
Chapter 8

Stroke Surfaces: Temporally

Coherent Artistic Animations

from Video

In this chapter we describe the third and final subsystem comprising the Video Paint-

box: a framework capable of creating artistically shaded animations directly from video.

We demonstrate that through automated analysis of the video sequence at a higher spa-

tiotemporal level — as a block of frames rather than on a per frame, per pixel basis

as with current methods — we are able to generate animations in a wide variety of

artistic styles, exhibiting a uniquely high degree of temporal coherence. In addition to

rotoscoping, matting and novel temporal effects unique to our method, we demonstrate

the extension of “traditional” static AR styles to video including painterly, sketchy and

cartoon shading effects. We demonstrate how our coherent shading subsystem may be

combined with the earlier motion emphasis subsystems (Chapters 6 and 7) to produce

complete cartoon-styled animations from video clips using our Video Paintbox.

8.1 Introduction

In this chapter we propose a solution to the long-standing problem of automatically

creating temporally coherent artistically shaded animations from video1. As observed

in Chapter 5, this problem has been sparsely researched. Existing video driven AR

methods [75, 96, 103] address only the problem of producing painterly effects in video,

and typically produce animations exhibiting poor levels of temporal coherence. AR

techniques are predominantly stroke based, and temporal incoherence occurs principally

when either:

1This work appeared in [26] and an overview presented at the BMVA Symposium on Spatiotemporal
Processing (March 2004). This work has also been submitted to BMVC 2004.

180

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 181

1. the motion of strokes, and so motion within the resulting animation, does not

agree with the motion of content within the source video sequence.

2. the visual attributes of strokes fluctuate rapidly, creating flicker in the animation.

The manifestation of temporal incoherence is as an uncontrolled motion and rapid

flickering in the animation, termed “swimming”. Swimming severely damages the aes-

thetics of an animation, and tends to produce perceptual cues which distract from the

content of the image sequence itself. This observation is supported by psychophysical

research. For example the Gestalt “common fate” cue [95], describes how objects mov-

ing in a similar manner become grouped. Conflicts between the motion of phantom

objects perceived due to grouping, and physical objects, contribute to the distracting

nature of swimming. Wong et al [172] observe that rapidly flickering dots are perceived

to “pop-out” from their neighbours; explaining the confused sense of depth appar-

ent in an animation with poor stroke coherence. Unfortunately, we observe that this

pop-out effect manifests most strongly at around 6Hz, close to the aesthetically optimal

frame rate for coherent painterly animations determined by Hertzmann and Perlin [75].

Swimming in AR animations is therefore a significant practical problem, and one that

can be solved only by smoothly moving strokes in a manner consistent with motion in

the scene. Numerous object-space AR techniques based upon this principal have been

published in recent years, and are capable of creating coherent AR animations from 3D

models [32, 65, 108, 111]. Broadly speaking, object-space methods operate by fixing

strokes to surfaces in the 3D geometry which move coherently when the object moves

relative to the camera (see Chapter 2 for details of specific approaches). As we observed

in Chapter 1, the problem statements of object-space and video driven AR are thus

somewhat different. With the former there is no requirement to recover structure and

motion prior to stroke placement, since scene geometry is supplied. With the latter,

we must analyse pixel data to recover missing structure and motion prior to rendering.

All existing automatic 2D video AR algorithms [75, 96, 103] largely disregard spatial

structure by moving brush strokes independently, and attempt motion recovery using

inter-frame comparisons; motion is estimated from one frame to the next, and brush

strokes translated accordingly. Both per frame optical flow [96, 103] and frame differ-

encing [75] approaches to motion estimation have been applied to AR (Section 2.5.2

contains details), however both approaches fall far short of producing temporally co-

herent animations. We have argued (Chapter 5) that there are in-principal difficulties

with analysing video on a temporally local, per frame progressive basis, when attempt-

ing to produce a globally coherent AR animation. These difficulties include the rapid

accumulation and propagation of error over subsequent frames due to poor motion

estimates, and the limitations of the motion estimate techniques employed (especially

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 182

Video
Segmentation

Video Object
Smoothing

Duplicate
Stroke Surfaces

Outlines

Render

Interior

Render

User Controls

Representation (IR)

Object
DbaseSurfaces

Stroke

Optional Interaction

Source Image
Sequence

Intermediate
Output

Animation
Composit

Frame

Parameter Space

Front End
Back end

Artistic Video Shading Subsystem

Figure 8-1 Illustrating the rendering pipeline of the artistic rendering subsystem. Video
is parsed into an intermediate representation (IR) by the front end, using Computer Vision
techniques. This representation is then rendered by the back end, under the influence of
user parameters which may be varied to stylise the output according to the animator’s
wishes.

when operating upon flat textured objects, or on objects undergoing occlusion). If one

were processing video for interaction or real-time animation then a frame by frame

approach would be justified (an example is Hertzmann’s “Living Painting” [75]). How-

ever the motivation of the Video Paintbox is primarily to create a tool for animators,

with which they are able to process video for post-production effects. A global analysis

over all frames available during offline rendering seems a more promising avenue for

producing temporally coherent animations.

We therefore argue for a higher level of spatiotemporal analysis than that employed

by existing automatic techniques. Spatially, we operate at a higher level by segment-

ing images into homogeneous regions, which correspond well with individual objects in

the scene. Using the novel approach we describe in this Chapter brush stroke motion

is guaranteed to be consistent over entire regions — contradictory visual cues do not

arise, for example where stroke motion differs within a given object. Temporally we

work at a higher level, automatically corresponding regions over time to carve smooth

trajectories through the video, and smoothing region attributes, such as colour, over

blocks of adjacent frames to mitigate swimming; this is in contrast to all existing AR

video methods. We believe the paradigm of automatically processing video at this

higher spatiotemporal level to be a novel and valuable approach to the problem of

synthesising AR animations from video.

The remainder of this chapter describes our novel framework for the production of

temporally coherent AR animations from video, which comprises the third and final

subsystem with the Video Paintbox. Our approach is unique (among automated AR

video methods) in that we treat the image sequence as a spatiotemporal voxel volume; a

stack of sequential frames in which time forms the third dimension. The interpretation

of video as a volume, rather than as a disjoint set of frames, is a powerful abstrac-

tive technique proposed as far back as the early eighties [86] simplifying analysis and

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 183

exploitation of frequency patterns in both the spatial and temporal dimensions. Ap-

plications of spatiotemporal processing have been identified both within the field of

Computer Vision, for example in motion estimation [139] and content based image re-

trieval [118], and in Computer Graphics for interactive video editing [6, 93] and more

commonly for visualisation [34, 128, 173]. We demonstrate that by manipulating video

in this representation we are able to synthesise a wide gamut of artistic effects, which

we allow the user to stylise and influence through a parameterised framework. The

diversity of artistic style, and level of temporal coherence, exhibited by our animations

further evidence our central argument for a higher level of spatiotemporal analysis in

image-space AR.

8.1.1 Overview and Capabilities of the Subsystem

In a similar manner to the motion emphasis subsystems (Chapters 6 and 7), the artis-

tic shading subsystem consists of a single rendering framework which may be broken

into a front and back end. The front end (Section 8.2) is responsible for parsing the

source video to create an “intermediate representation” (or “IR”, Section 8.3), and is

automated through application of Computer Vision techniques. This abstracted video

representation is then passed to the back end (Section 8.4), where it is rendered in one

of a range of artistic styles. The user is given control over the back end of the system

via a set of high level parameters which influence the style of the resulting animation

(Figure 8-1).

The artistic shading subsystem operates in the following manner. We begin by seg-

menting video frames into homogeneous regions, and use heuristics to create semantic

associations between regions in adjacent frames. Regions are thus connected over time

to produce a collection of conceptually high level spatiotemporal “video objects”. These

objects carve sub-volumes through the video volume delimited by continuous isosur-

face patches, which we term “Stroke Surfaces”. The video is encoded by a set of such

boundaries and a counter-part database containing various properties of the enclosed

video objects. The surfaces and database respectively form the two halves of the IR,

which is passed to the back end for rendering. To render a frame at time t the back end

intersects the Stroke Surfaces with the plane z = t, to generate a series of splines cor-

responding to region boundaries in that frame. By manipulating the IR (for example,

temporally smoothing the Stroke Surfaces), the back end is able to create temporally

coherent animations in a range of artistic styles, under the high level direction of the

animator.

Although our spatiotemporal framework was originally motivated by our goal of creat-

ing coherent, flat-shaded cartoons from video, it now encompasses many artistic styles.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 184

Figure 8-2 Top: Stills from the hand-illustrated music video to A-Ha’s “Take On Me”
[Barron, 1985]. A woman enters a world inside a comic strip and appears non-photorealistic
(sketchy), whilst interacting with a number of photorealistic and non-photorealistic beings
and objects. Bottom: Our automatic video AR framework is capable of similar “mixed
media” effects (left, we show photorealistic people against AR background; middle, vice
versa), as well as many other artistic styles such as oil paint, watercolour, flat shaded
cartoon (right), and can create a range of novel temporal effects too. Motion emphasis
cues from the previous two chapters may be readily combined with this subsystem to create
complete cartoon animations from video (right).

In addition to novel temporal effects unique to our framework, we demonstrate the

extension of numerous static AR styles to video including oil and watercolour paint,

sketchy, cartoon shading effects, as well the ability to create “mixed media” effects

(Figure 8-2). An application to rotoscoping and video matting is also identified, in fact

rotoscoping and stroke based AR techniques (such as painterly rendering) are unified

under our framework. A potential application to abstracted, low bandwidth transmis-

sion of video content is also identified, resulting from the compact, continuous vector

representation of the IR. Furthermore, we are able to combine our coherent shading

framework with our earlier motion cue work (Chapters 6 and 7) to produce polished

cartoon-styled animations from video clips using the completed Video Paintbox.

8.2 Front end: Segmenting the Video Volume

In this section we describe the video segmentation process of the front end. The front

end is responsible for the smooth segmentation of the video volume into sub-volumes in

a voxel representation, which describe the trajectories of features. These volumes are

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 185

then encoded in our “IR”, which is passed to the back end for rendering. We describe

the nature of this IR, and the encoding process, in Section 8.3.

There are three stages to the video segmentation algorithm, each of which we overview

briefly here, and describe in detail in subsections 8.2.1, 8.2.2, and 8.2.3 respectively.

We begin by independently segmenting video frames into connected homogeneous re-

gions using standard 2D Computer Vision techniques (we describe these momentarily).

The second stage of processing creates associations between segmented regions in each

frame, to regions in adjacent frames. A filtering process removes spurious associations.

The result of this second step is a set of temporally convex sub-volumes carved from

the spatiotemporal video volume; we introduce the term “video objects” to describe

these sub-volumes. These video objects are associated over time in a graph structure,

which we refer to as the “object association graph”. The third and final stage performs

a coarse temporal smoothing of the boundaries of video objects. This smoothing, com-

bined with the filtering process the second stage, mitigate temporal incoherence in the

video segmentation. The trajectory of a single feature through the video volume is

represented by a collection of one or more associated video objects; we describe the

union of video objects, which comprise such a trajectory, as a “feature sub-volume”.

8.2.1 Frame Segmentation

We now explain the first step of our process, which segments each video frame into

homogeneous regions. The criterion for homogeneity we have chosen for our sys-

tem is colour (after [38]). Many segmentation techniques also subscribe to this ap-

proach [5, 39, 42, 164], under the assumption that neighbouring regions are of differing

colour. Each frame is independently segmented to create a class map of distinct regions.

Associations between regions in adjacent frames are later created. Choice of segmen-

tation algorithm influences the success of this association step, as segmentations of

adjacent frames must yield similar class maps to facilitate association. Robustness is

therefore an important property of the segmentation algorithm chosen to drive our sub-

system: given an image I, a robust segmentation process S(.), and a resulting class map

of regions S(I), small changes in I should produce very similar class maps S(I). Al-

though most published 2D segmentation algorithms are accompanied by an evaluation

of their performance versus a ground truth segmentation, to the best of our knowledge

a comparative study of algorithm robustness, as we have defined it, is not present in

the literature. Consequently, we investigated the robustness of several contemporary

2D segmentation algorithms, with an aim of selecting the most robust algorithm to

drive our video segmentation process.

We evaluated the robustness of five contemporary algorithms on twenty short clips

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 186

(around 100 frames each) of artificial and natural scenes. For our purposes, a natural

scene is one of complex, cluttered content (such as Figure 8-5, SOFA), whilst an artificial

scene is typically an uncluttered, low complexity scene with few homogeneous colour

regions (such as Figure 8-5, POOHBEAR). In all clips the footage was of a static

scene, with a gradual change of camera viewpoint over time. We tested the following

algorithms in both RGB and HSV spaces:

1. Recursive histogram split (RHS) [145] A colour histogram of the image is built,

and the colour which corresponds to the largest peak in the histogram is identified.

The largest connected region of that colour is isolated, and “cut” from the image

to form one segmented region. This process is iterative, and “cut” regions do not

contribute to the histogram on subsequent iterations. The process terminates

when the height of the histogram peak falls below a threshold.

2. Split and Merge (SM) [78] A two stage algorithm, comprising a “split” and a

“merge” step. A tree T is constructed, initially with the whole image as the

only node (root). We iterate through each node, splitting the node’s region into

quarters (creating four children) if that region is not “sufficiently homogeneous”.

The “split” step terminates when all nodes have been tested, and will split no

further. Each leaf in T is a homogeneous region, though the image may be over-

segmented. The “merge” step mitigates the over-segmentation by examining each

leaf node in T , combining regions which are both homogeneous and spatially

connected.

3. Colour Structure Code (CSC) [127] A form of split and merge technique which

operates upon the image using small neighbourhoods with a hexagonal topol-

ogy. Hierarchies of hexagonal “islands” are grown and merged iteratively to form

homogeneous regions.

4. EDISON [19] A synergistic approach to segmentation which fuses boundary in-

formation from: 1) homogeneous regions produced by a colour based mean shift

segmentation [29]; 2) edges detected in the luminance channel of the image.

5. JSEG [42] A technique which first performs colour quantisation, and then pro-

ceeds to grow pixel clusters to form regions of homogeneous colour texture. These

clusters must exhibit low “J values”; these values are a novel texture variance de-

scriptor introduced in the paper.

Algorithms (1) and (2) are popular, classical segmentation techniques. The remain-

der are comparatively recent segmentation techniques, which are reported by their

authors [19, 42, 127] to perform well upon general images without the imposition of

additional models or constraints.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 187

RHS SM CSC/RGB CSC/HSV EDISON JSEG
0

5

10

15

20

25

30

Segmentation Algorithm

In
co

he
re

nc
e

(e
rr

or
 m

ea
su

re
)

Figure 8-3 Results of comparing the robustness of segmentation algorithms. The lower
the error measure on the ordinate, the more robust the algorithm. All algorithms operated
in the RGB colour space unless otherwise stated. This graph shows the six most robust
scenarios. Red and black plots indicate the results of processing ten “natural” and “arti-
ficial” scenes respectively. The crosses indicate the mean error measure for each scenario
over all ten clips, the error bars indicate one standard deviation.

We measured robustness between adjacent frames in the following manner. Distance

transforms [145] were computed for both frames’ class maps. This resulted in two

rasters whose individual pixel values correspond to the shortest distance from that

pixel to a region boundary in the respective class map. We then computed the absolute

difference between these distance transforms. The mean pixel value in this difference

map was used the metric for robustness of segmentation between the two frames. The

mean value of this inter-frame metric, computed over all consecutive frame pairs, was

used as the metric for measured robustness of segmentation over the entire sequences.

In practice the pixel values of the distance transform were thresholded at 30 pixels

distance to prevent large errors from skewing the mean value (such errors emerged in

cases of gross disparity between temporally adjacent class maps).

All segmentation algorithms operated in RGB colour space, but we also experimented

with processing in HSV colour space — although this produced worse results for the

most-part, results improved in the case of the CSC algorithm. Figure 8-3 summarises

the means and variances of the robustness error measure for the six most robust sce-

narios, computed over ten “natural” and ten “artificial” source clips. Results indicate

EDISON to be preferable in the case of natural scenes, and that artificial scenes were

best segmented using the CSC algorithm operating in HSV space. However the as-

sociated error bars imply that there is little significant difference in one algorithm’s

performance over the other.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 188

In our Video Paintbox we have chosen to use EDISON by default, but enable the user

to switch to CSC/HSV if results of the segmentation are poor. The chosen algorithm

is then independently applied to each frame in the source video clip to generate a set

of segmented regions in each frame. Associations are then created between regions

in adjacent frames to produce spatiotemporal video objects. We explain this process

in the subsection 8.2.2, but first briefly justify our decision to opt for this associative

approach to volume segmentation.

Choice of Video Segmentation Strategy: 2D plus time or 3D?

We have opted for a 2D segmentation followed by a temporal association step; this

approach is commonly referred to as a “2D plus time” (2D+ t) technique in Computer

Vision literature. However, our initial development work centred upon an alternative

methodology — performing a colour segmentation via a three dimensional flood-fill ap-

proach, and so processing the video as a single 3D volume (similar to [40]). Although

a volumetric methodology is, perhaps, more in keeping with our spatiotemporal ap-

proach, there are a number of reasons that we opted for a 2D + t heuristic driven,

associative approach over a 3D segmentation:

• Attributes such as the shape, colour or shading of a region are permitted to evolve

gradually over time by the heuristics of our 2D + t approach. Such variation

is difficult to accommodate within the framework of a single 3D segmentation

(without introducing complicated 3D models and constraints, encapsulating the

expected evolution of these attributes over time).

• Small, fast moving objects may form disconnected volumes in 3D, resulting in

temporal over-segmentation. However these discontinuities do not arise with our

proposed 2D+t association scheme between frames, providing an upper threshold

on search distance (parameter ∆, described later in Section 8.2.2) is set correctly.

• For pragmatic reasons. The problem of 2D image segmentation has received

extensive study from the Computer Vision community, in contrast to 3D segmen-

tation (exceptions lie within medical imaging, but do not deal with the problem

domain of video imagery). However the modular nature of our framework (Fig-

ure 8-1) is such that the rendering process is loosely coupled with the segmenta-

tion technology used; thus we allow for substitution of segmentation algorithms

as novel, improved technologies become available in the literature.

Alternative 2D+ t approaches which associate contours over time have been described

in the literature [53, 55, 92]; however we differ in that we create temporal association

using region based properties rather than edges alone (the unconstrained problem of

associating edge contours over time produces poor tracking solutions, and often requires

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 189

restrictive motion models to be imposed [84, 85]). We now explain the temporal region

association process in detail.

8.2.2 Region association algorithm

The problem of associating sets of regions, each within multiple frames, is combina-

torial in nature and an optimal solution can not be found through exhaustive search

for any practical video. We propose a two step heuristic solution to the association

problem, which we have found to perform well (that is, results in a locally optimal

solution where associated objects exhibit an acceptable level of temporal coherence)

and has quadratic complexity in the number of regions per frame. First, for each frame

we generate associations between regions in that frame and those in frames adjacent

to it. These associations are made according to heuristics based on mutual colour,

area, spatial overlap, and shape. Second, the resulting chains of associated regions are

filtered using a graph based search which removes sporadic associations. Association is

complicated by the fact that objects may merge or divide in the scene. For example, a

ball passing behind a post might appear to split into two regions, and then recombine.

In our system it is satisfactory to represent a single occluded object as multiple imaged

regions since, as we will describe, these regions become linked in a graph structure as

a product of the region association process.

We observe that in a robust video segmentation: 1) properties of regions such as

shape, colour, and area are typically subject only to minor change over short periods

of time. The exceptions are the instants at which regions merge or divide; 2) although

regions may appear or disappear, merge or divide over time, such events should be for

the relative long-term (given a video frame rate of 25 frames per second) and not be

subsequently reversed in the short-term. The first observations influences the choice

of heuristics for the first stage of processing (region association), whilst the second

observation governs the operation of the second stage (filtering).

Step 1: Iterative Association Algorithm

Consider a single region r ∈ Rt, where Rt denotes the set of segmented regions in frame

t. We wish to find the set of regions in adjacent frames with which r is associated. We

compute this by searching sets Rt−1 and Rt+1 independently — examining potential

mappings from r to Rt−1, and then from r to Rt+1. Thus r could potentially become

associated with zero or more regions in adjacent frames (Figure 8-4a). The suitability

for two regions in adjacent frames r ∈ Rt and ρ ∈ Rt±1, to be associated may be

evaluated using an objective function E(r, ρ). We describe this function momentarily,

but first complete our description of the association algorithm.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 190

For the purposes of illustration, let us consider the creation of associations between

r and regions in the set Rt+1. The area (in pixels) of r is first computed, to give an

“area-count”. A potential set of associating regions in Rt+1 is identified, whose cen-

troids fall within a distance ∆ of the centroid of r. These regions are sorted into a list

in descending order of their score E(.). Next a cumulative sum of their area counts is

computed, working from the start of the list and storing the cumulative sum with each

region. The area-count of r is subtracted from each cumulative area term in the list.

The resulting set associated regions extends down this list until either the score E(.)

falls below a lower bound, or the area measure becomes less than or equal to zero. It

is therefore possible for no associations to be created to past or future regions; in such

circumstances a feature appears or disappears in the video, perhaps due to occlusion

either by other objects or by the edge of the frame. The process is repeated for each

frame t independently. The final set of associations for the sequence is taken to be the

union of associations created for all frames.

Associated regions are thus semantically linked over time to create connected feature

sub-volumes such as that in Figure 8-5c,d. These sub-volumes are broken into, possibly

many, temporally convex video objects. Note we consider only the exterior boundary of

these objects, disregarding “holes” in a volume produced by other nested objects; these

are represented by their own external boundaries. A property of the temporally convex

representation is that two separate objects will merge to produce one novel object,

and an object division will produce multiple novel objects (see Figure 8-4b, Figure 8-5,

bottom left). This representation simplifies later processing. The associations between

video objects are also maintained; this mesh graph structure is also useful in later

processing stages, as we refer to it hereafter as the “object association graph”.

Heuristics for Association

We made use of a heuristic score E(r, ρ) in our association algorithm, which determines

the suitability of two regions in adjacent frames [r ∈ Rt, ρ ∈ Rt±1] to be associated.

This score may be written as a weighted sum of terms:

E(r, ρ) =











0 if δ(r, ρ; ∆) > 1

w1σ(r, ρ) + w2α(r, ρ)− ...
w3δ(r, ρ; ∆)− w4γ(r, ρ) otherwise

(8.1)

The function δ(.) is the spatial distance between the region centroids as a fraction of

some threshold distance ∆. The purpose of this threshold is to prevent regions that

are far apart from being considered as potentially matching; E(.) is not computed

unless the regions are sufficiently close. We have found ∆ = 30 pixels to be a useful

threshold. Constants w1..4 are user defined weights which tune the influence of each

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 191

of four bounded ([0, 1]) heuristic functions. It is through variation of these constants

that the user is able to “tune” the front end to create an optimal segmentation of the

video sequence; in practice less than an order of magnitude of variation is necessary.

We have found w1 = 0.8, w2 = 0.6, w3 = 0.6, w4 = 0.4 to be typical values for the

videos we present in this thesis. γ(.) is the the Euclidean distance between the mean

colours of the two regions in CIELAB space (normalised by division by
√

3). α(.) is

a ratio of the two regions’ areas in pixels. σ(.) is a linear conformal affine invariant

shape similarity measure, computed between the two regions. We now describe this

final, shape similarity measure in greater detail.

We wish to compare the shape of two regions A and B. This comparison should be

invariant to rotation, translation and uniform scale, since such transformations are com-

mon in imaged regions caused by an object undergoing motion relative to the camera.

Regions are first normalised to be of equal area (affecting uniform scale invariance).

We compute σ(A,B) by analysis of the external regions’ boundaries in the following

manner.

We begin by computing the Fourier descriptors [31] of the “angular description func-

tion” of each boundary. The angular description function discretises a region’s bound-

ary into n vectors of equal arc-length v1, v2, ..., vn , and encodes that boundary as a

series of variations in the angles between adjacent vectors. We write the angular de-

scriptions for each region, A and B, as the scalar functions ΘA(s) and ΘB(s), where

sin[0, n] is a continuous dummy parameter which iterates around the boundary. Ob-

serve that Θ(.) is periodic, and invariant to translation of the region. We compute

the Fourier transform of each Θ(.), to obtain spectral representations F [ΘA(.)] and

F [Θ)B(.)]. Shape similarity is inversely to proportional to Euclidean distance between

the magnitude vectors of these Fourier descriptors (disregarding phase for rotational

invariance):

σ = 1− 1

N

N
∑

ν=1

∣

∣

∣

∣

∣

|F [ΘA(ν)]| − |F [ΘB(ν)]|
(
∑n

s=1(ΘA(s)−ΘB(s))2)
1

2

∣

∣

∣

∣

∣

(8.2)

where the summation is over the N lowest frequency components of the signal |F [Θ(.)|.
We have found that only the first eight components are desirable for inclusion in the

summation (N = 8); the remaining high frequencies principally describe sampling

errors due to the discrete, raster origin of the boundary descriptions.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 192

.

. . .

time

. . .

time

. . .

. . .

. . .

. . .
. . .

. . .

(c)

. . .

. . .

(a)

space

1 2

3

4 5

video
sub−volume

temporally
convex objects

merge

objects

objects

(b)

divide

time

Figure 8-4 Illustrating the region association and filtering process (a) Nine cases of region
association. Associations are created between a region in the current frame and potentially
many regions in adjacent frames, through iterative evaluation of equation 8.1. (b) Example
of a single video-sub-volume split into five temporally convex objects (c.f. Figure 8-5d).
(c) An object association graph before and after graph filtering. Sporadic associations
(red) are removed, and object boundaries interpolated (green) from neighbours.

Step 2: Filtering Sporadic Associations

Sporadic associations are sometimes incorrectly created between regions due to noise.

We have observed that associations maintained over short time intervals may be cat-

egorised as noise, and filter out these artifacts by examining the object association

graph’s structure.

Since new objects are created for every merge or divide encountered in a feature sub-

volume, one can identify sporadic merges or divisions by searching the graph for short-

lived objects. We specify a short-lived object as an object which exists for less than

a quarter of a second (≤ 6 frames). This constant (as well as the search parameter

∆ in equation 8.1) may be adjusted according to the assumed maximum speed of

objects in the video. Short-lived objects deemed to correspond to false associations are

removed by “cutting” that object from the graph and filling the gap by extrapolating

an intermediate object from either neighbour (by duplicating the nearest neighbour,

see Figure 8-4c). A serendipitous effect of this process is that poorly segmented areas

of the video exhibiting high incoherence, tend to merge to form one large coherent

object. This is subsequently rendered as a single region, abstracting away detail that

would otherwise scintillate in the final animation.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 193

Figure 8-5 Above: Sample segmented frames from the POOHBEAR and SOFA sequences
with original footage inset. Below: Two visualisations from the POOHBEAR video volume,
corresponding to the head and the right hand section of the skirting board. Observe that
whilst the head produces a single video object, the skirting board is repeatedly occluded
by the bear’s hand during movement causing division of regions. This resulting volume
consists of a connected structure of several temporally convex video objects (coloured
individually for clarity of illustration).

8.2.3 Coarse Temporal Smoothing

The segmentation and association processes result in an object association graph, and

a number of video objects in a voxel representation. It is desirable that the boundaries

of these video objects flow smoothly though the video volume, thereby creating tem-

porally coherent segmentations of each video frame. Therefore, as a final step in our

video segmentation algorithm we perform a temporal smoothing of video objects.

We fit constrained, smooth surfaces around each video object, and then re-compute

the sets of voxels bounded by these surfaces to generate a new set of smoothed video

objects. We describe this process in the remainder of this subsection. Note that this

surface fitting process is a means to smooth the voxel video objects, and quite distinct

from the surface fitting operations we introduce in Section 8.3 to encode the results of

the front end in the IR.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 194

g

g

g
g

g

g

g

g
g

g

2,1

3,1
3,2

2,2

0,2

0,1

1,3
1,2

1,1

3,3

PP

P
P(0,0)

(0,1)

(1,0) (1,1)

0,0
g

g

1,0
g

g
2,0

g
3,0

g
0,3

Patch 1 (g to g)

Patch 2 (g to g)

0,i 3,i

1,i 4,i

Surface
Patch 2

Surface
Patch 1

Figure 8-6 Coarse smoothing: A piecewise bi-cubic surface is fitted around each tempo-
rally convex video object. Multiple bi-cubic Catmull-Rom patches are stitched together
with overlapping control points, to form a C2 continuous bounding surface [14, 51].

Surface fitting by relaxation

Each video object is temporally convex, and as such its external boundary may be

described by a continuous 2D surface — disregarding its“end caps”, i.e. planes of con-

stant time. These “end caps” are represented implicitly by the minimum and maximum

temporal coordinates of the bounding surface’s control points.

We fit a constrained 2D parametric surface to each segmented video volume, which we

describe piecewise with a series of bi-cubic Catmull-Rom patches [14]. Each individual

patch may be represented in a 2D parametric form P (s, t), where s and t are the spatial

and temporal parameterisations, as:2

P (s, t) = tTMT















g
0,0

g
0,1

g
0,2

g
0,3

g
1,0

g
1,1

g
1,2

g
1,3

g
2,0

g
2,1

g
2,2

g
2,3

g
3,0

g
3,1

g
3,2

g
3,3















Ms (8.3)

where t =
(

t3, t2, t, 1
)T

, s =
(

s3, s2, s, 1
)T

, and M denotes the Catmull-Rom cubic

blending matrix [14] (given in equation 7.27). This class of spline function was chosen

since it both interpolates all control points g
i,j

(allowing greater local control over the

2Equation 8.3 represents a mild abuse of notation (used in the text of Foley et al. [51]) to avoid
introduction of tensor notation. The 4×4 matrix of control points should be read as containing sixteen
vector valued points g

i,j
— rather than as an expansion of those points to create a 12 × 4 matrix of

scalars.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 195

surface during the fit), and ensures C2 continuity between adjacent patches, i.e. whose

control points overlap. We introduce the notation Q(s, t) to describe the entire 2D

bounding surface, consisting of multiple piecewise bi-cubic patches (see the example of

Figure 8-6).

The C2 continuity of the Catmull-Rom spline class is important to our application since

surface discontinuities in the first and second derivatives with respect to time (
∂Q

∂t ,
∂2Q

∂t2
) have been found to produce jerky and incoherent motion in resulting animations.

However, we note that spatial discontinuities in derivatives (
∂Q

∂s ,
∂2Q

∂s2) may be desirable

when, for example, representing sharp corners. Fitting is performed via a generalisation

of 1D active contours [91] to 2D surfaces (after [21]):

Esurf =

∫ 1

0

∫ 1

0
Eint(Q(s, t)) + Eext(Q(s, t))dsdt (8.4)

the internal energy is:

Eint = α

∣

∣

∣

∣

∂Q

∂s

∣

∣

∣

∣

2

+ β

∣

∣

∣

∣

∣

∂2Q

∂s2

∣

∣

∣

∣

∣

2

+ γ

∣

∣

∣

∣

∂Q

∂t

∣

∣

∣

∣

2

+ ζ

∣

∣

∣

∣

∣

∂2Q

∂t2

∣

∣

∣

∣

∣

2

(8.5)

and the external energy is:

Eext = ηf(Q(s, t)) (8.6)

Function f(.) is the Euclidean distance of the point Q(s, t) to the closest voxel of the

video object. Hence constant η controls the influence of the data in the fit (we present

this to unity). The pairs of constants [α, β], and [γ, ζ] bias the internal energy to-

ward certain spatial and temporal characteristics respectively. Reducing constants α

and γ cause more elastic spacings of control points, whilst reducing constants β and

ζ allow greater curvature between control points. We preset α and β at 0.5 and 0.25

respectively, to permit high curvatures (for example, sharp corners), and so close fits

in the spatial dimension. γ is set to 0.5 to maintain temporal spacing of control points.

Constant ζ is the most interesting, since this parameter dictates the energy penalties

associated with high curvatures in the temporal dimension. Recall that we observe

high curvatures in this dimension correlate strongly with temporal incoherence. Thus

by varying this parameter the we may vary the level of temporal smoothing in the

sequence; we have chosen to make the value of this temporal constraint available as a

user variable. In this manner the animator may tailor the degree of temporal smooth-

ing to the speed of motion in the sequence, or even chose to retain some of the noise

present as a consequence of the segmentation process; we draw analogy with presence

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 196

of film grain in a movie.

Surfaces are fitted within the video volume using an adaptation of Williams’ algorithm

to locate surface points [167] through minimisation of Esurf (equation 8.4). Note that

this algorithm relaxes penalties imposed due to high magnitudes in the second deriva-

tive during the final iterations of the fitting process. We inhibit this behaviour in

the temporal dimension to improve temporal coherence. Initial estimates for surface

control points are obtained by sampling the bounding voxels of the object at regular

intervals. The result of the process is a fitted 2D surface about each video object.

The video volume is then re-segmented using these fitted surfaces to create a set of

smoothed video objects in a voxel representation. At this stage, the fitted 2D surfaces

are discarded, since they have served their purpose in smoothing the video objects.

In practice, smoothing the surface of each video object independently is problematic.

If the position of the surface bounding a video object is adjusted, voxel “holes” may

appear in the video volume, that is, some voxels are no longer assigned to any video

object. Alternatively, a single voxel might now fall within the fitted, bounding surfaces

of more than one video object; we term these voxels “duplicates”. We take the following

simple steps to remove “holes” and “duplicates”. First, any “duplicate” voxels are re-

labelled as “holes”. Second, “holes” are filled by repeatedly “growing” video objects

via binary morphological dilation; only voxels marked as “holes” are overwritten during

this process. Video objects are dilated in random order to promote an unbiased, and

even filling of holes. The process terminates when all holes are filled.

8.3 Front end: Building the Representation

The results of the video segmentation process (Section 8.2) are a set of segmented,

smooth, video objects in a voxel representation, and an object association graph de-

scribing how video objects are connected over time. From this information we generate

an intermediate representation (IR) of the video, to be passed to the back end. This

IR consists of a series of “Stroke Surface” patches and a counter-part database. In this

Section we describe each of these components in turn, and explain how they are created.

In our IR, the spatiotemporal locations of objects are represented in terms of their in-

terfacing surfaces. This is preferable to storing each object in terms of its own bounding

surface as boundary information is not duplicated. This forms a more compact, and

more manipulable representation (which is useful later when we deform object bound-

aries, either for further fine smoothing, or to introduce temporal effects) see Figure 8-10.

By manipulating only these interfacing surfaces, we do not create “holes” as before.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 197

Intersect surfaces
with plane z=t, to
render frame ’t’.

spline generated
by intersection

Winged edge structure
references v.o. database

z
x

y

Spatiotemporal
video volume

Video
object

obj# mean colour shading... etc...

0.2, 0.3, 0.9

0.1, 0.2, 0.5

time

t

t

Counterpart (Object) Database

A stroke surface
representing part
of the boundary of
the video object

2

1

2

1

Figure 8-7 Illustrating the IR of the artistic shading subsystem, and the means by which
it is rendered. Video is parsed by the front end, and represented as a collection of Stroke
Surface patches — each accompanied by a winged edge structure which references the
counter-part database. The attributes of video objects are stored in this database during
parsing, here we demonstrate two objects, a yellow blob and a grey background. The back
end renders the IR by intersecting a time plane with Stroke Surfaces; intersected surfaces
form splines (holding lines) which bound regions. A region is rendered according to the
graphical database attributes referenced by its bounding Stroke Surface(s).

However, in this representation it is much harder to vary the topology of the scene, for

example the adjacency of the video objects. This motivated the coarse smoothing step

of subsection 8.2.3.

8.3.1 Stroke Surface Representation

When two video objects abut in the video volume, their interface (in planes non-parallel

to z) is represented in our IR in piecewise form by a collection of one or more discon-

nected surface patches. We introduce the term “Stroke Surface” to describe these

individual patches.

As in Section 8.2.3 we use a piecewise Catmull-Rom bi-cubic form to represent a Stroke

Surface, and a 2D parameterisation Q(s, t) to describe points upon it. Each Stroke

Surface is contiguous. However, under certain interface geometries it is possible that

internal holes may exist within the surface’s external boundary — as such, regions

of surface’s parameter domain (s, t ∈ [0, 1]) may be invalid. We address this repre-

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 198

sentational problem in a manner similar to binary CSG [51]. Each Stroke Surface is

described by a continuous, externally bounded “primary” surface, from which a set of

zero or more continuous secondary (or “hole”) surfaces are subtracted3 (Figure 8-8).

We specify these holes as 2D polygonal regions in the parameter space [s, t] ∈ <2.

To further illustrate the concept of Stroke Surfaces, consider the following two examples:

1. Consider two plasticine bricks (A and B). If the bricks were pressed together

around a long metal pole, A and B would touch on either side of the pole, but the

pole would ”split” the interfacing surface between A and B into two discontinuous

surfaces. The pole, A, and B are analogous to video objects. The interface

between A and B would be represented by two Stroke Surfaces.

2. Now consider two new plasticine bricks (C and D), which are pressed together to

completely surround a third object E. In this scenario, only one Stroke Surface is

required to represent the interface between C and D. However, that surface will

contain an internal “hole” where C touches E, rather than brick D. In fact the

C-E and D-E interfaces will be represented by two further Stroke Surfaces.

8.3.2 Fitting Stroke Surfaces

Stroke Surfaces are fitted to the voxel video objects in the following manner. Each

video object is systematically tested against each of its peers to determine whether the

pair are spatially adjacent, that is, if there is an interface non-parallel to the z plane

(temporal adjacency is not encoded via Stroke Surfaces, as this information is already

stored in the object association graph). If an interface exists between the two objects,

then that interface must be encoded in the IR by one or more Stroke Surfaces. We now

describe the process by which we fit a single Stroke Surface between two example voxel

video objects; we write the coordinate sets of voxels comprising these video objects as

O and P.

Fitting the primary surface

We begin by fitting the “primary” surface. This is accomplished in a manner similar

to Section 8.2.3, using Williams’ relaxation algorithm to fit a 2D parametric surface

to the voxels which represent the interface between the two video objects. Internal

parameters α′, β, γ, ζ and η are set as described in Section 8.2.3, as we desire similar

geometric properties in our fitted surface. However a new function f(.) is substituted

for the external energy term (see equation 8.6), which determines error between the

3Read “subtraction” in the context of binary constructive solid geometry (CSG). For example if
two objects are represented by sets of voxels A and B, then A subtract B may be written as A \ B.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 199

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

Base Surface Q(s,t)Stroke Surface

x

y

z

s

t

Polygonal regions in (s,t)

Figure 8-8 Stroke Surfaces are represented as a primary parametric surface Q(s, t) ∈ <3,

minus a collection of one or more polygonal regions in space [s, t] ∈ <2 which describe
“holes” in that surface.

fitted surface and the data:

Given two voxel video objects O and P, we compute a distance field | ~OP| ∈ <3 from

each voxel in O to the nearest voxel in P. Likewise we compute field | ~PO| ∈ |<3 from

each voxel in P to the nearest voxel in O. We generate a field F = min(| ~OP|, | ~PO|).
The manifold F = 0 now represents the interface between O and P, and points in

field F encode distance from this interface. We wish to fit our surface to the manifold

F = 0. Thus F forms the basis of the external function f(.), which measures distance

between points on the surface, and the interface to which that surface is to be fitted.

The distance field F is also useful later to identify “holes” within this fitted, primary

surface (see next subsection).

All that remains is to define an initial estimate for the surface control points. We thresh-

old field F at a distance of one voxel, and apply standard morphological thinning [182],

to obtain a field F ′. The binary voxel map that results is a good approximation to the

manifold F = 0. We sub-sample the voxels upon this manifold at equal temporal in-

stants, and at equal spatial arc-length increments, to establish initial estimates for the

control points. An optimal configuration of surface control points is then sought using

Williams’ algorithm, and so the primary surface Q(s, t) is fitted. We re-parameterise s

and t to be normalised arc-length parameters, using standard methods (linear approx-

imation, see [51]).

Fitting holes within the primary surface

We wish to find the set of polygons in space [s, t] ∈ <2, which describe holes within the

interior of the primary surface Q(s, t). Recall that these are the regions which do not

lie on the interface between video objects O and P. We sample the field F (Q(s, t)) to

create a 2D scalar field which denotes distance to the video object interface at point

(s, t); i.e. the error in the fit of the primary surface Q(s, t). In cases where (s, t) does

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 200

not lie close to the interface of video objects O and P, then F (Q(s, t)) will be large.

We threshold this field to obtain a collection of connected binary components which

correspond to regions of Q(s, t) which do not lie on the interface. We obtain the chain

codes [52] of the external boundaries of each component, and use a standard chain code

vectorisation technique [119] to obtain a polygonal description of each region.

Each Stroke Surface is thus represented as a single functionQ(s, t) (encoded in piecewise

bi-cubic form), and a series of 2D polygonal regions which describe “invalid regions”

of the parameter domain [s, t] ∈ <2. We store the complete set of Stroke Surfaces

for the video as one half of the IR. Each stroke surface holds an additional winged

edge structure which contains two pointers corresponding to the two objects which it

separates (one for each normal, Figure 8-7). These pointers reference records in the

counter-part database, as we now describe.

8.3.3 Counter-part Database

A database is maintained as the second half of the IR, containing one record per object

in the video volume. This counterpart database is referenced by the pointers held in the

Stroke Surfaces’ winged edge structure, and encapsulates the object association graph

created by the region association process (Section 8.2.2), as well as various graphical

attributes about each object at each frame of its existence. We now briefly summarise

the information stored in the counterpart database, describing how the database is

populated with this information in the next subsection (Section 8.3.4).

For each temporally convex video object (referenced by the Stroke Surfaces), the

database maintains a record containing the fields:

1. Born: The frame number (B) in which the video object comes into existence.

2. Died: The frame number (D) in which the video object determines.

3. Parent object list: A list of video objects which have either split, or merged

with other video objects, at time B to form the current video object. If this list

is empty, the video object “appeared” as a novel feature in the sequence — all

video objects in frame 1 will have be born in this manner, as will any regions

which were segmented in a frame but were too different to be associated to any

regions in previous frames (these often appear just after an occlusion).

4. Child object list: A list of video objects which the current video object will

become one of (possibly many) parents for at time D. If this list is empty, the

video object simply disappears (possibly due to occlusion, or because the end of

the video sequence has been reached).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 201

time

y

x

Figure 8-9 A visualisation (left) of the Stroke Surfaces generated from the SHEEP se-
quence (upper right), which when intersected by the a time plane generate a coherent
segmentation (lower right). Observe how a single video object, for example the sheep’s
body, may be described by multiple Stroke Surfaces; in the example of the sheep’s body
these are the blue surface meeting the background object, and the red surface meeting the
head object (see videos/sheep source and videos/sheep flatsegment).

5. Colour list: A list of B − D + 1 RGB colour vectors which encode the mean

colour of the region in the original video, during each frame of the video object’s

existence.

6. Homography list: A list of B − D + 1 3 × 3 matrices which describe the

projective transform mapping the texture within the region, at each frame of the

video object’s existence, to the texture within the region in the previous frame.

The first element in this list is the identity matrix, and is redundant.

7. Shading list: A list of B−D+ 1 triples, containing the linear gradient shading

parameters described in Section 8.3.4.

Attributes (1-4) encode the object association graph generated by the region association

process of Section 8.2.2). Attributes (5-7) encode graphical information for each time

instant t (B ≤ t ≤ D) useful to the back end during rendering. This signal in these

graphical attributes is low-pass filtered (smoothed) over period [B,D] by the front

end to improve temporal coherence within the animation. For clarity of reading, we

have deferred justification of this smoothing process to Section 8.4.2 of the back end,

where the benefits of smoothing are more easily demonstrated in the context of cartoon

flat-shading.

8.3.4 Capturing Interior Region Details in the Database

We begin by computing the mean colour of each region for each frame of the video.

This information is stored in the respective video object record of the counterpart

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 202

database. At this stage in our explanation, each feature within the video is therefore

stored in our representation only in terms of a series of linked, coherent spatiotempo-

ral object boundaries and their mean interior colours. This is sufficient to recreate a

basic, flat shaded animation, but can prove insufficient to render some artistic styles

— the internal texture that has been abstracted away often forms perceptually impor-

tant visual cues (for example, the cross-hatching marks sketched by artists to represent

illumination, and so depict depth in a scene). We now describe two approaches we

have developed to introduce internal detail into the animation in a temporally coher-

ent manner.

First, we fit a linear shading gradient to each object on a per frame basis. The gradient

at time t over an object may be described as a triple Gt = [g0, g1, θ], where g0 and g1

are the start and end shading intensities respectively, and θ specifies the direction of

shading over the region (as an angle). An optimal Gt is computed by a search [114]

aiming to minimise the error E(.):

E(Gt, Ft) =
1

|P |
∑

p∈P

|I(Gt)− Ft|2 (8.7)

Where I(Gt) is a image created from the gradient tripleGt, using the hue and saturation

components of the object mean colour from the database and varying the luminance

as defined by Gt. Ft is the video frame at time t, and P is the set of pixels inside the

object region at time t. The application of this gradient alone, when rendering, can

dramatically improve the sense of depth in an image (Figure 8-14).

Second, images of the original object in a small temporal window around t are dif-

ferenced with the optimal I(Gt); the result is a difference image containing the detail

thus far abstracted away by our representation. We pass these images through our

salience measure (described in Section 3.2), which correlates salience and rarity; these

maps indicate the salient marks in the interior of the region. We form a local motion

estimate for the object over the temporal window by assuming the object to be ap-

proximately planar, and so its motion relative to the camera to be well approximated

by a homography. Object regions over the window are projected to the reference frame

of the object at time t. A initial degenerate estimate of the homography is obtained

by taking the 2nd order moments of the two regions. This estimate is then refined

using a Levenburg-Marquadt iterative search to minimise mean square pixel error be-

tween the interiors of the regions, using an identical optimisation approach to that

described in Section 6.3.1. The computed salience maps are projected by homography

to the reference frame at t, and averaged to form a final map. This results in the

suppression of sporadic noise and reinforcement of persistent salient artifacts (under

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 203

Figure 8-10 Left: Early experiments applied to a synthetic (bouncing spheres) test scene
represented each video object individually in the IR by means of the individual bounding
surfaces. This led to duplication of surface information, causing boundaries to no longer
appear coincident following surface manipulation (for example after creating the sketch
rendering effect described in Section 8.4.4). This led to unappealing artifacts such as
the double edges between spheres (2nd image set on left). Right: Our IR now represents
video objects by means of their interfacing surfaces (Stroke Surfaces), which do not create
artifacts such as double edges or holes when they are manipulated in the video volume.

the assumption that noise obeys the central limit theorem). We threshold the map,

and apply morphological thinning. Stroke Surface patches are then fitted around each

disconnected artifact as before. Finally, the patches are transformed to their original

reference frames via the inverse homographies used to generate the map.

One shading gradient triple Gt and a homography are stored in the supplementary

database, per frame of the video object. The homographies are of additional use

later for rotoscoping and stroke based rendering. The new interior Stroke Surfaces are

added to those of the existing representation, but with both sides of their winged edge

structure set to point to the video object in which they originated. Thus interior edge

markings are also encoded in our representation.

8.4 Back end: Rendering the Representation

We now describe how the IR is rendered by the back end, to produce animations in a

variety of artistic styles.

Stroke Surfaces are first duplicated to produce two sets; one for the interior shading

stage, and one for the line rendering stage, of the back end (Figure 8-7). These sets of

surfaces may then be manipulated in some manner; for example, fine scale temporal

smoothing may be applied to boost temporal coherence, or novel frequency components

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 204

introduced to the surfaces to create “coherent wobbles” (Section 8.4.1).

To render a particular frame at time t, the sets of Stroke Surfaces embedded in the

video volume ([x, y, z] ∈ <3) are intersected with the plane z = t. The frame is then

rendered in a two stage process comprising: 1) shading of the object’s interior region

(processing the first set of surfaces); 2) rendering of the object’s outline (referred to by

animators as the holding line) and any interior cue lines also present (processing the

second set of surfaces) . This separation allows us to create many novel video effects,

such allowing interior shading to spill outside of the holding lines.

The remainder of this section is organised as follows. We first describe how Stroke

Surfaces may be smoothed, or otherwise manipulated in frequency space, to create

a number of temporal effects (subsection 8.4.1). We then describe how interior re-

gions bounded by these surfaces are rendered, by drawing on data in the graphical at-

tributes in the database component of the IR (subsection 8.4.2). Rotoscoping, matting

and stroke based AR styles are also obtainable within this single framework (subsec-

tion 8.4.3). Finally, we describe the mechanism for rendering holding and interior lines

in the animation (subsection 8.4.4).

8.4.1 Surface Manipulations and Temporal Effects

The representation of video as a set of spatiotemporal Stroke Surfaces simplifies manip-

ulation of the image sequence in both spatial and temporal domains, and enables us to

synthesise novel temporal effects which would be otherwise difficult to produce on a per

frame basis. In this subsection we describe a method for manipulating the geometry of

Stroke Surfaces in frequency space. We show that by applying a low-pass filter in the

temporal dimension we may further improve temporal coherence, and by introducing

novel frequency components we can produce coherent “wobbles” in the video remi-

niscent of popular commercial cartoons, for example “Roobarb and Custard” [Grange

Calveley, 1972].

Planar offset parameterisation

We now describe our mechanism for manipulating a Stroke Surface Q(s, t) to produce

small scale deformations, and so create spatiotemporal effects in the animation. We

subsample the fields s ∈ [0, 1], t ∈ [0, 1] at equal, user defined intervals, to obtain a grid

of well distributed points on the manifold Q(s, t). By creating a simple 3D triangular

mesh using these regular samples as vertices (see the geometry of Figure 8-11), we are

able to create a piecewise planar approximation to Q(s, t), which we write as P (s, t).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 205

z
y

x

Q(s,t)

P(s,t)

E(s,t) = Q(s,t) − P(s,t)

Figure 8-11 The planar offset parameterisation E(s, t) is derived by differencing corre-
sponding points on the Stroke Surface Q(s, t) with those on a piecewise planar approxi-
mation to the surface P (s, t). P (.) is created by sub-sampling and linking points on the
manifold of Q(.).

The error (offset) of this approximation is:

E(s, t) = Q(s, t)− P (s, t) (8.8)

Suppose we now hold P (.) constant, and allow manipulation of the offset field (we write

the modified field as E ′(.)). We obtain a modified Stroke Surface:

Q′(s, t) = P (s, t) + E ′(s, t) (8.9)

In our framework we allow manipulation of E ′(.) through variation of a 2D scalar field

S(.):

E′(s, t) = S(s, t)
E(s, t)

|E(s, t)| (8.10)

The identity in this framework is S(.) = |E(.)|. However alternative S(.) are possible,

and variation of this field forms the basis for temporal effects in our framework.

To maintain continuity between neighbouring Stroke Surfaces we must reduce the mag-

nitude of any deformations local to the surface’s boundaries (both the external surface

edges where either s or t are close to 0 or 1, and around the edges of any internal hole

within the Stroke Surface). We define a 2D field of weights in (s, t) space by producing

a binary map of these internal and external boundaries and performing a 2D distance

transform. We then raise values in this field to a user defined power ϕ and normalise

to obtain the weight field, which we write as W (s, t). Parameter ϕ may increased

by the animator to decrease the apparent rigidity of the Stroke Surface during these

deformations. We revise equation 8.9 to weight any change in Q(s, t) by W (s, t) :

Q′(s, t) = P (s, t) + (1−W (s, t))E(s, t) +W (s, t)E ′(s, t) (8.11)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 206

Frequency manipulation of the offset field

Manipulation of the 2D field S(s, t) is performed in the frequency domain by defining

a complex transfer function T (C2) such that:

S′(.) = F−1[T (F [S(.)])] (8.12)

where S′(.) is the modified scalar field, F [.] and F−1[.] specify the standard and inverse

discrete Fourier transforms respectively, and T (.) is a general 2D transfer function

which maps a 2D complex field to some other 2D complex field. The user is free to

develop custom transfer functions, however we now give two useful examples:

1. Temporal Smoothing:

We can apply a low-pass filter S(.) to remove any high frequency undulations

in the temporal dimension of the surface. A standard method to achieve this is

through convolution with a Gaussian of user defined size σ, i.e. the following

multiplicative transfer function in the frequency domain:

Tsmooth(F ;u, v) =
F (u, v)√

2πσ
e−

v−d

2σ2 (8.13)

where F [u, v] specifies a component in the 2D Fourier domain, and d is a scalar

such that the line v = d intersects the coordinates of the d.c. component in

F [u, v]. Depending on the implementation of the discrete Fourier transform, d

may be located at zero or at the centre of the v axis.

2. Coherent Wobbles:

We are able to introduce controlled wobbles and distortion effects by perturbing

Stroke Surfaces, producing a distinctive pattern of incoherence in the animation.

Such effects are easily generated by introducing several impulses in the frequency

domain. The ith impulse is defined by a randomly generated triple [fi, ai, ωi]; fi

is the frequency of the wobble effect; ai is the amplitude of the effect; ωi is the

angular speed of the effect (the rate at which crests and troughs in wobble appear

to “rotate” around a region’s perimeter over time). We write the modified signal

as:

T (F [x]) = F [x] + J(x) (8.14)

where F [x] represents a the frequency component x = (u, v)T in the 2D Fourier

domain, and J(x) the field containing impulses:

J(x) =
n
∑

i=1

{

ai if |x− (D + νi)| = 0

0 otherwise
(8.15)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 207

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

t

s

S
’(s

,t)
−

S
(s

,t)

Figure 8-12 Not only can we enforce temporal coherence, but also introduce novel
forms of incoherence. Left: example of a coherent wobbling effect in the gradient shaded
POOHBEAR animation (videos/pooh wobblygradshade). Middle: A example still from
SHEEP demonstrating how the animator may transform one set of Stroke Surfaces (used
to render holding and interior lines), yet leave the surfaces for interior regions unaffected
(videos/sheep wobblycartoon). Right: A visualisation of the random displacement field
(S′(.)− S(.)) for a single Stroke Surface from POOHBEAR.

introducing the notation F [D] to specify the d.c. component in the Fourier

domain, and n as the total number of impulses. Inside the summation, the term

νi is defined as:

νi =

[

cosωi − sinωi

sinωi cosωi

][

fi

0

]

(8.16)

This mechanism creates smooth, periodic displacements in the 2D signal S(.).

This in turn produces smoothly varying undulations upon the Stroke Surface. As

a result the wobbles of region boundaries appear to move coherently over time in

the animation.

Since adjacent objects are represented in terms of their interfacing surfaces, residual

temporal incoherences in those boundaries may be dampened by smoothing the sur-

faces. There is no danger of introducing “holes” into the video volume as with the

coarse smoothing step (Section 8.2.3) — if volume is lost from one video object, it is

gained by surrounding video objects. Similar consistency applies to all temporal effects

created by this mechanism.

Figure 8-12 contains stills from animations produced using the second of these transfer

functions, demonstrating that a simple periodic displacement function over Stroke Sur-

face patches can produce dramatic and novel temporal effects in the animation. The

random displacement field S ′(.)− S(.) for a single Stroke Surface in the POOHBEAR

sequence has has also been visualised.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 208

8.4.2 Rendering the Interior Regions

The process of intersecting the plane z = t with the spatiotemporal Stroke Surfaces in

the IR produces a series of splines which are scan converted into a buffer. Bounded

regions in this buffer correspond to the interiors of video objects. In this section we

describe how these interior regions are rendered to form part of the animation.

For a given region, we begin by determining exactly which video object that region is

a “slice” of. This information is obtained by examining the the winged edge structures

attached to the bounding Stroke Surfaces. Thus each region inherits a pointer refer-

encing a record in the database component of the IR, which contains all the rendering

information about that region at time instant t. This information may be used to

render regions in a number of artistic styles.

Cartoon-style Flat Shaded Animations

Arguably the most straightforward strategy for rendering a region interior is to flat

shade with a single, mean colour computed over that region’s footprint in the original

video. Recall that the front end recorded this colour information (at each time instant)

in the database component of the IR. The cartoon-like “flat shading” effect that results

goes some way to satisfying the second (shading) sub-goal of our original motivation —

the automated generation of cartoons from video. However as video objects divide and

merge over the course of the clip, the mean colour of their imaged regions can change

significantly from frame to frame (perhaps due to shadows). This can cause unnatural,

rapid colour changes and flickering in the video (see the left hand skirting board in

Figure 8-13).

Thus, it is not enough to obtain temporally smooth segmentation (Stroke Surface)

boundaries in an animation. One must also apply shading attributes to the bounded

regions in a temporally smooth manner. The flickering of region colour we demonstrate

is symptomatic of the more general problem of assigning the graphical attributes stored

in the IR database, to regions in a coherent way. We draw upon our spatiotemporal rep-

resentation to mitigate against this incoherence — specifically, by smoothing database

attributes over time, as previously alluded in Section 8.3.

Smoothing Database Attributes

Recall that objects are associated via a graph structure; pointers to each video object’s

child and parent objects are stored in the database component of the IR. We analyse

this graph to obtain a binary voxel map describing the union of all video objects within

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 209

b)

a)

Figure 8-13 Demonstrating the temporal coherence of our cartoon-style flat shading.
Top: Temporal incoherence (highlighted in blue), in the form of flickering colour, is caused
by shading on a per frame basis (videos/pooh incoherentshade). Bottom: Our spa-
tiotemporal representation allows us to mitigate against these incoherences by smoothing
attributes, such as colour, over the video volume (videos/pooh coherentshade). Right:
A volume visualisation of the left hand skirting board, comprised of a four associated video
objects. Smoothing attributes with respect to this, and other volumes in the sequence,
improves temporal coherence.

the subgraph containing the video object corresponding to the region being rendered.

By averaging graphical database attributes (5-7, see Section 8.4.2), such as colour, over

the volume we can create a smooth transition of those attributes over time (even if

objects appear disjoint in the current frame but connect at some other instant (in the

past or future). Such coherence could not be obtained using the per frame sequential

analysis performed by current video driven AR methods [75, 96, 103].

The size of the temporal smoothing window is defined by the user; the larger the

window size, the smoother the transitions of attributes over time; but consequently,

rapid motions or lighting changes may not be reproduced faithfully in the animation.

The animator thus varies the temporal window size until they are satisfied with the

result — typical window sizes range between five and ten frames.

Gradient Shaded Animations and Morphological effects

We observed in Section 8.3.4 that the highly abstracted nature of a flat shaded video

can be unappealing for certain applications; artists often make use of shading and cue

marks to add a sense of lighting and depth to a scene. We can augment the flat shaded

regions by rendering the gradient shading attributes fitted earlier, smoothing the pa-

rameters in a similar manner to colour to ensure coherence (Figure 8-14). Interior line

cues may also be added by rendering the interior Stroke Surfaces of the object (Fig-

ure 8-17) although the rendering of such cues occurs later in the line rendering stage

(Section 8.4.4).

We are also able to apply morphological operators to interior regions, prior to rendering.

Figure 8-18 demonstrates a water-colour effect (combined with a sketchy outline — see

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 210

Figure 8-14 Examples of the temporally coherent flat shaded (top) and linear
gradient shaded (bottom) interior rendering styles available in our framework (see
videos/bounce flatshade, videos/bounce gradshade).

Section 8.4.4 for details), in which we have applied an erosion operator to the region

prior to rendering; this gives the aesthetically pleasing impression of brush strokes

stopping “just short of the edges”. The effect is coherent over time (see Appendix

C, videos/pooh watercolourwash). The water-colour wash texture was produced via

multiplication of pixel values with pre-supplied texture map.

8.4.3 Coherent Reference Frames and Stroke Based Rendering

The labour saving technique of “rotoscoping” was pioneered by cartoonists in the late

1930s, and was instrumental in the production of Disney’s first feature length animated

movie “Snow White” [Disney, 1937] — we refer the reader to Section 2.5.2 for further

examples of rotoscoping. Traditionally, rotoscoping is the manual tracing over pho-

tographs, or film stills, to produce the stylised cels of an animation [169].

As with rotoscoping, AR algorithms draw over photorealistic footage to produce stylised

output. In this sense, we argue that image-space static AR methods (for example stroke

based renderers [27, 71, 103] or adaptive textures [65]) may be considered a form of

modern day rotoscoping. This parallel between AR and rotoscoping is of further rele-

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 211

vance to video driven AR when one considers that both share a common objective; to

produce stylised animations from video in which motion is coherent with the motion

of the underlying source image sequence.

In this subsection we demonstrate that rotoscoping, video matting, and static AR can

be unified in a single framework to produce temporally coherent animations from video.

Our system creates temporally coherent motion estimates of image regions, requiring

only a single key-frame to produce rotoscoping effects. The same framework may be

used to place coherently moving brush strokes on image regions, enabling us to produce

AR animations automatically from video.

Reference Frames and Rotoscoping

Recall the local motion estimate for video objects computed in Section 8.3.4, and stored

in the database component of the IR. This estimate models inter-frame motion as a

homography, and was previously used to create correspondence between region texture

in adjacent video frames to enable recovery of internal edge cues. However this same

motion estimate may be used to to implement automated rotoscoping in our framework.

Animators draw a design, and attach it to a key-frame in the original footage. The inter-

frame homography stored in the IR database is then used to automatically transform

the design from frame to frame — the design remains static within the reference frame

to which it is attached; it appears to be rigidly attached to the video object. Figure 8-15

demonstrates the attachment of this rigid frame using a synthetic chequerboard pattern.

There are many useful applications for this automated rotoscoping; for example, to add

personality to an animation by rotoscoping an expression on to a face (Figure 8-15,

bottom). Such rotoscoping is particularly useful in our Video Paintbox, since small

scale features such as eyebrows or mouths sometimes fail to be captured by the region

segmentation and association processes of the front end.

Video Matting

As a special case of rotoscoping, we may set the inter-frame homography estimates

for a region to the identity matrix (implying no region motion). By supplying these

regions with video as a texture, rather than hand-drawn animations, we are able to

replace shaded video objects with alternatively sourced video footage. This facilitates

video matting within our framework, as we demonstrate in Figure 8-15 (top right) by

substituting a novel background into the SHEEP sequence. We can also use the source

video footage itself as a texture, and so reintroduce photorealistic objects from the

original video back into the non-photorealistic animation. This technique produces the

“mixed media” effects demonstrated in Figure 8-2 (videos/bounce mixedmedia).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 212

Figure 8-15 Rotoscoping and matting effects are possible within our AR video frame-
work. Top left, middle: Rigid reference frames are attached to individual video objects via
inter-frame homography (demonstrated here by a synthetic chequerboard pattern which
moves coherently over time — videos/sheep refframe, videos/bounce refframe). Top
right: The attached reference frame allows us to place markings such as illustrations, upon
an object, and have those markings appear to move with the object: a form of automated
rotoscoping. We may also substitute video objects (for example the background) for al-
ternative textures to create matting effects videos/sheep rotomatte. Bottom: A further
example of rotoscoping, applying a new facial expression in the POOHBEAR sequence
(videos/pooh angrybear). Observe the green crosses on the chequerboard pattern; these
symbolise the paint strokes which we may also attach to reference frames to produce co-
herent painterly effects (videos/pooh refframe). Rotoscoping and stroke based AR are
closely related in our rendering framework.

Note that all the effects described in this subsection require external information in

addition to that stored in the IR — specifically, access to the relevant video source,

image, or animator supplied illustration depending on the effect desired.

Coherent Stroke Based Rendering

Using a similar principal to rotoscoping, we are able to extend static, image-space AR

methods to operate over video with a high level of temporal coherence. We observed

(Section 8.1) that temporal coherence requires that:

1. Strokes should move in a manner consistent with the video content.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 213

2. Strokes should not exhibit rapid fluctuations of their visual attributes, for example

colour.

The first of these criteria may be met by rigidly attaching strokes to the local reference

frames of video objects. From the viewpoint of the user, this causes stroke locations to

exhibit motion matching that of the object to which they are attached. In this manner,

strokes move coherently over time (see the green stroke centres in Figure 8-15). The

reference frame attached to a video object defines a 2D plane of infinite extent, on which

we place brush strokes. We subsample the plane at regular spatial intervals, to create

potential locations for brush stroke centres. Strokes are instantiated at locations upon

the sub-sampled plane when a potential stroke centre moves within the “footprint” of

a video object — the region generated by intersecting the video object with the time

plane at a given instant. We have found that, in contrast to rotoscoping, the full eight

degrees of freedom of the homography are superfluous to needs when produced stroke

based AR animations. A minimum least-squares error affine approximation to the ho-

mography produces aesthetically superior results.

The second criterion may be met by smoothing the visual attributes of strokes over

time, in a similar manner to how visual database attributes in the IR are smoothed.

Visual attributes, such as colour, are assigned to instantiated strokes; as with static

AR, these attributes are functions of pixel data in the neighbourhood of the stroke’s

centre. These attributes are updated from frame to frame by re-sampling image data,

causing the visual attributes of strokes to adapt to the video content. However, the

state of attributes are also functions of their state in past and future time instants. The

nature of this function is to constrain the values of attributes to evolve smoothly over

time, so mitigating against stroke flicker. Once instantiated, a stroke is never destroyed

— a record of the stroke’s attributes persists for the remainder of the video sequence,

even if the stroke moves out of the bounds of the footprint and becomes invisible. This

retention of stroke attributes helps reduce flicker caused when strokes move repeatedly

in and out of a footprint. However, note that visibility itself is one of many attributes

assigned to strokes, and is therefore smoothed such that strokes do not rapidly alter-

nate their visibility, but appear and disappear over lengthy time periods.

We now give an illustrative example of our coherent, stroke based rendering process by

extending our pointillist painterly rendering technique of Chapter 3 to video.

Recall that each brush stroke in the painterly method of Chapter 3 formed a z-buffered

conic of superquadric cross-section. Each stroke has seven continuous visual parame-

ters:

1. α – Superquadric form factor

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 214

2. a – Aspect ratio of stroke

3. b – 1/a

4. θ – Orientation of stroke

5. h – Height of stroke in z-buffer (implicit ordering of stroke)

6. c – Colour of stroke (an RGB triple)

7. r – Scale factor of superquadric base

In addition to these parameters each stroke also has two further attributes:

8. (x, y)T – the 2D location of the stroke’s centre, relative to the video object’s

reference frame.

9. v – a continuous “visibility” value v = [0, 1], where a value of v ≥ 0.5 implies

that the stroke is visible (i.e. should be painted)

The collection of attributes (1-9) represents the complete state of a stroke (written as

a vector, St) at some time offset t from that stroke’s creation. Upon instantiation (at

t = 0) we construct S0 as follows. Attributes 1-7 are determined from the footprint

texture, in exactly the same manner as described in Chapter 3. Attribute 8 (location)

is determined by the stroke’s location on the reference frame, and is constant relative

to this reference frame for the duration of the video. Attribute 9 (visibility) is set to 0.5.

At later instants (t > 0) we produce a vector of updated stroke attributes S t in a

similar manner. Attributes 1-6 are sampled from the footprint texture at time t. A

value “ρ” for attribute 7 (scale of base) is determined as before, but modified to take

into account any scaling applied to the reference frame. This is necessary, since if the

reference frame is scaled up by a large factor, then the fixed, regular spacing of stroke

could cause unpainted gaps to appear in the canvas. The scale component “s” of the

affine transformation applied to the reference frame can be obtained using SVD (s is a

product of the eigenvalues, computed for the transformation’s linear component). The

value r for attribute 7 is simply r = ρs. Attribute 8 is a constant, and so simply copied

from time St−1. Attribute 9 is set to 0 if the stroke’s centre is outside the footprint, or

1 if it is inside.

The state of each stroke St is computed for all t, prior to the synthesis of any ani-

mation frames. To mitigate against stroke flicker, for example small, rapid changes in

colour or visibility due to video noise, we smooth each stroke’s attributes over time by

independently low pass filtering each component of the signal St. By default we use a

Gaussian with a standard deviation of 3 frames, but allow the user to override this if

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 215

Figure 8-16 Illustrating the coherent painterly effect produced by extending our
pointillist-style painting algorithm (Chapter 3) to video. We have used false colour to
illustrate the coherence of individual strokes within the animation, however the reader is
referred to Appendix C where complete animations demonstrating this effect have been
included.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 216

desired. For example, smaller scale filters could be used where stroke visual attributes

must change at a faster rate — in these cases, rapid attribute changes are due to video

content rather than video noise.

Implicit in our decision to perform temporal smoothing on stroke attributes is the as-

sumption that video noise obeys the Central Limit Theorem. As the temporal window

over which we integrate increases, signals will be reinforced and sporadic noise will

be cancelled out. Similar assumptions regarding video noise have been by others; for

example Capel [13] registers and averages video frames to achieve noise reduction in

video surveillance images.

Rendering strokes with their smoothed attributes yields painterly animations exhibiting

a uniquely high level of temporal coherence. Figure 8-16 gives examples of painted

output generated by our system, including visualisations of strokes in false colour,

where attribute 6 (colour c) was fixed at a random, constant value for the duration of

the sequence. The reader is referred to the source videos and corresponding painted

animations available in Appendix C which demonstrate the temporal coherence of our

algorithm. We compare our approach with the state of the art in video painting [103],

in Section 8.6.

8.4.4 Rendering the Holding and Interior Lines

Having concluded our explanation of interior region rendering, we now describe the

edge rendering process of the back-end. Recall the surface intersection operation by

which we determine the Stroke Surfaces to be rendered a particular frame. The splines

which result from this intersection form trajectories along which we paint long, flowing

strokes, which are stylised according to a user selected procedural AR brush model.

This produces attractive strokes which move with temporal coherence through the video

sequence; a consequence of the smooth spatiotemporal nature of the Stroke Surfaces.

We have used an implementation of Strassman’s hairy brush model [150] (Section 2.2.1)

to render our splines, producing thick painterly strokes to depict the exterior (holding)

lines of objects (Figure 8-17, left).

Brush models (for example, Strassman’s model) often invoke a stochastic process to

simulate effects such as brush bristle texture. Without due care this non-determinism

can cause swimming in the animation. Such models require only the illusion of ran-

domness for aesthetics, and we have found that seeding the pseudo-random number

generator with a hash of the unique ID number of a stroke surface is a convenient way

of creating “reproducible” randomness for the duration of a Stroke Surface patch; a

simple manifestation of a “noise box” [51].

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 217

Figure 8-17 Examples of various line rendering styles available in our system. Left:
Thick painted brush strokes generated by sweeping Strassman’s [150] brush model over
spline trajectories produce by intersecting a time plane with Stroke Surfaces in the WAVE
sequence. Middle: A sketchy effect applied to the same video, generated by duplicating,
shattering and jittering Stroke Surfaces prior to intersection. Each resulting splines has
been rendered using a fine brush tip. Right: Combining the thick brush tip style on
exterior cue (holding) lines (Stroke Surfaces with heterogeneous winged edge pointers)
and a thin brush tip style on interior cue lines (Stroke Surfaces with homogeneous winged
edge pointers).

The Stroke Surfaces whose intersection results in the spline strokes may be manipulated,

prior to rendering, to produce a number of effects. In Section 8.4.1 we described

a coherent wobbling effect that may be applied to both outline and interior Stroke

Surface sets. However, effects specific to line rendering may also be applied, as we now

explain.

Sketchy stroke placement

Artists often produce sketchy effects by compositing several light, inaccurate strokes on

canvas which merge to approximate the boundary of the form they wish to represent.

We may apply a similar, coherent, sketchy effect to video using a similar, two stage,

technique applied to our Stroke Surfaces.

Stroke Surfaces are first shattered into many smaller individual Catmull-Rom [14] bi-

cubic patches (Figure 8-18). The spatial and temporal intervals for this fragmentation

are user parameters through which the appearance of the final animation may be in-

fluenced; small spatial intervals create many small sketchy strokes, and very large

temporal intervals can create time lag effects. Each of these bi-cubic patches becomes

a stroke in its own right when later intersected and rendered.

Second, each bi-cubic patch is subjected to a small “jitter” — a random affine transfor-

mation M — to introduce small inaccuracies in the positioning of patches. Specifically:

M = T (τ)T (−c)S(σ)R(ρ)T (c) (8.17)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 218

0

50

100

150

200

0
50

100
150

200
250

300
0

5

10

15

20

25

30

XY

ti
m

e

50

100

150

200

160180200220240260280300320
1

2

3

4

5

6

7

8

X
Y

tim
e

Figure 8-18 Left: A test sequence of bouncing spheres is segmented (top left). We
visualise the Stroke Surface about one sphere, prior to (bottom left), and following (top
right) surface shattering; we approximate surfaces here with piecewise linear patches for
ease of visualisation. When shattered patches are intersected, coherent sketchy effect is
formed (bottom right). Right: A still from a coherent animation produced from the
POOHBEAR footage. Here the sketch effect on the holding line has been combined with
a watercolour wash on the interior (videos/pooh watercolourwash).

where:

T (x) =

[

I x

0 1

]

, R(θ) =













cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1













, S(s) =













s 0 0 0

0 s 0 0

0 0 1 0

0 0 0 1













(8.18)

c is the centroid of the patch, and τ , σ, ρ are normal variates which control the jitter,

and are typically of low magnitude (the user is given control over their limits). Fig-

ure 8-18 gives a visualisation of the resulting, perturbed patches.

The bi-cubic patches are intersected with a time plane (z = t) as before, and the re-

sulting splines rendered with a fine tipped brush to yield a sketchy effect. Each stroke

is guaranteed to be coherent over its temporal extent, since it results from intersection

with a smooth bi-cubic patch embedded in the spatiotemporal volume. Finally, the

density of sketching may be increased by further duplicating the Stroke Surfaces prior

to shattering and jittering in the manner described.

It is a matter of artistic taste whether sketch lines should be re-sketched at a constant

rate for the duration of the video, or whether they should only be re-sketched as the

object moves. Currently our framework subscribes to the former point of view, but

could be easily modified to produce the latter. By substituting the normal variates

τ, σ, ρ for values picked from a noise-box parameterised by spatiotemporal location,

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 219

strokes would appear to be “re-sketched” only when the location of a Stroke Surface

changes i.e. during object motion.

Other line styles

We do not concern ourselves unduly with the stylisation of individual strokes. We defer

the problem of artistic media emulation to the literature, being concerned primarily

with stroke placement rather than stroke rendering. However we have found that

interesting results can be obtained by varying line weight according to some transfer

function. Some successful transfer functions we have experimented with vary the line

weight in proportion to:

• the maximum of the speed of the two objects it bounds.

• the maximum area of the two objects.

• the intensity gradient between the two objects.

The latter suggestion helps to mitigate against artifacts produced when a feature has

been over-segmented, leading to, say, a face broken into two features divided by a thick

black line. If there is little evidence for an edge in the image at that boundary, then

the stroke may be omitted.

Note that interior cue lines generated in Section 8.3.4 are naturally accommodated into

this framework, since they are simply further examples of Stroke Surfaces. Exterior

and interior lines can be easily discriminated if desired, by examination of the Stroke

Surfaces’ winged edge structure, and may be rendered in differential styles (see Figure 8-

17).

8.5 Interactive Correction

Feature sub-volumes may become over-segmented in the video volume, producing two

distinct graphs of video objects where one would suffice. This situation arises when the

initial segmentation algorithm consistently over-segments a feature over several video

frames, often because of local illumination variance, to the extent that the region asso-

ciation process does not recombine the over-segmented regions. Since Computer Vision

is unable to provide a general solution to the segmentation problem, such errors are

unavoidable in our system.

We therefore provide an interactive facility for the user to correct the system by merg-

ing video objects as required. This operation takes place directly after the region

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 220

b)

a)

c)

Figure 8-19 Users may create manual associations between objects to tune the segmen-
tation or composition. (a) User creates a physical link between over-segmented objects, a
single object replaces four. (b,c) User creates a semantic link between two objects. The
objects remain distinct, but associations are created in the object association graph; during
rendering attributes are blended between regions to maintain temporal coherence.

association and filtering process. Objects are linked by point-and-click mouse opera-

tions in a single frame, and those changes propagated naturally through to all other

frames in which the object exists (since objects are spatiotemporal in their nature).

We tend to bias the parameters to the EDISON [19] segmentation algorithm (see front

end, Section 8.2.2) slightly toward over-segmentation, since over-segmentation is much

more easily resolved via merging objects, than under-segmentation (which introduces

the complicated problem of specifying a spatiotemporal surface along which to split

video objects). The user may form two types of corrective link:

1. Soft Link:

The animator semantically links two objects by creating edges in the object as-

sociation graph. Objects remain as two distinct volumes in our representation,

but the graph is modified so that any smoothing of graphical attributes (such

as region colour) occurs over all linked objects (see Figure 8-19b,c). This type

of link is often used to encode additional, semantic knowledge of the scene (for

example, the continuity of the skirting board in Figure 8-19b).

2. Hard Link:

The animator physically links two adjacent video objects by merging their voxel

volumes. The objects to be merged are deleted from the representation and

replaced by a single object which is the union of the linked objects (see Figure 8-

19a). This type of link is often used to correct over-segmentation due to artifacts

such as shadow, or noise, and is preferable in this respect to “soft” linking, since

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 221

the merged volume will undergo subsequent coarse smoothing as a single video

object.

Interactive correction can also be used to control focus in the composition, for example

by coarsening the scale of chosen region in the video; this is similar to the process driven

automatically by our salience measure in the painterly rendering of Chapter 3. In the

future we would also like to drive this video process automatically using a perceptual

model.

Extensive correction of a sequence is rarely required, and correction itself takes little

time since one click can associate spatiotemporal objects over multiple frames. Simi-

larly, we allow the user to selectively chose rendering parameters for specific objects —

for example, in Figure 8-15 (top right) specifying a region should be photorealistically

matted rather than animated using the global specified settings. Again, such interac-

tion requires only a couple of mouse clicks to modify parameters for video objects, and

is a level of interaction which we wish to retain in our Video Paintbox to allow creative

direction of the artistic process by the animator.

8.6 Comparison with the State of the Art

The majority of artistic styles that may be synthesised by the Video Paintbox have no

parallel in the existing video driven AR literature; these techniques address only the

single, specific problem of producing temporally coherent painterly animations. This

improved diversity of style is one of the principal contributions of the Video Paintbox.

However, we also wish to demonstrate the contribution made due to the improvements

in temporal coherence available through our framework.

We begin by recapitulating and expanding on our description of existing video-driven

painterly algorithms, which make use of either inter-frame differencing (Section 8.6.1)

or inter-frame optical flow (Section 8.6.2) to improve temporal coherence. We then

perform a comparison (Section 8.6.3) between these and the technique we developed

in Section 8.4.3, which applied the coherent stroke based rendering component of our

proposed framework to produce painterly animations from video.

8.6.1 RGB Differencing

Hertzmann and Perlin [75] proposed a video-driven painterly technique which com-

putes the RGB difference between adjacent frames of video to locate regions of high

motion magnitude. Their contribution was to paint the first frame of video using

Hertzmann’s static technique [71], and then update, or “paint over”, regions with high

motion magnitude in the next frame. Recall that animations swim if each frame is

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 222

repainted individually. Hertzmann and Perlin thus attempt to localise swimming to

only the “moving” regions of the animation.

There is one clear advantage that this method holds over optical flow driven tech-

niques (Section 8.6.2). Real-time frame rates (reportedly up to 6 frames per second)

are possible on standard PC hardware, facilitating interactive applications. Without

specialised hardware, reliable optical flow estimation algorithms are still too slow to

facilitate real-time rendering. The same disadvantage applies to our artistic rendering

subsystem, primarily because of its high level temporal nature (examining both “past”

and “future” events in the video volume, rather than rendering on a per frame basis).

However there are three disadvantages to the frame differencing methodology:

1. First, although expedient to process, RGB differencing is a very poor method of

determining the motion magnitude of imaged objects in a scene. The approach

fails under varying lighting conditions, and assumes neighbouring objects are

highly contrasting. Slow moving objects are hard to detect, since the threshold

used to exclude small inter-frame differences caused by video noise, also exclude

low speed motions.

2. Second, there is no internal consistency of motion within an object, since motion

estimates are made on a per pixel rather than a per region basis — no higher level

spatial grouping is used to assist motion estimation (in contrast to the higher level

spatial analysis of our spatiotemporal method). As a result, moving flat-textured

objects tend to be detected as collections of moving edges with static interiors.

In Section 8.6.2 we will see that similar objections hold for optical flow.

3. Third, there is the problem discussed previously regarding the per frame sequen-

tial nature of processing. Errors in motion estimation accumulate and propagate

through subsequent frames. For example, a region of the video containing an

arm may move, but be misclassified as stationary by the differencing operation.

This leaves a “phantom image” of the arm at one location in the painting which

persists throughout the animation until something moves over the phantom arm’s

location causing “paint over” to occur again. The reduction in flicker is typically

at the cost of an inaccurate and messy painting.

Temporal coherence of painterly animations is improved using Hertzmann and Perlin’s

method, but only within static regions. Temporal coherence is not attainable within

moving regions, since these regions are repainted with novel strokes, laid down in

a random order. Unlike optical flow based methods [96, 103] it is not possible to

translate strokes with the video content, because frame differencing produces estimates

only for motion magnitude, rather than both magnitude and direction. Recognising

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 223

the improved accuracy (but non-interactive frames rates) of optical flow, Hertzmann

and Perlin describe how to adapt their system to use optical flow at the end of their

paper. This enables their system to be adapted for offline video processing.

8.6.2 Optical Flow

Litwinowicz [103] proposed the first optical flow driven painting algorithm for video4.

The algorithm paints short, linear brush strokes to produce a painterly effect on the

first frame of video. Brush strokes are then translated from frame to frame to produce

subsequent frames of animation. The vector field for the translation of strokes is de-

termined by an inter-frame motion field, computed using an optical flow technique [7].

As discussed in Chapter 5, the per frame sequential processing of video causes the

accumulation of large positional errors over time. This error is manifested either by

a rapid flickering, or by the motion and painted content of the animation becoming

non-representative of the underlying video.

Translation can cause dense bunching of strokes, or the density of strokes to thin caus-

ing holes to appear within the canvas (Figure 8-20, middle). Thus after the stroke

translation stage there is a further stroke density regulation stage. Strokes in areas

deemed too dense are culled at random, until the density falls below a preset “accept-

able” threshold. New strokes are inserted into sparsely populated regions until the

stroke density becomes acceptable. The order in which strokes are painted is preserved

between frames to mitigate against flickering. Any new strokes inserted into the se-

quence are “mixed in” with old strokes by inserting them at random into this ordering.

The principal advantage of the optical flow methodology is that the strokes move with

the content of the underlying video sequence — rather than moving regions being

repainted afresh, as with frame differencing. This yields a substantial improvement

in temporal coherence. However, there are also a number of disadvantages of this

methodology:

1. First, the non-determinism of the stroke insertion strategy (due stroke density

regulation) causes a significant level of flickering (Figure 8-20).

2. Second, the temporal coherence of the animation is only as good as the underlying

optical flow algorithm and, in general, optical flow algorithms perform poorly

on scenes exhibiting flat textures, occlusion, or lighting changes. No accurate,

general, optical flow algorithm exists since the task demands solution of an under-

constrained “correspondence problem”. The resulting errors accumulate over

4Kovacs and Sziranyi [96] published a similar optical flow driven algorithm some years later in the
Computer Vision literature (see Section 2.5.2 for a comparison of this and Litwinowicz’s algorithm).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 224

Figure 8-20 Identical frames four seconds into the BOUNCE sequence rendered with our
technique (right) and SoA (left, middle). The errors that have built up in the cumulative
optical flow estimate at this stage cause large scale distortion and flickering in the image.
We have omitted the stroke density regulation stage (SoA-) in the left-hand image; this im-
proves temporal coherence. However large holes are created in the canvas (red circle), and
elsewhere tight bunching of strokes causes the scene to tend back toward photorealism. The
reader is referred to the videos in Appendix C where the improved aesthetics and tempo-
ral coherence of our method are clearly demonstrated (see videos/bounce painterly SoA,
videos/bounce painterly SoA- and videos/bounce painterly ourmethod for left, mid-
dle and right respectively).

time, as a consequence of the per frame sequential processing model employed.

After only a short while (around 1 or 2 seconds depending on video content) this

causes a gross disparity between source video and animation in terms of both

content and motion.

3. Third, as with RGB differencing the motion of each brush stroke is estimated

individually. No higher level spatial grouping of strokes into semantic regions is

performed which could be exploited to improve temporal coherence (for example,

to ensure consistency of stroke motion within a single object).

8.6.3 Comparison Methodology

The intended application of our Video Paintbox is as a post-production video tool; real-

time frame rates are not required. Thus for our application, the more accurate optical

flow methodology (rather than RGB differencing) is regarded as the current state of the

art. We have implemented Litwinowicz’s optical flow driven algorithm [103] (hereafter

referred to as “state of the art”, or “SoA”) and now draw comparisons between the

temporal coherence of this, and our proposed, painterly technique5.

Recall our two criteria for a temporally coherent animation:

1. The locations and visual attributes of rendering elements should not vary rapidly

5For reference, the full paper detailing Litwinowicz’s method is included in Appendix C.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 225

(flicker) over time. Assessment of this criterion requires measuring the rate of

change of these properties in the rendered image sequence.

2. The motion of strokes should agree with motion of content with the source video.

Assessment of this criterion requires measurement, and comparison, of the motion

fields of both source and rendered image sequences.

The second criterion is problematic since it demands an error-free means to determine

the magnitude and direction of motion in the source video — if such a technique was

known, we would have already built it into our Video Paintbox! Thus we require an

externally supplied ground-truth motion field to evaluate this criterion.

We now describe two experiments which test each of these criteria respectively. We

document the results of these experiments separately in Section 8.6.4, and draw con-

clusions from the results.

Experiment 1: Measurement of Flicker in the Animation

Our first experiment quantifies the level of stroke flicker in the rendered animation.

Stroke flicker is a contributor to temporal incoherence, and is manifested as:

1. Rapid fluctuations in stroke location

2. Rapid fluctuations in stroke visual attributes

In both SoA and our algorithm, a stroke’s location is defined by a 2D vector; we write

Lt = (x, y)T to specify the normalised coordinates (x, y) of a brush stroke’s centre

within the frame. Likewise, a stroke’s visual attributes may be defined as a point in a

high-dimensional space. Each stroke in our painterly method has seven visual attributes

(see Chapter 3), in SoA there are two: colour and orientation. For the purposes of com-

parison we specify visual attributes as points in a 4D space At = (r, g, b, θ)T where the

triple (r, g, b ∈ [0, 1]) specifies stroke colour and θ ∈ [0, π] specifies a rotation from

the vertical (strokes are symmetrical about their principal axes) in both algorithms.

We concatenate both location and visual parameter vectors to form a single vector

representing the stroke state: V t = [LT
t AT

t]T . We normalise the space of V t so that

distance |(0, 0, 0, 0, 0, 0)T −(1, 1, 1, 1, 1, π)T | is unity; this normalises our flicker measure

to range [0,1].

For a single stroke, the absolute rate of fluctuation of V t at time t may be computed

using a finite difference scheme:

R(t) =
∣

∣|V t − V t−1| − |V t+1 − V t|
∣

∣ (8.19)

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 226

This measure quantifies the absolute rate of change of visual state for a single, existing

stroke. For strokes that are created or destroyed due to the stroke density regulation

step of SoA, we set R(t) = 1. Note that this density equalisation step does not form

part of our painting algorithm.

We write R̂(t) as the absolute rate of change of visual state averaged over all strokes

present in frame t — hence quantifying the level of flicker present in frame t. Our ob-

jective measure of the average level of stroke flicker over all n frames of the animation

is the mean of R̂(t) over all t.

Additionally, we may obtain a qualitative estimate of the level of flicker by visual

inspection of the animation.

Experiment 2: Measuring the similarity between motion in the source and

rendered sequences

The smaller the error between the motion vector fields of the source video and target

animation, the greater the temporal coherence of the animation. We therefore produce

a source image sequence, for which we know the ground truth motion, and render that

image sequence using the algorithms under evaluation. The motion vector field for the

target animation is obtained from the motion vectors of the brush stroke centres. We

then perform a comparison of the ground truth and brush stroke motion vector fields.

A number of synthetic source test sequences are used for this experiment; examples of

both flat and textured image regions, which are independently subjected to translation,

rotation and scaling transformations. The ground truth motion vector field at time t,

which we write as St(i, j) = (r(t), θ(t)), is compared with the motion field of the target

animation at the identical instant T t(i, j) = (r(t), θ(t)) . These motion fields are in

polar form (r(.) is the magnitude of displacement, θ(.) is the direction of displacement

— both r(.) and θ(.) are normalised to range between zero and unity). The mean

squared error (MSE) between the two fields is computed to obtain a measure of the

similarity between the two motion fields at time t; we write this measure as C(t):

C(t) =
1

xy

x
∑

i=1

y
∑

j=1

|St(i, j)− T t(i, j)|2 (8.20)

where x and y are the frame width and height respectively. Our objective measure C
of the average level of motion dissimilarity for the animation is the mean of C(t) over

all time. As with experiment one, this measure can be verified by qualitative visual

inspection of the source and animated image sequences. In this manner qualitative

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 227

SoA SoA- Our method

SPHERES 0.62 0.45 0.05
BOUNCE 0.79 0.65 0.11
SHEEP 0.78 0.61 0.13

Table 8.1 Table summarising the “flicker level” (see experiment 1) present in an animation
produced by each of three algorithms (horizontal), over each of three source video sequences
(vertical). Flicker level ranges from zero (no flicker) to unity (severe flicker).

estimates may be made for real source video sequences, for which there is no available

ground truth.

8.6.4 Results and Discussion

Both experiments were conducted to compare the temporal coherence of animations

produced by both our algorithm and SoA. We now discuss the results.

Experiment 1: Flicker in synthesised animation

We applied both algorithms to one synthetic sequence (SPHERES) and two real se-

quences. Of these two real sequences, one (SHEEP) contained regions of predominantly

flat texture and the other (BOUNCE) was a natural scene containing moderately com-

plex texture. We also tested SoA with, and without, the stroke density regulation step

(we refer to SoA without this regulation step as SoA-). Table 8.1 summarises the levels

of flicker measured within the resulting animations. Note that this measure of flicker

quantifies the rate of change of stroke properties in the animation. By this definition,

all animations should exhibit some degree of “flicker”. However for a single video, this

measure will be comparatively large in the case of frequent, rapid changes in stroke at-

tribute and position (flicker), and lower in cases of smooth, less sporadic motion caused

by movement of content in the video.

Our results indicate that SoA exhibits about half an order of magnitude greater stroke

flicker than our method, on both real and synthetic video sources. All algorithms ap-

pear to perform consistently regardless of the level of texture in the video. This can

be explained, since although optical flow tends to produce worse motion estimates in

cases of flat texture, this experiment measures only flicker in the animation, not ac-

curacy of motion (this is addressed by experiment 2). Omission of the stroke density

regulation stage (SoA-) does reduce the level of flicker, but damages the aesthetics of

the animation as “holes” appear upon the canvas.

We conclude that our painterly approach produces animations exhibiting significantly

less flickering than the state of the art. Visual inspection of the resulting painterly

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 228

animations verifies these results (see Appendix C). The reduction in flicker can be

explained by:

1. Our use of a robust motion estimation technique, which takes advantage of spatial

grouping (segmentation) to move all strokes attached to objects in a similar way

— rather than moving each stroke in isolation of all others. Error in motion

estimation is spread over the entire region, making the approach more tolerant

to noise that per stroke optical flow techniques.

2. The absence of a stochastically driven “stroke insertion” step in our algorithm.

Unlike SoA, our approach does not require a “stroke insertion stage” since there

are potentially an infinite number of strokes rigidly attached to the planar ref-

erence frame that moves with video objects. The state of strokes on the plane

persists even whilst a stroke is not visible in a frame of the animation. This is

not true with SoA — when strokes disappear, for example due to occlusion, they

are deleted (as strokes bunch together), and then reinitialised after the occlusion

(triggered by strokes spreading too thinly) without taking into account their pre-

vious state. The strategy of inserting new strokes at a random order was chosen

in SoA to prevent regular artifacts from appearing in the video sequence during

stroke insertion. We observe that similar use of non-determinism has been used

elsewhere in Computer Graphics (for example the noise introduced by Cook’s [30]

distributed ray tracing), and also in many static AR algorithms to mask the regu-

lar, machine origins of the artwork produced. However non-determinism must be

used sparingly in the context of AR animations, since it introduces flicker. Since

our method does not require a stroke insertion step, stochastically driven or oth-

erwise, the temporal coherence of the resulting animations is greatly improved.

3. In our system the visual attributes of strokes, for example orientation and colour,

are sampled from each frame in the video, but smoothed over time under the

assumption that noise obeys the Central Limit Theorem. In SoA these attributes

are sampled from the video frame, and directly applied to strokes without taking

into account the state of those attributes in previous or future frames. Point-

sampling is highly susceptible to video noise (especially when sampling from

derivative fields — such intensity gradient to obtain orientation). With SoA

the sporadic fluctuations in sampled values result in the unsmoothed sporadic

fluctuation of visual stroke attributes. This is not so with our approach.

4. The thresholded Sobel edges used to clip strokes in SoA are prone to scintillation

over time. This in turn causes the lengths of strokes to fluctuate causing in-

creased flickering. This clipping mechanism is not a component of our approach,

and so introduces no such difficulty. Instead, we smoothly vary the continuous

“visibility” attribute of strokes over time.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 229

Experiment 2: Similarity between motion fields of source and animation

Experiment two measures the degree of similarity between the motion fields of both

source and rendered image sequences. We have used only synthetic source sequences

for this experiment, since we require an accurate ground truth motion estimate for the

input video. Both our algorithm and SoA were modified to output a vector field corre-

sponding to stroke motion in the animation, rather than an animation itself. We tested

both flat (SMILE) and textured (SPICES) image regions under translation, rotation

and scaling transformation, comparing the motion fields in both source and rendered

footage.

Figures 8-21 to 8-26 present the results of this experiment. In all figures the top row

shows the original and transformed images (i.e. the first and second frames of the video

sequence). The second row shows the ground truth motion field, and a colour visuali-

sation of motion magnitude. The third row shows the dense motion field used to move

strokes in our system. The fourth row shows the optical flow generated motion field

used by SoA. In all cases, we observe that the motion field generated by our method

closely matches the ground truth. The MSE (equation 8.20) between our field and the

ground truth is approximately 0.05 for all transformation classes. The MSE between

the optical flow derived stroke motion field and the ground truth varies between 0.5

and 0.7; an order of magnitude less accurate.

We draw attention to the false negative readings returned by optical flow for flatly

textured regions (regions of near constant intensity) within the images. By contrast

optical flow estimates around most of the edges appear to reasonably accurate. The re-

sults of this error can be seen most clearly in the resulting painterly animations, where

brush strokes in the centres of flat regions remain static, but strokes around the edges

move. This conveys contradictory motion cues to the viewer; strokes around the edges

of an object appear to move in the opposite direction relative to those in the middle of

the object. By contrast the homography based motion field generated by our method

is computed over the entire image region. This produces an accurate motion estimate

even within flatly textured regions, and ensures that stroke motion is consistent within

individual regions in the video.

In summary, the higher spatial level of processing performed by our technique per-

forms motion estimation on a per object, rather than per pixel basis. Errors in motion

estimation are thus distributed over the entire object, rather than individual strokes.

Similarly the higher level of temporal processing performed by our technique smooths

stroke attributes over time. Measurements of stroke attributes in adjacent frames com-

bine to reinforce each other and cancel out noise. Robustness to such errors, produced

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 230

ROTATION (SPICES)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-21 Rotation of a highly textured example SPICES (12◦ anticlockwise). First
row: source and transformed image. Second row: ground truth motion vector field (left)
and colour temperature visualisation of ground truth vector magnitude (right). Third row:
Estimated vector field using our method, and visualisation of vector magnitude. Fourth:
Estimated vector field using optical flow, and visualisation of vector magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 231

ROTATION (SMILE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-22 Rotation of an example with predominantly flat texture SMILE (12◦ anti-
clockwise). First row: source and transformed image. Second row: ground truth motion
vector field (left) and colour temperature visualisation of ground truth vector magnitude
(right). Third row: Estimated vector field using our method, and visualisation of vector
magnitude. Fourth: Estimated vector field using optical flow, and visualisation of vector
magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 232

SCALING (SPICES)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-23 Uniform scaling of a highly textured example SPICES (scale factor 1.3). First
row: source and transformed image. Second row: ground truth motion vector field (left)
and colour temperature visualisation of ground truth vector magnitude (right). Third row:
Estimated vector field using our method, and visualisation of vector magnitude. Fourth:
Estimated vector field using optical flow, and visualisation of vector magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 233

SCALING (SMILE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-24 Uniform scaling of an example with predominantly flat texture SMILE (scale
factor 1.3). First row: source and transformed image. Second row: ground truth motion
vector field (left) and colour temperature visualisation of ground truth vector magnitude
(right). Third row: Estimated vector field using our method, and visualisation of vector
magnitude. Fourth: Estimated vector field using optical flow, and visualisation of vector
magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 234

TRANSLATION (SPICES)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-25 Translation of a highly textured example SPICES (shift by (−20,−50)T).
First row: source and transformed image. Second row: ground truth motion vector field
(left) and colour temperature visualisation of ground truth vector magnitude (right). Third
row: Estimated vector field using our method, and visualisation of vector magnitude.
Fourth: Estimated vector field using optical flow, and visualisation of vector magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 235

TRANSLATION (SMILE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-26 Translation of an example with predominantly flat texture SMILE (shift by
(−20,−50)T). First row: source and transformed image. Second row: ground truth motion
vector field (left) and colour temperature visualisation of ground truth vector magnitude
(right). Third row: Estimated vector field using our method, and visualisation of vector
magnitude. Fourth: Estimated vector field using optical flow, and visualisation of vector
magnitude.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 236

Frame 10

Direction of motion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-27 A synthetic test sequence (SPHERES, videos/spheres source) consisting
of two front lit, Lambertian shaded spheres (left). The spheres are of identical size but
at differing scene depths (relative proximity to camera is illustrated by the depth map on
the right). The spheres translate in planes parallel to the image plane, inter-occluding and
casting shadows; a ground truth motion vector field is also projected to the camera plane
for reference. We use this sequence to illustrate the limitations of the homography based
motion model (see text).

for example by camera noise, is especially important with modern day equipment such

as DV cameras whose compression algorithms often create artifacts in stored images.

Limitations of our technique

As with optical flow, our painterly rendering technique is governed by a number of

assumptions. These are principally:

1. that the video to be painted is segmentable (some video, for example crowd scenes

or water, are difficult to segment)

2. that the change of viewpoint of an object over time is well modelled by a homog-

raphy (plane to plane transformation) between imaged regions of that object

Violation of assumption (1) will prevent a video being rendered by the artistic render-

ing subsystem. Violation of assumption (2) is non-fatal, since the video may be still

processed into a painterly form, but one that exhibits a lesser level of temporal coher-

ence. However, as we now show in a final experiment, this reduced level of temporal

coherence can still represent a significant improvement over the coherence afforded by

optical flow based painting techniques.

The synthetic SPHERES sequence represents a situation where assumption (2) is vio-

lated. The sequence contains two diffuse shaded, spheres (Figure 8-27) which undergo

translation in planes parallel to the image plane. We rendered this sequence using both

our method and SoA to obtain two painterly animations (see spheres painterly SoA

and spheres painterly ourmethod in Appendix C). We obtained motion fields for

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 237

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-28 Top: Motion vector fields between frames one and two of SPHERES. From
left to right; ground truth field (true motion of 3D objects projected to the camera plane);
field for stroke motion determined via our method; field determined via optical flow [7].
Middle: Visualisation of motion magnitude, ordered as (top) and using identical colour
temperature scales. Bottom: Difference between ground truth motion magnitude and
that of our (left) and optical flow (right) using identical colour temperature scales for the
purposes of comparison. Observe optical flow performs poorly in interior regions, whereas
our method does not. Our method exhibits around half an order of magnitude less error
than optical flow. We have normalised (left) in Figure 8-29 to illustrate the distribution
of estimation error over the region.

brush strokes in the two animations, and modified our ray tracer to output a ground

truth motion field of the spheres, projected to the 2D image plane.

The resulting source and rendered motion fields, corresponding to the imaged spheres,

are shown in Figure 8-28 (first column). Observe that in the ground truth motion field,

distant points exhibit lesser motion magnitudes due to parallax.

Optical flow performs poorly when recovering this motion field (Figure 8-28, second

column). The computed fields suggest that the flat textured interiors of the spheres do

not move at all, whilst the edges perpendicular to the direction of motion are deemed

to have moved. Edges parallel to the direction of movement are not deemed to have

moved, since the spatially local nature of the optical flow algorithm can not determine

such motion due to the “aperture problem” [145].

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 238

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

Frame

M
ot

io
n

m
ag

ni
tu

de
 (

pi
xe

ls
)

10 20 30 40 50 60 70 80
−4

−3

−2

−1

0

1

2

3

4

Frame

M
ot

io
n

di
re

ct
io

n
(a

ng
le

 fr
om

 v
er

tic
al

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-29 Plots illustrating errors in both our, and optical flow’s, motion estimate
for the yellow sphere. The left graph shows the mean value of motion vector magnitude
within the yellow sphere region, at each time instant. The error bars show one standard
deviation. Blue is the ground truth, green is our motion estimate, red is the optical flow
estimate. Observe that our method produces a consistent, uniform vector field estimate
that closely matches the mean of the ground truth. The optical flow motion estimate is
inconsistent over the region, as evidenced by high standard deviation. Similar observations
apply to the middle plot, which shows mean direction of motion over time. The right-hand
figure is a normalised absolute difference map between ground truth motion magnitude,
and motion magnitude estimated by our system. Our method produces a single motion
estimate for each region, distribution estimation error over that region. In the case of the
yellow sphere, the result is a motion estimate corresponding to around middle distance on
the sphere; approximately the mean of all motion vectors.

Our method interprets the imaged spheres as translating planar discs, with a radial

shading pattern upon their surfaces. The resulting motion field is thus a uniform set of

vectors specifying a translation approximately equal to the mean of the ground truth

vectors (Figure 8-28, third column). Although this uniform vector field is erroneous, the

residual error due to our method is much lower than that of optical flow (see Figure 8-

28). The internal consistency of motion vectors generated by our method is also much

closer to that of the ground truth, whereas there is very little internal consistency

within the sphere according to optical flow (observe the error bars depicting standard

deviation in Figure 8-29, and Figure 8-28 top right).

8.7 Integration with the Motion Emphasis Subsystems

Our video shading subsystem meets the aims of the Video Paintbox’s second sub-goal,

generating temporally coherent artistic animations from video. We may combine this

subsystem with the earlier motion emphasis work of Chapters 6 and 7, to meet our

original aim of producing full, cartoon-like animations from video. Figure 8-30 contains

a schematic of the entire Video Paintbox, illustrating how we combine the shading and

motion emphasis work. We now describe the complete Video Paintbox rendering pro-

cess:

A camera motion compensated version of the video clip is first generated (Section 6.3.1).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 239

Motion Compn.
and Tracking

Feature Depth
Recovery

Visual Motion
Emphasis

Output
Animation

Time and Pose
Motion EmphasisSequence

AR shaded
animation

Source Image tracked features

video (for occlusion detection)

video

Ch.8Video Paintbox (Motion and Shading Subsystems)

Ch.6 (Vision Comp.) Ch.7 Ch.6 (Gfx. Comp)

Artistic Shading
Framework

Figure 8-30 Schematic of the complete Video Paintbox, showing where the artistic ren-
dering subsystem, described in this Chapter, fits into the rendering framework.

The user identifies features for the application of motion cues, and these features are

tracked through the camera compensated sequence. Their locations and relative depths

are recorded (Section 6.3.3). This processing is performing by the Computer Vision

component of Chapter 6.

Time and pose cues (Chapter 7) are then applied, synthesising a novel video (for exam-

ple, exhibiting anticipation) and altering the recorded locations of any tracked features.

At this stage we discard the source video clip, and use this “time and pose” emphasised

video as input to subsequent stages.

The “time and pose” emphasised video is passed to the artistic shading subsystem,

which synthesises an AR version of the video in the requested artistic style. We now

have three pieces of information: the tracked feature data, a photorealistic version of

the “time and pose” emphasised video, and an artistically rendered version of the “time

and pose” emphasised video.

As a final step we pass both the tracked feature data, and the AR version of the video,

to the Computer Graphics component of the visual motion cue subsystem (Section 6.4).

In our original description of that subsystem we stated that the Computer Graphics

component accepts as input:

1. tracker data output by the Computer Vision component

2. the original, photorealistic video

We have altered the rendering pipeline, so that the Computer Graphics component

accepts an artistically rendered version of the video sequence in place of (2) — see

Figure 8-30. The final output is an artistically shaded animation which also exhibits

motion cues. Stylisation of both the shading and motion cues is controlled by the ani-

mator at a high level (by requesting particular rendering styles and motion effects, and

by setting parameters upon those special effects).

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 240

Figure 8-31 The artistic rendering subsystem is combined with the motion emphasis
work of the previous two chapters, to produce complete cartoon animations from video
(see bounce fullcartoon and wand cartoon).

As a practical note, we have observed the occlusion buffer system (Section 6.4.3) to

operate with markedly less precision when using the non-photorealistic video in the

manner described. We therefore make a small modification to the rendering pipeline,

as described, which allows the occlusion buffer system access to the photorealistic

version of the video sequence to perform its inter-frame differencing operations. This

access is represented by the dashed arrow of Figure 8-30.

8.8 Benefits of an Abstract Representation of Video Con-

tent

Recall the basic architecture of the artistic rendering subsystem — the Computer Vision

driven front end parses source video into an intermediate representation (IR), which

the back end subsequently renders into one of many artistic styles. The IR therefore

encodes an abstracted video representation, encapsulating semantic video content but

not instantiating that content in any particular artistic style.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 241

5 10 15 20 25 30 35 40 45 50

200

400

600

800

1000

1200

1400

1600

1800

2000

Duration (frames)

S
to

ra
ge

 (
K

b)

RGB raw (uncompressed)

MS RLE

Indeo 5

MPEG−4

Proposed Surface rep.

Figure 8-32 Demonstrating the comparatively low storage requirements of the surface
representation when transmitting cartoons. Our test comparison uses up to 50 frames of
the gradient shaded POOHBEAR sequence.

We draw an analogy with our IR and the popular XML data format. XML also divorces

content from presentation style, deferring the problem of visualising information to the

client who must process the XML content against an XSLT style-sheet to produce

a legible document. This separation of information (XML) and stylisation (XSLT)

creates a compact, and more manipulable format for information storage and exchange.

Likewise, the IR is a highly compact representation of video content. Video objects

are represented by a set of continuous spatiotemporal vector surfaces, and a small

supplementary database. These properties present a number of interesting directions

for future development of our IR and of the Video Paintbox system.

Hand-held mobile devices are no longer fundamentally limited by speed of CPU, or by

storage constraints. The primary challenge for the next generation of wireless (3G) de-

vices, at the time of writing, is to achieve a suitably high bandwidth wireless connection

over which video content may be delivered. We suggest that, with further development,

our IR could provide interesting new perspectives on both the issue of bandwidth, and

upon the nature of the content delivered over the network. Figure 8-32 summarises

details of a brief comparative investigation, contrasting the storage requirements of the

IR with those of common video compression technologies, to store a cartoon. Approx-

imately 150KB were required to store 50 frames of the POOHBEAR sequence. The

compact nature of the IR can be seen to compare favourably with the other video

compression algorithms tested; although we note that the spatiotemporal nature of

our representation prohibits real-time encoding of video. The caveat is that the video

must be abstracted and stylised in a cel animated fashion. However, the IR may be

rendered into a wide gamut of artistic styles once downloaded, creating a novel level of

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 242

abstraction for video in which the server (implementing the front end) determines the

video content, whilst the client-side (implementing the back end) determines the style

in which that video is rendered. Splitting the responsibilities of video content provision

and content visualisation between the client and server is a promising direction for

development of our Video Paintbox architecture.

Aside from the benefits of compact representation and abstraction, also of interest is

the continuous spatiotemporal nature of the Stroke Surfaces in the IR. This provides

a highly manipulable vector representation of video, akin to 2D vector graphics, which

enables us to synthesise animations at any scale without pixelisation. Indeed many

of the figures in this Chapter were rendered at a scale factor greater than unity to

produce higher resolution images than could be captured from a standard PAL video

frame. Future developments might investigate the use of temporal scaling to affect the

frame rate of animations.

8.9 Summary and Discussion

In this Chapter we have described a novel framework for synthesising temporally co-

herent non-photorealistic animations from video sequences. This framework comprises

the third and final subsystem of the “Video Paintbox”, and may be combined with the

previously described motion emphasis work to produce complete cartoon-style anima-

tions from video.

Our rendering framework is unique among automated AR video methods in that we

process video as a spatiotemporal voxel volume. Existing automated AR methods

transform brush strokes independently between frames using a highly localised (per

pixel, per frame) motion estimate. By contrast, in our system the decisions governing

the rendering of a frame of animation are driven using information within a temporal

window spanning instants before and after that frame. This higher level of temporal

analysis allows us to smoothly vary attributes such as region or stroke colour over time,

and allows us to create improved motion estimates of objects in the video. Spatially,

we also operate at a higher level by manipulating video as distinct regions tracked over

time, rather than individual pixels. This allows us to produce robust motion estimates

for objects, and facilitates the synthesis of both region based (e.g. flat-shaded cartoon)

and stroke based (e.g. traditional painterly) AR styles. For the latter, brush stroke

motion is guaranteed to be consistent over entire regions — contradictory visual cues

do not arise, for example where stroke motion differs within a given object. We have

shown that our high level spatiotemporal approach results in improved aesthetics and

temporal coherence in resulting animations, compared to the current state of the art.

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 243

Much of the discussion of the relative merits of our approach over optical flow can be

found in Section 8.6.

We have demonstrated that automated rotoscoping, matting, and the extension of many

“traditional” static AR styles to video, may be unified in a framework. Although we

have experimented only with the extension of our own pointillist-style painterly method

(Chapter 3) to video, we believe this framework to be sufficiently general to form the

basis of a useful tool for the extension of further static stroke based AR techniques to

video. The application of our framework to other static AR styles is perhaps the most

easily exploitable direction for future work, though does not address the limitations of

our technique, which we now discuss.

Perhaps the most limiting assumption in our system is that video must be segmented

into homogeneous regions in order to be parsed into the IR (and so subsequently ren-

dered). As discussed in Section 8.6, certain classes of video (for example crowd scenes,

or running water) do not readily lend themselves to segmentation, and so cause our

method difficulty. Typically such scenes are under-segmented as large feature sub-

volumes, causing an unappealing loss of detail in the animation. This is not surprising;

the segmentation of such scenes would be a difficult task even for a human observer.

Thus although we are able to produce large improvements in the temporal coherence

of many animations, our method is less generally applicable than optical based flow

methods, which are able to operate on all classes of video — albeit with a lower degree

of temporal coherence. The problem of compromising between a high level model for

accuracy, and a lower level model for generality, is an issue that has repeatedly sur-

faced in this thesis, and we defer discussion of this matter to our conclusions in Part IV.

However we summarise that as a consequence we view our method as an alternative,

rather than a replacement, for optical flow based AR.

The second significant limitation of our system stems from the use of homographies to

estimate inter-frame motion from an object’s internal texture. We assume regions to be

rigid bodies undergoing motion that is well modelled by a plane to plane transforma-

tion; in effect we assume objects in the video sequence may be approximated as planar

surfaces. There are some situations where lack of internal texture can cause ambigui-

ties to creep in to this model; for example if an object moves in-front of an untextured

background, is that background static and being occluded, or is that background de-

forming around the foreground object? Currently we assume rigid bodies and so search

for the best homography to account for the shape change of the background. The worst

case outcome of poor motion modelling is a decrease in the temporal coherence of any

markings or brush strokes within the interiors of objects. Other artistic styles (such as

STROKE SURFACES: TEMPORALLY COHERENT A.R. ANIMATIONS FROM VIDEO 244

sketchy outlines or cartoon-style rendering) do not use the homography data in the IR,

and so are unaffected. As a work-around we allow the user to set the motion models of

video objects to be “stationary” if they deform in an undesirable manner. This single

“point and click” corrective interaction is necessary to introduce additional knowledge

into an under-constrained system, and is in line with the high level of creative inter-

active we desire with the animator. Future work might examine whether the planar

surface assumption could be replaced by an improved model; perhaps a triangulated

mesh, or replacement of the linear bases which form the plane with curvilinear bases

(adapting the recent “kernel PCA” technique of [137]). However, many of the video

sequences we have presented contain distinctly non-planar surfaces which neverthe-

less create aesthetically acceptable animations, exhibiting superior levels of temporal

coherence than the current state of the art. We therefore question whether the addi-

tional effort in fitting more complex models would pay off in terms of rendering quality.

We did not set out to produce a fully automated system — not only do we desire

interaction with the Video Paintbox for creative reasons (setting high level parameters,

etc.) but also, rarely, for the correction of the Computer Vision algorithms in the front

end. The general segmentation problem precludes the possibility of segmenting any

given video into semantically meaningfully parts. However we have kept the burden of

correction low (Section 8.5). Users need only click on video objects once, for example

to merge two over-segmented feature sub-volumes in the video, and those changes are

propagated throughout the spatiotemporal video volume automatically. In practical

terms, user correction is often unnecessary, but when needed takes no more than a cou-

ple of minutes of user time. This is in contrast to the hundreds of man hours required to

correct the optical flow motion fields of contemporary video driven AR techniques [61].

A selection of source and rendered video clips have been included in Appendix C.

