
Chapter 6

Cartoon-style Visual Motion

Emphasis from Video

In this chapter we describe the first of three subsystems comprising the Video Paint-

box; a framework capable of rendering motion within a video sequence in artistic styles,

specifically emulating the visual motion cues commonly employed by traditional car-

toonists. We are able to synthesise a wide range of augmentation cues (streak-lines,

ghosting lines, motion blur) and deformation cues (squash and stretch, exaggerated

drag and inertia) in this single encompassing framework. We also address problem-

atic issues such as camera motion and occlusion handling. Effects are generated by

analysing the trajectories of tracked features over multiple video frames simultane-

ously. Emphasis of motion within video, rather than mitigation against its presence

for the purpose of maintaining temporal coherence, is a unique contribution to AR

facilitated by the higher temporal level of analysis performed by the Video Paintbox.

6.1 Introduction

The character of an animation is influenced not only by the artistic style in which

it is drawn, but also by the manner in which the animated objects appear to move.

Although a number of video driven non-photorealistic animation techniques have been

proposed to address the former issue, the problem of automatically emphasising and

stylising motion within a 2D video sequence has not yet been addressed by the AR

community (Section 2.5.3). In this chapter we describe a novel framework capable of

rendering motion within a video sequence, and demonstrate the automated synthesis

of a wide range of visual motion emphasis cues commonly used by animators1.

1This work has been published in [27] and has been submitted to the journal “Graphical Models”.
An earlier version of this work was published as [25].

122

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 123

Figure 6-1 Examples of motion cues used in traditional animation (top) and the corre-
sponding cues inserted into a video sequence by our system (bottom). From left to right:
two examples of streak-line augmentation cues, the latter with ghosting lines. Two exam-
ples of deformation cues; squash and stretch and suggestion of inertia through deformation.

Animators have evolved various ways of visually emphasising the characteristics of a

moving object (Figure 6-1). Streak-lines are commonly used to emphasise motion,

and typically follow the movement of the tip of the object through space. The artist

can use additional “ghosting” lines that indicate the trailing edge of the object as it

moves along the streak-lines. Ghosting lines are usually perpendicular to streak-lines.

Deformation is often used to emphasise motion, and a popular technique is squash

and stretch in which a body is stretched tangential to its trajectory, whilst conserving

area [98]. Other deformations can be used to emphasise an object’s inertia; a golf club

or pendulum may bend along the shaft to show the end is heavy and the accelerating

force is having trouble moving it. The magnitude of deformation is a function of mo-

tion parameters such as tangential speed, and of the modelled rigidity of the object. In

this chapter we develop a system which processes real video to introduce these motion

cues; comparative examples of hand drawn and synthesised cues are given in Figure 6-1.

Recall that our aim is to develop tools for animators with which they may interact at a

high level, to render artistic effects in video. Users interact with our visual motion em-

phasis framework by drawing around objects in a single frame and specifying the type

of motion emphasis they would like to apply to those objects. This approach makes

the problem of tracking features tractable from a Computer Vision point of view, since

the general segmentation problem prohibits an automated solution to bootstrapping

our feature tracker. It is questionable whether we would prefer to use an automated

segmentation technique for this task, were one to exist. Animation by its very nature is

driven by an individual’s style and creative flair. Although putting traditional anima-

tion techniques into practice can be repetitive and tedious work (exhibiting potential

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 124

for automation), the imagination and direction governing the choice of techniques to

apply is better considered to be a function of individual taste. The same idea motivates

the well established use of teams of lesser skilled “inbetweeners” in commercial anima-

tion. These teams interpolate the key-frames of more experienced animators to cut

production times — a practice pioneered back in the 1940s. Thus we find it desirable

to allow artistic influence in our system through high level interaction; for example

specifying which objects should undergo motion emphasis, and with which techniques.

By contrast, automation should free the animator from the mechanics of how, for ex-

ample, such objects deform — these remain largely constant between animations, as

evidenced by the many animator’s handbooks (for example, [169]) which offer guidance

on motion emphasis techniques. However, these effects are not rigidly defined; their

behaviour can be modulated to fit the animators needs. Likewise, our system allows

performance parameters to be set on motion cues, for example constants controlling

rigidity in a squash and stretch deformation. We describe these parameters with their

respective effects in situ.

6.2 Overview of the Subsystem

We now describe the major components of the subsystem responsible for synthesising

visual motion cues, leaving detailed explanation to subsequent sections of the chapter.

The subsystem has two major components: the Computer Vision component which is

responsible for tracking motion of features (e.g. arm, leg, bat or ball), camera motion

compensation, and depth ordering of features; and the Computer Graphics component,

responsible for the generation of motion cues, and their rendering at the correct depth.

We wish for minimal user interaction with the Computer Vision component, which

must be robust and general; currently users draw polygons in a single frame to identify

features which are then tracked automatically. In contrast, the user is given control

over the graphics component via a set of parameters which influence the style in which

the motion cues are synthesised.

6.3 Computer Vision Component

The Computer Vision component is responsible for tracking features over the video

sequence. A camera motion compensated version of the sequence is first generated; we

do not desire camera motion to bias the observed trajectories of subjects. Features are

then tracked over this compensated sequence. By analysing occlusion during tracking

we determine a relative depth ordering of features, which is later used in the rendering

stage to insert motion cues at the correct scene depth.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 125

6.3.1 Camera Motion Compensation

The nature of the motions we wish to emphasise often demands a moving camera to

capture them, so necessitating a camera (ego) motion compensation step as the first

operation in our subsystem. Ego-motion determination allows the camera to move,

to pan, and even compensates for camera wobble. We model inter-frame motion by a

homography, and perform compensation by applying a robust motion estimation tech-

nique initially proposed by Torr [158].

A number of interest points are first identified within two given images (I and I ′) using a

variant of the Harris corner detector, refined to operate with sub-pixel accuracy (details

of this refinement are given in Appendix A.3). Correspondence between interest points

is estimated using cross-correlation of local image signal — however this produces

many erroneous correspondences. We thus search for an initial approximation to the

homographyH, between corresponding interest points, using RANSAC [47] to minimise

the forward-backward transfer error E(H):

E(H) =
4
∑

i=1

|Hp
i
− q

i
|+ |H−1q

i
− p

i
| (6.1)

where H is a putative homography proposed by a RANSAC iteration, and p
[1,4]

, q
[1,4]

are four pairs of potentially corresponding feature points chosen at random from the

complete set of correspondences identified during cross-correlation. On each iteration

H is computed by solving a homogeneous linear system, comprising two linear equations

for each inhomogeneous point correspondence p
i
= (xi, yi)

T 7→ q
i
= (x′i, y

′
i)

T :

x′i(h7xi + h8yi + h9)− h1xi − h2yi − h3 = 0 (6.2)

y′i(h7xi + h8yi + h9)− h4xi − h5yi − h6 = 0 (6.3)

Where h[1,9] represent the nine elements of the matrix transformation for the planar

homography (see equation 3.22). The homogeneous system is solved directly in matrix

form, using standard linear methods (SVD) to obtain h[1,9]:

















−x1 −y1 −1 0 0 0 x′1x1 x′1y1 x′1
0 0 0 −x1 −y1 −1 y′1x1 y′1y1 y′1

... ...

−x4 −y4 −1 0 0 0 x′4x4 x′4y4 x′4
0 0 0 −x4 −y4 −1 y′4x4 y′4y4 y′4

































h1

h2

...

h8

h9

















= 0 (6.4)

Having established an estimate for H using RANSAC, we refine that estimate using a

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 126

35,44 26 20 17 9 1

A

B

C

D

E

F

G

H I

J
L

K

Figure 6-2 Left: The camera compensated VOLLEY sequence sampled at regular time
intervals. The camera view-port at each instant is outlined in yellow, the tracked feature in
blue (see videos/panorama in Appendix C). Right: STAIRS sequence. (Top) markers are
required to track this more complex subject but are later removed automatically (middle).
Recovery of relative depth ordering permits compositing of features in the correct order
(bottom); labels A–K correspond to the graph of Figure 6-3.

Levenburg-Marquadt iterative search2 (after [154]) to minimise the mean squared RGB

error E′(H) between image pixels which overlap when transformed by H (we write the

subset of overlapping pixels within image I, as X):

E′(H) =
1

|X|
∑

x⊆X

∣

∣I ′(Hx)− I(x)
∣

∣

2
(6.5)

Frames are projected to a single viewpoint via homography to produce a motion com-

pensated sequence in which the tracking of features is subsequently performed. This

process assumes a static background against which camera motion may be judged.

This background should contribute over fifty percent of Harris points in the imaged

scene; in practice this is rarely a difficult target to obtain, since the background is often

reasonably well textured and occupies much of the imaged area.

6.3.2 Tracking Features through the Compensated Sequence

The general problem of tracking remains unsolved in Computer Vision and, like oth-

ers, we now introduce constraints on the source video in order to make the problem

tractable. Users identify features by drawing polygons, which are “shrink wrapped”

to the feature’s edge contour using snake relaxation [167], in an identical manner to

Section 3.4.1. We assume contour motion may be modelled by a linear conformal affine

transform (LCAT) in the image plane, a degenerate form of the affine transform con-

sisting of 4 parameters (uniform scale, orientation, and spatial position — represented

by the 4-tuple h(t)=[s(t), θ(t), x(t), y(t)]). This allows planar motion plus scaling

2The Levenburg-Marquadt algorithm is a general purpose, non-linear smooth function optimiser —
described in [123].

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 127

of features. Variation of these 4 parameters is assumed to well approximate a second

order motion equation over short time intervals:

h(t+ δ) ≈ h(t) +
dh

dt
δ +

d2h

2dt2
δ2 (6.6)

In homogeneous coordinates, a transform from time t to t′ is instantiated by:

M
tt′

(s, θ, x, y) = T (x, y)R(θ)S(s) (6.7)

A feature, F , comprises a set of points whose position varies in time; we denote a point

in the tth frame by the column vector xt = (x, y)T
t . In general these points are not

pixel locations, so we use bilinear interpolation to associate a colour value, I(xt) with

the point. The colour value comprises the hue and saturation components of the HSV

colour model; we wish to mitigate against variations in luminance to guard against

errors introduced by lighting changes. Although the LCAT can be derived from two

point correspondences we wish to be resilient to outliers, and therefore seek the LCAT

M̂
tt′

which minimises E[.]:

E[M
tt′

] =
1

|F |

|F |
∑

i=1

|I(xi
t′)− I(M tt′

xi
t)|2 (6.8)

where the tt′ subscript denotes the matrix transform from frame t to t′. In a similar

manner to camera motion correction (Section 6.3.1), the transformation M
tt′

is initially

estimated by RANSAC, and then refined by Levenburg-Marquadt search.

Note that this process assumes the animator is able to isolate an unoccluded example

of the feature, in a single video frame; a reasonably light restriction given that there

is no requirement for all features to be bootstrapped from within the same individual

frame.

By default, several well distributed interest points are identified automatically using

the Harris [68] operator (see sequences CRICKET, METRONOME). In some cases

a distinctively coloured feature itself may be used as a marker (see VOLLEY, Fig-

ure 6-2). In more complex cases where point correspondences for tracking can not be

found (perhaps due to signal flatness, small feature area, or similarity between closely

neighbouring features), distinctively coloured markers may be physically attached to

the subject and later removed digitally (see STAIRS, Figure 6-2). In these cases the

Harris interest points are substituted for points generated by analysis of the colour

distribution in a frame (see Appendix A.5) for full details).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 128

Noise and Occlusion

So far we have overlooked the impact of noise and occlusion upon our tracker. The

“best” M
tt′

measured will be meaningless in the case of total occlusion, and exact in

the case of neither noise nor occlusion. The likelihood Lt of the feature being occluded

at any time t may be written as a function of detected pixel error:

Lt = exp(−λE[M
tt′

]) (6.9)

where λ is the reciprocal of the average time an object is unoccluded (this is a data

dependent constant which can be varied to tune the tracker), and E[.] is the pixel-wise

difference defined in equation 6.8. Thus at any time t we know the estimated LCAT

M
tt′

, and the confidence in that estimate Ct = 1−Lt. We have incorporated a Kalman

filter [90] into our tracker which processes video frames sequentially, accepting the

LCAT estimate and confidence values over time, and outputting a best estimate value

for each instant’s LCAT. The Kalman filter “learns” a model of the tracked feature’s

motion over time; this motion model is factored in to the “best estimate” to output

at time t. The credence given to the model, versus that given to the observation, is

governed by the confidence in our observation at that time, Ct. We give further details

of our Kalman tracking approach in Appendix A.4, but summarise that central to

the filter is a 3 × 3 state transition matrix S which represents a second order motion

equation in the 4D parameter space of the LCAT. The coefficients c(.) of this equation

are continuously updated, according to the confidence of measurements submitted to

the filter, to learn the immediate history of the feature’s motion. For example, in the

case of a zero confidence (Ct = 0) input, the filter will produce an output based entirely

on this learnt motion:

c(t′) = Sc(t) (6.10)

c(t′) =







1 t′ − t (t′ − t)2/2
0 1 t′ − t
0 0 1













h(t)
dh(t)

dt
d2h(t)

dt2







Observe that if confidence Ct is low, then the object is likely to have been occluded,

because we cannot match the template to the image. If Ct > 0.5 we say the object is

more likely occluded than not. If the likelihood of occlusion is low, Ct < 0.5, and the

modelled and observed LCAT disagree then the estimate, due to the second order mo-

tion equation, is likely to be in error. We can therefore use a low Ct to detect collisions

(see Section 6.4.2).

The addition of a Kalman filter to the system permits the tracker to maintain a lock on

features moving under occlusion providing that motion, whilst occluded, approximately

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 129

G

F

I

A

J

L

E

D

H

B

K

C

occludes

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

Figure 6-3 An occlusion graph constructed over 150 frames of the STAIRS sequence,
node letters correspond with Figure 6-2. Dotted lines indicate unoccluded nodes.

follows the second order model estimated by the Kalman filter; this approach has been

found sufficiently robust for our needs. However, although this lock is sufficient to

re-establish accurate tracking immediately following an occlusion, the predicted LCAT

during occlusion is often inaccurate. We refine the tracked motion by deciding at which

time intervals a feature is occluded and interpolating between the parameters of known

LCATs immediately before and after occlusion. Knowledge of the correct positions of

features during occlusion is important when rendering as, although a feature will not

be visible while occluded, any applied motion cues may be. Occlusion is also used to

determine relative feature depth, and a knowledge of collision events is important later

for squash-and-stretch effects.

6.3.3 Recovering Relative Depth Ordering of Features

We now determine a partial depth ordering for tracked features, based on their mutual

occlusions over time. The objective is to assign an integer value to each feature corre-

sponding to its relative depth from the camera. We introduce additional assumptions

at this stage: 1) the physical ordering of tracked features cannot change over time

(potential relaxation of this assumption is discussed later in Section 6.5) ; 2) a tracked

feature can not be both in front and behind another tracked feature; 3) lengthly spells

of occlusion occur due to tracked features inter-occluding.

For each instance of feature occlusion we determine which interest points were occluded

by computing a difference image between tracked and original feature bitmaps. A con-

tainment test is performed to determine whether occluded points lie with the bounding

contour of any other tracked features; if this is true for exactly one feature, then the

occlusion was caused by that feature. We represent these inter-feature relationships

as a directed graph, which we construct by gathering evidence for occlusion over the

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 130

whole sequence. Formally we have a graph with nodes G1..n corresponding uniquely

with the set of tracked features, where Gi 7→ Gj implies that feature Gi occludes Gj

(Figure 6-3). Each graph edge is assigned a weight; a count of how many times the

respective occlusion is detected.

This graph has several important properties. First, the graph is directed and should

also be acyclic (i.e. a DAG) since cycles represent planar configurations which cannot

occur unless our previous assumptions are violated or, rarely, noise can cause false

occlusion. Second, some groups of polygons may not interact via occlusion, thus the

resulting graph may not be connected (a forest of connected DAGs is produced). Third,

at least one node Gm must exist per connected graph such that ∀Gi=1..n¬∃Gi 7→ Gm.

We call such nodes “unoccluded nodes”, since they correspond to features that are not

occluded by any other feature over the duration of the video. There must be one or

more unoccluding node per connected graph, and one or more graph in the entire forest.

First we verify that the graph is indeed acyclic. If not, cycles are broken by removing

the cycle’s edge of least weight. This removes sporadic occlusions which can appear

due to noise. We now assign an integer depth code to each node in the graph; smaller

values represent features closer to the camera. The value assigned to a particular node

corresponds to the maximum of the hop count of the longest path from any unoccluded

node to that node (Figure 6-3). The algorithm proceeds as follows:

1: function determine depth coding(G1..n)

2: for i = 1 to n do

3: Find the connected graph g s.t. Gi ∈ g.
4: Identify the unoccluded nodes U ⊆ g.
5: code = 0

6: for each unoccluded node u ∈ U do

7: code=max(code,longestpath(u,Gi)).

8: end for

9: assign depth order of node Gi = code

10: end for

We note that since connected graphs are encoded separately, depth coding is only con-

sistent within individual connected graphs. By definition, features within disconnected

graphs do not occlude each other; thus it is not possible to determine a consistent

ordering over all connected graphs using occlusion alone. However since this data is

required later only to composit features in the correct order, such consistency is not

relevant.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 131

6.4 Computer Graphics Component

In this section we show how to construct correspondence trails, deformation bases,

and occlusion buffers, all of which are used when rendering motion cues within the

video. We begin with an object, which has been tracked over the full course of a

video, as already described. We analyse tracking data and show how to produce an

animated object which is a re-presentation of the original, subject to the placement of

augmentation cues (streak-lines and ghosting), deformation cues (squash and stretch

and other distortions), and suitable occlusion handling. We work entirely with two-

dimensional data. Each feature has two cels associated with it, one for augmentation

cues such as streak-lines, the other for deformation cues such as squash and stretch.

The cels are composited according to the depth ordering of features, from the furthest

to the nearest; for a given feature, deformation cels are always in front of augmentation

cels (Figure 6-11).

6.4.1 Motion Cues by Augmentation

Augmentation cues, such as streak-lines and ghosting, are common in traditional ani-

mation (Figure 6-1). Streak-lines can ostensibly be produced on a per frame basis by

attaching lines to a feature’s trailing edge, tangential to the direction of motion [80].

Unfortunately, such an approach is only suitable for visualising instantaneous motion,

and produces only straight streak-lines. In addition, these “lines” often exhibit distract-

Figure 6-4 Demonstrating that point trajectories do not generally form artistic streak-
lines. Corresponding the polygon vertices returned by the tracker for the ball in VOLLEY
creates unsightly bunching of lines; in fact, in this example such trajectories are ambiguous
due to symmetry. However the problem remains even in the case of unambiguous point
trajectories, for example that of the sheep (right) where streak-lines converge and cross.
We match trailing edges, form correspondence trails, and filter them using heuristics to
place streak-lines in a manner similar to that of traditional animators. Our correspondence
strategy produces a closer approximation the streak-lines drawn by an animator (bottom-
left, bottom-right).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 132

ing wobbles over time due to small variations in a feature’s trajectory. By contrast,

animators tend to sketch elegant, long curved streaks which emphasise the essence of

the motion historically. In Figure 6-4 we show that the trajectories generated by im-

aged points do not necessarily correspond to an animator’s placement of streak-lines.

Readily available techniques, such as optical flow [54], are thus infeasible for producing

streak-lines for two main reasons: (1) Optical flow algorithms tend to operate over

periods of time that are much shorter than typical streak-lines represent. This makes

them susceptible to noise, and they fail at occlusions. (2) In general, streak-lines do

not trace the motion of a single point on an object (as is the intent with optical flow),

but depict the overall “sense-of-motion” of an object.

Streak-line placement is therefore a non-trivial problem: they are not point trajecto-

ries, features tend to move in a piecewise-smooth fashion, and we must carefully place

streak-lines on features. To produce streak-lines we generate correspondence trails over

the trailing edge of a feature as it moves, we then segment trails into smooth sections,

which we filter to maximise some objective criteria. We finally render the chosen sec-

tions in an artistic style.

We begin by sampling the feature boundary at regular spatial intervals, identifying a

point as being on the trailing edge if the dot product of its motion vector with the

external normal to the boundary is negative. Establishing correspondence between

trailing edges is difficult because their geometry, and even connectivity, can vary from

frame to frame (as a function of motion). The full LCAT determined during tracking

cannot be used, as this establishes point trajectories (which we have observed are not

streak-lines); we wish to establish correspondence between feature silhouettes.

We establish correspondence trails by computing the instantaneous tangential velocity

of a feature’s centroid µ. A translation and rotation is computed to map the normalised

motion vector from µ at time t to time t′. Any scaling of the feature is performed using

the scale parameter of the LCAT determined during tracking. Points on the trailing

edge at time t are now translated, rotated, and scaled. Correspondence is established

between these transformed points at time t, and their nearest neighbours at time t′,

this forms a link in a correspondence trail. This method allows the geometry of the

trailing edge to vary over time, as required.

Animators tend to draw streak-lines over smooth sections of motion. Therefore the

correspondence trails are now segmented into smooth sections, which are delimited by

G1 discontinuities — knots in piecewise cubic curves. This results in a set of smooth

sections, each with a pair of attributes: 1) a function G(s) where s ∈ [0, 1] is an arc-

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 133

(a) (b)

(c) (d) (e)

(g)(f)

Figure 6-5 A selection from the gamut of streak and ghosting line styles available: Ghost-
ing lines may be densely sampled to emulate motion blur effects (b,c,f) or more sparsely for
ghosting (a,d). The feature itself may be ghosted, rather than the trailing edge, to produce
Futurist-like echos (e,g). Varying the overlap constant w influences spacing of streak-lines
(b,f). The decay parameters of streak and ghosting lines may be set independently (a).

length parameterisation of the curve trajectory; 2) a lookup table g(.) mapping from

an absolute time index t (from the start of the clip) to the arc-length parameter, i.e.

s = g(t), thus recording velocity along the spatial path G(s). The inverse lookup

function g−1(.) is also available. Clearly the curve exists only for a specific time period

[g−1(0), g−1(1)]; we call this interval the duration of the curve.

The association between each smooth section and its data points is maintained. These

data points are used to filter the set of smooth sections to produce a subset σ of man-

ageable size, which contains optimal paths along which streak-lines will be drawn.

Our filtering selects curves based on heuristics derived from the practice of anima-

tors [130] who favour placement of streak-lines on sites of high curvature and on a

feature’s convex hull. Long streak-lines and streak-lines associated with rapid motion

are also preferred, but close proximity to other co-existing streak-lines is discouraged.

We select streak-line curves using a greedy algorithm to maximise the recursive function

H(.), on each iteration i adding a new element to σ (initially empty).

H(0) = 0

H(i+ 1) = H(i) + (αv(x) + βL(x)−
γD(x)− δω(x, σ; η) + ζρ(x)) (6.11)

where x is the set of spatial points associated with a smooth section. L(x) is the length

of a smooth section, v(x) is the “mean velocity” defined as L(x)/t(x) in which t(x) is

the temporal duration of the smooth section. ρ(x) is the mean curvature of feature

boundary at points in x. D(x) is the mean shortest distance of points in x from the

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 134

s

s
Frame
Next

User parameters

A

E

Current
Frame

Convex
hull

B

C

D

P

Motion

sk_radminP

Psk_lag

P

opacity

Psk_faderate
Pgh_faderate
Pfadeout

P

Pgh_width

gh_lag

Pgh_rate

sk_radmax

Start streak radius
End streak radius

RGB cue colour
Base cue opacity

Ghost opacity rate of decay
Ghosting line width

Opacity fade rate for inactive cues
Ghosting uses edges or features
Max duration (lag) of streak lines
Max duration (lag) of ghosting lines

P
P
P
P
P

P
P
P
P
P
P

sk_radmax

sk_radmin

opacity

rgb

sk_faderate

gh_faderate

gh_width

gh_lag

sk_lag

gh_style

fadeout

Streak opacity rate of decay
Ghost line sample rategh_rateP

Figure 6-6 Left: User parameters used, in conjunction with weights of equation 6.11, to
influence augmentation cue placement.

convex hull of the feature. ω(x, σ; η) measures the maximal spatiotemporal overlap

between x and the set of streak-lines chosen on previous iterations. From each curve

we choose points which co-exist in time, and plot the curves with width η returning the

intersected area. Constant w is user defined, as are the constant weights α, β, γ, δ, and

ζ; these give artistic control over the streak-line placement (see Figure 6-5). Iteration

stops when the additive measure falls below a lower bound.

We are now in a position to synthesise two common forms of augmentation cue; streak-

lines and ghosting lines — both of which are spatiotemporal in nature. A streak-line is

made visible at some absolute time t and exists for a duration of time ∆. The streak-line

is rendered by drawing a sequence of discs along the smooth section with which it is as-

sociated, starting at spatial location G(g(t)) and ending at G(g(max (g−1(0), t−∆))).

The streak-line is rendered by sweeping a translucent disc along the smooth section

(backwards in time) which grows smaller and more transparent over time. These de-

cays are under user control.

Ghosting lines depict the position of a feature’s trailing edge along the path of the

streak-line, and are useful in visualising velocity changes over the course of the streak-

line. Ghosting lines are rendered by sampling the trailing edge at regular time intervals

as the streak-line is rendered, interpolating if required. The opacity of ghosting lines is

not only a function of time (as with streak-lines) but also a function of speed relative

to other points on the trailing edge; this ensures only fast moving regions of edge are

ghosted. Users may control the sampling rate, line thickness, and decay parameters to

stylise the appearance of the ghosting lines (Figure 6-6).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 135

6.4.2 Motion Cues by Deformation

Deformation cues are further tools available to an animator. They are routinely used

to depict inertia or drag; to emphasise the line of action through a frame; or to show

the construction or flexibility of an object. Features are cut from the current video

frame, and motion dependent warping functions applied to render the deformation cue

cel for each feature.

Deformations are performed in a curvilinear space, the basis of which is defined by

the local trajectory of the feature centroid, and local normals to this curve. This

trajectory has exactly the same properties as any smooth section (see Section 6.4.1). A

local time-window selects a section of the centroid trajectory, and this window moves

with the object. The instantaneous spatial width of this window is proportional to

instantaneous centroid velocity. At each instant, t we use the centroid trajectory to

establish a curvilinear basis frame. First we compute an arc-length parameterisation

of the trajectory: µ(r) in which r =
∫ t′

i=t

∣

∣

∣

˙µ(i)
∣

∣

∣
di. Next we develop an ordinate at

an arc-length distance r from the instant; the unit vector n(r) perpendicular to ˙µ(t).

Thus, at each instant t we can specify a point in the world-frame using two coordinates,

r and s:

xt(r, s) = µ(r) + sn(r) (6.12)

We can write this more compactly as xt(r) = C(r), where r = (r, s)T , and maintain

the inverse function rt(x) = C−1(x) via a look-up table. This mapping, and its inverse,

comprise one example of a deformation basis.

The above analysis holds for most points on the centroid trajectory. It breaks down

at collision points, because there is a discontinuity in velocity. We define a collision

point as one whose location cannot be satisfactorily predicted by a second order mo-

tion equation (constructed with a Kalman filter, see Section 6.3.2). This definition

discriminates between G1 discontinuities in trajectory which are formed by, say, simple

harmonic motion, and true collisions which are C1 discontinuous (see Figure 6-7).

At a collision point we establish an orthonormal basis set aligned with the observed

collision plane. We assume the angle of incidence and reflection are equal, and hence

the unit vector which bisects this angle is taken to be the ordinate. The abscissa lies

in the collision plane. We define this new basis set as an additional instance of a de-

formation basis, and write the mapping to and from the world frame using notation

consistent with the curvilinear basis. In addition, we compute the impact parameter

of the collision, which we define as the distance (D) from the object’s centroid to its

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 136

collision

collision

predicted
centroid

measured
centroid

no collision

predicted
centroid

measured
centroid

t+1

ϕ

F

Ft

ϕ

impact
parameter

instant of
collision

t

t+1µ

µ

(D)

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

at impact
tangent

ordinate

collision
plane

Figure 6-7 Top: bounces are detected as collisions (left), whilst the simple har-
monic motion of the metronome is not (right). Predicted motions shown in green,
observed position in cyan. Bottom: Collision geometry of the first impact in the
BOUNCE sequence. The time lapse image (right) shows the resulting deformations (see
videos/bounce deformationonly).

boundary, in the direction of the negative ordinate. Note we compensate for temporal

sampling around the true collision instant by intersecting extrapolated impact and re-

bound trajectories (Figure 6-7).

An animated object is, in general, a deformed version of the original. Squash and

stretch tangential to instantaneous motion leads to visually unattractive results; it is

better to not only squash and stretch, but also to bend the object along the arc of its

centroid trajectory. Let x(t) be any point in the object. We transform this point with

respect to a single deformation basis into a new point y(t), given by

y(t) = C(At[C
−1(x(t))]) (6.13)

where At[.] is some deformation function at time t. In the case of squash and stretch

the deformation is an area-preserving differential scale that depends on instantaneous

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 137

Direction of travel

Frame 40

Follow through

Receipt

Release

Frame 1

Pull back

1 10 20 30 40 50
0

5

10

15

20

25

30

T
ra

ck
ed

 s
pe

ed
 (

pi
xe

ls
/s

ec
)

Time index (frames)

Ball release

Apex

Ball receipt

Follow through

Volley 1 Volley 2 (not shown)

Figure 6-8 Top left: Illustrating the squash and stretch effect; eccentricity varies as
a function of tangential speed (right). Bottom: Frames from the VOLLEY sequence
exhibiting squash and stretch. Observe the system handles both large scale camera motion,
and lighting variation local to the ball (videos/volley streaks).

speed |µ̇(t)|:

A =

[

k 0

0 1
k

]

(6.14)

k = 1 +
K

2
(1− cos(πv

2 + 1

2
))

v =











0 if |µ̇| < Vmin

1 if |µ̇| >= Vmax

(|µ̇| − Vmin)/(Vmax − Vmin) otherwise

(6.15)

However during collision animators tend to vary the amount of “stretch” in proportion

to acceleration magnitude, rather than speed. In addition, the deformation due to im-

pact takes place in the deformation basis defined about the collision site, as discussed

earlier in this Section.

We linearly interpolate between the deformation caused by a “standard” deformation

basis with that caused by a “collision” deformation basis. Suppose p(t) 7→ q(t) and

p(t) 7→ q′(t), respectively, then:

r(t) = f(d)q(t) + (1− f(d))q′(t) (6.16)

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 138

Figure 6-9 Examples of curvilinear warps used to create deformation cues in the VOLLEY
(left) and METRONOME (right) sequences.

where f(d) = sin(π
2 min(1, d/(sD)) in which D is the impact parameter of the collision

(defined previously), and s is a user parameter which controls the spatial extent over

which collision influences the deformation. This transfer function gives a suitably

smooth transition between the two deformation bases. As a note, the mapping to q ′(t)

not only has to scale the object but also translate it toward the impact point, so that

the edge of the deformed object touches the collision plane. This translation vector is

expressed within the collision basis as:

[

0

D(1− 1
k)

]

(6.17)

Non-linear deformations are also possible, and these can be used to create bending

effects. We can form warping functions which depend on each point’s velocity and

acceleration as well as its position. We write x′ = C(A[C−1(x); ẋ, ẍ]), where A(r; .) is a

functional used, for example, to suggest increased drag or inertia. A typical functional

operates on each component of r = (r1, r2)
T independently; to create effects suggesting

drag we use:

r1 ← r1 − F (
2

π
arctan(|ẋi|))P sign(ẋi) (6.18)

F and P are user defined constants which affect the appearance of the warp. For

example, large F give the impression of heavy objects and P influences the apparent

rigidity of objects. By substituting acceleration for velocity, and adding rather than

subtracting from r1 we can emphasise inertia of the feature (see Figure 6-10):

r1 ← r1 + F (
2

π
arctan(|ẍi|))P sign(ẍi) (6.19)

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 139

Figure 6-10 Top: Frames from METRONOME suggesting inertia (left) and drag (right)
effects through deformation, original feature outline in green. Bottom: Deforming a rigid
wand in the WAND sequence, using a velocity based “drag” effect — streak-lines are
warped along with the object, adding to the effect (videos/wand cartoon).

Finally, we ensure visual consistency by deforming not only features, but also their

associated augmentation cue cels containing streak-lines or ghost lines.

6.4.3 Rendering in the Presence of Occlusion

In any real video a tracked feature may become occluded by other elements of the

scene. Näively, all pixels inside the bounding contour of a feature will be included in

that feature and so are subject to deformation. Consequently, it is easy to mistakenly

warp parts of occluding objects; we now explain how to avoid producing these unwel-

come artifacts.

We begin our explanation with an illustrative example. Consider the BASKETBALL

video clip of Figure 6-12, in which a fast moving ball passes behind a hoop. We may

identify pixels as belonging to an occluding object, in this case the ring, by forming a

difference image (using the hue and saturation components in HSV space, again to affect

simple invariance to illumination changes) between the feature region in the current

frame and the feature itself. This yields a weighted mask of occluding pixels which are

re-textured by sampling from feature regions in neighbouring unoccluded frames. An

approximation to the unoccluded feature is thus reconstructed, and after deformation

occluding pixels may be recomposited to give the illusion of the ball passing ’behind’

occluding objects (Figure 6-11d).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 140

(a) (b) (c)

(d) (e)

deformation cel

foreground cel

background cel

augmentation cel

Figure 6-11 Left: (a) näive deformation creates artifacts, but our method does not (c).
An occlusion buffer is constructed over time (b), allowing augmentation cues to be handled
in the wake of the feature. The system breaks down (d) after impact erratic movement
of the netting causes the occlusion buffer to empty and cues to be incorrectly drawn in
front of that netting. Right: Frames are rendered as layers, in back-to-front order. In
this case a single object (the ball) is tracked to produce augmentation cues (streak-lines)
and deformations (squash and stretch). Occluding pixels are overlaid in the foreground to
produce the illusion of the ball deforming behind the hoop (videos/basket rendered).

The situation becomes more complicated when one considers that a feature may be

deformed (stretched, for example, as part of squash and stretch) outside its original

polygonal boundary. Similarly, augmentation cues should pass behind occluding ob-

jects; these cues are also drawn outside of the original boundary. Fortunately we can

make progress, since these cues traverse an identical path to that of the feature itself.

We construct an occlusion buffer by examining a small temporal window of frames

centred upon the current time instant, summing the difference images generated whilst

handling occlusion in the manner described in the preceding paragraph. Using this

buffer we may determine which pixels will occlude cues such as streak-lines, so long as

those pixels do not change in the time interval between the real feature passing and the

augmentation cues being drawn. The occlusion buffer contains a difference image for

occlusion and the RGB value of each pixel. Pixels in the buffer are deleted when the

difference between the stored colour for a pixel, and the measured colour of that pixel

at the current time is significant. In this case the occluding pixel has moved, obsoleting

our knowledge of it.

This algorithm works acceptably well over short time intervals, but in general we can

hope only to mitigate against artifacts generated by occluding objects which we have

not explicitly tracked. For example, Figure 6-11d demonstrates how streak-lines are

able to correctly pass behind complex netting, whilst that netting is stationary. The

system breaks down in Figure 6-11e when the netting moves erratically after ball im-

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 141

pact, causing the occlusion buffer to quickly empty and streak-lines to be incorrectly

drawn in front of the netting.

6.4.4 Compositing and Rendering

The graphics component composits cels to create each frame of the animation. To ren-

der a particular frame, a background cel is first generated by subtracting features from

the original video; determining which pixels in the original video constitute features by

projecting tracked feature regions from the camera-compensated sequence to the orig-

inal camera viewpoint. Pixels contributing to feature regions are deleted and absent

background texture sampled from locally neighbouring frames in alternation until holes

are filled with non-feature texture. This sampling strategy mitigates against artifacts

caused by local lighting changes or movement.

Once augmentation and deformation cels have been rendered for each feature, cels are

composited to produce an output video frame. Cels are projected by homography

to coincide with the original camera viewpoint, and composited onto the background

in reverse depth order. Finally, a foreground cel is composited, which contains all

pixels that occlude identified objects. These pixels are taken from the occlusion buffer

described in Section 6.4.4. Thus motion cues appear to be inserted into video at the

correct scene depth (Figure 6-11).

6.5 Summary and Discussion

We have described and demonstrated a subsystem, within the Video Paintbox, for the

artistic rendering of motion within video sequences. The subsystem can cope with a

moving camera, lighting changes, and presence of occlusion. Aside from some (desir-

able) user interaction when boot-strapping the tracker, and the setting of user param-

eters, the process is entirely automatic. Animators may influence both the placement

and appearance of motion cues by setting parameters at a high conceptual level; spec-

ifying the objects to which cues should be attached, and the type of motion emphasis

desired. Parameters may also be set on individual motion cues to stylise their appear-

ance, for example streak-line spacing or squash and stretch rigidity.

We have shown that through high level analysis of features (examining motion over

blocks of video with large temporal extent, rather than on a per frame basis) we may

produce motion cues closely approximating those used in traditional animation (Fig-

ure 6-1). For example, we have shown that streak-lines are generally poorly represented

by point trajectories [80], and should instead be rendered as smooth curves capturing

the essence of a trajectory over time. Although the former are obtainable via temporally

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 142

local processing, the latter require analysis which necessitates a higher level of tempo-

ral analysis for trajectory analysis. Likewise deformation effects such as squash and

stretch demand detection and localisation of collisions, the analysis of which requires

examination large temporal window around the collision instant. The spatiotemporal

occlusion buffer is another example of higher level temporal analysis performed by the

motion emphasis subsystem.

Further developments could address the relaxation of some of the assumptions made

in the design of the subsystem. For example, violations of depth assumptions in Sec-

tion 6.3.3 are detectable by the presence of heavily weighted cycles in the depth graph.

It may be possible to segment video into a minimal number of chunks exhibiting non-

cyclic depth graphs, and in doing so recover relative feature depth under more general

motion. The tracker could also benefit from more robust, contemporary methods such

as CONDENSATION [85], although this may involve imposing a more restrictive mo-

tion model than Kalman filtering requires, which is why we opted for the latter. We

can imagine a system that uses CONDENSATION tracker for common objects, such

as people walking, but defaults to a Kalman filter in more general cases. Further de-

velopments might evaluate the robustness of the algorithm using both ground truth

comparisons for measures such as velocity, as well as processing sequences exhibiting

distinctly non-planar motion.

Although these incremental changes would serve to enhance robustness, the most in-

teresting extensions of this work lie in an expansion of the gamut of motion cue styles,

and the incorporation of motion emphasis with the coherent artistic shading of video.

These two developments are documented in Chapters 7 and 8 respectively.

A selection of source and rendered video clips have been included in Appendix C.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 143

SOURCE BASKETBALL SEQUENCE

RENDERED BASKETBALL SEQUENCE

Figure 6-12 Stills from the original (videos/basket source) and rendered
(videos/basket rendered) versions of the BASKETBALL sequence. This sequence not
only demonstrates the use of squash and stretch deformations, streak-lines and ghosting,
but also serves to illustrate our occlusion handling.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 144

RENDERED BOUNCE SEQUENCE

Figure 6-13 Stills from the rendered BOUNCE sequence, demonstrating both augmenta-
tion cues and our squash and stretch deformation effect (see videos/bounce motiononly).
This sequence demonstrates the correct detection and handling of collision events.

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 145

RENDERED VOLLEY SEQUENCE

Figure 6-14 Stills from the rendered VOLLEY sequence, demonstrating both augmenta-
tion cues and our squash and stretch deformation effect (see videos/volley motiononly).
This sequence demonstrates that the system is able to compensate for large scale camera
motion, and handle local lighting changes (on the ball).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 146

RENDERED BALLET SEQUENCE

Figure 6-15 Stills from the rendered BALLET sequence, demonstrating the in-
sertion of augmentation cues in to the sequences at the correct scene depth
(videos/ballet streaks).

CARTOON-STYLE VISUAL MOTION EMPHASIS FROM VIDEO 147

A. →

B. →

C. →

→

→

→

Figure 6-16 Ten stills taken simultaneously (time runs from left to right) over three
different renderings of the METRONOME sequence: (A) Augmentation cues only
(videos/metro streaks); (B) Deformation emphasising drag (velocity dependent warp)
with streak lines (videos/metro warp veloc); (C) Deformation emphasising inertia (ac-
celeration dependent warp) with streak lines (videos/metro warp accel). Approximately
one still per five frames.

