
Chapter 7

Time and Pose Cues for Motion

Emphasis

In this chapter we extend the gamut of motion emphasis cues in the Video Paintbox to

include animation timing effects; specifically, cartoon “anticipation” effects and motion

exaggeration. Our process begins by automatically recovering articulated “dolls” of

subjects moving in the plane. By fitting our previously tracked (Chapter 6) features

to this articulated structure we are able to describe subject pose, at any instant, as a

point in a high dimensional pose space. We then perform local and global distortions to

this pose space to create novel animation timing effects in the video. We demonstrate

that these timing cues may be combined with the visual cues of Chapter 6 in a single

framework.

7.1 Introduction

Although animators may emphasise the motion of a subject using an array of purely

visual tools (for example making marks, or performing deformations), they may also

choose to manipulate the timing of an action to stylise an animation — we term this

class of effects “time and pose” motion cues. In this Chapter we describe the subsystem

for inserting these cues in to the video sequence, and explain how this work may be

integrated with the motion cues of Chapter 6 to complete the motion emphasis frame-

work within the Video Paintbox.

A common “time and pose” cue used by animators is “anticipation”, which is used to

indicate the onset of motion. Typically, an object exhibiting anticipation is observed

to recoil briefly, as if energy is somehow being stored in preparation for a release into

motion; the resulting effect is sometimes referred to as “snap” by animators (Figure 7-

5). According to animator Richard Williams [169] (pp. 274–275) there are three rules

148

TIME AND POSE CUES FOR MOTION EMPHASIS 149

governing anticipation:

1. The anticipation is always in the opposite direction to where the main action is

going to go.

2. Any action is strengthened by being preceded by its opposite.

3. Usually the anticipation is slower than the action itself.

A further motion emphasis technique is “exaggeration”. Just as caricaturists often

draw faces by exaggerating their characteristics [98], in a similar vein animators often

exaggerate the individual characteristics of a subject’s movement. Such manipulations

of motion clearly demand large temporal windows for trajectory analysis. In the case

of anticipation, at any given instant the system must be aware of future motion that

may subsequently take place. Likewise the identification of patterns and characteris-

tics within a subject’s movement over time are a prerequisite to exaggerating those

motions within the video sequence. A per frame, sequential approach to video driven

AR therefore precludes the insertion of time and pose cues into the resulting animation.

The framework we propose operates by varying the pose of the subject over time,

manipulating the features tracked by the Computer Vision component of Section 6.3

prior to their rendering by the Computer Graphics component of Section 6.4. Our

initial experiments attempted to create time and pose cues by directly manipulating

the tracked LCATs of features; this did not synthesise motion cues of satisfactory

aesthetic quality for anything but the simplest of motions (for example a translating

ball). We instead opted to recover the articulated structure of tracked subjects, to

create a higher level description of subject motion — the subjects’ pose. Manipulation

of this pose over time allows us to augment the existing gamut of motion cues in the

Video Paintbox with convincing temporal effects.

We begin by automatically recovering an articulated “doll” from the set of features

tracked in Chapter 6. Once the “doll” structure has been recovered, the tracked poly-

gons for each frame are fitted to the articulated structure, creating a series of “pose

vectors”. These pose vectors are points in a high dimensional “pose space”, each of

which specify the configuration of the articulated subject at a particular instant in time.

As the articulated subject moves over time, the vectors can be thought of as tracing a

smooth trajectory in this high dimensional pose space. By performing judicious trans-

formations on the spatiotemporal trajectories within this space we may affect the pose

of the subject over time, and so introduce “time and pose” cues into the video sequence.

Our desire to process post-production video of general content (for example a person,

or a metronome) from a single view-point has restricted the range of literature we have

TIME AND POSE CUES FOR MOTION EMPHASIS 150

.. if the pivot point translates
during rotation ..

.. then the vector sum of this translation,
and the rotational field in (A), creates a
new minima in which the pivot appears
to have moved in a direction orthogonal
to the pivot translation. Blind separation
of fields (A) and (B) is not possible.

(C)

Rotation about a static pivot point
generates a vector field; the minima of
the vector norms indicates the centre
of rotation.

(A)

(B)

apparent motion of pivot

Figure 7-1 Illustrating the difficulty of recovering pivot point location from rotation, in
the case of a moving pivot. Under instantaneous motion, the combination of rotation and
pivot shift causes an apparent translation of pivot location orthogonal to the direction in
which the pivot have moved (see Appendix A.6 for a proof).

been able to draw upon for the recovery of articulated structure and pose. Most passive

motion capture systems assume provision of an a priori articulated model [17, 76], are

tailored to the specific problem of tracking humans [10, 89], or require multiple camera

viewpoints [11, 76, 88]. We have developed a technique for recovering articulated

structure and pose that does not require such constraints, but does make a number

of alternative assumptions which are more compatible with our application. First, we

assume that the subject exhibits a rigid, hierarchical articulated structure. Second, we

assume that the subject’s motion is planar within the camera compensated sequence

in which features are tracked (Section 6.3.1). Lastly, we assume that pivot points in

the structure are static relative to their attached features. This avoids the problem of

localising moving pivot points solely from polygonal data; this problem is intractable

in principle (see Figure 7-1 and Appendix A.6).

7.2 Recovery of Articulated Pose in the plane

Our process begins by recovering the articulated structure of a subject moving in the

plane; this is achieved by analysing the motion of the feature polygons tracked by

the Computer Vision component in Chapter 6. The basic technique is to estimate a

pivot point between each pair of tracked features, and then to assess the quality of

these pivot points to determine which feature pairs are truly articulated in the physical

world. These physically articulated feature pairs, and their associated pivot points,

form a hierarchical representation of the rigid articulated subject being tracked. At

each time instant we fit this articulated structure to the tracked feature polygons,

creating a set of joint configurations represented numerically by a “pose vector”. This

pose representation is manipulated to introduce cartoon-like motion cues (Section 7.4).

TIME AND POSE CUES FOR MOTION EMPHASIS 151

7.2.1 Four Algorithms for Recovering inter-feature pivot points

We now describe four different algorithms for determining the pivot point between

two, potentially articulated, features “A” and “B”. Each feature is considered be

static within its own reference frame. We write F
A(t)

and F
B(t)

as the affine transfor-

mations from each of these reference frames to world coordinates, respectively. In the

first frame (t = 1) the reference frames are coincident with the world basis, and these

transforms are the identity.

We have to assume a static pivot point in our work; by this we mean the pivot of A

about B will be static relative to both frames F
A(t)

and F
B(t)

— in world coordinates

the pivot can, of course, move freely.

In our descriptions of each algorithm we consider the motion of A about B, within

F
B(t)

; i.e. we assume feature B’s motion has been “subtracted” from feature A’s. We

denote the vertices of feature A as A
t

(a series of column vectors representing the

homogeneous world coordinates of each vertex at time t). Likewise we write B
t

for

feature B. In homogeneous form, we may express the motion of feature A in the frame

of B as A′
t
, where:

A′
t

= F−1
B(t)

A
t

(7.1)

= (B
1
(B

t
)+)A

t

where superscript + specifies the Moore-Penrose “pseudo inverse” [123]. We use the

notation A′
t
throughout our description of the four algorithms.

7.2.2 Closed Form Eigen-solutions

Algorithm 1: Decomposition of affine transform via SVD

Our first algorithm accepts two samples of the feature polygon at different time instants

[t, t + ∆] (where ∆ is a user defined temporal interval), and outputs a least squares

algebraic approximation to the pivot point location. This is achieved by decomposing

the compound affine transform for rotation about an arbitrary point in 2D. The motion

of A over time interval [t, t + ∆] may be described as A′
t+∆

= MA′
t
, where M is an

affine transform defined as follows:

M =

[

R
(θ)
−R

(θ)
p+ p

0 1

]

(7.2)

Where p denotes the pivot point, R
(θ)

the 2D rotation matrix and θ the degree of

TIME AND POSE CUES FOR MOTION EMPHASIS 152

rotation. Introducing the notation m = (m1,m2)
T :

m = −R
(θ)
p+ p (7.3)

M =







cos(θ) − sin(θ) m1

sin(θ) cos(θ) m2

0 0 1






(7.4)

Each of the unknowns in M is recovered by forming a homogeneous linear system, using

all n vertices of the feature A at time t ([x1..n, y1..n]T) and at time t+∆ ([x′1..n, y
′
1..n]T).

The system is solved using SVD:

















x1 −y1 1 0 −x′1
y1 x1 0 1 −y′1

... ...

xn −yn 1 0 −x′n
yn xn 0 1 −y′n

































cos(θ)

sin(θ)

m1

m2

1

















= 0 (7.5)

Rearrangement of m yields an expression for p:

m = (I −R)p (7.6)

p = (I −R)−1m (7.7)

In cases of small rotary motion the value for p becomes increasingly unreliable — very

small errors in the measurement of tracked feature vertices have a very large influence

on the estimated pivot location. If we write out the components of p = (px, py)
T then

this behaviour is explained by the large denominators that result as θ tends to zero:

px = (m2 sin θ −m1(1− cos θ))/2(cos θ − 1) (7.8)

py = (m1 − px(1− cos θ))/ sin θ (7.9)

With no rotational component at all, p is undefined.

Extension to Algorithm 1: Estimation over multiple frames

With only two frames (t and t+∆) to estimate a pivot point, we can do no better than

this single estimate. However, since we assume the pivot to be static in F
B(.)

, we can

perform several such estimates over the video sequence and compute an average for p

over all time. We have observed that large scale rotations produce a better estimate

for p than small scale rotations. We therefore take a weighted mean of the estimates

TIME AND POSE CUES FOR MOTION EMPHASIS 153

for p:

1

N

N
∑

t=1

ω(θ(t))p(t; ∆) (7.10)

Where N is the number of frame estimates, and ω(.) is a confidence weight for the pivot

estimate between time t and t+ ∆. We model this as a smoothly varying distribution

over θ — zero in the case of no rotation (or equivalently, a full rotation of θ = 2π), and

unity under maximum rotational shift (θ = π).

ω(θ) = | sin(2θ)| (7.11)

θ is obtained from the solution to equation 7.5 using arc-tangents.

Algorithm 2: Minimum of inter-frame motion field

Our second algorithm accepts two samples of the feature polygon at differing time

instants [t, t + ∆] (where ∆ is a user defined temporal interval). We obtain an affine

transformation M which maps polygon vertices at the former time instant to the latter:

M = A′
t+∆

(A′
t
)+ (7.12)

Now consider three non co-linear vertices of A′
t

at locations X = [x1 x2 x3] trans-

formed to locations Y =
[

y
1
y

2
y

3

]

:

MX = Y (7.13)

We define a static point p with reference to the feature, in barycentric coordinates as

α:

p = Xα (7.14)

Applying transformation M to the point p:

Mp = MXα (7.15)

Mp = Y α (7.16)

we observe that α remains constant relative to the feature reference frame, which has

changed. The distance d(p) which point p moves, relative to reference frame F
B(.)

is:

d(p) = |α1(x1 − y1
) + α2(x2 − y2

) + α3(x3 − y3
)| (7.17)

TIME AND POSE CUES FOR MOTION EMPHASIS 154

Consider a field d(.) ∈ < defined over all points. In cases of pure rotation, the minimum

should be zero valued and coincident with the location of the static pivot i.e. Mp = p:

Mp− p = 0 (7.18)

MXα−Xα = 0 (7.19)

(M − I)Xα = 0 (7.20)

Introducing the notation V = (M−I)X, we can solve the following homogeneous linear

system to locate the pivot point α in barycentric coordinates:

V α = 0 (7.21)

As with Algorithm 1, in noisy conditions angular velocity governs the accuracy of the

estimate. In the case of no rotation, for example pure scale or translation, there will

not be a single minimum. We therefore extend this algorithm to operate over multiple

frames as with Algorithm 1; averaging pivot estimates over each frame and weighting

these estimates according to the amount of rotary motion detected. Since a quantita-

tive estimate for the amount of rotary motion is unavailable using this algorithm, we

obtain an estimate of θ (equation 7.11) for this weighting using the algebraic technique

of Algorithm 1.

7.2.3 Evidence Gathering, Geometric Solutions

Algorithm 3: Circle fitting method

Our third algorithm accepts three samples of the feature polygon at different time in-

stants [t, t + ∆
2 , t + ∆] (where ∆ is a user defined temporal interval), to produce an

estimate of pivot point location.

If the motion of vertices A′
t
in frame F

B(t)
is approximately described by rotation about

a fixed pivot p, we may consider the trajectory of single vertex a′t of that feature to

follow a circular path. We sample the position of a′t at three distinct time intervals,

and fit a circle to interpolate those points; described by both a centre p = (i, j)T

and a radius r. The circle fitting method first computes the two chords of the circle,

H1 = a′t+∆− a′t+∆

2

and H2 = a′
t+∆

2

− a′t. We then intersect the perpendicular bisectors

of H1 and H2, to obtain p. Radius r is obtained as the L2 norm of the vector from p

to either of the midpoints on H1 or H2. The centre p of the fitted circle is the pivot

point. This process is repeated for each vertex a′t in A′
t

and an average pivot point

computed over all vertices.

TIME AND POSE CUES FOR MOTION EMPHASIS 155

As with the previous algorithms, this method extends to take into account multiple

temporal samples to compute an improved estimate for the pivot location. However

we found that averaging estimates for p over time did not give reliable results since

outliers, which occur frequently due to noise, greatly skew the average. These outliers

often exhibit very different radii from inlier estimates. Rather than throw away this

useful indicator, we use the information to help combine estimates for p using a Hough-

like accumulator approach.

By fitting multiple circles over different time intervals we accumulate “votes” for circle

parameters. We define a 3D accumulator space, and for every vote a 3D Gaussian of

constant standard deviation and mean is added to the space, centred at [pT r]T . An

associated “confidence” weight ω(θ) is assigned to each of these votes using an identi-

cal scheme to algorithms 1 and 2 (see equation 7.11). In this algorithm, we obtain θ

from the inner product of the normalised perpendicular bisectors. The values of each

vote’s distribution, in accumulator space, are weighted by ω(θ). Similar circle param-

eterisations accumulate votes to form heavily weighted distributions in local regions

of space. Outliers are separated from this distribution by their poor estimates for r.

After several temporal samples, the maximum vote in 3D space is deemed to represent

the best fit circle parameters. The centre of this circle corresponds to the pivot point

estimate. The use of Gaussians, rather than points, to cast votes in the accumulator

space enables rapid vote accumulation without demanding a large number of temporal

intervals to be sampled.

Algorithm 4: Linear accumulation method

Our fourth algorithm is an adaptation of algorithm 3, again requiring three temporal

samples of the feature polygon (at time instants [t, t + ∆
2 , t + ∆]). We reconstruct

the two chords of the circle as before, and compute the two perpendicular bisectors.

However we do not intersect the two bisectors to obtain a single pivot point centre

and radius as with algorithm 3. Rather, we densely sample the distribution of points

which lie both within the bounds of the video frame, and upon the infinitely long lines

congruent with the two perpendicular bisectors. Each of these points is regarded as a

potential pivot point, and cast into a 2D accumulator array. As with algorithm 3, the

votes are weighted according to the magnitude of rotary motion using the functional of

equation 7.11. Over multiple temporal samples, votes accumulate in this space creating

maxima around the best estimates for pivot point location.

7.2.4 Summary of Algorithms

We have described four algorithms for pivot point recovery: the former two driven

by the closed form solution of eigen-problems, and the latter two driven by iterative,

TIME AND POSE CUES FOR MOTION EMPHASIS 156

Hough-like evidence gathering procedures. All algorithms can be applied to estimate

motion between two instants t and t + ∆ (i.e. over a single interval). Under zero

noise (i.e. synthetic) conditions all algorithms recover the pivot point location exactly.

However the presence of such noise typically renders single interval estimates unusable,

and as we will show, performance of each of the four algorithms degrades differently as

noise increases.

To improve the accuracy of the estimate under noise, we have described how multiple

temporal intervals may be examined simultaneously using each of the four algorithms.

In the case of the eigen-problem solutions, we have described a method of combination

for multiple frame pairs using a weighted average (where greater credence is attributed

to pivot measurements resulting from larger rotary motion). This works well for algo-

rithms 1 and 2, however the approach is impractical for algorithms 3 and 4. In the case

of these evidence gathering approaches, the accumulator space is instead populated

with multiple “votes” to create an improved estimate over multiple temporal intervals.

We now present the results of comparing the performance of each algorithm, using both

real and synthetic data.

7.2.5 Comparison of Pivot Recovery Algorithms

For the purposes of algorithm comparison and evaluation we constructed a test rig

(shown in Figure 7-12), and used the Computer Vision component of Chapter 6 to

track the planar motion of the several coloured rectangles pivoting upon one another.

This assembly was mounted upon a sliding base, which allowed the rig to translate. We

filmed 800 frames of the rig being manipulated in a random fashion by a human oper-

ator; these form the CONTRAPTION sequence which we used as the sample of “real”

data when evaluating the four algorithms. The physical pivot points in the sequence

were also manually located via a point-and-click operation to provide a ground truth

for CONTRAPTION, which we used to compare the performance of the algorithms.

Behavioural Predictions

All the algorithms described use samples of either two or three frames in the sequence

(spanning a temporal interval [t, t+∆]), over which a single estimate of the pivot point

location is derived. Recall that in cases of slight rotary motion, the estimated pivot

is likely to be in error since very small movements of the polygons (perhaps, due to

noise) will cause large shifts in the predicated pivot positions. By contrast, we predict

large rotations should cause the estimated pivot location to be much more robust to

noise. Therefore, our first prediction is that the estimation of the static pivot should

improve in accuracy when we use larger temporal intervals (∆), which are more likely

TIME AND POSE CUES FOR MOTION EMPHASIS 157

to span movements with large rotary components. Second, when the estimates from

multiple temporal intervals are combined together, we predict the system will perform

with greater accuracy. Third, we predict that increasing levels noise in the positioning

of the tracked polygons will cause the estimated pivot location exhibit increasing levels

of error.

Our three test variables are therefore temporal interval size (∆), the number of temporal

intervals to be combined in producing the estimate, and the level of measurement noise

in the positions of polygon vertices.

Variation of temporal interval size (∆)

We first applied each of the algorithms to a synthetic data set, in which a polygon from

the STAIRS sequence was subjected to rotation within 70◦ over 100 frames. All four

algorithms recovered the pivot point exactly when examining single temporal intervals

(subject to some very small numerical error), regardless of the temporal interval size

(∆) used. Figure 7-3 gives a representative result.

We then assessed performance on real data, by applying each algorithm to features

corresponding to the white and pink slabs within the CONTRAPTION sequence. We

tested only a single temporal interval within this sequence, and examined the effect of

varying the temporal interval size (∆). For all algorithms, as we increased ∆, the esti-

mated location of the pivot point tended toward the manually specified ground truth.

Figure 7-4 (right) gives a representative plot showing algorithm two’s performance on

this sequence. An optimal value for ∆ is video dependent, since such a choice is de-

termined by the nature of motion within the temporal window spanned by [t, t + ∆].

However the trend suggests that higher values of ∆ produce improved results, and our

experimentation on other slab combinations in the CONTRAPTION sequence led to

similar conclusions. Our empirical evaluation suggests that a temporal interval size of

25 frames is suitable for accurate pivot point recovery on this sequence. Keeping the

interval constant at 25, we again applied each of the algorithms to the CONTRAP-

TION sequence. The resulting error (Euclidean distance between the estimated and

ground truth pivot locations) is shown in Figure 7-4, left. Algorithm 2 exhibited su-

perior performance (i.e. minimum Euclidean distance between estimated and ground

truth pivot points) relative to the other algorithms.

Combining multiple temporal intervals

The scattering of individual pivot estimates for real data clearly demonstrates the

need for combining estimates from multiple temporal intervals (Figure 7-4, bottom).

Individual estimations form an approximately Gaussian distribution of pivot points, the

TIME AND POSE CUES FOR MOTION EMPHASIS 158

mean of which closely approximates the ground truth location for the physical pivot.

As the number of temporal intervals used to create a pivot estimate increases, a smaller

error (Euclidean distance between the estimated and ground truth pivot points) was

observed for all four algorithms. However the improvement was most notable for the

evidence gathering algorithms (3 and 4). Algorithms 1 and 2 required fewer temporal

intervals than algorithms 3 and 4 to produce reliable mean estimates of the pivot

location. A likely explanation is that the vote accumulation approaches adopted by

the latter two algorithms require a larger number of temporal samples to be recorded

in the accumulator space before maxima begin to emerge above the level of noise.

Impact of tracker noise on performance

Although algorithm 2 exhibited superior accuracy for the CONTRAPTION real video

sequence, this is by no means conclusive since different video sequences may exhibit dif-

fering degrees of noise (so affecting the accuracy of pivot point recovery). We therefore

created a synthetic simulation of two articulated features — the positions of poly-

gon vertices in this simulation were subjected to zero centred, additive Gaussian noise

G(0, σ). The performance of each algorithm was compared under increasing standard

deviations σ of this additive noise. The temporal interval size (∆) was held constant at

25 frames (1 second) during these experiments, and the number of temporal intervals

tested was held constant at 74. Thus pivot point estimation was based on 100 frames

(4 seconds) of data.

Figure 7-2 (left) shows how increasing noise causes an increase in error (measured as

the Euclidean distance between measured and ground truth pivot locations) for all

four algorithms. By inspection we make the qualitative observation that algorithm

two exhibits superior robustness to such noise. We can quantify this robustness using

Student’s t-test (Figure 7-2, right). Student’s t-test [152] is a standard method used

to determine, to a specified level of significance, whether two distributions (in our case

the ground truth and estimated pivot distributions) are significantly different. The

process involves deriving a scalar “t-value” from the means and variances of both dis-

tributions. This “t-value” is compared with a corresponding value from a statistical

table representing a particular confidence level. If the measured “t-value” is greater

than the tabulated value, then the distributions are different.

In our experiments we increased the level of noise (σ) until we were “significantly sure”

(95% certain) that the distributions differed. We entered the t-table at this level of

certainty, and obtained a threshold t-value of 2.02. Thus the value of σ that caused the

measured t-value to rise above 2.02 (marked as a black line in Figure 7-2), corresponds

to the level of noise at which the algorithm became unreliable. The results confirm our

TIME AND POSE CUES FOR MOTION EMPHASIS 159

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

E
st

im
at

io
n

er
ro

r
(d

is
ta

nc
e

fr
om

 g
. t

ru
th

)

Magnitude of noise (standard deviation)

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

Magnitude of noise (standard deviation)

S
tu

de
nt

 t−
te

st
 c

oe
ffi

ci
en

t

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

Cut−off

Figure 7-2 Comparing the performance of the four pivot point location algorithms us-
ing simulated data. The polygon vertices were subjected to zero mean Gaussian noise
of increasing standard deviation, resulting in increasing levels of estimation error when
recovering the pivot point — error measured as the Euclidean distance between estimated
and ground truth pivot (left). The trend is plotted as a solid line, measurements as a
dotted line. The test ran over one hundred simulated frames, sampling frame pairs at
time intervals of 25 frames (1 second). Student’s t-test (right) was employed to decide the
level of noise at which the distribution of estimated pivots differed from the ground truth
significantly (i.e. with 95% confidence). This threshold value (derived from statistical
tables) is plotted in black. Both graphs show algorithm 2 to out-perform the others, the
latter graph demonstrates tolerance of up to one standard deviation of noise.

180 190 200 210 220 230 240 250 260

210

220

230

240

250

260

270

180 190 200 210 220 230 240 250 260
210

220

230

240

250

260

270

Figure 7-3 Examples of pivot point recovery using algorithm two, forming part of the
synthetic test case used to generate Figure 7-2. A limb (feature E, original position in
red — see Figure 6-2) from the STAIRS sequence was subjected to synthetic rotation
within 70◦ for 4 seconds (100 frames). Left: polygon vertices perturbed by two standard
deviations of zero centred Gaussian noise, produces a small cluster of potential pivots the
mean of which closely corresponds to the ground truth (two standard deviations plotted
in magenta). Right: in the zero noise case the pivot is recovered exactly — this is true for
all four algorithms.

TIME AND POSE CUES FOR MOTION EMPHASIS 160

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm Number

E
st

im
at

io
n

er
ro

r
ov

er
 8

00
 fr

am
es

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Temporal window size

A
lg

. 2
 −

 E
st

im
at

io
n

er
ro

r
(d

is
ta

nc
e

fr
om

 g
.tr

ut
h)

Figure 7-4 Applying the algorithms to 800 frames of the CONTRAPTION sequence,
specifically to determine the pivot point between the pink and white slabs. Bottom: The
estimated pivot points due to algorithm 2, between multiple frame pairs sampled at an
interval of ∆ = 25; the error distribution of estimated pivots about the ground truth
approximates a zero mean Gaussian. The estimated (weighted) mean pivot location is
very close to the ground truth (red star). Top left: per algorithm comparison of errors in
pivot position after 800 frames. Top right: Showing that pivot estimation error declines
as the sampling distance between frames in the frame pair increases (algorithm 2).

earlier observations; algorithm two exhibits superior robustness to noise — differing

from the ground truth significantly at around σ = 1. The values for σ at which the

other algorithms became unreliable were, at best, a third of this value.

7.3 Recovering Hierarchical Articulated Structure and Pose

Algorithm 2 appears to estimate pivot points with superior accuracy and robustness

than the other proposed algorithms. We therefore applied this algorithm to recover

one pivot point for each ordered pair of tracked features in the video (denoting a sin-

TIME AND POSE CUES FOR MOTION EMPHASIS 161

gle ordered pair as {A,B}). Observe that due to noise in the estimation process, the

computed pivot of A about B, and B about A, may not be identical; thus the pivots

resulting from pairing {A,B} 6= {B,A}. Computing a pivot for each ordered pair of

features requires 2Cn
2 ordered pairings for n tracked features; this is not a large number

for typical sequences (for example, 132 for the STAIRS sequence), and this computa-

tional load can be further reduced by only testing feature pairs whose polygons intersect

for a significant proportion of their lifetime.

Many of the computed pivots do not correspond to physically existing articulations

between feature pairs, and should be discarded. We decide which to discard by eval-

uating a “quality” metric for each estimated pivot, and discarding pivots that score

poorly. This filtering process leaves us only with true pivot points, and so with a

final articulated structure for the tracked subject. We can may then fit the original

tracked polygons to the derived articulated structure, so generating a pose vector for

each frame.

Quality Metric

If two features A and B are articulated, then in cases where we can observe those

features with no measurement noise, the following properties hold:

1. The world coordinate position of the pivot between features A and B should, at

all times, lie within the area of intersection of both features A and B.

2. The motion of feature A relative to feature B should be well described by a

rotation of A in the reference frames of B, about a static pivot.

3. The motion of feature B relative to feature A should, similarly, be well described

by a rotation of B in the reference frame of A, about a static pivot.

4. The world coordinate position of the pivot point of A on B and the pivot point

of B on A should at all times be coincident.

Our assumption is that if these properties are violated, then features are not articu-

lated. Of course estimation errors may cause violation of these properties, and so they

are better viewed as heuristics — compliance with these heuristics indicates a “good

quality” estimated pivot point, and so a likely articulation between A and B. We con-

struct the quality function for a potentially articulated feature pair {A,B} as follows.

For a well estimated pivot point p in F
B(t)

, the motion of A′
t
over time should be well

described by a rotation R
θ(t)

about p; thus we desire a small residual r1 averaged over

TIME AND POSE CUES FOR MOTION EMPHASIS 162

all n frames:

r1 =
1

n

n
∑

t=2

∣

∣

∣
A′

t−1
−R

θ(t)
(A′

t
− p1T) + p1T

∣

∣

∣
(7.22)

This r1 forms the first term in the quality function.

Now consider that the world coordinates of the pivot of A with respect to B at time t

(which we write as p
A(t)

) and the pivot of B with respect to A (which we write as p
B(t)

)

should be coincident under zero noise conditions. Thus we desire a small residual r2

averaged over all n frames:

r2 =
1

n

n
∑

t=1

∣

∣

∣p
A(t)
− p

B(t)

∣

∣

∣ (7.23)

The position of the pivot p
t

between features A and B at time t is computed as

p
t
= 1

2(p
A(t)

+ p
B(t)

).

Finally, we add a penalty term for the distance that the pivot lies outside the area of

intersection of A and B; specifically the Euclidean distance between p
t
and the closest

pixel within the intersection area. This distance is averaged over time to obtain penalty

term Φ. We write the complete quality function Q[A,B] as a sum of weighted terms:

Q[A,B] = exp(−k(r1 + r2 + Φ)) (7.24)

where k controls the decay of a pivot point’s viability as this sum of error terms in-

creases, we find a value of around k = 0.1 suitable for our source data.

Note that our system does not yet cater for cases where features are rigidly joined,

with little or no rotary motion present. Currently such features are classified as non-

articulated, and we assume for the time being that such groups of features have been

segmented as a single rigid component.

Recovering Pose Vectors

The algorithms described thus far are capable of recovering general articulated motion

of features in the plane. For ease of representation and later manipulation, we assumed

that such features form a hierarchical structure. Although this is a specialisation of

the system, most common subject matter, for example people, are admitted under this

model. It is a simple matter to detect the presence of cycles in the recovered articulated

structure, and currently we return an error in such situations, specifying that time and

pose cues can not be applied to that particular object.

TIME AND POSE CUES FOR MOTION EMPHASIS 163

Like most hierarchical pose representations, we specify the position of a node, say an

arm, in relation to a component higher in the hierarchy, which in turn may be specified

in relation to a component higher still in the hierarchy, and so on recursively to the

root node. This can produce positional inaccuracies in the leaf nodes due to a build

up of multiplicative errors as we descend the hierarchy. We therefore carefully choose

a feature to serve as a root node, such that this choice minimises the longest hop count

from the root node to a leaf node. In the case of the STAIRS sequence, the choice of

root feature is the torso. In the CONTRAPTION sequence, the root is the red slab.

We wish to construct a numerical representation of the subject’s pose at each time

instant t, by searching for a best fit of the recovered articulated structure to the set of

tracked features. Recall that each feature was tracked independently in Section 6.3.2

— the resulting tracked polygons each represent the “best” estimate obtainable for a

feature’s position in the raw footage, given that no global model or constraints were

available at the time. By combining the raw feature position estimates with the re-

covered articulated model, we not only produce a numerical “pose vector” for each

time instant, but also impose physical constraints to further refine the accuracy of

tracked polygons. We form an initial estimate for this “pose vector”, then search for

an “optimal” pose local to this using a Nelder-Mead search [114]. For our purposes,

the optimal pose is the configuration which minimises the Euclidean distance between

the tracked feature polygon vertices, and the vertices generated by re-synthesising the

feature polygon positions from the putative “optimal” pose.

The structure and initial estimate of the pose vector is formed as follows. The first

four elements of the vector are a representation of the four LCAT parameters which

transform the root feature from its initial position (in the first frame), to its current

position (in frame t). This is extracted directly from the feature tracker. The transla-

tional component of the LCAT is converted from Cartesian to polar form, thus the first

four elements of the pose vector are [φ, r, θ, s]; where φ is the direction of translation,

r is the translation magnitude, θ is the orientation of the root object and s is a uniform

scaling.

V (t) =
[

φ r θ s θ1 θ2 ... θn

]T
(7.25)

Features in the structure are visited via a pre-order traversal of the hierarchy. Each

subsequent entry in the pose vector specifies the angle at which the newly visited feature

is orientated, relative to its parent feature (i.e. about the parent-child pivot point).

This angle is relative to the child’s position in the first frame; at time t = 1 all such

angles will be zero — the angle in the pose vector encodes the change in orientation

between frame 1 and frame t. In our initial estimate, this angle is extracted from the

TIME AND POSE CUES FOR MOTION EMPHASIS 164

LCAT between the child’s position relative to the parent in frame 1 and frame t. In

equation 7.25 each of these angles is denoted θi where i = [1, n], n being the number of

features in the hierarchy, and i being an index into the ordering in which the feature

hierarchy is traversed.

7.4 Temporal Re-sampling

The process of Section 7.2 results in a series of vectors V (t) for each frame t. These

vectors form individual points in a high dimensional space, representing the subject’s

pose at a given instant. The trajectory of these points encode the pose of the subject

moving over time. Manipulating this pose space gives rise to novel time and pose cues

which may be used to emphasise motion in our system. We may choose to manipulate

only a local region of one dimension of this space; affecting the position of one joint

over a small temporal window. We term these “local” pose transformations, and show

in the next subsection that cartoon “anticipation” effects can be created by this class

of transformation. We may also choose to scale or deform one or more dimension of

this pose space globally, i.e. over all time. This has the effect of modifying the basis of

the pose space. We refer to these as “global” pose transformations, and discuss these

in subsection 7.4.2.

7.4.1 Temporally Local transformation (anticipation)

Anticipation is an animation technique applied to objects as they begin to move; the

technique is to create a brief motion in the opposite direction, which serves to empha-

sise the subsequent large scale movement of an object (Figure 7-5). The anticipation

cue communicates to the audience what is about to happen. Anticipation acts upon

a subject locally — only within a temporal window surrounding the beginning of the

movement to be emphasised, and only upon the feature performing that movement.

We have implemented anticipation as a 1D signal filtering process. Each individual,

time varying component of the pose vector V (.) (for example, the angle a metronome

beater makes with its base) is fed through an “anticipation filter”, which outputs an

“anticipated” version of that pose signal (Figure 7-5). The filter also accepts six user

parameters which control the behaviour of the anticipation motion cue. The filtering

process operates in two stages. First, the 1D signal is scanned to identify the temporal

windows over which anticipation should be applied. Second, the effect is applied to

each of these windows independently.

TIME AND POSE CUES FOR MOTION EMPHASIS 165

Figure 7-5 Illustrating how animators can apply anticipation to emphasise motion, in
this case a Disney-style facial animation (reproduced from [169]).

Identifying Temporal Windows for Anticipation

Given a 1D input signal, the filter first identifies temporal windows for application

of anticipation. These are characterised by the presence of high acceleration magni-

tudes (above a certain threshold), which exist for a significant number of consecutive

frames (a further threshold) in the signal. These two thresholds form part of the set

of user parameters that control the effect. This process allows us to identify a set of

temporal windows corresponding to large motion changes, which an animator would

typically emphasise using anticipation. A high acceleration magnitude may or may not

generate a change of direction in the signal and, after numerous conversations with

animators [130], we have determined that the manifestation of the anticipation cue

differs slightly between these two cases:

Case 1. First, consider the case where acceleration causes a change of direction in the 1D

signal; for example, a pendulum at the turning point of its swing. Regardless

of the acceleration magnitude of the pendulum beater (which may rise, remain

constant, or even fall during such a transition), the anticipation effect is localised

to the instant at which the beater changes direction i.e. the turning point of the

signal; the minimum of the magnitude of the first derivative with respect to time.

In the case of the METRONOME sequence (Figure 7-15), a brief swinging motion

would be made, say to the left, just prior to the recoil of the metronome beater

to the right. The object then gradually “catches up” with the spatiotemporal

position of the original, un-anticipated object at a later instant.

Case 2. Now consider the second case where acceleration does not cause change of direc-

tion in the 1D signal; for example, a projectile already in motion, which acquires

TIME AND POSE CUES FOR MOTION EMPHASIS 166

Recoil (/ r)ω

Skew (/ s)ω

working interval ()ω

Skew (/ s)ω

Recoil (/ r)ω

Anticipated Signal

Original Signal

Anticipated Signal

Original Signal

Pause (/)ρω

Pause (/)ρω1L 2L

3L

4L

5L

1,2L
3L

4L

5LSi
gn

al
 P

(t
)

Time (t)

temporal window

Emphasis (E)

original
turning
point

working interval
temporal window &

Emphasis (E)

Si
gn

al
 P

(t
)

Time (t)

(no pause.. =0)ρ

Figure 7-6 Schematic examples of the anticipation filter under case one (signal direction
of motion changes) and case two (signal direction of motion unaffected). Case two has
been illustrated with pause parameter ρ = 0. Section 7.4.1 contains an explanation of the
user parameters ρ, s, r, and ε which influence the behaviour of the effect.

a sudden burst (or decrease) in thrust, i.e. a change in acceleration magnitude.

The anticipation effect is manifested as a short lag just prior to this sudden ac-

celeration change; i.e. at the maximum in the magnitude of the third derivative

with respect to time. As with case 2, the projectile swiftly accelerates after antic-

ipation to catch up with the spatiotemporal position of the original, unaffected

projectile. Interestingly a projectile moving from rest is equally well modelled by

either the first or second case, since the locations of zero speed (minimum first

derivative) and maximum acceleration change (maximum third derivative) are

coincident.

Synthesising Anticipation within a Temporal Window

Each temporal window identified for application of the anticipation cue is processed

independently, and we now consider manipulation of one such a window. The first task

of the “anticipation filter” is to scan the pose signal to determine whether a change

of direction occurs within the duration of the temporal window. This test determines

which criterion from the respective case (1 or 2) is used to determine the instant at

which anticipated motion should be “inserted” into the sequence; we denote this time

instant by τ . We define a temporal “working interval” as the time window within

which we pose is varied from the original signal, in order to introduce anticipation.

This working interval extends from time τ to the end of the temporal window, which

we write as τ + ω. In all cases the direction of the anticipatory motion will be in

opposition to the direction in which acceleration acts. We refer the reader to Figure 7-

6 to assist in the explanation of the subsequent signal manipulation.

TIME AND POSE CUES FOR MOTION EMPHASIS 167

We create the anticipation effect by modifying the 1D pose signal to follow a new

curve, interpolating five landmark points in space [t, P (t)] ∈ <2, where P (t) indicates

the value of the pose signal at time t. Aside from the two parameters used to control

activation of the effect, there are four user parameters ρ, s, r, and ε (where ρ ≤ s ≤ r).
These influence the location of the five landmark points [L1...5], which in turn influences

the behaviour of the anticipation. We now explain the positioning of each of the five

landmarks and the effect the user parameters have on this process. Throughout, we use

notation p(t) to indicate the original (unanticipated) pose signal at time t, and p′(t) to

denote the new, anticipated signal.

L1. The first landmark marks the point at which the original and anticipated pose

signals become dissimilar, and so L1 = (τ, p(τ))T . Recall τ is the determined by

the algorithm of either case 1 or 2, as described in the previous subsection.

L2. At the instant τ , a short pause may be introduced which “freezes” the pose. The

duration of this pause is a fraction of the “working interval” — specifically ω/ρ

frames, where ρ is a user parameter. The second landmark directly follows this

pause, and so L2 = (τ + ω/ρ, p(τ))T .

L3. Following the pause, the pose is sharply adjusted in the direction opposite to

acceleration, to “anticipate” the impending motion. The magnitude (E), and so

the emphasis of, this anticipatory action is proportional to the magnitude of ac-

celeration: E = ε| ¨p(τ)|. Here ε is a user parameter (a constant of proportionality)

which influences the magnitude of the effect. A further user parameter, s, speci-

fies the instant at which the anticipation is “released” to allow the movement to

spring back in its original direction. We term s the “skew” parameter, since can

be used to skew the timing of the anticipation to produce a long draw back and

quick release, or a sharp draw back and slow release. Referring back to Williams’

guidelines for anticipation, one would typically desire the former effect (s > 0.5),

however our framework allows the animator to explore alternatives. The third

landmark is thus located at the release point of this anticipated signal, and so

L3 = (s,E)T .

L4. The rate at which the feature springs back to “catch up” with the unanticipated

motion is governed by the gradient between the third and fifth landmarks. This

can be controlled by forcing the curve through a fourth landmark L4 = (τ +

ω/r, p(τ))T .

L5. Finally the point at which the anticipated and original pose signals coincide is

specified by the final landmark, L5 = (τ + ω, p(τ + ω))T .

TIME AND POSE CUES FOR MOTION EMPHASIS 168

0 50 100 150 200 250 300

50

100

150

200

250

0

50

100

150

200

250

300

T
im

e

Y

X

0 50 100 150 200 250 300

50

100

150

200

250

0

50

100

150

200

250

300

T
im

e

Y

X

Catch up

Anticipation

Pause

0 20 40 60 80 100 120 140 160 180

−1

−0.5

0

0.5

1

Time (frames)

B
ea

te
r

or
ie

nt
at

io
n

(r
ad

s)

Pause

Anticipation

Catch−up

Figure 7-7 Top: Time lapse representation of the beater in the METRONOME sequence,
before (left) and after (right) application of the anticipation filter to the pose vectors.
Bottom: Visualisation of the 5th element of the METRONOME pose vector (encoding
the angle between metronome beater and body), before (blue) and after (black) passing
through the anticipation filter with ρ = 0, ε = 150, s = 0.8, r = 0.9. Green and red vectors
indicate the gradients at L

4
and L

5
used to interpolate those two control points.

The anticipated signal p′(t) at any time t within the temporal window is created by

interpolating these five landmarks, the following manner. In the first stage of the

anticipation, landmarks L1 and L2 are linearly interpolated to create a simple pause

in the signal. The pause component of the anticipation is created using the parametric

line π1(c) where c = [0, 1]:

π1(c) = L1 + c(L2 − L1) (7.26)

The second stage of the anticipation is the movement in the opposite direction to the im-

pending motion. We interpolate landmarks L2, L3 and L4 using a cubic Catmull-Rom

spline [51], creating a smooth transition between the pause stage and the anticipatory

TIME AND POSE CUES FOR MOTION EMPHASIS 169

action. Using notation π2(c) we have:

π2(c) =
[

L2 L2 L3 L4

]













−0.5 1 −0.5 0

1.5 −2.5 0 1

−1.5 2 0.5 0

1 −0.5 0 0

























c3

c2

c

1













(7.27)

where the 4 × 4 matrix term is the Catmull-Rom cubic blending matrix. Finally, we

interpolate between landmarks L4 and L5 using a cubic Hermite spline [51]. This family

of splines ensures C1 continuity at both landmarks, so blending the anticipated signal

smoothly with the original signal. The Hermite curve requires specification of position

and velocity at both landmarks. Again, using c as a dummy parameter, this segment

of the anticipation is described by π3(c):

π3(c) =
[

L4 L5 L̇4 L̇5

]













2 −3 0 1

−2 3 0 0

1 −2 1 0

1 −1 0 0

























c3

c2

c

1













(7.28)

where the 4× 4 matrix term is the Hermite cubic blending matrix. We can obtain the

velocity at L5 using a simple finite difference approach on the original, discrete signal

at p(τ +ω). The velocity at L4 is obtained from the partial derivative of equation 7.26

with respect to c.

Figure 7-6 gives two schematic examples of signals undergoing anticipation in cases 1

and 2. Figure 7-7 (bottom) shows the original and anticipated signals used for rendering

the METRONOME sequence, a time lapse representation of which is given in Figure 7-7

(top). The reader is referred to Appendix C for this and other rendered video clips.

7.4.2 Temporally Global transformation (motion exaggeration)

A portrait caricaturist will emphasise unusual or characteristic features of a subject’s

face. Likewise, cartoonists will emphasise unusual motion characteristics, for example

a limp, exhibited by their subjects [98]. Such characteristics may be considered to be

outliers in the cartoonist’s mental model, for example, of people; the more an individ-

ual’s characteristics diverge from the “norm”, the more those characteristics tend to

be emphasised.

Although our system is not equipped with a model of the population, we can learn the

pattern of simple repetitive motions made by a tracked subject, and exaggerate varia-

tions in this pattern. Periodic motion, such as human gait, causes pose vectors to trace

TIME AND POSE CUES FOR MOTION EMPHASIS 170

−1.5
−1

−0.5
0

0.5
1

1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.5

0

0.5

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

0

1

−0.4
−0.2

0
0.2
0.4
0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 7-8 Visualisation of the pose space for STAIRS before (blue) and after (red)
motion exaggeration with F = 2. Graphs produced by projecting the high dimensional
space down into first 3 (above) and 2 (below) principal axes, centring the mean upon the
origin. Arrowheads indicate the direction of time.

a cyclic trajectory within a subspace of the pose space (consisting of all dimensions

minus the first two, which represent translation of the root feature). If several cycles

of motion exist within the video sequence (for example, STAIRS), then it is possible

to reliably compute a mean point in the pose space. Performing a global scaling trans-

formation on the space, with centre of projection at the mean, serves as a basis for

exaggerating variations in the motion over time.

This simple approach not only emphasises variations, for example in gait, but also any

noise introduced by the tracking process. In our motion cartooning application we

desire exaggeration of only the important, principal, motions leaving noise components

unchanged. Our strategy is to perform a principal component analysis (PCA) of the

pose samples taken over duration of the video sequence, to isolate the sub-space within

which the motion principally varies. We produce an eigenmodel of all pose samples

V (t) over time (yielding a mean pose V µ, a collection of column eigenvectors U and

a diagonal matrix of eigenvalues Λ). By scaling the basis specified in each eigenvector

by a multiplicative factor F of its corresponding eigenvalue, we produce a novel set of

pose vectors V ′(t) in which motion appears to be exaggerated.

V ′(t) = U+FΛU(V (t)− V µ) + V µ (7.29)

TIME AND POSE CUES FOR MOTION EMPHASIS 171

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (frames)

F
ar

 h
ip

 jo
in

t a
ng

le
 (

ra
ds

)

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

Time (frames)

F
ar

 k
ne

e
jo

in
t a

ng
le

 (
ra

ds
)

Figure 7-9 Visualisation of signal within two dimensions of the pose space for STAIRS,
corresponding to orientation of the far hip joint (left) and of the far knee joint (right).
Observe the periods of invariance between the original signal (blue) and exaggerated signal
(red), generated by the constraints imposed by the animator.

Figure 7-15, sequence A superimposes the modified positions of feature polygons when

F = 2 over the original video.

Introducing Physical Constraints

While sequence A in Figure 7-15 demonstrates exaggerated motion, the manipulation

of the pose does not yet take into account physical constraints upon the articulated

structure. For example, the feet appear to glide over the steps, and do not appear

to interact with the ground surface in a naturally plausible manner. Constraints to

counter this behaviour must be interactively specified by the animator; we allow users

to select temporal windows over which certain features (for example the feet), are to

remain coincident with the original sequence. Although a complete solution to the

problem of motion exaggeration under constraints lies within the realms of inverse

kinematics, we have found that our combination of localised input from the animator

with the global transformation of the motion exaggeration, to produce aesthetically

acceptable output.

To simplify matters we state that if, at a given instant, a feature is marked to be held

in its original position, then all features between that feature and the root feature must

also to match their original position. Thus we can derive a series of temporal windows

for each feature during which their motion should not be emphasised.

We encode these temporal windows in a matrix of weights, which we will write as ω.

This matrix is formed as a concatenation of column vectors ω(t), each corresponding

to the pose vector V (t) at time t ∈ [1, n].

ω =
[

ω(1) ω(2) ... ω(n)
]

(7.30)

TIME AND POSE CUES FOR MOTION EMPHASIS 172

A. →

B. →

→ →

→ →

→

→

Figure 7-10 Stills from the source STAIRS sequence, with the positions of the ex-
aggerated feature polygons overlaid. Motion has been exaggerated using physical con-
straints in sequence B, and without constraints in sequence A. Observe the improved
placement of the feet in B. Approximately one still per five frames (see animations
videos/stairs exaggerate and videos/stairs exaggerate polys).

TIME AND POSE CUES FOR MOTION EMPHASIS 173

Figure 7-11 Four stills from the videos/stairs exaggerate animation in Appendix C.
We have introduced motion exaggeration into the STAIRS sequence, and applied mous-
tache and pith helmet (using the rotoscoping features of the Video Paintbox, Section 8.4.3)
to produce an animation reminiscent of Monty Python’s Flying Circus [BBC 1969–74].

If, at particular instant t, we desire the ith component of the pose to follow its original

rather than exaggerated trajectory, we set the respective matrix element ωt,i to be zero.

Consecutive zero valued elements within a particular row of ω therefore correspond to

temporal windows during which the motion of a particular pose component should not

to be exaggerated. We iterate through each row of ω in turn. Elements in the row are

assigned values in proportion to their distance from the nearest zero valued element

on that row. These values are normalised to rise to unity halfway between two given

temporal windows. Each matrix element ωt,i now contains a scalar weight, representing

the degree of exaggeration to apply to each pose component i at each time t. To produce

our exaggerated, yet physically constrained pose V ′′(t) at time t we linearly interpolate

between the original pose (V (t)) and the unconstrained, exaggerated pose (V ’(t), see

equation 7.29) using:

V ′′(t) = V (t) + ω(t)(V ′(t)− V (t)) (7.31)

Figure 7-10 (sequence B) gives an example of the resulting animated sequence using the

STAIRS data. As with sequence A, feature polygons have been superimposed on the

original video to compare the two sequences. The animator has interactively specified

various temporal windows within which the feet should coincide with the original data

(whilst they are on the ground), and also specified that all features should start and

end coinciding with the original data.

7.5 Video Re-synthesis

Once the pose vectors have been manipulated to introduce motion cues, it remains to

re-synthesise the video sequence using the novel pose data. This involves painting each

feature polygon with a suitable texture sampled from the video (and then composit-

TIME AND POSE CUES FOR MOTION EMPHASIS 174

Figure 7-12 Pose recovery and manipulation. Left: A frame from the CONTRAPTION
sequence, with pivot points and articulated structure recovered automatically. The recov-
ered pose vector is shown inset. Right: Overwriting the last dimension (angle between
white and yellow slabs) of the first 50 frames with values from 0 to 2π in equal increments.

ing the polygons in the correct depth order, in accordance with the depth information

recovered in Section 6.3.3). This re-texturing may introduce difficulties, since the mod-

ified pose may expose regions of features that were occluded in the source video.

Our solution to sampling texture is similar to that used in the occlusion buffer of

Section 6.4.3. We sample as much unoccluded texture as possible at a time instant t,

and then fill in remaining “holes” in the texture by sampling neighbouring frames in

alternation, i.e. t−1, t+1, t−2, t+2, and so on. This gives a reasonable reconstruction

of the feature texture local to time t, so allowing for some variation in the reconstructed

texture due to temporally local illumination changes in the video. If any holes remain

in the texture they are filled using the mean RGB colour of the recovered texture.

All that remains is to decide the instant t from which to begin sampling texture. In the

occlusion buffer of Section 6.4.3, the feature to be re-textured invariably occupied the

same spatiotemporal position as in the original video. Thus if we wished to re-texture

an object in frame i, we began sampling texture at time t = i. In the case of time and

pose cues, this is not necessarily true; the spatiotemporal position of a feature may dif-

fer considerably from its position in the original video, due to our pose manipulations.

We therefore begin sampling texture from an instant t in the original video where the

feature is in approximately the same position as the feature in the manipulated pose,

to take into account local lighting changes. Furthermore, there may be many such

instants in the original video and we should sample from the instant closest in time to

the current frame being rendered; this permits local lighting to vary over time.

TIME AND POSE CUES FOR MOTION EMPHASIS 175

Motion Compn.
and Tracking

Feature Depth
Recovery

Visual Motion
Emphasis

Output
AnimationSequence

Source Image

Video Paintbox (Motion Subsystems)

Ch.6 (Vision Comp.)
Ch.6 (Gfx. Comp.)Ch.7

Time and Pose
Motion Emphasis

Figure 7-13 Schematic illustrating the flow of control and data in the Video Paintbox
subsystems dealing with motion emphasis.

Fortunately t is straightforward to determine, since we have access to pose vectors which

describe the feature’s position in both the original and motion emphasised sequences.

Suppose we wish to render a particular frame i. We first determine the feature’s position

at time i in the emphasised pose. We then examine each vector j of the original pose

computing a spatial distance measure dj — the mean Euclidean distance between the

vertices of the original and emphasised feature at time j. We choose the start instant

t as:

t = argmint(αdt + β|t− i|) (7.32)

Choice of α and β depend on the rate of lighting variation in the video; in rapidly

varying lighting conditions β should greatly outweigh α. For our data we have used α =

1, β = 0.1. Figure 7-12 demonstrates the results of re-texturing the CONTRAPTION

sequence following pose manipulation. We have simply overwritten the last dimension

(angle between white and yellow slabs) of the first 50 frames with values from 0 to 2π

in equal increments; this causes the slab to appear to spin about its pivot, whilst its

motion remains coherent with the remainder of the contraption. Occlusions between

the yellow and white slabs are correctly handled.

7.6 Integrating Time and Pose Cues within the Video

Paintbox

Time and pose motion cues are applied directly to the output of the Computer Vi-

sion (Chapter 6), which tracks objects within a camera motion compensated version of

the source video sequence. The result is a modified version of the video and associated

tracked features, which are then passed to the Computer Graphics component of Chap-

ter 6. Visual augmentation and deformation cues are then inserted into the animation

— so completing the motion emphasis framework of the Video Paintbox. The benefit

of this arrangement is that visual motion cues, such as object deformations, are seen

to react to the changes in pose caused by effects such as anticipation. Figure 7-15

gives such an example where the METRONOME sequence has been subjected to the

TIME AND POSE CUES FOR MOTION EMPHASIS 176

0 20 40 60 80 100 120
0

20

40

60

80

100

120

time (t)

T
(t

)
−

 F
ut

ur
is

t t
ra

ns
fe

r
fu

nc
tio

n

Figure 7-14 Toward Futurist-like rendering via irregular temporal sampling of the Video
Paintbox output. Left: Duchamp’s “Nude Descending a Staircase II” [1912], and samples
of corresponding source photography by Muybridge [1872]. Middle: Our approximation to
Futurist art using a temporal sampling strategy modelled upon Duchamp’s work. Right:
The transfer function T (.) which created our artwork in blue, with the standard (identity)
transfer function in red.

anticipation process, after which a non-linear (velocity based) deformation has been

used to emphasise drag.

7.7 Varying the Temporal Sampling Rate

Our explanation so far has assumed that the animator desires only to render pose vec-

tors at uniform temporal intervals, and at precisely the same frame rate as the source

video. However there is no technical reason why the animator should be restricted to

this sampling strategy. As a final step we introduce a transfer function T (t) which

accepts a time instant (i.e. a frame) to be rendered (t), and outputs the time instant

of the animation to synthesise via our previously described framework. Standard ren-

dering would simply require T (t) = t. However, interesting effects can be created by

choosing an alternative T (.).

The Futurist art movement created static artworks, many of which depict motion

through the composition of time lapse images sampled at irregular intervals [81]. One

classic example of such a work is Marcel Duchamp’s “Nude Descending a Staircase II”

[1912], which took its inspiration from the photographic work of Edwaerd Muybridge

[1872] (see Figure 7-14, left). As an investigation to conclude our temporal motion

emphasis work, we considered whether it would be possible to combine our tracked

features (for example, arms and legs), with our temporal analysis to produce artwork

similar in spirit to Duchamp’s. To do so required the compositing of frames into a

single image (a minor modification) and a more general functional T (.).

We observe that, rather than painting regular temporal instants, Duchamp painted

TIME AND POSE CUES FOR MOTION EMPHASIS 177

salient key-frames of the subject descending the staircase (Figure 7-14, left). These

glimpses of motion are enough to suggest the full course of the movement, much as a

few salient lines are enough to suggest form in a well drawn piece of artwork. We say

the instants chosen by Duchamp are “temporally salient”.

With this observation in mind, consider the smooth sections of Chapter 6 which form

streak-line motion cues. The temporal regions around the start and end points of these

streak-lines have high temporal salience relative to the remainder of the cue. A few

points around each end of the streak-line are often sufficient for one to correctly predict

the smooth trajectory of the object. Temporal salience is high at the streak-line origin,

but decays as the streak-line progresses — falling to a minimum halfway along the

trajectory. Temporal salience then increases again as we approach the terminus of the

streak-line.

We have devised a non-linear transfer function T , which varies sampling rate according

to the magnitude of temporal salience at the current instant (i.e. proportional to

the minimum time difference between the start and end of a streak-line). A plot of

the resulting functional T (.) for the STAIRS sequence is shown in Figure 7-14, right.

By compositing frames to create a single still image (we have chosen to also assign

painting order in this composition to be proportional temporal salience), we obtain a

result such as that of Figure 7-14, middle. Although the aesthetics of this output do

leave something to be desired (static AR techniques could be applied to improve the

final rendering), the composition of the artwork is, ostensibly, of a similar genre to

that of Duchamp. We suggest that the notion of temporal salience warrants further

investigation, and that the ability to define a user functional T (.) as a final stage in

the motion emphasis pipeline serves as a simple, but interesting, means to access novel

temporal rendering effects.

7.8 Summary and Discussion

We have described a subsystem within the Video Paintbox for automatically intro-

ducing “time and pose” cues into a video driven AR animation. This class of cue

manipulates the timing of the animation, and includes traditional animation effects

such as motion anticipation and exaggeration (motion cartooning). The “time and

pose” subsystem integrates well with the visual motion emphasis work of the previous

Chapter, and serves to broaden the gamut of motion cues available through our Video

Paintbox.

We produce our time and pose cues by manipulating the positions of tracked features

TIME AND POSE CUES FOR MOTION EMPHASIS 178

Figure 7-15 Stills taken from a section of the rendered METRONOME sequence, ex-
hibiting the anticipation cue combined with a deformation motion cue emphasising drag
(described in Section 6.4.2). Approximately one still per five frames. Observe that the
visual deformation cues enable us to characterise movement in the scene, using only these
still frames (see videos/metro warp anticipate and videos/metro anticipate for an-
imations).

over time. Recall that our initial experiments manipulated features independently by

varying their LCAT transforms. The disappointing results which emerged motivated

us to manipulate features using a hierarchical articulated structure, resulting in aes-

thetically superior animations. It is likely that the conceptually high level model of

the articulated structure created more believable movement, because it more closely

matches our mental model of the manner in which objects move — a subject’s motion

TIME AND POSE CUES FOR MOTION EMPHASIS 179

is constrained by its inter-connecting joints, rather than allowing free motion of each

component. If we refer back to the hand-drawn example of anticipation in Figure 7-5 it

is clear that features of the face, for example eyebrows, are not anticipated using func-

tions of their rotation, translation, etc. but according to a mental model of how facial

parts move. This is again an example of how “time and pose” cues require a high level

underlying model, in this case a facial muscle model rather than a rigid hierarchical

structure. Future work might allow substitution of the current hierarchical articulated

model for other models, so improving the generality of the system. We have also shown

that the very nature of “time and pose” motion cues demands large temporal windows

for analysis of the video sequence. Both the use of high level spatial models, and large

temporal windows for motion analysis, are pre-requisites to synthesising time and pose

cues.

There are a number of ways in which we might improve the work in this Chapter. We

might seek to relax the assumptions on the nature of the motion, perhaps extending the

system to emphasise non-planar motion. Alternatively we might revisit the problem of

localising moving pivot points by allowing the animator to introduce a model of pivot

motion. It may also be possible to improve accuracy of the pivot recovery algorithm

(and so of subsequent pose recovery) using a Kalman filter to take advantage of the

Gaussian distribution of error in pivot estimates, and so refine the pivot estimate over

time.

A selection of source and rendered video clips have been included in Appendix C.

