future work will focus on this area. However if a more
efficient deep neural network is found there are still signif-
icant challenges to their adoption on-board planetary rovers.
Aerospace verification and validation practices do not cover
the use of deep neural networks, so we will investigate the
use of a novel oversight system to address this gap.

Eight significant deep learning models have been built and
analysed on the LEON 3 platform using TFMin, however there
are still many improvements that could be made to this tool.
Model optimisation and quantisation in TF is available as
part of the TFlite module, with many of the standard layer
operations only supporting floating point data. During this
work experimental micro controller support was added to the
TF lite framework, the authors are currently adding LEON
support to this tool and will investigate the performance of
these implementations as compared to those from TFMin.
Although the Eigen tensor operations used are generically
optimised, they are not optimised for the LEON3. Producing
a set of op kernels which generate LEON 3 optimised code
would be necessary to to achieve the best performance possible
on this target. Finally support still needs to be added for
additional TensorFlow operations, it is hoped that the open-
source community will be able to help with this task.

Airbus deep-learning group is currently investigating the
use of this tool, it is hoped that its open-source licence will
encourage its use more widely in the space industry.

ACKNOWLEDGMENT

The author would like to thank Matthias Winter for origi-
nally suggesting the CNN approach to navigability assessment
during his time working on the Exomars rover. We would
also like to thank the Airbus Defence and Space AOCS/GNC
department at Stevenage for their assistance during this work
and the ERGO project and PERASPERA cluster for providing
access to the Morocco dataset.

This work has been sponsored by Airbus.

REFERENCES

[1] T. Campbell, “A deep learning approach to autonomous relative terrain
navigation,” 2017.

[2] G. Aeroflex, “Dual-core leon3-ft sparc v8 processor,”
http://www.gaisler.com/doc/gr712rc-datasheet.pdf.

[3] R. W. Berger, D. Bayles, R. Brown, S. Doyle, A. Kazemzadeh,
K. Knowles, D. Moser, J. Rodgers, B. Saari, D. Stanley et al., “The
rad750/sup tm/-a radiation hardened powerpc/sup tm/processor for high
performance spaceborne applications,” in 2001 IEEE Aerospace Con-
ference Proceedings (Cat. No. 01TH8542), vol. 5. IEEE, 2001, pp.
2263–2272.

[4] G. Guennebaud, B. Jacob et al., “Eigen,” URl: http://eigen. tuxfamily.
org, 2010.

[5] PJRC, “Teensy 3.2 & 3.1 - new features,”
https://www.pjrc.com/teensy/teensy31.html.

[6] V. Technologies, “Vorago producs,”
https://www.voragotech.com/vorago-products.

[7] J. Manning, D. Langerman, B. Ramesh, E. Gretok, C. Wilson,
A. George, J. MacKinnon, and G. Crum, “Machine-learning space
applications on smallsat platforms with tensorflow,” in Proceedings of
the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT,
USA, 2018, pp. 4–9.

[8] A. D. George and C. M. Wilson, “Onboard processing with hybrid and
reconfigurable computing on small satellites,” Proceedings of the IEEE,
vol. 106, no. 3, pp. 458–470, 2018.

[9] B. Systems, “Bae systems current processors and single board
computers,” https://www.baesystems.com/en-us/download-en-
us/20190124214317/1434554723043.pdf.

[10] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello, and
F. J. Cazorla, “Assessing the suitability of the ngmp multi-core processor
in the space domain,” in Proceedings of the tenth ACM international
conference on Embedded software. ACM, 2012, pp. 175–184.

[11] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization. IEEE Computer Society, 2004, p. 75.

[12] J. Gaisler and K. Eisele, “Bcc-bare-c cross-compiler users manual,”
Aeroflex Gaisler AB, 2012.

[13] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[14] P. Blacker, “Github repository of the tfmin code generation tool,”
https://github.com/PeteBlackerThe3rd/TFMin.

[15] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] Pender, “Pender grxc3s,” http://www.pender.ch/products xc3s.shtml.
[20] M. Winter, C. Barcaly, V. Pereira, R. Lancaster, M. Caceres, N. Mc-

Manamon, N. Silva, D. Lachat, and M. Campana, “Exomars rover
vehicle: detailed description of the gnc system,” ASTRA, 2015.

[21] M. Maimone, A. Johnson, Y. Cheng, R. Willson, and L. Matthies,
“Autonomous navigation results from the mars exploration rover (mer)
mission,” in Experimental robotics IX. Springer, 2006, pp. 3–13.

[22] E. Consortium, “European robotic goal-oientated autonomous controller
(ergo),” https://www.h2020-ergo.eu/.

[23] R. Marc, P. Wclewski, and D. Lachat, “Autonomous multi-mode rover
navigation for long-range planetary exploration using orbital and locally
perceived data,” 10 2018.

[24] S. Klanke and H. Ritter, “Variants of unsupervised kernel regression:
General cost functions,” Neurocomputing, vol. 70, no. 7-9, pp. 1289–
1303, 2007.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] M. Gu and S. C. Eisenstat, “A divide-and-conquer algorithm for the
bidiagonal svd,” SIAM Journal on Matrix Analysis and Applications,
vol. 16, no. 1, pp. 79–92, 1995.

