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Abstract— Generalizing to new tasks with little supervision is
a challenge in machine learning and a requirement for future
“General AI” agents. Reinforcement and imitation learning is
used to adapt to new tasks, but this is difficult for complex
tasks that require long-term planning. However, this can be
challenging for complex tasks often requiring many timesteps
or large numbers of subtasks. This leads to long episodes with
long-horizon tasks which are difficult to learn.

In this work, we attempt to address these issues by training
an Imitation Learning agent using in-episode “near future”
subgoals. These subgoals are re-calculated at each step using
compositional arithmetic in a learned latent representation
space. In addition to improving learning efficiency for stan-
dard long-term tasks, this approach also makes it possible to
perform one-shot generalization to previously unseen tasks,
given only a single reference trajectory for the task in a
different environment. Our experiments show that the proposed
approach consistently outperforms the previous state-of-the-
art compositional Imitation Learning approach by 30%. While
capable of learning from long episodes where the SOTA fails.

I. INTRODUCTION

As robotics becomes increasingly integrated into society,
robots must be capable of performing complex tasks with
greater automation and adaptability. These tasks often in-
volve multiple implicit subgoals that vary depending on the
environment. As such, it is common for only the target end
goal to be specified explicitly. For example, if we ask the
robot to bring us a cup of coffee, the robot will need to
know where we are, as well as where the kitchen is, the
tools, and the procedure for making coffee. The complex
composite tasks are often long and difficult to learn, the effort
of learning such tasks are enormous. More problematic is the
fact that even if we provide explicit subgoal guidance: i.e.
where our kitchen is, where the coffee machine is and how
to use our coffee machine, this knowledge won’t transfer
to robots in other houses. Even for the individual robot the
solution may be brittle, as simply moving the location of the
coffee cups may cause the task to fail.

The biggest learning challenge for complex tasks is the
complexity itself. Any complex task would almost always
require a large number of steps to complete an episode.
This is especially true for those with terminal-only sparse
rewards, which result in a large state space and low sample
efficiency. This is particularly true for tasks with terminal-
only sparse rewards. The longer the average trajectory is, the
broader we can expect an unbounded state-space to become,
and the lower our sample efficiency will be. In an Imitation
Learning setting, the use of expert trajectories helps alleviate
the “vanishing reward” problem by providing feedback at
each step of the trajectory. However, the exploration and data
efficiency problems remain. The second challenge we seek

Fig. 1. In the “make coffee and bring it back” task, the traditional subgoal
approach segments the complex task into smaller, manageable subtasks with
clear endpoints and boundaries. In contrast, the proposed CASE approach
generates novel compositional subgoals such as move forward and turn,
which are generated at every step.

to address is generalization. In an Imitation Learning setting,
the data efficiency challenge mentioned above will often
manifest as a relatively restricted set of expert trajectories.
As such learning to perform a complex task often involves
repetitively training on a small set of sample tasks. This
can easily lead to over-fitting on the training task set or the
specific training examples of the tasks. A common approach
to mitigate this, is to design the model hierarchically as
shown in figure 1. In this case each stage of the model is
intended to specialize in solving a certain class of problems.
This can simplify generalization within a subtask, but also
exacerbates problems with data sparsity, as each submodel
will only be exposed to a small portion of the training data.

Our approach, Compositional Adaptive Subgoal Estima-
tion (CASE), fully exploits the dataset to build a composi-
tional task representation space and generate novel subgoals
dynamically. We treat a single complex task episode as a
sequence of smaller implicit tasks or subtasks with each still
requiring multiple steps to complete. However, the need for
long-term planning (and the brittleness of divergences) is al-
leviated. Importantly, unlike previous approaches, we do not
explicitly define a finite set of subtasks with hard boundaries
(i.e. “navigate to kitchen”, “make coffee” etc.). Instead, the
subtasks can be any small sub-trajectory towards the overall
goal (e.g. “Move 3 meters forward”, “turn 90 degree left”
etc.) at a lower instruction level and are generated on-the-fly
through compositionality rather than predefined by human
intervention. These sub-goals do not need to correspond
to any pre-defined task, nor do they need to have been
previously observed during training.

Finally, an Imitation Learning policy is trained, using the
learned compositional representation as it’s state space, and
with targets set via the adaptive subgoal estimation. This



approach enables an Imitation Learning policy to be trained
using a learned compositional representation as its state
space. Adaptive subgoals are generated on-the-fly via compo-
sitionality, providing additional flexibility, and allowing the
agent to adapt to errors and avoid deadlock in unachievable
subtasks. In addition, the learning task is simplified as long-
term planning happens via the compositional space and the
agent can focus on short-term execution which allows better
performance in one-shot generalization over unseen tasks.
With this approach, we are able to outperform imitation
learning policies using the same compositional state space
without the adaptive subgoal by over 30% in unseen task
generalization.

In summary, the contributions of this paper are:
1) A novel approach estimate subgoal waypoints via a

compositional task embedding space referred to as
CASE

2) An Imitation Learning approach for complex com-
pound tasks, based on online-subgoal estimation

3) An evaluation of one-shot task generalization for the
policy, based on subgoal generalization

II. LITERATURE REVIEW

A. Imitation Learning

Imitation Learning (IL) approaches [8], [17], [21] utilizes
a dataset of expert demonstrations to guide the learning
process. Naturally, imitation learning relied heavily on the
quality of expert demonstration. However, these approaches
perform poorly with increasing episode length and have
issues with transferring and generalization. [10], [23]

Gupta et al. [7] built upon HIRO [15] by generating sub-
goals with unstructured demonstrations to learn semantically
meaningful behaviours. Similarly, IRIS [12] reproduce short
demonstration sequences and generate sub-goals with a se-
lection mechanism for low-level imitation. TACO [18] rely
on task sketches and aligns the sub-task demonstrations into
sequences to generalize to longer tasks.

Our approach ensures that all sub-goals are "in the right
direction", which improves the model’s ability to generalize
to previously unseen tasks.

B. Compositional Model & Latent Plan Space

A compositional model is a model that encodes struc-
tural relationships. [2], [14] The work of CPV [6], creates
compositional models that contains task plans and can be
arithmetically operated upon. The work of Corey et al.
[11], includes a repertoire of reusable behaviours learned
and organized in an embedding space. Our work further
enhanced the organizational capability and flexibility of the
compositional model in the learned latent plan space.

III. METHODOLOGY

We will first clarify some terminology: A task is defined
as a singular goal the agent must complete through a series
of interactions with the environment. A task sequence is a
collection of multiple tasks with no set order and may or may
not depend on each other. Regardless of task dependencies,

we allow the individual tasks within a sequence to be
completed in any order. We further specify a complex task
as a specified goal that involves the completion of a sequence
of sub-tasks. In our framework, the subgoal waypoint is a
state in the expert reference trajectory located in the “near
future” of the current agent’s state. Note that the current
trajectory and reference trajectory are both solving the same
task sequence, but are operating in different environments.
Thus the subgoal waypoint cannot be used directly to guide
the agent’s trajectory.

We create a compositional latent space to represent both
individual tasks and task sequences, where each unique task
corresponds to a distinct point in the latent space. A task
sequence also corresponds to a unique point in the latent
space, which is the summation of the embeddings for each
subtask within the sequence. This helps to draw a connection
between “complex tasks” and “task sequences” as defined
above. Both the singular complex task, and any (achievable)
sequences of all its dependent subtasks, should map to the
same point within the latent space. This compositional ap-
proach makes manifest the lack of ordering specified above.
The summation of subtask embeddings is an commutative
operation, therefore changing the order of the summation
does not change the final embedding. In order to learn this
compositional task embedding, constraints are codified as a
number of regularization losses in addition to the concatena-
tion of learned latent. We then train agents to use the learned
task embedding as their state representation when selecting
actions. This provides a compositional definition of both the
current environment and the tasks to be completed. In an
imitation learning framework, for each training trajectory
s0...sN , an expert reference trajectory which completes the
same task sequence in a different environment is provided.

A. Compositional representation

A compositional representation is an embedding which
encodes structural relationships between the items in the
space [14]. This compositional representation allows the
agent to operate on an embedding of the tasks remaining
to be done, without ever explicitly defining the target end-
state. As such, the entire task embedding is a summation
of subtask embeddings between various time steps. Further
more, any task embedding between two states (a, b, c...) is
the summation of embeddings for all combinations of time
steps in between. This leads us to define the constraint,

v⃗a:b = v⃗a:c + v⃗c:b ∀c where a < c < b (1)

To prevent accidentally enforcing a specific ordering during
the completion of these subtasks, the representation is built
with commutativity, i.e. v⃗a,b + v⃗c,d = v⃗c,d + v⃗a,b This is
a very powerful representation for computing encodings of
implicit groups of subtasks. However, in a complex task
sequence, the v⃗ often embeds a long trajectory which consist
of many tasks. This makes the learning process difficult,
as information about far future tasks is a distraction from
completing the current task.



B. Plan Arithmetic and Subgoal Waypoints

In one-shot imitation learning, the agent must perform a
task (or sequence of tasks) conditioned on one reference
example of the same task. In our work we further generalize
this by allowing the current and reference task to be per-
formed under different environments. The agent is trained
with many sequences of other tasks in other environments
and then provided with an expert trajectory as the reference
to guide the new task, with no additional learning. Humans
are adept at this: generalizing previous experiences to newly
defined problems. However, for machine learning this is
extremely challenging, and represents an important stepping
stone towards general AI.

During training, the agent is given two trajectories, the
training trajectory O and expert trajectory Oref with match-
ing task lists. It then learns a policy to perform online
prediction of the actions in one trajectory, conditioned on
the other trajectory as the reference. In the running example
‘getting coffee’, the agent will be provided with trajectories
of retrieving coffee from a different office with a different
floor layout. Learning how to make coffee without relying
on specific meta-knowledge about a particular environment is
vital for improving generalization. In imitation learning, the
agent is provided with an expert trajectory, which performs
the same sequence of tasks at an optimal level.

To be more specific, a visual approach to task specification
is taken. During both training and testing, the agent is
given an image of the desired goal state of the current
episode (OT ), as well as the goal state of the reference
episode (Oref

0:T ). It is also given an image of the current
state (Ot), and an image of a future subgoal state from the
reference trajectory (Oref

I ). It is important to emphasise that
the agent is not provided with any future knowledge about
the current trajectory, beyond the target goal state which is
used to specify the task to be completed. Subgoals are drawn
from the future of the reference trajectory, not the current
trajectory (Oref

I ∈ Oref
0:T ).

The model will first encode both the compositional rep-
resentation of the current state to the goal state (Ot:T ), and
the compositional representation of the reference sub-goal to
the goal state of the reference episode(Oref

I:T ). It will then use
the difference between the two (Oref

I:T - Ot:T ) to predict the
next action. Let u⃗0,T = gϕ(Oa:b) embed the observation pair
at state a and b into the compositional representation with
encoder g and parameters ϕ. We can estimate a subgoal state
Oref

I within the reference trajectory {Oref
0 , Oref

T }, and cre-
ate a compositional representation from this waypoint state to
the goal state of the expert trajectory v⃗ = gϕ({Oref

I , Oref
T }).

Let u⃗ = gϕ({Ot, OT }) be the representation from the current
state to the goal state, then we can calculate a waypoint
representation W⃗ with the following subtraction in the latent
domain:

W⃗ = u⃗− v⃗ = gϕ({Ot, OT })− gϕ({Oref
I , Oref

T }) (2)

At timestep t, equation 2 estimates an approximation W⃗ =
gϕ({Ot, O

ref
I }) of the trajectory from the current state

of the agent to the subgoal waypoint without having to
explicitly know the waypoint along the current trajectory.
This representation is then used as input for policy network
π
(
at|Ot, W⃗

)
to determine the actions of the agent.

To choose the subgoal waypoint, we assume the agent is
always on the optimal path, therefore it’s progress in the
task is proportional to that the expert trajectory. As such
when we choose the waypoint, we take the state pref in
the reference trajectory, which has the same percentage of
completion as in the training episode with episode length
T : pref

T ref = t
T , then add a fixed number k steps to ensure

the waypoint is in the “near future" (I = pref + k). One
potential issue with this approach is that the length of each
subtask is unknown. If the current subtask in training episode
is significantly longer or shorter than the expert trajectory,
then the waypoint may fall into a different subtask. This will
result in a misleading demonstration and potentially confuse
the agent in the current task. However, this issue can be
avoided with the length k of the subtask. As k increases
in an episode, the chance of the subgoal state RI landing
in a different task in the reference sequence increases. The
new task in the reference sequence is likely not an ideal
demonstration for the current task in the training sequence.
The optimal value of k varies depending on the tasks and the
working environment as well as the subgoal system applied
for learning. However, we expect the agent to be able to adapt
to this situation, as any state from the following subtask will
already reflect the completion of the current subtask.

Based on our new definition of the subgoal policy, the
action loss becomes:

La(Ot, O
ref
I ) =

−log
(
π
(̂
at|Ot, gϕ({Ot, OT })−gϕ({Oref

I , Oref
T }

)) (3)

C. Policy and encoder learning

Additionally, there are two regularization losses using the
triplet margin loss. The LH enforces the compositionality of
the latent space by ensuring that the sum of the embeddings
for partial completion (u0:t) and the embedded to-do vector
(ut:T ) are equal to the embedding for the entire task (u0:T ).

LH(O0, Ot, OT ) = lm(gϕ(O0:t) + gϕ(O
ref
t:T )− gϕ(O

ref
0:T ))

(4)
where lm is a truncated L1 loss with a margin equal to 1. The
second regularization loss LP tries to ensure that similarity
in the latent space corresponds to semantically similar tasks.
To this end, we ensure that the embedding of our agent’s
trajectory is similar to that of the embedding of the expert’s
reference trajectory

LP (O0, Ot, OT ) = lm(gϕ(O0:T )− gϕ(O
ref
0:T )) (5)

Thus the loss function for the framework is expressed as the
weighted sum of the three losses: L = La+λHLH+λPLP .



IV. EXPERIMENTS
We evaluate performance on previously unseen combina-

tions of tasks and randomly generated environments, espe-
cially on long sequences of tasks. A shared 4-layer CNN
state encoder gϕ encodes the current state to goal state sub-
trajectory and sub-goal state to reference goal state sub-
trajectory. The resulting latent will be processed according
to Eq.1, and fed into the policy network to estimate the
action. In each experiment we contrast several variants of
our own approach, including the effect of the current image
branch and the additional compositionality losses. We also
compare against the current state-of-the-art in compositional
IL [6]. Additionally, we include an ablation study on the
“near future” subgoal lookahead parameter k. In all other
experiments we set k = 4. We also set the loss weightings
λH = λP = 1.
A. Environment

We trained our agent on the Craft World environment [5],
a 2D world with a top-down grid view and discrete actions.
The agent can move in one of 4 directions at each step.
The environment contains objects such as trees, rocks, axes,
wheat, and bread, and the agent can interact with them via
pick up and drop off actions. The object moves with the agent
when it has been picked up, and can cause transformations
to other objects in the environment. For example, if the agent
carries an axe to a tree, the tree will be transformed into a log,
which then can be transformed into a house once the agent
picks up a hammer and brings it to the log. It is apparent
that this environment, makes it possible to define complex
long-horizon tasks such as “make bread” or “build house”
which include many implicit subgoals. Furthermore, these
tasks can be combined into sequences such as [“make bread”,
“eat bread”, “build house”]. This eliminates the need for skill
list labels [16] or language based skill description [19] which
limits the generalisation to unseen tasks and sequences.

For training and testing, a random map is used to generate
a number of tasks in sequence with no specific order, and
an expert trajectory is generated through greedy search to
ensure optimal solutions. To test one-shot generalization, the
set of training tasks is different from the set of testing tasks,
requiring generalization from the reference trajectory.

We also used this environment to emulate real world
navigation problem, and demonstrate our agent on a live
turtlebot3 [1] for indoor navigation. We use turtlebot to
collect a small set of real world map, then process these maps
into a format recognizable by the agent. Both the start point
and goal are randomly generated on the map, the dataset size
is 5000 episodes which is much smaller than the multi-task
training dataset.

B. One-shot task generalization and ablation study

During the generalization test, we train the agent for 6000
epochs, and test the agent’s ability to perform in a completely
unseen environment with unseen tasks. We use the work
of CPV [6] as our benchmark since it is the backbone
framework used in our experiments. Table I shows the results
of the generalization test. The CASE agent outperforms the

original SOTA [6] benchmark by about 30% in unseen task
success rate. In the target navigation tasks, shown in table II,
the CASE agent still out-performs the enhanced CPV, as well
as the SOTA [22], which uses a similar network backbone
and is more capable in combinational generalization. The
CASE approach is still able to outperform the modified
SOTA consistently on these navigation tasks. In the live
demo, the agent is given the robot’s current location along
with the target location marked on a pre-processed map. The
agent will control the robot to navigate towards the target.

We also demonstrate the increased data efficiency and
learning capability by evaluating the performance disparity
between our model and backbone SOTA under varying
size of both training and testing data, as well as episode
lengths.(Episode length is measured by varies number of
tasks per sequence contained in the episode.) As shown in
Figure 2(right), When given less training data, a reduction
in dataset size accentuates the performance divergence in
unseen task testing scenarios. The SOTA model manifests
an ascending learning curve during training, yet exhibits an
erratic saturation at an early stage during testing. Conversely,
the CASE model exhibits a consistent performance improve-
ment in both training and testing throughout the experimental
trials.

Figure 2(left) illustrates the performance variation with
differing episode lengths during training. The inherent limi-
tations of the backbone network prevent it from assimilating
the given dataset adequately, whereas the CASE model
effectively learns extended chains of task sequences. This
pronounced distinction arises from CASE’s adeptness in han-
dling protracted episode learning. Subsequent experiments
corroborate that, under the conditions of abbreviated episodes
(2-4 task sequences per episode, considerably shorter than
those employed in testing CASE), the backbone network
necessitates a dataset size that is 3-5 times larger to approach
CASE’s performance.

Model Best
Performance

Average
Performance

Standard
Deviation

CPV-FULL [6] 0.432 0.392 0.0166
CASE 0.689 0.641 0.0133
CASE+CI 0.701 0.676 0.0139
CASE+CI+L 0.712 0.687 0.0167

TABLE I
An ablation study on the different components of the network: Current

state image (CI) and assistive losses (L).

Finally, we tested several settings for the “near future”
lookahead parameter k. When k = 4 the agent’s performance
is maximized, but the graph also indicates some sensitivity
to the parameter k, with unstable performance at lower
values. This may be due to the inconsistency in the length of
the randomized subtasks between the training episodes and
expert trajectories. This mismatch in step distance between
the current state and subgoals may cause the generated
subgoal to point towards steps before the completion of the
current subtask in the expert trajectory for small k values



Model Best
Performance

Average
Performance

Standard
Deviation

CPV-FULL [6] 0.770 0.695 0.052
SKILL-IL [22] 0.790 0.714 0.045
CASE 0.810 0.715 0.048

TABLE II
Performance of target navigation tasks in seen environment but random

starting and target point.

Fig. 2. The performance gap resulted under different length of
episodes(left) and dataset size(right). The CASE technique enabled learning
capability in small dataset and long episode where the backbone model
would fail.

and the reverse for larger k values. In most cases the agent
is able to deal with this: a subgoal for the following task is
still easier to learn from than the entire remaining trajectory.
Nevertheless, it may be interesting for future work to explore
the automatic computation of the optimal k parameter during
compositional subgoal estimation.

V. CONCLUSIONS
In this work, we proposed CASE, an approach to learn

a compositional task representation which enabled novel
subgoal estimation from reference trajectories in IL. This
makes it significantly easier to learn long and complex
sequences of tasks, including those with implicit or poorly
defined subtasks. With this technique, we developed an IL
agent which can generalize to previously unseen tasks with a
success rate of around 70%. This represents an improvement
of around 30% over the previous SOTA.

However, this approach can be developed further in future
work. As discussed in section IV-B, using a fixed value
for the k-step lookahead parameter may be suboptimal.
Experiments indicate that performance and stability may
be improved by developing an adaptive lookahead window,
based on recent developments in the broader field of subgoal
search. [4]
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