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Abstract. Grasping is one of the oldest problems in robotics and is still considered
challenging, especially when grasping unknown objects with unknown 3D shape.
We focus on exploiting recent advances in computer vision recognition systems.
Object classification problems tend to have much larger datasets to train from and
have far fewer practical constraints around the size of the model and speed to train.
In this paper we will investigate how to adapt Convolutional Neural Networks
(CNNs), traditionally used for image classification, for planar robotic grasping.
We consider the differences in the problems and how a network can be adjusted
to account for this. Positional information is far more important to robotics than
generic image classification tasks, where max pooling layers are used to improve
translation invariance. By using a more appropriate network structure we are
able to obtain improved accuracy while simultaneously improving run times and
reducing memory consumption by reducing model size by up to 69%.
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1 Introduction
In the field of robotics, grasping is a fundamental yet challenging problem. It is consid-
ered even more challenging when attempting to generalise grasps to previously unseen
objects using just sensor data rather than heuristics or 3D models. Robotic grasping
requires solving several problems in the different stages of grasping. Initially, these
could include object segmentation and object recognition, in order to find an object
in a possibly cluttered environment and determine what the object is. Then we need a
method for grasping the given object. In the simplest case, these grasps may be estimated
from a 3D model, which itself is a challenging task. However, depending on the sensor
modalities, the challenges are further exacerbated by the need to simultaneously reason
about the object’s shape and optimal grasping points. Finally there is the problem of
motion planning and robust execution of the proposed grasp. In this paper we will be
looking at a key aspect of this pipeline, specifically finding a planar grasp configuration
in the challenging case where we do not know the shape of the object.

In recent years deep learning with CNNs has emerged within computer vision and
related fields as the dominant approach to simultaneously learn feature representations
and classifiers. This means that instead of engineering an explicit 3D representation
for objects, we can learn an alternative intermediate representation. Networks such as
AlexNet [7], GoogLeNet [14] and SqueezeNet [5] have shown how deep learning can be
used to deliver excellent results for image classification on large object datasets such
as ImageNet. However, whilst deep networks perform extremely well for tasks such as
image classification, and have been successfully applied to robotics applications, we
should consider the difference in application when designing and training them.
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In order for robotic grasping to be useful we need to be able to make decisions about
how to grasp objects quickly, so large deep neural networks which take a long time
to process data are not practical. Furthermore, online learning where the robot iterates
through stages of exploration and learning phases by definition require the learning phase
to be fast. Unlike image classification we cannot farm data from the internet, grasping
databases take a long time to collect because example grasps must be individually
executed and recorded, whether that be via a simulator or a real robot. Avoiding large
data collection phases would also be an advantage in robotics especially since data may
need to be collected every time new hardware such as grippers are used. In addition to
this, many robotics systems may have space constraints when it comes to storing models,
sometimes requiring them to be on an embedded system, so smaller models would be
required. The controllers for these systems may also not have the power that a desktop
computer would. All of these problems mean we need to adapt CNNs used for general
vision tasks to robotics.

In this paper we will look at how to adapt networks designed for visual recognition to
the task of robotic grasping. In Section 2 we review the related work. Then in Section 3
we describe in more detail the problem of robotic grasping we address and how we intend
to adapt our visual networks. Section 4 evaluates the proposed changes to the network
architecture. Finally, we conclude in Section 5 and discuss the possibilities of future work.

2 Related Work
There are many different approaches to tackle robotic grasping, the survey by Bohg et al.
[1] splits them into analytic and data-driven methods. Analytic methods tend to use geo-
metric and dynamic criteria to form grasp maps to find force closure grasps. Alternatively
data-driven methods rank sampled grasps from the grasp space based on some specified
metrics. This is the area we will be focusing on, it can be divided into 3 subsections:

– Known objects: Requires use of object recognition and pose estimation to retrieve
a suitable grasp from an experience database. Often these methods have access to
geometric models of the objects.

– Familiar objects: Assumes any object encountered is similar to another object and
uses a measure of similarity (shape, colour, texture) to find a possible grasp.

– Unknown objects: Does not assume any access to models or grasp experience.
Translates features of an object directly to ranking grasp candidates.

Data-driven methods often use existing knowledge of grasps. This can be as a direct way
of mapping grasps onto a known or familiar object. Alternatively existing knowledge
can be used as training data for a machine learning method to learn general rules for
mapping features of objects to grasps. We will be focusing on methods using machine
learning in this paper.

Learning for grasping has been attempted with many different types of data including
2D images [13], 3D data [4,2] and multi-modal data combining both of these [8,12].
Both El-Khoury and Sahbani [2] and Pelossof [10] use superquadratics to approximate
an object and then train an artificial neural network network (ANN) and Support Vector
Machine (SVM) respectively. The drawback for both of these approaches is that they
require access to accurate 3D models of the objects. More work has been done recently
on learning grasp configurations from RGB images directly. Levine et al. [9] train CNNs
to learn a mapping straight from raw images to torques at the robot’s motors, however
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they only use a few hundred examples to train a deep network. Pinto et al. [11] focus on
this problem collecting around 40,000 random trial and error grasp attempts to adapt
a CNN based on AlexNet. Given an image patch, the output of their CNN predicts the
likelihood of a successful planar grasp at the center of the patch in 18 discreet angles
(0◦, 10◦, ... 170◦), making it 18-way binary classification problem. Whilst the amount of
data they have collected is an improvement on many previous grasping datasets, it is not
a significant amount when compared to the number of parameters in the network which
is pre-trained on over 1 million images.

Within the context of deep learning for computer vision, Inandola et al. [5] created
SqueezeNet which is designed to have far fewer parameters in comparision to AlexNet
whilst maintaining accuracy. Their motivation for this was to increase efficiency in
training and decrease the size of deployed models. They achieved this by the use of Fire
modules which are comprised of a squeeze convolution layer which feed into an expand
convolution layer. Fire modules only have 1x1 and 3x3 filters in their convolution layers
keeping the number of parameters to a minimum. This makes it a suitable architecture
for embedded systems and problems where there is a reduced volume of training data,
however it has as of yet not been applied to the problem of robotic grasping.
3 Approach
We define the problem as predicting a successful planar grasp configuration (x, y, θ),
where (x, y) is the center point of the grasp and θ is the angle of the gripper, from
an image of an object centred at (x, y). We use CNNs to predict whether a grasp
configuration results in a successful grasp for a given image. The input into our CNN
will be an image patch centred on the center point of the grasp. Whilst learning for
grasping is often treated as a continuous problem, aiming to find the optimal (x, y, θ),
this is difficult because there are many possible successful grasp options for each object
and CNNs tend to perform better at classification problems. Therefore similarly to Pinto
et al. [11] we make our problem discrete by setting the output of our network to be N
likelihoods. Each of which predicts if the object in the center of the patch is graspable
at θn = (n−1)π

N radians, where n ∈ {1, ..., N}. Thus we can think of this as an N-way
binary classification problem. A smaller N decreases the number of parameters in the
network but leaves us with a much coarser angle selection which could impact the
accuracy of the grasp.

We have N outputs to our CNN but for each image patch input, a robotics system
can only trial one of the angles corresponding to a single output. This means our input
image patch only has a single label, ln ∈ {0, 1}, corresponding to attempted angle θn,
whereas the network has N binary output layers. In order to integrate training with robot
control our loss layers must be able to block different back propagation paths depending
on the decision as to which angle the robot has tried. This is done using a softmax layer
followed by an adapted multinomial logistic loss layer on each of the N outputs. Each
adapted multinomial logistic loss layer only calculates a loss if the label for an image
states that the angle corresponding to that output has been attempted.

Given a single n ∈ {1, ..., N} the output from the softmax layer gives the probability
of angle θn being successful as

pn =
ex

n
1∑

k∈{0,1}
ex

n
k
, (1)
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where xnk are the outputs from the nth binary output layer. The loss for the nth output is
then given as

Ln =

{
−lnlog(pn)− (1− ln)log(1− pn) if ∃ ln
0 otherwise.

(2)

Then the gradient of the loss being fed back to the output layer is

∂Ln
∂pn

=

{
− ln
pn

+ 1−ln
1−pn if ∃ ln

0 otherwise.
(3)

We can see that, as required, this blocks back propagation on the layers where a label, ln,
does not exist indicating the angle θn has not been attempted.

Based on the differences between robotic grasping and computer vision applications
we train adapted visual CNNs, based upon both AlexNet and SqueezeNet architectures.
Here we describe the adaptations we propose in further detail.
3.1 Network adaptation
Translation Invariance A key difference between the problem of object classification
and grasping is that object classification only cares about what an object is, not its
position in the image. For robotic grasping, the precise position of an object and its
grasp points are important. In visual neural networks, max pooling layers are often used
to improve the translation invariance when classifying objects. They are also used to
reduce the size of the data going through the network to make it more manageable for
training and testing. For robotic grasping it is likely that this damages the specificity of
the grasps. Therefore it may be advantageous to avoid spatial accumulation in the later
stages of visual networks to reduce the effect of translation invariance while keeping the
early pooling layers to keep the network size manageable.

Reduced Feature Complexity Another issue is that visual networks for classification
tend to be used to classify hundreds if not thousands of different objects. Conversely,
in this task we have simplified the problem down to N binary classifiers (one for each
angle). The problem is far simpler than general classification in that it has fewer outputs.
We also tend to have far less data available for grasping problems making it infeasible to
train complex networks with many parameters. We can combat this partially by using
pre-trained convolution layers on a dataset such as ImageNet, but the weights of these
networks will still need to be adapted to the task at hand.

When a network is too complex for the given task information may be spread sparsely
through the network, with some parts being unused. Here we give an example of this.
When we convolve an input image Iin with the ith convolution layer filter convi we get
Iout = convi ∗ Iin. We can also apply a Rectified Linear Unit (ReLU) layer to an image
with the function Iout = max(Iin, 0). When we combine these functions across two
convolution layers both followed by ReLU layers we get

Iout = max(convi+1 ∗max(convi ∗ Iin, 0), 0). (4)

If the network is too complex for the given task it is possible for the network learn to
give convi ∗ Iin > 0 for all elements. In this case the first maximum function becomes
redundant giving
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Iout = max(convi+1 ∗ convi ∗ Iin, 0). (5)

Now due to the linear nature of the convolutions, convi+1 ∗ convi can be combined into
a single convolution conv′i, meaning we can write

Iout = max(conv′i ∗ Iin, 0). (6)

This shows that if the network is too complex then it is possible for two sets of ReLU
and convolution combinations can give the same output as a single set.

Our suggestion is to create a simpler network with less convolution layers which
may be better constrained by the problem, making it more accurate and more efficient.
We do this by removing convolution layers from later in visual networks and randomly
initialising the last remaining convolution layer whilst keeping the others pre-trained.
This is because the penultimate convolution layer is specialised to feed into the final layer.
Random re-initialisation of this penultimate layer ensures it encodes the penultimate and
final stages for the task at hand.

4 Results
For our experiments we will be using the data set collected by Pinto et al. [11] for planar
grasping. A Baxter robot by Rethink Robotics with a two fingered parallel gripper was
used to collect random trial and error grasp attempts on a table of objects. For a single
grasp attempt, a random point is selected 25cm above the region of interest containing
an object. This forms the grasp point and a random angle in the range (0, π) is chosen as
the gripper angle. For each trial, the grippers are instructed to close until the motors are
stalled, this force on the motors tells us that the gripper has stopped before full closure
so is grasping an object. The grasp configuration for each attempt is recorded along with
whether the grasp was a success or a failure depending on the readings from the force
sensors in the grippers. This data assumes that we split the angles between (0, π) into
18 angle bins so choosing N = 18 from Section 3. Therefore our labels will consist of
which angle was attempted and whether is was a success.

Deep learning requires vast quantities of data, especially if networks have more
parameters than are truly necessary. To help artificially increase the amount of data the
image patches are rotated by random θr and this is added to the angle label. Another prob-
lem with trial and error data sets in grasping is that there are overwhelmingly more failure
examples than successful examples. This bias can cause problems when training neural
networks since they can improve their accuracy by always predicting a failure. To avoid
this in our experiments we use balanced numbers of successful and failed grasp attempts
when training our networks by sub-sampling the failure cases. The bias can then be added
back in later by using a higher threshold on the output probability of a successful grasp.

The networks which will be training are modified versions of CNNs normally used
for image classification. The two networks we will use are AlexNet and SqueezeNet.
AlexNet has 5 convolution layers with max pooling after convolution layers 1, 2 and
5. AlexNet then has two fully connected layers and a final fully connected layer for
classification. For this application the final fully connected layer is removed and replaced
with 18 binary fully connected layers, as shown in Figure1a. SqueezeNet is made up of
Fire modules which consist of a squeeze convolution layer and an expand convolution.
As you can see in Figure1b, SqueezeNet is comprised of a standalone convolution layer
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and then 8 fire modules (fire2-9), and then another standalone convolution layer. Max
pooling layers are included following the first convolution layer, fire4, and fire 8, whilst a
global average pooling layer is used to convert the output from the final convolution layer
to a suitable output. Unless otherwise stated when using these networks, we initialised
the parameters of the convolution layers in AlexNet and the first convolution layer and
the Fire modules in SqueezeNet with models pre-trained on ImageNet.

(a) AlexNet

(b) SqueezeNet

Fig. 1: Visual networks to be adapted for robotics

In order to decrease the time taken training CNNs we initially chose to take attempts
from one of the 18 angle bins and train our network with a single binary output layer.
This allows us to see any effect on learning before evaluating on the full dataset.

4.1 Evalutation of Translation Invariance

Evaluation of Removing Pooling layers The first experiment uses AlexNet with a
single binary output trained on the data from angle 0 as the base and compares this to
removing the final pooling layer in the network, Pooling5. These were both trained with
an initial learning rate of 0.0001 for 30 epochs. The results of training two network
configurations can be seen in Figure 2. The original network achieved 75.72% accuracy
on the validation set after 30 epochs of training. In comparison the network without the
final pooling layer achieved 78.60%. This small change to our network increased our
accuracy by 2.88%. As stated earlier, we believe this is because we do not lose position
based information which is necessary to accurately determine successful grasp points on
an object. We were unable to remove earlier pooling layers from AlexNet as this changes
the data size, rendering the pre-trained network unusable.

Conversely, the fully convolutional structure of SqeezeNet allows us to attempt
removing more pooling layers earlier in the network. As a base we trained SqueezeNet
in the same way we trained the base AlexNet achieving 75.48% final accuracy on
the validation data. We can see in Table 1 that removing the later pooling layers for
this network did not improve the accuracy, however removing the first pooling layer,
Pooling1, did. However, this was at a large cost of the time taken to train the network
since the data being passed through the network was much larger meaning this is not a
practical solution especially if we wish to use this system for online training.
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(a) Base AlexNet (b) AlexNet without Pooling5

Fig. 2: Graphs to show training of AlexNet with and without the final max pooling layer.

Evaluation of Reduced Feature Complexity To test the removal and random initiali-
sation of later convolution layers we again used standard SqueezeNet with a single binary
output training on angle 0 and all Fire modules pre-trained on ImageNet. We remove
a single Fire module from the end of the network and reinitialise the final remaining Fire
module. We repeat this until we have only 6 Fire modules remaining. We chose to use
Xavier initialisation for stability in this set of results. We found it was difficult to avoid
the exploding gradient problem using Gaussian initialisation when layers were removed.
In Table 2 we see that without removing and layers we can improve accuracy by just
randomly initialising Fire9, this probably helps the network learn more specifically for
the task of grasping rather than object recognition. We can see that removing further
layers in this network does not increase the accuracy. However, the file size for a single
model does decrease by 69% whilst still having an accuracy of 71.63%. This is extremely
beneficial in embedded systems and robotics where the space for large network models
is often not available.

Table 1: Comparing the effect of removing max pooling layers from SqueezeNet
Pooling Layer Removed Validation Accuracy Time Taken for 30 epochs

- 75.48% 5 min 16 sec
Pooling8 73.79% 5 min 57 sec
Pooling4 71.95% 6 min 47 sec
Pooling1 75.96% 42 min 24 sec

Table 2: Comparing the effect of removing Fire modules from SqueezeNet and randomly
initialising the final remaining Fire module.

Number of Fire Modules Randomly Initialised Module Validation Accuracy Size of Model
9 - 74.03% 2.9MB
9 Fire9 77.16% 2.9MB
8 Fire8 73.79% 2.1MB
7 Fire7 73.07% 1.4MB
6 Fire6 71.63% 0.9MB

We took a similar approach to evaluating this solution with AlexNet. First we
randomly initialised conv5 without removing any other layers, then we removed conv5
and randomly initialised conv4, then removed conv4 and randomly initialised conv3 and
finally removed conv3 and randomly initialised conv2. The results to these experiments
can be seen in Table 3. We can see that all of the networks we trained with less than 5
convolution layers in this experiment achieve a higher accuracy on the validation set than
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the original AlexNet. The most impressive aspect of these results is that we can see that
for this problem a much shallower network - for example one with only two convolution
layers - is able to achieve accuracy higher than a deeper network. However, we find that
removing layers in fact increases the size of the model. This is due to dimensions of
the final convolution layer increasing when we remove layers meaning the number of
weights to connect to the first fully connected layer increases. SqueezeNet avoided this
problem due to it’s fully convolutional nature.
Table 3: Comparing the effect of removing convolution layers from AlexNet and ran-
domly initialising the final remaining layer.

Total Convolution Layers Randomly Initialised Layer Validation Accuracy Size of Model
5 - 75.72% 0.2GB
5 Conv5 75.24% 0.2GB
4 Conv4 77.64% 1.1GB
3 Conv3 76.92% 1.1GB
2 Conv2 77.16% 0.7GB

Cross-Learning Between Angles The final set of experiments we ran used the full
18 binary layer outputs to see how our changes can affect the whole system. Firstly
we trained our SqueezeNet base with all the angles, which gave an average of 86.39%
accuracy on the validation data across all the angles. We see an improvement here
compared to the single angle problem, with the accuracy of angle θ0 being 74.03% on the
single angle compared to 86.92% for θ0 when trained with all the angles. This indicates
that whilst the individual angles can be treated as separate problems, combining them
with shared features leads to cross-training significantly improving the performance.

Next we ran the experiment on SqueezeNet with a randomly initialised final Fire
module, this gave an average accuracy of 87.51% showing an improvement on our base
network consistent with our single angle experiments. We also attempted removing the
final layer and randomly initialising the penultimate Fire module giving an average of
85.01% accuracy but also reducing the model size by 24%. This shows that we can still
maintain a high performing network with fewer parameters.

Finally, we trained our base AlexNet with the full set of output layers. This gave
us an average accuracy of 80%. Despite the greatly improved results from removing a
pooling layer on the single angle problem, removing the final pooling layer with the full
network gave an average accuracy of 78.44%. Removing the final convolution layer and
randomly initialising the penultimate layer gave an average accuracy of 78.93%. The
reason for this discrepancy is likely to be that our methods excel with limited data. The
full angle problem has 18 times more data than the single angle problem, but does not
have 18 times more parameters. It is likely that in the 18 angle case our networks would
out perform the base network in situations where less data is available such as for online
learning robotics applications.

5 Conclusion
In this paper, we have proposed steps for adapting networks designed for computer
vision tasks to robotic grasping. We have shown that due to the differences in these
tasks it is vital for robotics researches to consider the network architectures to improve
accuracy, obtain smaller models and improve training efficiency. The fact that the exact
position of an object is far more important for accurate grasping means that decreasing
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translational invariance in our networks helped improve the accuracy by 2.88% when
using AlexNet. We also saw that by reducing the number of parameters being trained we
were able to achieve improved accuracy in this problem over the base SqueezeNet while
also obtaining a 69% reduction in model size. These methods can be used to create space
efficient networks with improved accuracy which can be used in robotic control systems.

Given smaller networks and faster training times we feel this could lend itself to
online learning systems. It would be interesting to explore the results of using these
methods with reinforcement learning in a full end to end system. In the future we want
to further investigate other advanced architectures developed, such as Residual Networks
(ResNets)[3], 3D convolution systems [15] and Recurrent Neural Networks [6], to not
only adapt vision networks to the task of robotics but to find which provided the best
base architecture for this problem.
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