
Robot in a China Shop: Using Reinforcement Learning for
Location-Specific Navigation Behaviour

Bian Xihan and Oscar Mendez and Simon Hadfield

Abstract— Robots need to be able to work in multiple
different environments. Even when performing similar tasks,
different behaviour should be deployed to best fit the current
environment. In this paper, We propose a new approach
to navigation, where it is treated as a multi-task learning
problem. This enables the robot to learn to behave differently
in visual navigation tasks for different environments while also
learning shared expertise across environments. We evaluated
our approach in both simulated environments as well as real-
world data. Our method allows our system to converge with a
26% reduction in training time, while also increasing accuracy.

I. INTRODUCTION

Potential applications of modern robotics are becoming
wider as the technology evolves. We are giving robots more
tasks in more locations and allowing them to face more diffi-
cult challenges. Robotics has moved from vacuuming a room
to delivering take-out food, from working the assembly line
to managing an entire factory. As their functionality grows,
so does the variety of their potential work environments.
Currently, robots are designed to operate in a single class of
work environment. It is feasible to treat a house as a single
environment(although this is a simplification). However, it is
no longer possible when the environment expands to an entire
city. This limitation of the environment should be addressed
promptly.

To relieve robots from the limitation of a singular envi-
ronment, it is only natural to look at human behaviour for
guidance. When entering a different environment, we often
behave differently, and this behaviour change is not caused
by the task at hand, but rather by the environment itself.
When we walk into a china shop, we are slow and careful to
avoid collisions as opposed to walking down an empty hall-
way which emphasises speed rather than precision. Robots
need this ability to understand the environment they are in
and change their behaviour accordingly. Additionally, we, as
humans, compartmentalize our knowledge and memory so
we can effectively work with only a small portion of them
rather than everything all at once. We use this idea as further
motivation for our multi-task learning approach.

In this paper, we define the combination of these abil-
ities to be the problem of multi-environment navigation:
A robot, operated by a single artificial intelligence model,
should have the ability to recognize and navigate through
multiple different types of environment. To approach this
problem, we use visual navigation, as visual information
(compared to other sensory inputs) will be most effective
in learning the difference between different environments.
In this paper, we focus on navigation from visual sensors,

Fig. 1: The target position view and current position view
are given to the agent, the environment classifier encourages
the network to distinguish between environments in earlier
layers, while multiple expert networks’ outputs are blended
to produce the final policy

and propose a new network architecture: Multi-environment
Reinforcement-Learning in Navigation (MERLIN).

Visual navigation is a very active field of research, but
most previous work focusses on improving navigation accu-
racy in a singular environment. In this work, we provide a
new architecture where visual navigation in multiple environ-
ments can be achieved. We utilize a Siamese network feature
extractor and multiple expert networks with attentive gating,
combined with a special classification branch to encourage
the network in recognizing the difference between environ-
ments. We find our model outperforms the state-of-the-art
visual navigation models. Additionally, by encouraging the
classification of environments, we are also able to achieve
better results in learning performance, accelerating learning
in multi-environment navigation.

In summary, we define a new problem of multi-
environment navigation and propose a new model for ap-
proaching this problem. The main contributions of the paper
are as follows:

1) Define the problem of multi-environment navigation.
2) Propose a new multi-task learning approach to visual

navigation.
3) Propose the inclusion of an intermediate environment

classification loss to accelerate learning.

II. RELATED WORK

A. Visual Navigation

Visual Navigation relies on vision as the primary source
of information for navigation, compared to other navigation

methods which rely on distance sensors. In map-based ap-
proaches for visual navigation, visual input is used mainly
for landmark tracking. The algorithms detect landmarks on
the camera input and track them in the following frames to
determine the position of the robot [5,7]. Another approach
is to let the robot explore the environment and instead of a
map, the robot builds a feature representation model of the
environment [16].

In more recent studies, mapless and Artificial Intelligence
(AI)-based navigation is becoming more popular. Mapless
approaches (also known as visual odometry) [17], include
two main solutions: Optical-flow and Appearance-based
matching. Optical-flow-based solutions estimate the motion
of objects by tracking the motion of features throughout a
sequence of visual input [6,13]. Appearance-based matching
solutions rely on prior knowledge of stored images of the
environment [9]. The robot will try to match the current view
with the stored images to locate and navigate [3, 22]. This
idea of feature tracking to localization and navigation has
been fundamental for AI-based localization and navigation.
Notably, the work of Kendall in PoseNet [8], which uses
a convolutional network for real-time camera relocalization
where the model is trained on labelled images of the envi-
ronments.

We approached the problem of multi-environment navi-
gation through target-driven navigation, which is a branch
of appearance-based matching solutions. This approach em-
ploys the use of deep Reinforcement Learning (RL) which
does not require supervised training for landmarks or fea-
tures. The work of Zhu et al. [22] presents a state-of-the-art
(SOTA) target-driven visual navigation solution. The model
they proposed is an actor-critic model which has a policy
function of both the goal and the current state as input.

B. Reinforcement Learning

Schulman’s 2015 work in Trust Region Policy Optimiza-
tion (TRPO) is a classic RL algorithm that utilizes a different
approach [19]. Trust region methods use a model function
to estimate the objective function, and by optimizing the
model function, perform better actions. The size of the
policy update is constrained to monotonically decrease to
ensure convergence. Schulman’s later work in the Proximal
Policy Optimization Algorithms (Policy Optimization Algo-
rithm (PPO) and PPO2) improved upon TRPO [20]. These
algorithms use a “surrogate” objective function to determine
the next action while interacting with the environment. It
assumes that with similar state input, the agent should take
similar action, which lowers the rate and necessity of re-
sampling. Instead of constricting the model functions, PPO
applies a penalty to policies that differ from the objective
function.

Another RL algorithm with a combined approach is the
work of Mnih et al. in the Actor-Critic (AC) series of
techniques [14]. These algorithms combine the Q-learning
and policy gradient by creating a policy-based actor that
chooses actions and a value-based critic which scores the
actions. This allows the handling of both discrete and con-

tinuous problems, as well as updating more regularly for
better learning efficiency. In the more advanced version:
Asynchronous Advantage Actor-Critic (A3C), the algorithm
allows asynchronously update to and get updated by the
main policy by multiple agents, this advancement greatly
increased computation and sampling efficiency, allows for
faster training given the growing computing power. The
multi-agent support also enabled RL in multi-task learning,
allowing one agent to learn multiple tasks simultaneously.
Due to its asynchronous nature, it is an ideal fit for multi-
task learning by allowing agents to learn multiple tasks
simultaneously, and update to a single main policy.

C. Multi-Task Learning

In multi-task reinforcement learning, numerous works
have shown the capability of a single agent to perform
at an expert level in multiple Atari games using deep Q-
learning [2, 15]. In the RL environment, the model makes
no assumption of the relatedness of tasks, which enabled
many different approaches such as policy representation for
each task and regionalized policy clustering, [11] which
employs a hierarchical Bayesian approach to model the
distribution over Gaussian process temporal-difference value
functions for each task, and A3C-based deep reinforcement
learning approach. The challenges these approaches all face
are negative learning and scalability. Negative learning refers
to when agents ‘forget’ previously learned knowledge while
learning a new task. The most popular solution to negative
learning is through the use of a gating mechanism, where the
network is only allowed to update part of itself during the
training for each task. This idea is first proposed by Rusu
et al. in the work of Progressive Neural Network (PNN)
[18], where the network freezes itself and add new resources
for the new task. In the training process of the new task,
the network stops the updating of its current weights, then
widens all the nodes to provide new resources for learning
the new knowledge. This approach does provide a good
solution to the problem of negative learning. However, it
fails in scalability, due to increasing learnable parameters
and poor sampling efficiency with respect to the increasing
complexity of tasks. To improve sampling efficiency, the
work of Andrychowicz et al. [1] and Landolfi et al. [12]
propose the use of a memory bank or model based approach
during sampling. For parameter size, a common solution
to this is using model compression techniques for data
efficiency, such as the work of Teh et al. in Distral [21],
where the network shares a distilled policy that captures the
common behaviours across all tasks and allows workers to
solve their own task while staying close to the main policy.

In this study, we develop a multi-branch gated network
somewhat similar to PNN [18] but with soft blending and
lifelong training of all branches training simultaneously on
all tasks, instead of sequential training and freezing weights.
This framework makes no assumption on the relatedness of
tasks and mitigated negative learning effect through attention
based soft gating.

III. METHODOLOGY

The objective of the agent is to be able to navigate in
multiple types of environments. The agent can navigate the
environment through actions: step forward, step backward,
turn right and turn left (90 degrees). Given a target, the
agent will only be given its current observation IO and a
view of the target It . A single agent should be capable of
solving a set of similar navigation tasks placed in different
environments by training a policy π(at|st, τ) and value
function V (st, τ) for each task, while maximizing the reward
for each task.

To tackle the specific problem of multi environment/task
visual navigation, we propose a new architecture: MERLIN.
Our architecture can be largely divided into 4 major com-
ponents as shown in figure 2: A Siamese feature extractor,
n sub-networks, an attention network and an environment
classifier network. In the following section, each of these
components will be described in turn.

A. Siamese Feature Extractor and Joint State Embedding

The network has 2 branches joined near the input to
form a Siamese network. The expected functionality of the
Siamese feature extractor is to capture the input state through
feature extractors as well as to identify commonly useful
information for all tasks and the feature characteristics to
identify different tasks.

The Siamese feature extractor takes input in the form of
a vector of the 2 images: the current agent observation IC
and the current target IT . Each image will be fed into a
different branch of the Siamese feature extractor network.
Both the target state input and the current state input are first
put through convolutional feature extractors Ef . The feature
extractors share the same weights WS between branches,
and the output of each branch will then go through a
normalization function N before concatenating into a state
embedding. For the current state observation OC = (IT , IC)
that contains the feature information from both input images,
the features F (s) is provided through the following equation:

F (s) = {N(Ef (IT |WS)), N(Ef (IC |WS))} (1)

The Siamese feature extractors are updated by losses
flowing through both the RC network branch and the sub-
network/attentive network branch. This means the features
are required to simultaneously be effective at solving the
RL navigation task, and capable of distinguishing different
categories of the environment.

B. Task-Specific Expert Policy Sub-Networks

The n sub-networks serve as the expert networks that learn
the knowledge and skill to solve a specific task. The number
n is determined by a range of factors including the number
of tasks, the similarity between each task, the similarity
between each environment, etc. In this work, the number n
equals the number of environments. This can be considered
as an optimization between requirements and availability
of resources for the agent. The optimizer will learn to

ignore excess sub-networks when given more resources than
required as shown in the work of Bram [4].

The specific architecture of the sub-networks can be
altered to fit the scenario. It is possible to have a variety of
different expert networks that would work better for different
tasks or task settings combined within the same agent. As
we are working on the subject of visual navigation, the sub-
network architecture in this study is designed for visual
information processing and navigation tasks: A softmax
layer maps the last hidden layer of each network to an A
dimensional vector to produce action probabilities Ai and
a linear layer outputs the value function Vi for each expert
network i with a specific policy πi:

Ai = softmax(πi(Ei(F (s)|Wi)|WA) (2)

Vi = Ei(F (s)|Wi) ·Wv (3)

Where Ei represents the RL network used for the actor-critic
branch. If the action space is different between tasks, the size
of A should be the largest action space size of all tasks.

C. Attentive Task Allocation and Soft Blending Network

The attentive task allocation network first takes the out-
put and recognizes the corresponding expertise required by
different tasks. While each expert sub-network produces a
policy function, the attentive network assigns a distribution
weight Wτ to these policy functions according to the esti-
mated relevance of expertise.

Wτ = softmax ({Att(F (s)|WAtti)|i ∈ {0..n}}) (4)

The softmax normalizes the weights WAtti to sum to 1. The
final policy is then based on the dot product of the attention
weights against the experts’ action distributions:

π(α|s) =

n∑
i=0

Wτi ·Ai (5)

where Wτi is the Wτ for the ith expert network. This policy
will determine the action taken by the agent during each
timestep. The attention weight Wτ is also used to compute
a value function for reinforcement learning branches of
the network. For the expert values Vτ = V0, V1...Vn, the
combined value function is:

Vrl(s) =

n∑
i=0

Wτi · Vi(s) (6)

This value loss is used to update the expert networks, the
attentive task allocation network, and the Siamese feature
extractor, but not the RC networks.

D. Environment Classifier

Finally we propose an additional environment classifier,
or Room Classifier (RC), network branch. This serves as a
regularization that encourages the feature extractor layers to
preserve the information that helps identify the tasks. The RC
network updates only itself and the feature extractor layers
with a loss function depending only on the current state:

Lrc(s) = 1−RC(F (s)|Wrc) · Mτ (7)

Fig. 2: Our architecture can be divided into 4 major components: A Siamese feature extractor (green), n sub-expert-networks
(blue), attention network (yellow), and a environment classifier network (orange).

with Mτ being a one-hot vector containing zeros ev-
erywhere, except the entry corresponding to the ground-
truth task label which is 1. The RC loss function will be
independent of the RL loss function, updating only the RC
network and the Siamese feature extractor.

In this work, the RC network is trained through supervised
classification methods, it may be possible in the future to
extend the capability of the RC network to recognize a
new task that the agents have never seen using unsupervised
techniques.

IV. EXPERIMENTS AND RESULTS

To evaluate our approach, we experimented with our
agent’s ability to perform visual navigation tasks in both
simulated and real environments. The agent will be trained in
multiple different themed environments simultaneously. The
RL algorithm used in the experiments is a multi-thread A3C.
The network backbone for the sub-networks are the same
as the SOTA model [22]. The reward is inversely related
to the length of the path taken by the agent to reach the
target position: Negative reward accumulates with the path
length l at a rate of pstp per step. The agent also takes
an additional penalty pcr for the number ncr when agent
hitting obstacles. Each episode is limited to tlm timesteps
to deter reward hacking and avoid the agent getting stuck.
Reaching the target position before this limit will result in
a small positive reward rter. Exceeding this limit will result
in ending the episode and a large negative reward pter. The
final reward R is given by:

R = −pstp∗l−pcr∗ncr+(rter|l ≤ tlm)−(pter|l > tlm) (8)
The agent will receive an image of the target position IT

and the current position’s view IC . In simulation a small
amount of random noise is added to the current position
before sampling IC to ensure generalization.

Our agent is implemented with Pytorch and trained on
Nvidia Geforce GPU servers. The evaluation is done in

several experiments both in simulation and the real-world.

A. Experiments

We prepared both simulated and real-world environments
for the experiments. To create the simulated environments,
we used the 3D simulation environment AI2-THOR [10].
AI2-THOR is a 3D simulation program used for machine
learning. The simulated environment consist of themed
rooms such as living room, bathroom, kitchen, etc. We
created the regularly sampled environments by allowing the
agent to move forward and backwards as well as turning
90 degrees on a square grid. The agent will be dropped
randomly into the environment and given a random target
which is reachable from the starting position. The square
grid gi ∈ G has a grid size of α with gi being a sample
from SO(2) (i.e. comprising of x, y, θ) The target is described
through the view of the agent IT at the target position gT =
G(xT , yT , θT). The current position gC = G(xC , yC , θC) of
the agent is given through a view of the agent at its current
position IC . To ensure the generalization capability of the
agent and simulate the navigation error of an actual robot, the
current view is sampled randomly near each grid point. The
random sample position is selected by adding Gaussian noise
proportional to the grid size ∆g ∼ N (0, (α ∗ ρ)2) to the x
and y coordinate of the original state position. Resulting in
the view at gsample = G(x + ∆x, y + ∆y, θ) as the actual
input to the agent.

The agent will then try to find the shortest path to reach
the target position. In our experiments, 4 environments are
trained simultaneously, each using the same amount of com-
puting resources, the average episode length and percentage
of successful runs across all 4 environments are used to
evaluate their performance.

To train the agent in the real-world environments, we
collected real-world data using a Turtlebot from various
locations with different themes such as a hallway, living
room, common room, etc. As the robot already has drifting

Sim Dataset Env1 Env2 Env3 Env4 Ep. Length Avg. reach goal RC Accuracy Converge Step
MERLIN 15.83 17.32 8.74 7.71 12.38 99.50 99.61 23K
Expert1 13.14 200.00 199.22 197.64 152.31 25.40 0.00 6K
Expert2 196.85 24.48 197.62 194.54 153.20 26.00 0.00 10K
Expert3 200.00 199.21 20.25 195.38 153.53 24.60 0.00 5K
Expert4 198.44 199.20 197.68 8.73 150.82 25.70 0.00 7K
Joint Expert 15.53 21.32 11.49 8.96 14.30 99.30 0.00 31K

TABLE I: Navigation task step count and success percentage in the simulated dataset
Real Dataset Env5 Env6 Env7 Ep. Length Avg. reach goal RC Accuracy Converge Step
MERLIN 10.82 40.27 25.04 25.35 94.60 98.93 19K
Expert1 13.80 194.72 198.80 135.65 33.50 0.00 4K
Expert2 199.40 32.31 198.81 143.39 30.50 0.00 20K
Expert3 198.80 198.82 31.31 142.87 31.00 0.00 6K
Joint Expert 18.05 21.94 38.86 26.28 94.10 0.00 25K

TABLE II: Navigation task step count and success percentage in the real-world dataset

errors, there’s no random sampling used in the real-world
datasets. Using these images, we produced gridded real-
world environments similar to the simulated environments
which can be trained off-line. A total of 3 different real-world
environments were used for training: A residential living
room, a university common room, and an office corridor.
They represent 3 types of spaces: a small enclosed space
with few obstacles, a large open space with many obstacles,
and a narrow enclosed space without obstacles. The agent
is expected to behave differently in each of these types of
space.

In the last section of the experiments, we improve on
this and demonstrate our model directly on a live robot. To
achieve this, a Turtlebot is used to navigate in the previously
trained environments. A video showing this experiment can
be found at this link.

B. Baseline comparison

We first compare our agent with the SOTA target-driven
navigation model [22] and perform an ablation study of our
technique. The SOTA model is trained in different environ-
ments both separately (referred to as Expert1 to Expert4)
and concurrently (referred to as “Joint Expert”). All models
are trained until they converge to over 99% success rate, the
average episode length and the number of time steps taken
to converge are recorded.

As shown in both Table I and II, the separately trained
SOTA models show an inability to perform navigation task in
any environment other than the one it was last trained on. The
jointly trained baseline can complete the tasks in all different
environments, but it requires a 30% longer training time
and has a lower performance than our proposed technique.
Additionally, our agent is able to out-perform the specialist
experts in most of their corresponding environments. This
suggests that there is a sharing of expertise between environ-
ments, which can take advantage of our expertise-blending
approach. In the simulated kitchen, as shown in Figure 3b
and Table I, it is a larger environment with more grid points
compared to other environments. The joint expert performs
more poorly in this environment compared to its performance
in the rest of the environments. A similar pattern can be
observed in the real-world results as shown in Table II, the
joint expert has a particularly low performance in the largest
environment Env7. It appears that the improvements offered

by the proposed approach scales with the number and the
size of the environments. The MERLIN model also has a
24%-26% faster converge speed. This indicates that when
the number of learnable parameters increases, it is possible
that our approach will still be able to converge on more
difficult tasks when the joint expert cannot.

C. Qualitative Multi-environment behaviours

In Figure 3, we provide examples of the behaviours of
the agent in different environments. The agent has different
behaviour when dropped to a random position in each
environment. The vector fields are formed by examining
the trajectories from all possible starting positions to the
target, and the green trajectory shows one complete example
trajectory. In open spaces such as the simulated living room
3b and the simulated kitchen 3a, the agent tends to make
strides and turns for localization. In narrow spaces such as
the simulated bathroom 3c the agent would prioritize moving
away from walls. In the real corridor 3f the agent would
have much less turning actions during the narrow hallway
but shows turning behaviours in the middle section where
the space is relatively open.

D. Generalization and Noise Resilience

In the third experiment, the time limit is tightened for
completing the episode, and the noise ratio for current view
sampling is increased. The sampling method is also changed
from Gaussian noise to a uniform noise scaling with the grid
size to increase difficulty. A simple size of 50 is used for
each noise level, and the agent will perform 1000 episodes
across the 4 simulated environments. As shown in Figure
4, MERLIN outperforms the joint expert consistently and
maintains more than 80% success rate until the noise level
reaches 100% of the grid size. A drop in performance occurs
around 50% noise level. This is due to the possible sampling
positions of each grid starting to overlap with each other. At
100% noise level, the sampling position can drift to another
state’s position. These results indicate the MERLIN agent
has a good generalization ability within each environment
and is not over-fitting to the training environment. This also
indicates that an agent trained off-line in a gridded version
of a real-world dataset could potentially be transferred to
operate in the real world.

(a) Env1: simulated kitchen (b) Env2: simulated living room (c) Env3: simulated bathroom

(d) Env4: simulated tiny bathroom (e) Env6: real common room (f) Env7: real corridor

Fig. 3: Agent makes large strides before turning in open spaces, and avoiding walls when in narrow spaces

Fig. 4: Success Rate drops with increasing noise ratio in
current view sampling. The blue line indicates MERLIN’s
performance, the orange line indicates the joint expert.
E. Live Demonstration

In the last experiment, the live demo shows the Turtlebot
performs a target-driven navigation task in the real-world
location of Env7 (real corridor) using the MERLIN model
(Link to video). The robot successfully completed the task
with only a few missteps outside the optimal path, likely
caused by lagging and drifting errors. We can also observe
the robot making a straight line in the hallway, but turning
and making strides in the relatively open area in the middle.
Compared to the gridded simulated environments, the robot
spends more time turning for localization and attempted
correction to drifting errors. As the model is trained in
discrete environments, it has a natural deficiency in handling
inaccurate turning angles, this could potentially be improved
by generalizing over rotation during training. The model’s
solution to this is to keep turning until it finds a recogniz-
able direction. However, this strategy has difficulties under
excessive lagging and drifting error.

V. CONCLUSIONS
We have introduced the multi-environment navigation

problem in the field of robotic navigation and proposed a

multi-task deep reinforcement learning framework to ap-
proach this problem through visual navigation. Overall, the
MERLIN model outperforms the SOTA model in the multi-
environment target-driven navigation tasks in both perfor-
mance and training speed. Interestingly, MERLIN also out-
performs specialist single-environment expert networks even
on their own training environment. We observed different
behaviours depending on the surroundings in both the sim-
ulated environments and real-world environments. We also
demonstrated the model’s ability in operating in the real
world even when trained off-line in discrete environments.

It is foreseeable that upcoming robots will require more
multi-tasking capability than navigation in multiple different
environments. They may also need adaptive skills for under-
taking various non-navigation tasks in a variety of locations.
Mimicking humans ability to adapt to environments is going
to be vital for robots and provides a great challenge for
the field of robotics and artificial intelligence. As for future
work, it may prove useful to focus on the robot’s capability
to transition smoothly between expert networks over time.
Another important topic is allowing the robot to adjust its
behaviour to adapt to different network resource allocation,
in relevance to lifelong learning. As well as the robot’s
ability of understanding a complex task and break them down
to multiple simpler, more manageable tasks each with an
independent expert network.

ACKNOWLEDGMENT

This work was partially supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) grant
agreement EP/S035761/1 and Innovate UK Autonomous
Valet Parking Project (Grant No 104273).

REFERENCES

[1] Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel,
and Wojciech Zaremba. Hindsight experience replay. In Neural
Information Processing Systems(NIPS), 2017.

[2] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo
Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, and Charles
Blundell. Agent57: Outperforming the atari human benchmark.
In International Conference on Machine Learning, pages 507–517.
PMLR, 2020.

[3] Shi Bai, Fanfei Chen, and Brendan Englot. Toward autonomous
mapping and exploration for mobile robots through deep supervised
learning. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2379–2384. IEEE, 2017.

[4] Timo Bräm, Gino Brunner, Oliver Richter, and Roger Wattenhofer.
Attentive multi-task deep reinforcement learning. In Joint European
Conference on Machine Learning and Knowledge Discovery in
Databases, pages 134–149. Springer, 2019.

[5] Masayoshi Hashima, Fumi Hasegawa, Shinji Kanda, Tsugito
Maruyama, and Takashi Uchiyama. Localization and obstacle detec-
tion for robots for carrying food trays. In 1997 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), volume 1,
pages 345–351. IEEE, 1997.

[6] Berthold KP Horn and Brian G Schunck. Determining optical flow.
Artificial intelligence, 17(1-3):185–203, 1981.

[7] Mansur Kabuka and A Arenas. Position verification of a mobile robot
using standard pattern. IEEE Journal on Robotics and Automation,
3(6):505–516, 1987.

[8] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A
convolutional network for real-time 6-dof camera relocalization. In
2015 Proceedings of the IEEE international conference on computer
vision (ICCV), pages 2938–2946, 2015.

[9] Ye-Hoon Kim, Jun-Ik Jang, and Sojung Yun. End-to-end deep
learning for autonomous navigation of mobile robot. In 2018 IEEE
International Conference on Consumer Electronics (ICCE), pages 1–6.
IEEE, 2018.

[10] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca
Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta,
and Ali Farhadi. Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474, 2017.

[11] Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and
Joshua B Tenenbaum. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In Neural
Information Processing Systems(NIPS), 2016.

[12] Nicholas C Landolfi, Garrett Thomas, and Tengyu Ma. A model-based
approach for sample-efficient multi-task reinforcement learning. arXiv
preprint arXiv:1907.04964, 2019.

[13] Bruce D Lucas, Takeo Kanade, et al. An iterative image reg-
istration technique with an application to stereo vision. In
Imaging Understanding Workshop, pages 121–130. Vancouver, British
Columbia, 1981.

[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937.
PMLR, 2016.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[16] Hans P Moravec. The stanford cart and the cmu rover. Proceedings
of the IEEE, 71(7):872–884, 1983.

[17] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry.
In 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages I–I. Ieee, 2004.

[18] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert
Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu,
and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

[19] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
conference on machine learning, pages 1889–1897. PMLR, 2015.

[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[21] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John
Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan
Pascanu. Distral: Robust multitask reinforcement learning. In Neural
Information Processing Systems(NIPS), 2017.

[22] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav
Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven visual navigation
in indoor scenes using deep reinforcement learning. In 2017 IEEE
international conference on robotics and automation (ICRA), pages
3357–3364. IEEE, 2017.

